JP2010233538A - Method for evaluating substrate metabolite - Google Patents

Method for evaluating substrate metabolite Download PDF

Info

Publication number
JP2010233538A
JP2010233538A JP2009087023A JP2009087023A JP2010233538A JP 2010233538 A JP2010233538 A JP 2010233538A JP 2009087023 A JP2009087023 A JP 2009087023A JP 2009087023 A JP2009087023 A JP 2009087023A JP 2010233538 A JP2010233538 A JP 2010233538A
Authority
JP
Japan
Prior art keywords
metabolite
substrate
hepatocytes
phase
culture
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009087023A
Other languages
Japanese (ja)
Inventor
Takeshi Iketani
武志 池谷
Tomoko Shiromura
友子 城村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TRANS PARENT KK
Original Assignee
TRANS PARENT KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TRANS PARENT KK filed Critical TRANS PARENT KK
Priority to JP2009087023A priority Critical patent/JP2010233538A/en
Publication of JP2010233538A publication Critical patent/JP2010233538A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for evaluating substrate metabolites which evaluates substrate metabolites at high accuracy using hepatocytes. <P>SOLUTION: The method comprises: forming spheroids in the cell contact region by culturing hepatocytes of animal origin on a pattern culture material which specifies the cell contact region to a pattern shape; and, after exposing a substrate to the spheroids, measuring the second phase metabolites. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、動物由来の肝細胞の基質代謝物を評価する基質代謝物の評価方法に関する。   The present invention relates to a substrate metabolite evaluation method for evaluating a substrate metabolite of animal-derived hepatocytes.

肝細胞を用いて基質の代謝物を評価することは、新薬の開発などにおいてヒトでの薬効や毒性を予測するための重要な評価方法である。例えば、ラットの肝細胞あるいは肝細胞中に存在するミクロソームを用い、これに新薬候補化合物を暴露させ、所定時間後得られた代謝物を評価する方法が知られている(非特許文献1参照)。しかし、ミクロソームは細胞内の小器官を取り出しており、ミクロソームを用いた方法では肝細胞で惹起する代謝の一部分を評価しているに過ぎない。   Evaluation of a metabolite of a substrate using hepatocytes is an important evaluation method for predicting drug efficacy and toxicity in humans in the development of new drugs. For example, a method is known in which rat hepatocytes or microsomes present in hepatocytes are used, a new drug candidate compound is exposed thereto, and a metabolite obtained after a predetermined time is evaluated (see Non-Patent Document 1). . However, microsomes take out organelles in cells, and the method using microsomes only evaluates a part of metabolism caused by hepatocytes.

また、肝細胞は難培養性細胞であるため、評価用に細胞を調整した直後から代謝能は劣化する。そのため、これまで通常行われるように、コラーゲンなどをコートした培養器に肝細胞をシート状に培養するいわゆる単層培養したものでは、短時間の暴露時間での代謝物評価のみしかできず、特に第I相の代謝を受けた後第II相の代謝物に変ずる速度が遅い基質や代謝経路が多岐にわたる基質等、第II相代謝物の生成が遅い基質の第II相代謝物や連続的な代謝物の変化などの評価は困難であるという問題や、評価を行う度に細胞の調整を行わなければならないことから実験間の誤差が大きくなるという問題により評価上の制限があり、高精度で評価することはできなかった。   In addition, since hepatocytes are difficult-to-culture cells, metabolic capacity deteriorates immediately after the cells are prepared for evaluation. Therefore, as usual, so-called monolayer culture in which hepatocytes are cultured in a sheet form in a culture vessel coated with collagen, etc. can only evaluate metabolites with a short exposure time. Substrate phase II metabolites that are slow to produce phase II metabolites, such as substrates that are slow to convert to phase II metabolites after undergoing phase I metabolism, or substrates that have a wide variety of metabolic pathways There are limitations on evaluation due to the difficulty of evaluating changes in metabolites, etc., and the problem that errors between experiments become large because cells must be adjusted each time evaluation is performed. It was not possible to evaluate.

薬物動態研究ガイド−創薬から臨床へ−、株式会社エル・アイ・シー、2003年5月31日、p.49−59Pharmacokinetic Research Guide-From Drug Discovery to Clinical Practice-LCI Corporation, May 31, 2003, p. 49-59

本発明はこのような事情に鑑み、肝細胞を用いて基質代謝物を高精度に評価することができる基質代謝物の評価方法を提供することを課題とする。   In view of such circumstances, an object of the present invention is to provide a method for evaluating a substrate metabolite that can accurately evaluate a substrate metabolite using hepatocytes.

本発明者等は、上記課題を解決するために種々検討した結果、パターン状に細胞接着領域を規定するパターン培養基材を用いて肝細胞のスフィロイドを形成しこれに基質を暴露して代謝物を定量する評価方法とすることにより、上記課題を解決することができることを見出し、本発明に到達した。   As a result of various studies to solve the above-mentioned problems, the present inventors have formed a spheroid of hepatocytes using a pattern culture substrate that defines a cell adhesion region in a pattern and exposed the substrate to the metabolite. The present inventors have found that the above-mentioned problems can be solved by using an evaluation method for quantitatively quantifying the above.

かかる本発明の第1の態様は、パターン状に細胞接着領域を規定するパターン培養基材上に動物由来の肝細胞を培養することで前記細胞接着領域にスフェロイドを形成し、該スフェロイドに基質を暴露した後、第II相代謝物を定量することを特徴とする基質代謝物の評価方法にある。   In the first aspect of the present invention, spheroids are formed in the cell adhesion region by culturing animal-derived hepatocytes on a pattern culture substrate that defines the cell adhesion region in a pattern, and a substrate is added to the spheroid. There is a method for evaluating a substrate metabolite characterized by quantifying a phase II metabolite after exposure.

本発明の第2の態様は、前記第II相代謝物を定量する際に、同時に第I相代謝物を定量することを特徴とする第1の態様に記載の基質代謝物の評価方法にある。   According to a second aspect of the present invention, in the method for evaluating a substrate metabolite according to the first aspect, the phase I metabolite is quantified at the same time when the phase II metabolite is quantified. .

本発明の第3の態様は、前記スフェロイドに前記基質を暴露させる時間を複数設定することを特徴とする第1又は2の態様に記載の基質代謝物の評価方法にある。   A third aspect of the present invention is the substrate metabolite evaluation method according to the first or second aspect, wherein a plurality of times for exposing the substrate to the spheroid are set.

本発明の第4の態様は、前記動物が、ヒト、ラット、マウス、イヌ、サル、ニワトリ、ヒツジ及びヤギから選択された少なくとも一種であることを特徴とする第1〜3のいずれか一つの態様に記載の基質代謝物の評価方法にある。   According to a fourth aspect of the present invention, in any one of the first to third aspects, the animal is at least one selected from human, rat, mouse, dog, monkey, chicken, sheep and goat. It exists in the evaluation method of the substrate metabolite as described in an aspect.

本発明の第5の態様は、前記動物由来の肝細胞が、初代肝細胞又は凍結初代肝細胞のいずれかであることを特徴とする第1〜4のいずれか一つの態様に記載の基質代謝物の評価方法にある。   According to a fifth aspect of the present invention, in the substrate metabolism according to any one of the first to fourth aspects, the animal-derived hepatocytes are either primary hepatocytes or frozen primary hepatocytes. It is in the evaluation method of things.

本発明によれば、パターン状に細胞接着領域を規定するパターン培養基材を用いて肝細胞のスフィロイドを形成しこれを用いて基質代謝物を評価することにより、肝細胞で惹起する代謝の一部分を評価するミクロソームを用いた方法よりも、生体で生起する代謝物と相関した基質代謝物評価方法となる。また、パターン状に細胞接着領域を規定するパターン培養基材を用いて形成される肝細胞のスフィロイドは、通常の単層で行う培養よりも長期間代謝活性が維持されるため、長時間の暴露での代謝物評価ができる。したがって、第II相代謝物の生成が遅い基質の第II相代謝物や連続的な代謝物の変化などの評価も可能となる。また、評価を行う度に細胞の調整を行う必要がないという効果を奏する。よって、薬物候補になり得る化合物(薬物)スクリーニングなどの作業を高効率で行うことができるという効果を奏する。   According to the present invention, a part of metabolism caused by hepatocytes is formed by forming spheroids of hepatocytes using a pattern culture substrate that defines cell adhesion regions in a pattern, and using this to evaluate substrate metabolites. This is a substrate metabolite evaluation method correlated with a metabolite generated in a living body rather than a method using microsomes for evaluating the above. In addition, spheroids of hepatocytes formed using a pattern culture substrate that defines the cell adhesion area in a pattern form maintain metabolic activity for a longer period of time than normal monolayer cultures, and thus are exposed for a long time. Metabolite evaluation at can be performed. Therefore, it is also possible to evaluate changes in the phase II metabolites and continuous metabolites of a substrate that is slow to produce phase II metabolites. In addition, there is an effect that it is not necessary to adjust cells each time evaluation is performed. Therefore, there is an effect that operations such as screening of a compound (drug) that can be a drug candidate can be performed with high efficiency.

以下、本発明についてさらに詳細に説明する。
本発明の基質代謝物の評価方法は、パターン状に細胞接着領域を規定するパターン培養基材上に動物由来の肝細胞を培養することで細胞接着領域にスフェロイドを形成し、該スフェロイドに基質を暴露した後、第II相代謝物を定量するものである。
Hereinafter, the present invention will be described in more detail.
In the method for evaluating a substrate metabolite of the present invention, spheroids are formed in a cell adhesion region by culturing animal-derived hepatocytes on a pattern culture substrate that defines the cell adhesion region in a pattern, and the substrate is applied to the spheroid. After exposure, phase II metabolites are quantified.

パターン状に細胞接着領域を規定するパターン培養基材は、細胞の接着領域をパターン状に規定したものであれば特に限定されないが、好ましくは基材上に親水性の高分子架橋体により細胞非接着領域が作成され、その細胞非接着領域の中に高分子架橋体が除去され元の基材が露出した部位である細胞接着領域が規定されたものであるのが望ましい。ここで、細胞非接着領域を規定する高分子架橋体は、好ましくは光架橋により架橋体とされたものである。   The pattern culture substrate that defines the cell adhesion region in a pattern is not particularly limited as long as the cell adhesion region is defined in a pattern. However, the cell culture region is preferably formed on the substrate by a hydrophilic polymer crosslinked body. It is desirable that an adhesion region is created, and a cell adhesion region that is a site where the polymer cross-linked body is removed and the original substrate is exposed is defined in the cell non-adhesion region. Here, the polymer crosslinked body defining the cell non-adhesion region is preferably a crosslinked body by photocrosslinking.

高分子架橋体のパターンを形成する基材は、所望の動物由来の肝細胞が接着することが可能であれば、特に限定は無いが、ガラス、組織培養用ポリスチレン、ポリエチレン又はポリプロピレンなどを用いることができる。特にガラス又は組織培養用ポリスチレンが好適に用いることができる。また、これらの表面に、細胞接着を促進する物質を固定したものを基材としてもよい。細胞接着を促進する物質としては、例えばコラーゲン、フィブロネクチン、ビトロネクチン、ラミニン又はポリ−L−リシンなどが挙げられる。また、基材の形状についても特に限定は無いが、平板、シャーレ又は細胞培養用マルチウェルプレートなどを用いることができる。   The substrate for forming the pattern of the polymer crosslinked body is not particularly limited as long as hepatocytes derived from a desired animal can adhere thereto, but glass, polystyrene for tissue culture, polyethylene, polypropylene, or the like is used. Can do. In particular, glass or polystyrene for tissue culture can be preferably used. Moreover, it is good also considering what fixed the substance which promotes cell adhesion to these surfaces as a base material. Examples of the substance that promotes cell adhesion include collagen, fibronectin, vitronectin, laminin, and poly-L-lysine. The shape of the substrate is not particularly limited, and a flat plate, a petri dish, a multiwell plate for cell culture, or the like can be used.

このような基材上に形成される細胞非接着領域を規定する親水性の高分子は、特に限定されないが、好ましくはポリ酢酸ビニル鹸化物、ポリエチレングリコール又はポリヒドロキシエチル(メタ)アクリレートが挙げられる。この中で、ポリ酢酸ビニル鹸化物又はポリエチレングリコールがさらに好ましい。   The hydrophilic polymer that defines the cell non-adhesion region formed on such a substrate is not particularly limited, and preferably, polyvinyl acetate saponified product, polyethylene glycol or polyhydroxyethyl (meth) acrylate is used. . Among these, polyvinyl acetate saponified product or polyethylene glycol is more preferable.

このような高分子を架橋体とする光架橋は、感光基を活性化させる波長の紫外光等光を照射することで容易に進行する。その際、該光を遮蔽するパターン付きマスクなどを介することで、高分子架橋体のパターンを形成することが容易になるという利点を有する。光架橋を形成する反応は特に限定されないが、光重合開始剤を介した光重合系、スチルベンなどの光二量化反応又はアジド基の光開裂による架橋反応などが挙げられる。この中で、アジド基の光開裂反応を好適に用いることができる。   Photocrosslinking using such a polymer as a crosslinked body easily proceeds by irradiating light such as ultraviolet light having a wavelength that activates the photosensitive group. In that case, it has the advantage that it becomes easy to form the pattern of a polymer crosslinked body through the mask with a pattern which shields this light. The reaction for forming photocrosslinking is not particularly limited, and examples thereof include a photopolymerization system via a photopolymerization initiator, a photodimerization reaction such as stilbene, or a crosslinking reaction by photocleavage of an azide group. Among these, the photocleavage reaction of the azide group can be preferably used.

細胞非接着領域を規定する親水性の高分子が架橋された部位と、これら高分子が除去された細胞接着領域のパターン形状は、使用目的に合致すること以外特に限定されない。例えば、初代肝細胞スフェロイドを形成するツール(器具)として用いる場合、細胞接着領域は円形ホール形状を有することが好ましい。   The site where the hydrophilic polymer defining the cell non-adhesion region is cross-linked and the pattern shape of the cell adhesion region from which these polymers have been removed are not particularly limited except that they match the purpose of use. For example, when used as a tool (instrument) for forming primary hepatocyte spheroids, the cell adhesion region preferably has a circular hole shape.

細胞接着領域の個数に特に制限は無いが、2個以上であることが好ましい。例えば96穴マルチウェルプレートを用いる場合、各ウェル内に複数の細胞被接着領域を形成することにより、アレイ状に100個以上の細胞接着領域を備えるようにすることが好ましい。複数のスフェロイドを高密度形成させることで、より精度よく細胞の代謝反応を検出することが可能となる。   Although the number of cell adhesion regions is not particularly limited, it is preferably 2 or more. For example, when a 96-well multiwell plate is used, it is preferable that a plurality of cell adherence regions are formed in each well so that 100 or more cell adhesion regions are provided in an array. By forming a plurality of spheroids at a high density, it becomes possible to detect the metabolic reaction of the cells with higher accuracy.

また、細胞接着領域の大きさは、肝細胞のスフェロイドを形成できる大きさであれば特に限定されないが、例えば内径50〜600μm、好ましくは80〜150μmである。また、細胞非接着領域と細胞接着領域の高さの差についても、肝スフェロイドに栄養や酸素の供給を妨げない限り特に限定されないが、例えば1nm〜2000nm、好ましくは50nm〜300nmである。なお、細胞接着領域を複数設ける場合、細胞接着領域の大きさの均一性についても特に制限はないが、得られるスフェロイドの代謝反応を一定に保つためには、細胞接着領域の大きさが均一になっていた方が好ましい。   The size of the cell adhesion region is not particularly limited as long as it is a size capable of forming spheroids of hepatocytes. For example, the inner diameter is 50 to 600 μm, preferably 80 to 150 μm. Further, the difference in height between the cell non-adhesion region and the cell adhesion region is not particularly limited as long as it does not interfere with the supply of nutrients and oxygen to the liver spheroid, but is, for example, 1 nm to 2000 nm, preferably 50 nm to 300 nm. In addition, when providing a plurality of cell adhesion regions, there is no particular limitation on the uniformity of the size of the cell adhesion region, but in order to keep the metabolic reaction of the obtained spheroid constant, the cell adhesion region size should be uniform. It is more preferable.

このようにして調整したパターン状に細胞接着領域を規定するパターン培養基材に、動物由来の肝細胞を播種することにより、細胞接着領域に、肝細胞の凝集体であるスフェロイドを形成する。このようにして形成された肝細胞のスフェロイドは、通常の単層で行う培養よりも長期間代謝活性を維持できるものである。なお、各スフェロイドを形成する細胞数は、該スフェロイドの生存が可能な個数であれば特に制限されないが、例えば5個〜500個、好ましくは20個〜200個の肝細胞であることが望ましい。   By seeding animal-derived hepatocytes on a pattern culture substrate that defines the cell adhesion region in a pattern thus adjusted, spheroids that are hepatocyte aggregates are formed in the cell adhesion region. The hepatocyte spheroids formed in this way can maintain metabolic activity for a longer period of time than culture performed in a normal monolayer. In addition, the number of cells forming each spheroid is not particularly limited as long as the spheroid can survive, but for example, 5 to 500, preferably 20 to 200 hepatocytes are desirable.

播種する細胞は、動物由来の肝細胞であれば特に限定は無いが、ヒト、ラット、マウス、イヌ、サル、ニワトリ、ヒツジ、ヤギの肝細胞などが例として挙げられる。   The cells to be seeded are not particularly limited as long as they are animal-derived hepatocytes, but examples thereof include human, rat, mouse, dog, monkey, chicken, sheep, and goat hepatocytes.

また、肝細胞の由来については所望の目的に用いることができれば、特に制限は無いが、初代肝細胞を用いることができる。   The origin of hepatocytes is not particularly limited as long as it can be used for a desired purpose, but primary hepatocytes can be used.

肝細胞の調整方法は特に制限は無く、公知の方法を用いて行うことができる。例えば、動物の肝臓からコラゲナーゼ灌流法によって得られた肝細胞を用いて所定濃度に調整することが可能である。また、凍結状態の肝細胞を加温し、凍結保存液を融解・除去後、所定濃度に調整して用いることができる。   There is no restriction | limiting in particular in the adjustment method of a hepatocyte, It can carry out using a well-known method. For example, it is possible to adjust to a predetermined concentration using hepatocytes obtained from the liver of an animal by the collagenase perfusion method. Further, the frozen hepatocytes can be heated and the cryopreservation solution can be thawed / removed and adjusted to a predetermined concentration before use.

肝細胞を播種する際の細胞懸濁液の濃度は、スフェロイドが形成される濃度であれば特に限定されないが、細胞接着領域の全面積がコンフルエントになる濃度から、その10倍濃度が好ましい。   The concentration of the cell suspension at the time of seeding hepatocytes is not particularly limited as long as it is a concentration at which spheroids are formed, but a concentration of 10 times is preferable from the concentration at which the entire area of the cell adhesion region becomes confluent.

上記肝細胞を播種した後、後段の暴露試験を行うまで培地を用いて培養してもよい。培養時間は、肝細胞が死滅しない限り特に制限は無いが、例えば、3時間以上2ヶ月以内、好ましくは24時間以上1ヶ月以内である。ここで、上記のようにして形成された肝細胞のスフェロイドは、長期間代謝活性を維持できるものであるため、肝細胞を播種した後、長期間培養した後であっても代謝能が維持される。肝細胞を培養する培地は、肝細胞培養期間、その機能を維持できれば特に制限無く市販培地を用いることができる。   After seeding the hepatocytes, the cells may be cultured using a medium until a subsequent exposure test is performed. The culture time is not particularly limited as long as hepatocytes do not die, but is, for example, 3 hours to 2 months, preferably 24 hours to 1 month. Here, since the spheroids of hepatocytes formed as described above can maintain metabolic activity for a long period of time, metabolic capacity is maintained even after culturing for a long period after seeding of hepatocytes. The As a medium for culturing hepatocytes, a commercially available medium can be used without particular limitation as long as the function can be maintained during the period of culturing hepatocytes.

また肝細胞によるスフェロイドを形成させる際、肝細胞以外の細胞を播種して共培養することもできる。肝細胞以外の細胞を共培養することにより、例えば、肝細胞のスフェロイドの代謝活性をより長期間維持することができる。例えば、肝細胞を播種する前に、血管内皮細胞や線維芽細胞を播種してもよい。   When spheroids are formed by hepatocytes, cells other than hepatocytes can be seeded and co-cultured. By co-culturing cells other than hepatocytes, for example, the metabolic activity of spheroids in hepatocytes can be maintained for a longer period of time. For example, vascular endothelial cells or fibroblasts may be seeded before seeding hepatocytes.

肝細胞以外の細胞を播種する際の細胞懸濁液の濃度は、接着する領域において細胞がコンフルエントになる濃度が好ましい。増殖性を有する細胞ではこれより1/8程度まで薄くしても特に支障は無い。またコンフルエント濃度より濃い場合であっても、接着できなかった細胞が培地交換時に除去される限り特に支障は無い。しかし、そのような高濃度は、細胞が無駄になる点で避けた方がよい。   The concentration of the cell suspension when cells other than hepatocytes are seeded is preferably a concentration at which the cells become confluent in the region to be adhered. For proliferating cells, there is no particular problem even if the cell thickness is reduced to about 1/8. Even if the concentration is higher than the confluent concentration, there is no particular problem as long as cells that could not adhere are removed at the time of medium exchange. However, such high concentrations should be avoided in that cells are wasted.

上記肝細胞以外の細胞を播種した後、安定に細胞が接着するまで、培地を用いて培養を行うことが必要となる。培養時間は、細胞が沈降し細胞接着領域に接着することができれば特に限定は無いが、例えば、3時間以上48時間以内、好ましくは24時間以上48時間以内、さらに好ましくは24時間である。   After seeding cells other than the above hepatocytes, it is necessary to culture using a medium until the cells are stably attached. The culture time is not particularly limited as long as the cells can settle and adhere to the cell adhesion region. For example, the culture time is 3 hours to 48 hours, preferably 24 hours to 48 hours, and more preferably 24 hours.

肝細胞以外の細胞を培養する培地は、細胞種により通常用いられる培地を用いればよい。例えば、血管内皮細胞又は線維芽細胞では、10%(V/V)牛胎児血清含有ダルベッコ変法イーグル培地が好適に用いることができる。   As a medium for culturing cells other than hepatocytes, a medium usually used depending on the cell type may be used. For example, Dulbecco's modified Eagle medium containing 10% (V / V) fetal bovine serum can be suitably used for vascular endothelial cells or fibroblasts.

このようにパターン状に細胞接着領域を規定するパターン培養基材上に動物由来の肝細胞を培養することで細胞接着領域にスフェロイドを形成し、必要に応じて培養した後、基質を暴露し、基質の代謝物評価を行う。   In this way, spheroids are formed in the cell adhesion region by culturing animal-derived hepatocytes on a pattern culture substrate that defines the cell adhesion region in a pattern, and after culturing as necessary, the substrate is exposed, Perform substrate metabolite assessment.

肝細胞のスフェロイドに基質を暴露すると、基質は細胞内に取り込まれ、そこで代謝を受ける。その際、一般的にCYPと総称される代謝酵素で代謝(第I相)され第I相代謝物を生成した後、該第I相代謝物が抱合酵素と呼ばれる代謝酵素で代謝(第II相)を受け第II相代謝物を生成し、細胞外に排出される。この代謝酵素は種々のサブタイプを有し、また基質によってその経路は異なるが、上記肝細胞スフェロイドは、通常の培養、例えば単層培養したものとは異なり、これらの代謝酵素機能活性が高く、また長期間にわたり維持されている。   When the substrate is exposed to hepatocyte spheroids, the substrate is taken up into cells where it undergoes metabolism. At that time, after metabolizing (phase I) with metabolic enzymes generally called CYP to produce phase I metabolites, the phase I metabolites are metabolized with metabolic enzymes called conjugated enzymes (phase II). ) To produce phase II metabolites that are excreted extracellularly. This metabolic enzyme has various subtypes, and its route differs depending on the substrate, but the hepatocyte spheroid has a high functional activity of these metabolic enzymes, unlike normal culture, for example, monolayer culture, It is maintained for a long time.

そのため、長時間の暴露での代謝物評価ができる。したがって、第I相の代謝を受けた後第II相の代謝物に変ずる速度が遅い基質や代謝経路が多岐にわたる基質等、第II相代謝物の生成が遅い基質についても、これまで困難であった抱合代謝評価(第II相代謝物の評価)を行うことができる。   Therefore, metabolites can be evaluated after long exposure. Therefore, it has been difficult for substrates that have been slow to produce phase II metabolites, such as substrates that have undergone phase I metabolism and then converted to phase II metabolites slowly or substrates that have a wide variety of metabolic pathways. Conjugate metabolism assessment (evaluation of phase II metabolites) can be performed.

さらに、第II相代謝物を定量する際に、同時に第I相代謝物を定量することにより、第I相代謝物と第II相代謝物の相関関係を評価することもできる。勿論、第I相代謝物及び第II相代謝物を異なるタイミングで定量してもよく、また、第I相代謝物をのみを定量して第I相代謝物のみを評価してもよい。   Further, when the phase II metabolite is quantified, the correlation between the phase I metabolite and the phase II metabolite can be evaluated by simultaneously quantifying the phase I metabolite. Of course, the phase I metabolite and the phase II metabolite may be quantified at different timings, or only the phase I metabolite may be quantified to evaluate only the phase I metabolite.

また、長時間の暴露での代謝物評価ができるため、スフェロイドに基質を暴露させる時間を複数設定することにより、連続的な代謝物の変化の評価も可能となる。   In addition, since metabolite evaluation can be performed over a long period of exposure, it is possible to continuously evaluate changes in metabolites by setting a plurality of times during which the spheroid is exposed to the substrate.

なお、代謝酵素機能活性が長期間にわたり維持されるため、細胞を調整した直後から代謝能が劣化するという問題が生じず、評価を行う度に細胞の調整を行う必要もない。   In addition, since the metabolic enzyme functional activity is maintained for a long period of time, there is no problem that the metabolic capacity deteriorates immediately after the cells are adjusted, and it is not necessary to adjust the cells each time evaluation is performed.

また、肝細胞の凝集体であるスフェロイドを用いているため、肝細胞で惹起する代謝の一部分を評価するミクロソームを用いる方法よりも、生体で生起する代謝物と相関した基質の代謝物を評価することができる。   In addition, because spheroids, which are aggregates of hepatocytes, are used, metabolites of substrates correlated with metabolites occurring in the body are evaluated rather than methods using microsomes that evaluate part of metabolism caused by hepatocytes. be able to.

基質は溶液の状態で暴露することができる。基質溶液は、水溶液、緩衝液、培地、これらとエチルアルコール、ジメチルスルホキシドなどの有機溶媒との混合溶液にすることが好ましい。   The substrate can be exposed in solution. The substrate solution is preferably an aqueous solution, a buffer solution, a medium, or a mixed solution of these with an organic solvent such as ethyl alcohol or dimethyl sulfoxide.

基質を暴露する際は、それまで培養していた培地と置換して行う。その後、所定時間基材上に形成されたスフェロイドに基質溶液を暴露し、上清と呼ばれる液分をサンプリングすることで代謝物を測定する検体とする。なお、得られた検体は、細胞内で代謝され細胞外に排出された代謝物であり、基質の暴露時間にもよるが、第I相代謝物及び第II相代謝物を含む混合物である。   When the substrate is exposed, it is replaced with the medium that has been cultured until then. Thereafter, the substrate solution is exposed to spheroids formed on the substrate for a predetermined time, and a sample called a supernatant is sampled to obtain a sample for measuring metabolites. The obtained specimen is a metabolite that is metabolized intracellularly and excreted outside the cell, and is a mixture containing a phase I metabolite and a phase II metabolite, depending on the exposure time of the substrate.

また、基質溶液を暴露したスフェロイドを適当な緩衝液などで洗浄した後、細胞そのもの、あるいは細胞を溶解した液をサンプリングしたものを検体とすることもできる。得られた検体は、細胞内で代謝され、細胞外に排出されなかった代謝物であり、基質の暴露時間にもよるが、第I相代謝物及び第II相代謝物を含む混合物である。   Further, after washing the spheroid exposed to the substrate solution with an appropriate buffer or the like, the sample of the cell itself or a solution obtained by dissolving the cell can be used as a specimen. The obtained specimen is a metabolite that has been metabolized intracellularly and not excreted outside the cell, and is a mixture containing a phase I metabolite and a phase II metabolite, depending on the exposure time of the substrate.

基質を暴露する時間は、肝細胞が障害を受ける時間でなければ特に制限は無いが、好ましくは1分以上48時間以内、さらに好ましくは1分以上4時間以内である。なお、同一濃度の同一基質を用いて、暴露時間を変化させて評価することで、基質の時間依存的な代謝物や代謝物組成変化を評価することが可能となる。   The time for exposing the substrate is not particularly limited as long as the hepatocytes are not damaged, but is preferably 1 minute to 48 hours, more preferably 1 minute to 4 hours. In addition, it becomes possible to evaluate the time-dependent metabolite and metabolite composition change of a substrate by changing the exposure time using the same substrate of the same concentration.

得られた検体は、代謝物の同定や定量を行うが、これら同定や定量の方法は特に制限されない。例えば、LC−MS、LC−MS/MS、UPLCを含むHPLCなどのクロマトグラフィー法、カラム分離後NMRなどのスペクトラム法などが挙げられる。   The obtained specimen performs identification and quantification of metabolites, but the identification and quantification methods are not particularly limited. Examples include LC-MS, LC-MS / MS, chromatographic methods such as HPLC including UPLC, and spectral methods such as NMR after column separation.

以下、本発明について実施例に基づき説明するが、本発明はこれらの実施例に何ら限定されるものではない。   EXAMPLES Hereinafter, although this invention is demonstrated based on an Example, this invention is not limited to these Examples at all.

(パターン状に細胞接着領域を規定するパターン培養基材の調製)
特開2005−280076号公報の実施例1に従いポリ酢酸ビニル鹸化物をベースとする水溶性感光材を、特開2006−307184号公報の実施例1に従いポリエチレングリコールをベースとする水溶性感光材を得た。これらを21mmφガラス薄板(松浪硝子工業(株)製)、12穴マルチウェルプレート及び96穴マルチウェルプレート(共に、住友ベークライト(株)製)にそれぞれ塗布し、パターン付きマスクを介して露光・現像することで、100μmφホール(基材露出部)が多数(2500個/cm)構築された、パターン状に細胞接着領域を規定するパターン培養用ガラス薄板、パターン培養用12穴マルチウェルプレート、パターン培養用96穴マルチウェルプレートを得た。
(Preparation of pattern culture substrate that defines cell adhesion area in a pattern)
A water-soluble photosensitive material based on saponified polyvinyl acetate according to Example 1 of JP-A-2005-280076, and a water-soluble photosensitive material based on polyethylene glycol according to Example 1 of JP-A-2006-307184. Obtained. These are applied to a 21 mmφ glass thin plate (Matsunami Glass Industry Co., Ltd.), a 12-well multiwell plate and a 96-well multiwell plate (both from Sumitomo Bakelite Co., Ltd.), and exposed and developed through a patterned mask. As a result, a large number (2500 / cm 2 ) of 100 μmφ holes (exposed portions of the base material) were constructed, a glass plate for pattern culture defining a cell adhesion region in a pattern, a 12-well multiwell plate for pattern culture, a pattern A 96-well multiwell plate for culture was obtained.

(肝細胞スフェロイド形成)
上記のようにして得た基材のうち、パターン培養用ガラス薄板は12穴マルチウェルプレート(住友ベークライト(株)製)の各ウェル底部に設置した後、それを紫外光下で滅菌した。一方、パターン培養用12穴マルチウェルプレート及び96穴マルチウェルプレートは、それぞれアルミラミネート梱包後、γ線滅菌した。
(Hepatocyte spheroid formation)
Among the substrates obtained as described above, the glass plate for pattern culture was placed on the bottom of each well of a 12-well multiwell plate (manufactured by Sumitomo Bakelite Co., Ltd.), and then sterilized under ultraviolet light. On the other hand, the 12-well multiwell plate for pattern culture and the 96-well multiwell plate were each sterilized by γ-ray after packing with aluminum laminate.

次いで一部の基材に、非実質細胞であるウシ血管内皮細胞(HH)、又はマウス線維芽細胞(3T3)を懸濁させた細胞懸濁液(培地:10%(V/V)牛胎児血清含有ダルベッコ変法イーグル培地、細胞濃度:2×10個/mL)を、各プレートの各ウェルにそれぞれ1mL(96穴マルチウェルプレートのみ100μL)添加し、37℃に設定したCOインキュベーター(CO濃度:5%)で、48時間培養した。 Next, a cell suspension (medium: 10% (V / V) fetal bovine) in which bovine vascular endothelial cells (HH) or mouse fibroblasts (3T3), which are non-parenchymal cells, are suspended on some base materials. 1 mL of serum-containing Dulbecco's modified Eagle medium, cell concentration: 2 × 10 5 cells / mL) was added to each well of each plate (100 μL for 96-well multi-well plates only), and a CO 2 incubator set at 37 ° C. ( The cells were cultured for 48 hours at a CO 2 concentration of 5%.

上記培養後、ラット初代肝細胞の懸濁液(ウィスターラット、オス、8週齢の肝臓からコラゲナーゼ灌流法により採取)、及び、ヒト凍結初代肝細胞(IVT社)の懸濁液を調整した。用いた培地はトランスパレント社から販売されているラット肝細胞スフェロイド培養用培地を用い、細胞濃度は1×10個/mL,2×10個/mL,4×10個/mLの3種とした。調整した肝細胞懸濁液を、各基材の各ウェルにそれぞれ1mL(96穴マルチウェルプレートのみ100μL)添加し、37℃に設定したCOインキュベーター(CO濃度:5%)で、48時間培養することで、肝細胞スフェロイドを形成させた。用いた全ての細胞非接着領域を形成する材料、基材において、肝細胞播種前のHH又は3T3の播種の有無に関わらず、肝細胞のスフェロイドが形成できた。以降、基質の代謝実験を行うまで、48時間毎にラット肝細胞スフェロイド培養用培地またはヒト肝細胞スフェロイド培養用培地にて培地交換を行い、培養を継続した。なお、ラット肝細胞スフェロイドについては7日間または14日間、ヒト肝細胞スフェロイドについては7日間培養した。 After the above culture, a suspension of rat primary hepatocytes (collected from a Wistar rat, male, 8-week-old liver by collagenase perfusion method) and a suspension of human frozen primary hepatocytes (IVT) were prepared. The medium used was a rat hepatocyte spheroid culture medium sold by Transparent, and the cell concentrations were 3 types of 1 × 10 5 cells / mL, 2 × 10 5 cells / mL, and 4 × 10 5 cells / mL. It was. 1 mL of the adjusted hepatocyte suspension was added to each well of each substrate (100 μL only for 96-well multi-well plates), and in a CO 2 incubator (CO 2 concentration: 5%) set at 37 ° C. for 48 hours. By culturing, hepatocyte spheroids were formed. Hepatocyte spheroids could be formed regardless of the presence or absence of HH or 3T3 seeding before hepatocyte seeding in all the materials and base materials forming the cell non-adhesion region used. Thereafter, until a substrate metabolism experiment was performed, the medium was replaced with a rat hepatocyte spheroid culture medium or a human hepatocyte spheroid culture medium every 48 hours, and the culture was continued. Rat hepatocyte spheroids were cultured for 7 days or 14 days, and human hepatocyte spheroids were cultured for 7 days.

(実施例1)ラット肝細胞におけるテストステロンの代謝活性評価
テストステロン(TES)をKHB(Krebs Hanseleit緩衝液)(1vol-%メタノール含有)に100μMになるように溶解し、暴露溶液とした。肝細胞スフェロイドを形成した後に培養を開始してから7日目及び14日目に培養液を除去し、KHBで2回リンス後、上記暴露溶液を培地と同量添加し2,3または4時間暴露した。暴露終了後上澄みを採取し、メンブレンフィルターで濾過を行い、UPLCで各代謝物量を測定した。得られた代謝物ピークは、6β位がヒドロキシ化されたテストステロン(6βOH-TES)(第I相代謝物)、16α位がヒドロキシ化されたテストステロン(16αOH-TES)(第I相代謝物)、並びにテストステロンのグルクロン酸抱合体(TG)(第II相代謝物)であった。肝細胞播種濃度を4×10個/mLとした場合の各代謝物生成量を、培養7日目の結果については表1に、培養14日目の結果については表2に示す。また、表3には、96穴マルチウェルプレート、HHを用いた際の培養7日目の肝細胞播種濃度変化の結果について示す。表1及び表2に示すように、第II相代謝物や第I相代謝物の評価が可能であり、また、暴露時間を変化させることによる連続的な代謝物の経時変化も評価できることを確認した。なお、表2に示すように、暴露までの培養時間が14日でありスフェロイドを形成してから長期間経過したものについても、評価が可能であった。また、表3に示すように、播種した肝細胞の濃度を変化させても、スフェロイド形成は可能であった。さらに播種肝細胞濃度を少なくしても十分代謝物の産生は見られ、その評価は可能であった。なお、実施例1では、全ての基材において、細胞非接着領域を規定する材料として、ポリエチレングリコールをベースとした水溶性感光材を用いた。
(Example 1) Evaluation of metabolic activity of testosterone in rat hepatocytes Testosterone (TES) was dissolved in KHB (Krebs Hanseleit buffer) (containing 1 vol-% methanol) to a concentration of 100 μM to prepare an exposure solution. On the 7th and 14th day after the start of culture after the formation of hepatocyte spheroids, the culture solution is removed, rinsed twice with KHB, and the same amount of the above exposure solution is added to the medium for 2, 3 or 4 hours. Exposed. After completion of the exposure, the supernatant was collected, filtered through a membrane filter, and the amount of each metabolite was measured by UPLC. The obtained metabolite peaks are testosterone (6βOH-TES) (phase I metabolite) hydroxylated at 6β position, testosterone (16αOH-TES) (phase I metabolite) hydroxylated at 16α position, It was also a testosterone glucuronide conjugate (TG) (phase II metabolite). The amount of each metabolite produced when the hepatocyte seeding concentration is 4 × 10 5 cells / mL is shown in Table 1 for the results on the 7th day of culture and in Table 2 for the results on the 14th day of culture. Table 3 shows the results of changes in hepatocyte seeding concentration on the seventh day of culture when using a 96-well multiwell plate and HH. As shown in Table 1 and Table 2, it is possible to evaluate phase II metabolites and phase I metabolites, and confirm that continuous metabolite changes over time due to changes in exposure time can also be evaluated. did. In addition, as shown in Table 2, the culture time until exposure was 14 days, and evaluation was also possible for those that had passed for a long time after spheroid formation. Moreover, as shown in Table 3, spheroid formation was possible even when the concentration of the seeded hepatocytes was changed. Furthermore, even if the seeded hepatocyte concentration was reduced, sufficient metabolite production was observed, and its evaluation was possible. In Example 1, a water-soluble photosensitive material based on polyethylene glycol was used as a material for defining the cell non-adhesion region in all the substrates.

Figure 2010233538
Figure 2010233538

Figure 2010233538
Figure 2010233538

Figure 2010233538
Figure 2010233538

(実施例2)ヒト肝細胞におけるテストステロンの代謝活性評価
培養容器は96穴マルチウェルプレートのみ用い、細胞非接着領域を規定する材料として、ポリエチレングリコールをベースとした水溶性感光材を用いた。そして、テストステロン(TES)をKHB(1vol-%メタノール含有)に100μMになるように溶解し、暴露溶液とした。肝細胞スフェロイドを形成した後に培養を開始してから7日目に培養液を除去し、KHBで2回リンス後、上記暴露溶液を培地と同量添加し4時間暴露した。暴露終了後上澄みを採取し、メンブレンフィルターで濾過を行い、UPLCで各代謝物量を測定した。得られた代謝物ピークのうち、6β位がヒドロキシ化されたテストステロン(6βOH-TES)(第I相代謝物)、並びにテストステロンのグルクロン酸抱合体(TG)(第II相代謝物)を同定した。その生成量は表4の通りであり、ヒト肝細胞においても、第II相代謝物や第I相代謝物の評価が可能であることを確認した。
(Example 2) Evaluation of testosterone metabolic activity in human hepatocytes Only a 96-well multiwell plate was used as a culture container, and a water-soluble photosensitive material based on polyethylene glycol was used as a material for defining a cell non-adhesion region. Then, testosterone (TES) was dissolved in KHB (containing 1 vol-% methanol) to a concentration of 100 μM to obtain an exposure solution. On the 7th day after the start of culture after the formation of hepatocyte spheroids, the culture solution was removed, rinsed twice with KHB, and then the same amount of the above-mentioned exposure solution was added to the medium and exposed for 4 hours. After completion of the exposure, the supernatant was collected, filtered through a membrane filter, and the amount of each metabolite was measured by UPLC. Among the obtained metabolite peaks, testosterone (6βOH-TES) (phase I metabolite) in which the 6β-position was hydroxylated, and a testosterone glucuronide conjugate (TG) (phase II metabolite) were identified. . The production amount is as shown in Table 4. It was confirmed that phase II metabolites and phase I metabolites can also be evaluated in human hepatocytes.

Figure 2010233538
Figure 2010233538

(実施例3)ラット肝細胞における7−エトキシクマリンの代謝活性評価
培養容器は96穴マルチウェルプレートのみ用い、細胞非接着領域を規定する材料として、ポリ酢酸ビニル鹸化物をベースとした水溶性感光材を用いた。そして、7−エトキシクマリン(EC)をKHB(1vol-%メタノール含有)に100μMになるように溶解し、暴露溶液とした。肝細胞スフェロイドを形成した後に培養を開始してから7日目に培養液を除去し、KHBで2回リンス後、上記暴露溶液を培地と同量添加し4時間暴露した。暴露終了後上澄みを採取し、メンブレンフィルターで濾過を行い、UPLCで各代謝物量を測定した。得られた代謝物ピークは、7−ヒドロキシクマリン(HC)(第I相代謝物)、ヒドロキシクマリングルクロン酸抱合体(HCG)(第II相代謝物)、並びにヒドロキシクマリン硫酸抱合体(HCS)(第II相代謝物)であった。その生成量は表5の通りであり、7−エトキシクマリンにおいても、ラット肝細胞での、第II相代謝物や第I相代謝物の評価が可能であることを確認した。
(Example 3) Evaluation of metabolic activity of 7-ethoxycoumarin in rat hepatocytes A 96-well multiwell plate was used as the culture vessel, and water-soluble photosensitivity based on saponified polyvinyl acetate as a material for defining the cell non-adhesion region. The material was used. 7-Ethoxycoumarin (EC) was dissolved in KHB (containing 1 vol-% methanol) to a concentration of 100 μM to obtain an exposure solution. On the 7th day after the start of culture after the formation of hepatocyte spheroids, the culture solution was removed, rinsed twice with KHB, and then the same amount of the above-mentioned exposure solution was added to the medium and exposed for 4 hours. After completion of the exposure, the supernatant was collected, filtered through a membrane filter, and the amount of each metabolite was measured by UPLC. The metabolite peaks obtained are 7-hydroxycoumarin (HC) (phase I metabolite), hydroxycoumaring glucuronide conjugate (HCG) (phase II metabolite), and hydroxycoumarin sulfate conjugate (HCS) ( Phase II metabolite). The amount of the product produced is as shown in Table 5. It was confirmed that 7-ethoxycoumarin can also evaluate phase II metabolites and phase I metabolites in rat hepatocytes.

Figure 2010233538
Figure 2010233538

(実施例4)ヒト肝細胞における7−エトキシクマリンの代謝活性評価
培養容器は96穴マルチウェルプレートのみ用い、細胞非接着領域を規定する材料として、ポリ酢酸ビニル鹸化物をベースとした水溶性感光材を用いた。そして、7−エトキシクマリン(EC)をKHB(1vol-%メタノール含有)に100μMになるように溶解し、暴露溶液とした。肝細胞スフェロイドを形成した後に培養を開始してから7日目に培養液を除去し、KHBで2回リンス後、上記暴露溶液を培地と同量添加し4時間暴露した。暴露終了後上澄みを採取し、メンブレンフィルターで濾過を行い、UPLCで各代謝物量を測定した。得られた代謝物ピークは、7−ヒドロキシクマリン(HC)(第I相代謝物)、ヒドロキシクマリングルクロン酸抱合体(HCG)(第II相代謝物)、並びにヒドロキシクマリン硫酸抱合体(HCS)(第II相代謝物)であった。その生成量は表6の通りであり、7−エトキシクマリンにおいても、ヒト肝細胞での、第II相代謝物や第I相代謝物の評価が可能であることを確認した。
(Example 4) Metabolic activity evaluation of 7-ethoxycoumarin in human hepatocytes Only a 96-well multiwell plate was used as a culture vessel, and water-soluble photosensitivity based on saponified polyvinyl acetate as a material for defining a cell non-adhesive region. The material was used. 7-Ethoxycoumarin (EC) was dissolved in KHB (containing 1 vol-% methanol) to a concentration of 100 μM to obtain an exposure solution. On the 7th day after the start of culture after the formation of hepatocyte spheroids, the culture solution was removed, rinsed twice with KHB, and then the same amount of the above-mentioned exposure solution was added to the medium and exposed for 4 hours. After completion of the exposure, the supernatant was collected, filtered through a membrane filter, and the amount of each metabolite was measured by UPLC. The metabolite peaks obtained are 7-hydroxycoumarin (HC) (phase I metabolite), hydroxycoumaring glucuronide conjugate (HCG) (phase II metabolite), and hydroxycoumarin sulfate conjugate (HCS) ( Phase II metabolite). The amount produced was as shown in Table 6. It was confirmed that 7-ethoxycoumarin can also evaluate phase II metabolites and phase I metabolites in human hepatocytes.

Figure 2010233538
Figure 2010233538

Claims (5)

パターン状に細胞接着領域を規定するパターン培養基材上に動物由来の肝細胞を培養することで前記細胞接着領域にスフェロイドを形成し、該スフェロイドに基質を暴露した後、第II相代謝物を定量することを特徴とする基質代謝物の評価方法。   A spheroid is formed in the cell adhesion region by culturing animal-derived hepatocytes on a pattern culture substrate that defines the cell adhesion region in a pattern, and after the substrate is exposed to the spheroid, a phase II metabolite is added. A method for evaluating a substrate metabolite characterized by quantifying. 前記第II相代謝物を定量する際に、同時に第I相代謝物を定量することを特徴とする請求項1に記載の基質代謝物の評価方法。   2. The method for evaluating a substrate metabolite according to claim 1, wherein the phase I metabolite is simultaneously quantified when the phase II metabolite is quantified. 前記スフェロイドに前記基質を暴露させる時間を複数設定することを特徴とする請求項1又は2に記載の基質代謝物の評価方法。   The method for evaluating a substrate metabolite according to claim 1 or 2, wherein a plurality of times for exposing the substrate to the spheroid are set. 前記動物が、ヒト、ラット、マウス、イヌ、サル、ニワトリ、ヒツジ及びヤギから選択された少なくとも一種であることを特徴とする請求項1〜3のいずれか一項に記載の基質代謝物の評価方法。   The evaluation of a substrate metabolite according to any one of claims 1 to 3, wherein the animal is at least one selected from humans, rats, mice, dogs, monkeys, chickens, sheep and goats. Method. 前記動物由来の肝細胞が、初代肝細胞又は凍結初代肝細胞のいずれかであることを特徴とする請求項1〜4のいずれか一項に記載の基質代謝物の評価方法。   The method for evaluating a substrate metabolite according to any one of claims 1 to 4, wherein the animal-derived hepatocytes are either primary hepatocytes or frozen primary hepatocytes.
JP2009087023A 2009-03-31 2009-03-31 Method for evaluating substrate metabolite Pending JP2010233538A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009087023A JP2010233538A (en) 2009-03-31 2009-03-31 Method for evaluating substrate metabolite

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009087023A JP2010233538A (en) 2009-03-31 2009-03-31 Method for evaluating substrate metabolite

Publications (1)

Publication Number Publication Date
JP2010233538A true JP2010233538A (en) 2010-10-21

Family

ID=43088502

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009087023A Pending JP2010233538A (en) 2009-03-31 2009-03-31 Method for evaluating substrate metabolite

Country Status (1)

Country Link
JP (1) JP2010233538A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014064545A (en) * 2012-09-27 2014-04-17 Kuraray Co Ltd Screening method of medicine
JP2014064544A (en) * 2012-09-27 2014-04-17 Kuraray Co Ltd Method for evaluating effect of cytokine on metabolic capacity of cytochrome p450
JP2017035081A (en) * 2015-08-13 2017-02-16 サントリーホールディングス株式会社 Test method of animal cell toxicity or antioxidant ability
US10677783B2 (en) 2012-09-27 2020-06-09 Corning Incorporated Method for evaluating effect of cytokine on metabolic activity of cytochrome P450, and drug screening method

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003010302A1 (en) * 2001-07-26 2003-02-06 Kazunori Kataoka Cultured cell construct containing spheroids of cultured animal cells and utilization thereof

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003010302A1 (en) * 2001-07-26 2003-02-06 Kazunori Kataoka Cultured cell construct containing spheroids of cultured animal cells and utilization thereof

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JPN6013051576; Rapid communications in mass spectrometry. 2008, Vol.22, No.2, p.240-244 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014064545A (en) * 2012-09-27 2014-04-17 Kuraray Co Ltd Screening method of medicine
JP2014064544A (en) * 2012-09-27 2014-04-17 Kuraray Co Ltd Method for evaluating effect of cytokine on metabolic capacity of cytochrome p450
US10677783B2 (en) 2012-09-27 2020-06-09 Corning Incorporated Method for evaluating effect of cytokine on metabolic activity of cytochrome P450, and drug screening method
JP2017035081A (en) * 2015-08-13 2017-02-16 サントリーホールディングス株式会社 Test method of animal cell toxicity or antioxidant ability

Similar Documents

Publication Publication Date Title
Ware et al. A cell culture platform to maintain long-term phenotype of primary human hepatocytes and endothelial cells
De Bruyn et al. Sandwich-cultured hepatocytes: utility for in vitro exploration of hepatobiliary drug disposition and drug-induced hepatotoxicity
LeCluyse et al. Formation of extensive canalicular networks by rat hepatocytes cultured in collagen-sandwich configuration
JP6704604B2 (en) Hepatocyte culture device that promotes accumulation and excretion of liver metabolites into the bile canaliculus-like structure, and evaluation of candidate compounds with excretion sensitivity in bile or blood using the hepatocyte culture device and liver metabolites of the candidate compounds Method
Zhang et al. Three-dimensional liver models: State of the art and their application for hepatotoxicity evaluation
KR20190136132A (en) Engineered liver tissues, arrays thereof, and methods of making the same
Lucendo-Villarin et al. Development of a cost-effective automated platform to produce human liver spheroids for basic and applied research
EP1921450B1 (en) Test method using cells and test kit therefor
Malinen et al. Peptide nanofiber hydrogel induces formation of bile canaliculi structures in three-dimensional hepatic cell culture
JP2010233538A (en) Method for evaluating substrate metabolite
Choi et al. Microfluidic confinement enhances phenotype and function of hepatocyte spheroids
Lin et al. Micropatterned co‐cultures of human hepatocytes and stromal cells for the assessment of drug clearance and drug‐drug interactions
Choi et al. Successful mouse hepatocyte culture with sandwich collagen gel formation
Yang et al. Liver three-dimensional cellular models for high-throughput chemical testing
Mirahmad et al. In vitro cell-based models of drug-induced hepatotoxicity screening: progress and limitation
Park et al. Transcriptomic and physiological analysis of endocrine disrupting chemicals Impacts on 3D Zebrafish liver cell culture system
DiProspero et al. Physiologically relevant oxygen tensions differentially regulate hepatotoxic responses in HepG2 cells
Agarwal et al. Inexpensive and versatile paper-based platform for 3D culture of liver cells and related bioassays
JP2008289362A (en) Micro-patterning culture substrate, micro-patterning culture structure and method for making them
Alamdari et al. Micropatterning of ECM proteins on glass substrates to regulate cell attachment and proliferation
Zahmatkesh et al. In vitro modeling of liver fibrosis in 3D microtissues using scalable micropatterning system
US20130266939A1 (en) Systems and methods for studying inflammation-drug interactions
JP2013226112A (en) Hepatocyte culture method
JP2014223061A (en) Method of culturing hepatocyte
US10696949B2 (en) Systems and methods for canine liver modeling

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120106

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131023

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131220

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140115

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20140127

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20140127

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140414

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20140421

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20140620

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20150422