JP2010233360A - Control device and control method - Google Patents

Control device and control method Download PDF

Info

Publication number
JP2010233360A
JP2010233360A JP2009078495A JP2009078495A JP2010233360A JP 2010233360 A JP2010233360 A JP 2010233360A JP 2009078495 A JP2009078495 A JP 2009078495A JP 2009078495 A JP2009078495 A JP 2009078495A JP 2010233360 A JP2010233360 A JP 2010233360A
Authority
JP
Japan
Prior art keywords
charge amount
charging
storage device
charge
power storage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009078495A
Other languages
Japanese (ja)
Other versions
JP5213180B2 (en
Inventor
Takuya Hibino
卓也 日比野
Takaichi Kamaga
隆市 釜賀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2009078495A priority Critical patent/JP5213180B2/en
Publication of JP2010233360A publication Critical patent/JP2010233360A/en
Application granted granted Critical
Publication of JP5213180B2 publication Critical patent/JP5213180B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L1/00Supplying electric power to auxiliary equipment of vehicles
    • B60L1/003Supplying electric power to auxiliary equipment of vehicles to auxiliary motors, e.g. for pumps, compressors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L1/00Supplying electric power to auxiliary equipment of vehicles
    • B60L1/02Supplying electric power to auxiliary equipment of vehicles to electric heating circuits
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/10Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines
    • B60L50/16Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines with provision for separate direct mechanical propulsion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/60Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries
    • B60L50/61Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries by batteries charged by engine-driven generators, e.g. series hybrid electric vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/60Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries
    • B60L50/66Arrangements of batteries
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/10Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by the energy transfer between the charging station and the vehicle
    • B60L53/14Conductive energy transfer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/60Monitoring or controlling charging stations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/12Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to state of charge [SoC]
    • B60L58/13Maintaining the SoC within a determined range
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/24Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries for controlling the temperature of batteries
    • B60L58/25Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries for controlling the temperature of batteries by controlling the electric load
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/24Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries for controlling the temperature of batteries
    • B60L58/26Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries for controlling the temperature of batteries by cooling
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • H01M10/443Methods for charging or discharging in response to temperature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/613Cooling or keeping cold
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/62Heating or cooling; Temperature control specially adapted for specific applications
    • H01M10/625Vehicles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/63Control systems
    • H01M10/633Control systems characterised by algorithms, flow charts, software details or the like
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2210/00Converter types
    • B60L2210/30AC to DC converters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2210/00Converter types
    • B60L2210/40DC to AC converters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/545Temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/547Voltage
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/549Current
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2260/00Operating Modes
    • B60L2260/20Drive modes; Transition between modes
    • B60L2260/22Standstill, e.g. zero speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2260/00Operating Modes
    • B60L2260/40Control modes
    • B60L2260/50Control modes by future state prediction
    • B60L2260/56Temperature prediction, e.g. for pre-cooling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2260/00Operating Modes
    • B60L2260/40Control modes
    • B60L2260/50Control modes by future state prediction
    • B60L2260/58Departure time prediction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2270/00Problem solutions or means not otherwise provided for
    • B60L2270/10Emission reduction
    • B60L2270/14Emission reduction of noise
    • B60L2270/142Emission reduction of noise acoustic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/12Electric charging stations
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/14Plug-in electric vehicles

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Transportation (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Energy (AREA)
  • Sustainable Development (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Secondary Cells (AREA)
  • Automation & Control Theory (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a control device capable of charging an energy storage device without operating an auxiliary machine as much as possible for cooling a heating component. <P>SOLUTION: The control device includes a memory and a control unit. The memory stores the information related to a charge completion time or a departure time, and the control unit executes charge amount calculation processing at a predetermined timing by calculating a necessary charge amount based on the charge amount of the energy storage device and a target charge amount, and calculating the maximum charge amount calculated on the basis of a chargeable amount per unit hour corrected on the energy storage device related temperature and a charge time from the charge start time to the charge completion time or the departure time. Also, the control unit executes intermittent charge processing to perform intermittent charging without having to operate a cooling device when the necessary charge amount is smaller than the maximum charge amount and charge amount calculation processing at a predetermined timing, and executes cool/charge control processing to perform charging when the necessary charge amount is greater than the maximum charge amount and cooling the energy storage device with the cooling device when the predetermined condition is satisfied. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、車両外部の電源から充電ケーブルを介して車両に供給される電力に基づいて、蓄電装置を充電する制御装置及び制御方法に関する。   The present invention relates to a control device and a control method for charging a power storage device based on electric power supplied to a vehicle from a power source outside the vehicle via a charging cable.

近年、環境に配慮した車両として、電気自動車やハイブリッド車等が注目されている。これらの車両には、走行駆動力を発生する電動機と、その電動機に供給される電力を蓄える高圧の蓄電装置とが搭載されている。ハイブリッド車には、動力源として電動機とともに内燃機関がさらに搭載されている。   In recent years, electric vehicles, hybrid vehicles, and the like have attracted attention as environmentally friendly vehicles. These vehicles are equipped with an electric motor that generates a driving force and a high-voltage power storage device that stores electric power supplied to the electric motor. The hybrid vehicle further includes an internal combustion engine as a power source along with an electric motor.

そして、電動機による走行可能な距離を稼ぐべく、車両駆動用の蓄電装置を一般家庭の電源から直接充電するプラグイン車が提案されている。   A plug-in vehicle that directly charges a power storage device for driving a vehicle from a general household power source has been proposed in order to earn a travelable distance by an electric motor.

例えば、家屋に設けられた商用電源のコンセントと車両に設けられた充電口とを充電ケーブルで接続することにより、一般家庭の電源から蓄電装置へ充電用の電力が供給される。   For example, by connecting a commercial power outlet provided in a house and a charging port provided in a vehicle with a charging cable, charging power is supplied from a general household power source to the power storage device.

尚、プラグイン車の規格は、アメリカ合衆国では「エスエーイー エレクトリックビークル コンダクティブ チャージ カプラ」(非特許文献1)により制定され、日本では「電気自動車用コンダクティブ充電システム一般要求事項」(非特許文献2)により制定されている。   The standard for plug-in vehicles is established in the United States by “SA Electric Vehicle Conductive Charge Coupler” (Non-Patent Document 1), and in Japan by “General Requirements for Conductive Charging Systems for Electric Vehicles” (Non-Patent Document 2). Has been.

このようなプラグイン車には、車両外部の電源から充電ケーブルを介して車両に供給される交流電力を、充電装置により直流電力に変換して蓄電装置を充電する制御装置が搭載されている。   Such a plug-in vehicle is equipped with a control device that converts AC power supplied to the vehicle from a power source external to the vehicle via a charging cable into DC power by a charging device and charges the power storage device.

制御装置は、蓄電装置の充電状態SOC(State of Charge)を管理し、充電装置を制御して蓄電装置が所定の充電状態となるように充電制御する。   The control device manages a state of charge (SOC) of the power storage device, controls the charging device, and performs charge control so that the power storage device is in a predetermined charge state.

特許文献1には、低温時における蓄電装置の放電容量を増加させるために、外部電源を用いた蓄電装置への充電が完了したか否かを判定する第1判定手段と、第1判定手段により蓄電装置への充電が完了したと判定された場合に、蓄電装置の温度が所定値以下であるか否かを判定する第2判定手段と、第2判定手段により蓄電装置の温度が所定値以下であると判定された場合に、蓄電装置への充電を更に行う充電制御手段を備えたハイブリッド車両が提案されている。   In Patent Document 1, in order to increase the discharge capacity of the power storage device at a low temperature, a first determination unit that determines whether charging of the power storage device using an external power source is completed, and a first determination unit When it is determined that charging of the power storage device is completed, second determination means for determining whether or not the temperature of the power storage device is equal to or lower than a predetermined value, and the temperature of the power storage device is equal to or lower than a predetermined value by the second determination means When it is determined that the vehicle is a hybrid vehicle, a hybrid vehicle including a charging control unit that further charges the power storage device has been proposed.

また、特許文献2には、電気自動車等に用いられるニッケル・水素蓄電装置の温度が40℃以上の高温の場合に充電完了時点を正確に判定するために、ニッケル・水素蓄電装置の高温の場合の充電電圧の上限値を、所定の温度範囲と、充電電流の上限値及び下限値について定めたテーブルをあらかじめ作成しておき、充電時の温度及び電流に基づいて、テーブルから電圧上限値を知り、充電電圧がその電圧上限値以上になると充電を停止する充電制御装置が提案されている。   In addition, in Patent Document 2, in order to accurately determine the completion point of charging when the temperature of the nickel / hydrogen power storage device used in an electric vehicle or the like is a high temperature of 40 ° C. or higher, the case where the nickel / hydrogen power storage device is at a high temperature Create a table that defines the upper limit value of the charging voltage for the predetermined temperature range and the upper and lower limit values of the charging current in advance, and know the upper voltage limit value from the table based on the temperature and current during charging. There has been proposed a charge control device that stops charging when the charging voltage is equal to or higher than the voltage upper limit value.

特開2008−195315号公報JP 2008-195315 A 特開平08−140283号公報Japanese Patent Laid-Open No. 08-140283

「エスエーイー エレクトリック ビークル コンダクティブ チャージ カプラ(SAE Electric Vehicle Conductive Charge Coupler)」、(アメリカ合衆国)、エスエーイー規格(SAE Standards)、エスエーイー インターナショナル(SAE International)、2001年11月“SAE Electric Vehicle Conductive Charge Coupler” (USA), SAE Standards, SAE International, November 2001 「電気自動車用コンダクティブ充電システム一般要求事項」、日本電動車両協会規格(日本電動車両規格)、2001年3月29日“General Requirements for Conductive Charging Systems for Electric Vehicles”, Japan Electric Vehicle Association Standard (Japan Electric Vehicle Standard), March 29, 2001

特許文献2に記載されているように、外部電源から蓄電装置を充電する場合には、蓄電装置や充電回路の異常な発熱を回避するために、冷却ファンやウォーターポンプを駆動して発熱部位を強制冷却する必要がある。   As described in Patent Document 2, when charging a power storage device from an external power source, in order to avoid abnormal heat generation of the power storage device or the charging circuit, a cooling fan or a water pump is driven to set a heat generation portion. Requires forced cooling.

このような冷却ファンやウォーターポンプは、蓄電装置、或いは、蓄電装置からの給電電力により充電される補機用の蓄電装置から給電されるため、充電中に電力が消費され充電効率が低下するという問題があった。   Such a cooling fan or water pump is powered by the power storage device or the power storage device for auxiliary equipment that is charged by the power supplied from the power storage device, so that power is consumed during charging and the charging efficiency is reduced. There was a problem.

また、通常、深夜時間帯に蓄電装置が充電される場合が多く、冷却ファンやウォーターポンプ等の補機の作動音が近隣の騒音となるという問題もあった。   In addition, usually, the power storage device is often charged at midnight, and there is a problem that the operating noise of auxiliary equipment such as a cooling fan and a water pump becomes noise in the vicinity.

本発明の目的は、上述した問題点に鑑み、可能な限り発熱部を冷却するための補機を駆動することなく、蓄電装置へ充電することができる制御装置及び制御方法を提供する点にある。   In view of the above-described problems, an object of the present invention is to provide a control device and a control method capable of charging a power storage device without driving an auxiliary device for cooling a heat generating portion as much as possible. .

上述の目的を達成するため、本発明による制御装置の特徴構成は、車両外部電源と車両を繋ぐケーブルを介して、車両外部電源からの電力を蓄電装置へ充電する制御装置であって、充電完了時刻または発車時刻が入力される装置から受信した充電完了時刻または発車時刻に関する情報を記憶する記憶部と、充電量検知部からの情報により判定した蓄電装置の充電量と目標充電量に基づいて必要充電量を算出し、温度検知部からの情報により判定した蓄電装置に関する温度に基づいて補正した単位時間当たりに充電可能な充電量と充電開始時刻から記憶部に記憶された充電完了時刻または発車時刻までの充電時間とに基づいて算出した最大充電量を算出する充電量算出処理と、充電量算出処理を所定のタイミングで実行し、最大充電量よりも必要充電量が少ない場合は、冷却装置を駆動することなく充電を間歇的に行なう間歇充電処理と、充電量算出処理を所定のタイミングで実行し、最大充電量よりも必要充電量が多い場合は、充電を実施するとともに、所定の条件を満たす場合に蓄電装置を冷却装置により冷却する冷却・充電制御処理と、を実行する制御部と、を備えている点にある。   In order to achieve the above-mentioned object, the control device according to the present invention is characterized in that a control device for charging electric power from a vehicle external power source to a power storage device via a cable connecting the vehicle external power source and the vehicle, the charging being completed Necessary based on the charge amount and target charge amount of the power storage device determined by the storage unit that stores information on the charge completion time or departure time received from the device to which the time or departure time is input, and the information from the charge amount detection unit The amount of charge that can be charged per unit time corrected based on the temperature related to the power storage device determined by the information from the temperature detection unit and the charge completion time or departure time stored in the storage unit from the charge start time The charge amount calculation process for calculating the maximum charge amount calculated based on the charge time until and the charge amount calculation process are executed at a predetermined timing, and the required amount of charge If the charge amount is small, intermittent charge processing that performs charging intermittently without driving the cooling device and charge amount calculation processing are executed at a predetermined timing, and if the required charge amount is larger than the maximum charge amount, And a controller that performs charging and cooling / charging control processing for cooling the power storage device with the cooling device when a predetermined condition is satisfied.

上述の構成によれば、予め設定された充電完了時刻または発車時刻までの間に蓄電装置に供給可能な最大充電量よりも、蓄電装置を充電するために必要な充電量が少ない場合に、蓄電装置から給電される冷却装置を駆動することなく、充電を間歇的に行なう間歇充電処理が実行されるため、補機による電力損失や騒音の発生を招くことなく、充電完了時刻または発車時刻までに充電処理を終了することができるようになる。   According to the above-described configuration, when the charge amount necessary for charging the power storage device is less than the maximum charge amount that can be supplied to the power storage device before the preset charge completion time or departure time, Intermittent charging processing is performed in which charging is performed intermittently without driving a cooling device that is fed from the device, so that no power loss or noise is generated by the auxiliary equipment before charging completion time or departure time. The charging process can be terminated.

尚、最大充電量を、一定の単位時間当たりの充電量と、充電開始時から記憶部に記憶された充電完了時刻までの充電時間との積で求めると、充電時の温度により蓄電装置の充電特性が変動するため、正確な値が得られない。例えばニッケル・水素電池は、零度未満の低温時や40℃以上の高温時において、一定の電流で充電可能な充電量が常温時よりも低くなる充電特性をもっている。そこで、単位時間当たりの充電量を、温度検知部からの情報により判定した蓄電装置に関する温度に基づいて補正することにより、正確な最大充電量を求めることができ、適正に間歇充電制御ができるようになる。   The maximum charge amount is obtained by multiplying the charge amount per unit time by the charge time from the start of charge to the charge completion time stored in the storage unit. Since the characteristics fluctuate, accurate values cannot be obtained. For example, a nickel-hydrogen battery has a charge characteristic that a charge amount that can be charged with a constant current is lower than that at room temperature at a low temperature of less than zero degrees or at a high temperature of 40 ° C. or higher. Therefore, by correcting the charge amount per unit time based on the temperature related to the power storage device determined by the information from the temperature detection unit, an accurate maximum charge amount can be obtained, and intermittent charge control can be appropriately performed. become.

以上説明した通り、本発明によれば、可能な限り発熱部を冷却するための補機を駆動することなく、蓄電装置へ充電することができる制御装置及び制御方法を提供することができるようになった。   As described above, according to the present invention, it is possible to provide a control device and a control method that can charge the power storage device without driving an auxiliary device for cooling the heat generating portion as much as possible. became.

本発明による制御装置が組み込まれたプラグインハイブリッド車の全体構成図Overall configuration diagram of a plug-in hybrid vehicle incorporating a control device according to the present invention 動力分割機構の共線図Collinear diagram of power split mechanism プラグインハイブリッド車に備えられた制御装置のブロック構成図Block diagram of the control device provided in the plug-in hybrid vehicle 制御部と記憶部の説明図Explanatory diagram of control unit and storage unit 制御部により実行される充電制御のフローチャートFlowchart of charging control executed by control unit (a)は充電ケーブルの電流容量に対するデューティーサイクルを示す説明図、(b)はCCIDにより生成されるコントロールパイロット信号及び制御部により生成されるパルス幅変調信号の波形図(A) is explanatory drawing which shows the duty cycle with respect to the current capacity of a charging cable, (b) is a waveform figure of the control pilot signal produced | generated by CCID, and the pulse width modulation signal produced | generated by the control part. (a)は外気温または蓄電装置の温度と温度依存係数の関係を例示する説明図、(b)は充電電流と単位時間当たりの充電量の関係を例示する説明図(A) is explanatory drawing which illustrates the relationship between external temperature or the temperature of an electrical storage apparatus, and a temperature dependence coefficient, (b) is explanatory drawing which illustrates the relationship between charging current and the amount of charge per unit time. 制御部による間歇充電処理及び強制冷却充電処理における蓄電装置の温度と充電電流の時系列変化を例示する説明図であって、(a)は最大充電電流で充電処理を行う場合の説明図、(b)は充電電流を最大充電電流から低下させて充電処理を行う場合の説明図It is explanatory drawing which illustrates the time-sequential change of the temperature and charging current of an electrical storage apparatus in the intermittent charge process and forced cooling charge process by a control part, Comprising: (a) is explanatory drawing in the case of performing a charging process by the maximum charging current, ( b) is an explanatory diagram when the charging process is performed by reducing the charging current from the maximum charging current.

以下、本発明による制御装置及び制御方法の実施形態について説明する。   Hereinafter, embodiments of a control device and a control method according to the present invention will be described.

図1に示すように、車両外部の電源から車両に搭載された高圧の蓄電装置150を直接充電することが可能なプラグイン車の一例であるハイブリッド車1(以下、「プラグインハイブリッド車」と記す。)は、動力源としてエンジン100、第1MG(Motor Generator)110、第2MG(Motor Generator)120を備えている。   As shown in FIG. 1, a hybrid vehicle 1 (hereinafter referred to as a “plug-in hybrid vehicle”) that is an example of a plug-in vehicle that can directly charge a high-voltage power storage device 150 mounted on the vehicle from a power source outside the vehicle. Is provided with an engine 100, a first MG (Motor Generator) 110, and a second MG (Motor Generator) 120 as power sources.

プラグインハイブリッド車1は、エンジン100及び第2MG120の少なくとも一方からの駆動力によって走行可能なように、エンジン100、第1MG110及び第2MG120が動力分割機構130に連結されている。   In plug-in hybrid vehicle 1, engine 100, first MG 110, and second MG 120 are coupled to power split mechanism 130 so that the plug-in hybrid vehicle 1 can travel with driving force from at least one of engine 100 and second MG 120.

第1MG110及び第2MG120は、交流回転電機で構成され、例えば、U相コイル、V相コイル及びW相コイルを備える三相交流同期回転機が用いられる。   1st MG110 and 2nd MG120 are comprised with an alternating current rotating electrical machine, for example, a three phase alternating current synchronous rotating machine provided with a U phase coil, a V phase coil, and a W phase coil is used.

動力分割機構130は、サンギヤと、ピニオンギヤと、キャリアと、リングギヤとを含み、ピニオンギヤがサンギヤ及びリングギヤと係合する遊星歯車機構で構成されている。   Power split device 130 includes a sun gear, a pinion gear, a carrier, and a ring gear, and is constituted by a planetary gear mechanism in which the pinion gear engages with the sun gear and the ring gear.

ピニオンギヤを自転可能に支持するキャリアがエンジン100のクランクシャフトに連結され、サンギヤが第1MG110の回転軸に連結され、リングギヤが第2MG120の回転軸及び減速機140に連結され、図2に示すように、エンジン100、第1MG110、及び第2MG120の回転数が共線図上に直線で結ばれるように関係付けられている。   A carrier that supports the pinion gear so as to rotate is connected to the crankshaft of the engine 100, a sun gear is connected to the rotating shaft of the first MG 110, and a ring gear is connected to the rotating shaft of the second MG 120 and the speed reducer 140, as shown in FIG. The rotational speeds of engine 100, first MG 110, and second MG 120 are related to each other so as to be connected by a straight line on the alignment chart.

プラグインハイブリッド車1には、エンジン100の駆動力によって第1MG110で発電された電力、及び、車両の制動時等に減速機140を介して駆動輪160により駆動される第2MG120の制動エネルギーにより発電された電力によって、充電される高圧の蓄電装置150と低圧の蓄電装置240が搭載されている。   The plug-in hybrid vehicle 1 generates power using the electric power generated by the first MG 110 by the driving force of the engine 100 and the braking energy of the second MG 120 driven by the driving wheels 160 via the speed reducer 140 when the vehicle is braked. The high-voltage power storage device 150 and the low-voltage power storage device 240 that are charged by the generated power are mounted.

プラグインハイブリッド車1には、例えば、車両の動力を統括制御するプラグインハイブリッドビークルECU(以下、「PIHV−ECU」と記す。)10、高圧の蓄電装置150を充電制御する充電ECU(以下、「CHG−ECU」と記す。)20、第一MG110及び第二MG120を制御するモータECU(以下、「MG−ECU」を記す。)30、エンジン100を制御するエンジンECU(以下、「ENG−ECU」と記す。)40の他、制動機構を制御するブレーキECU、盗難防止機能を実現する防盗ECU等の制御装置(以下、「ECU」と記す。)が搭載されている。   The plug-in hybrid vehicle 1 includes, for example, a plug-in hybrid vehicle ECU (hereinafter referred to as “PIHV-ECU”) 10 that performs overall control of vehicle power, and a charge ECU that controls charging of the high-voltage power storage device 150 (hereinafter referred to as “PIHV-ECU”). (Referred to as “CHG-ECU”) 20, a motor ECU (hereinafter referred to as “MG-ECU”) 30 that controls the first MG 110 and the second MG 120, and an engine ECU (hereinafter referred to as “ENG-”) that controls the engine 100. In addition to 40, a control unit (hereinafter referred to as “ECU”) such as a brake ECU for controlling a braking mechanism and a theft prevention ECU for realizing a theft prevention function is mounted.

高圧の蓄電装置150は、例えばニッケル・水素電池等の二次電池で構成されたDC280V程度の高圧バッテリであり、図3に示すように、充電ケーブル300及び充電装置200を介して、車両の外部電源から供給される交流電力により充電可能に構成されている。   The high-voltage power storage device 150 is a high-voltage battery of about 280V DC composed of a secondary battery such as a nickel / hydrogen battery, for example. As shown in FIG. It is configured to be able to be charged by AC power supplied from a power source.

高圧の蓄電装置150は、PIHV−ECU10により制御されるシステムメインリレーSMRを介して、所定の直流電圧に調整するための昇降圧コンバータ210に接続され、昇降圧コンバータ210の出力電圧が第1インバータ220及び第2インバータ230で交流電圧に変換された後に、第1MG110及び第2MG120に印加されるように構成されている。   The high-voltage power storage device 150 is connected to a step-up / down converter 210 for adjusting to a predetermined DC voltage via a system main relay SMR controlled by the PIHV-ECU 10, and the output voltage of the step-up / down converter 210 is a first inverter. After being converted into an AC voltage by 220 and the second inverter 230, it is configured to be applied to the first MG 110 and the second MG 120.

低圧の蓄電装置240は、例えば鉛蓄電池等の二次電池で構成されたDC12V程度の低圧バッテリであり、高圧の蓄電装置150の出力電圧を降圧コンバータ260により降圧して充電可能に構成されている。   The low-voltage power storage device 240 is a low-voltage battery of about DC 12 V configured by a secondary battery such as a lead storage battery, and is configured to be able to be charged by stepping down the output voltage of the high-voltage power storage device 150 by the step-down converter 260. .

各ECUには、単一または複数のCPUと、CPUで実行されるプログラムが格納されたROMと、制御情報が格納されCPUのワーキングエリアとして使用されるRAMと、入出力回路とを備え、バス型ネットワークであるCAN(Controller Area Network)用のインタフェース回路(以下、「CAN−I/F」と記す。)等を備え、各ECUは、CAN−I/Fを介してCAN通信線800で接続され、ECU間で必要な各種の制御情報がCAN通信線800を介して授受される。   Each ECU includes a single or a plurality of CPUs, a ROM that stores a program executed by the CPU, a RAM that stores control information and is used as a working area of the CPU, and an input / output circuit. Interface circuit (hereinafter referred to as “CAN-I / F”) for CAN (Controller Area Network), which is a type network, etc., and each ECU is connected by CAN communication line 800 via CAN-I / F Various control information necessary between the ECUs is exchanged via the CAN communication line 800.

各ECUは、低圧の蓄電装置240から供給されるDC12V程度の直流電圧から所定レベルの制御電圧(例えば、DC5V)を生成するレギュレータを備え、当該レギュレータの出力電圧がCPU等の制御回路に供給されるように構成されている。即ち、各ECUは、低圧の蓄電装置240から給電されて駆動し、それぞれ所期の制御動作が実行される。   Each ECU includes a regulator that generates a control voltage of a predetermined level (for example, DC5V) from a DC voltage of about DC12V supplied from the low-voltage power storage device 240, and the output voltage of the regulator is supplied to a control circuit such as a CPU. It is comprised so that. That is, each ECU is driven by being supplied with power from the low-voltage power storage device 240, and each control operation is executed.

第1インバータ220は、昇降圧コンバータ210から供給される直流電力を交流電力に変換して第1MG110へ供給し、或いは、第1MG110により発電された交流電力を直流電力に変換して昇降圧コンバータ210へ供給する。   The first inverter 220 converts the DC power supplied from the step-up / down converter 210 into AC power and supplies it to the first MG 110, or converts the AC power generated by the first MG 110 into DC power to convert the DC power into the step-up / down converter 210. To supply.

第2インバータ230は、昇降圧コンバータ210から供給される直流電力を交流電力に変換して第2MG120へ供給し、或は、第2MG120により発電された交流電力を直流電流に電力して昇降圧コンバータ210へ供給する。   The second inverter 230 converts the DC power supplied from the step-up / down converter 210 into AC power and supplies the AC power to the second MG 120, or powers the AC power generated by the second MG 120 into DC current to generate a step-up / down converter. To 210.

PIHV−ECU10は、システムの起動スイッチであるイグニッションスイッチがオンされると、電源リレーを閉じて低圧の蓄電装置240から各ECUへの給電を開始し、さらに、システムメインリレーSMRを閉じ、運転者のアクセル操作等に基づいてMG−ECU30及び必要に応じてENG−ECU40を制御して車両を走行制御する。   When the ignition switch, which is a system start switch, is turned on, the PIHV-ECU 10 closes the power relay and starts supplying power from the low-voltage power storage device 240 to each ECU, and further closes the system main relay SMR to The vehicle is controlled by controlling the MG-ECU 30 and the ENG-ECU 40 as necessary based on the accelerator operation of the vehicle.

PIHV−ECU10は、高圧の蓄電装置150及び低圧の蓄電装置240の充電状態(以下、「SOC(State Of Charge)」と記す。)を監視する充電量検知部を備え、高圧の蓄電装置150のSOCが所定範囲内にあるとき、蓄電装置150に蓄えられた電力または第1MG110により発電された電力の少なくとも一方を用いて第2MG120を駆動し、エンジン100の動力をアシストする。第2MG120の駆動力は減速機140を介して駆動輪160に伝達される。   The PIHV-ECU 10 includes a charge amount detection unit that monitors the state of charge of the high-voltage power storage device 150 and the low-voltage power storage device 240 (hereinafter referred to as “SOC (State Of Charge)”). When the SOC is within a predetermined range, second MG 120 is driven using at least one of the electric power stored in power storage device 150 or the electric power generated by first MG 110 to assist the power of engine 100. The driving force of second MG 120 is transmitted to driving wheel 160 via reduction gear 140.

PIHV−ECU10は、高圧の蓄電装置150及び低圧の蓄電装置240のSOCが予め定められた値よりも低いと判断すると、ENG−ECU40を介してエンジン100を始動し、動力分割機構130を介して駆動される第1MG110の発電電力を高圧の蓄電装置150に充電する、或いは、当該発電電力を、降圧コンバータ260を介して低圧電力に変換し、低圧の蓄電装置240に充電するように制御する。   When the PIHV-ECU 10 determines that the SOCs of the high-voltage power storage device 150 and the low-voltage power storage device 240 are lower than predetermined values, the PIHV-ECU 10 starts the engine 100 via the ENG-ECU 40 and passes through the power split mechanism 130. Control is performed so that the generated power of the first MG 110 to be driven is charged in the high-voltage power storage device 150, or the generated power is converted into low-voltage power via the step-down converter 260 and charged in the low-voltage power storage device 240.

一方、PIHV−ECU10は、高圧の蓄電装置150のSOCが予め定められた値よりも高いと判断すると、ENG−ECU40を介してエンジン100を停止し、MG−ECU30を介して蓄電装置150に蓄えられた電力を用いて第2MG120を駆動する。   On the other hand, when PIHV-ECU 10 determines that the SOC of high-voltage power storage device 150 is higher than a predetermined value, engine 100 is stopped via ENG-ECU 40 and stored in power storage device 150 via MG-ECU 30. The second MG 120 is driven using the generated power.

MG−ECU30は、PIHV−ECU10からの制御指令に基づいて、モータ走行時には昇降圧コンバータ210の電力スイッチング素子を制御して、高圧の蓄電装置150の出力電圧を所定レベルに昇圧し、第2インバータ230の各相アームを制御して第2MG120を駆動し、充電時には第1インバータ220の各相アームを制御して、第1MG110からの発電電力を直流電力に変換し、さらに昇降圧コンバータ210で降圧された直流電力を供給する。   Based on a control command from PIHV-ECU 10, MG-ECU 30 controls the power switching element of step-up / down converter 210 during motor travel, boosts the output voltage of high-voltage power storage device 150 to a predetermined level, and outputs the second inverter 230 controls each phase arm 230 to drive the second MG 120, and controls each phase arm of the first inverter 220 during charging to convert the generated power from the first MG 110 into DC power, and further step-down by the buck-boost converter 210 Supply the direct current.

さらに、PIHV−ECU10は、車両の制動時に、減速機140を介して駆動輪160により駆動される第2MG120を発電機として制御し、第2MG120により発電された電力を供給するようにMG−ECU30に制御指令を発し、当該電力を高圧の蓄電装置150に充電する。即ち、第2MG120は、制動エネルギーを電力に変換する回生ブレーキとして用いられる。   Furthermore, the PIHV-ECU 10 controls the MG-ECU 30 so as to supply the electric power generated by the second MG 120 by controlling the second MG 120 driven by the driving wheel 160 via the speed reducer 140 as a generator during braking of the vehicle. A control command is issued to charge the high-voltage power storage device 150 with the electric power. That is, the second MG 120 is used as a regenerative brake that converts braking energy into electric power.

即ち、PIHV−ECU10は、車両の要求トルクと高圧の蓄電装置150のSOC等に基づいて、エンジン100、第1MG110及び第2MG120を制御するように構成されている。   That is, PIHV-ECU 10 is configured to control engine 100, first MG 110, and second MG 120 based on the required torque of the vehicle, the SOC of high-voltage power storage device 150, and the like.

尚、図1では、第2MG120による駆動輪160が前輪である場合を示しているが、前輪に代えてまたは前輪とともに後輪を駆動輪160としてもよい。   Although FIG. 1 shows the case where the driving wheel 160 by the second MG 120 is the front wheel, the rear wheel may be used as the driving wheel 160 instead of the front wheel or together with the front wheel.

図1及び図3に示すように、プラグインハイブリッド車1は、さらに、車両外部の電源から高圧の蓄電装置150へ充電電力を供給するための充電ケーブル300を接続するための充電インレット270を備えている。尚、図1では、充電インレット270が車体後部に設けられているが、車体前部に設けられるものであってもよい。   As shown in FIGS. 1 and 3, plug-in hybrid vehicle 1 further includes a charging inlet 270 for connecting charging cable 300 for supplying charging power from a power supply outside the vehicle to high-voltage power storage device 150. ing. In FIG. 1, the charging inlet 270 is provided at the rear part of the vehicle body, but it may be provided at the front part of the vehicle body.

充電ケーブル300は、例えば、一端側に、家屋に設けられた電源コンセント等の外部電源に接続するプラグ320を備え、他端側に充電インレット270と接続するコネクタ330を備えている。   The charging cable 300 includes, for example, a plug 320 that is connected to an external power source such as a power outlet provided in a house on one end side, and a connector 330 that is connected to the charging inlet 270 on the other end side.

さらに、充電ケーブル300には、外部電源から車両に給電可能な定格電流に対応するコントロールパイロット信号CPLTを生成する信号生成部と、給電用のリレーが組み込まれたCCID(Charging Circuit Interrupt Device)360が設けられている。   Furthermore, charging cable 300 includes a CCID (Charging Circuit Interrupt Device) 360 in which a signal generator that generates a control pilot signal CPLT corresponding to a rated current that can be supplied to the vehicle from an external power source, and a power supply relay is incorporated. Is provided.

コネクタ330には、接続検出回路が組み込まれ、充電インレット270への接続検出時にケーブル接続信号PISWを出力するように構成されている。また、コネクタ330には、交流電力を供給する電力線310の端子ピンと、コントロールパイロット信号CPLTを出力する信号線340の端子ピンと、ケーブル接続信号PISWを出力する接続検出回路の端子ピンが設けられている。   Connector 330 includes a connection detection circuit, and is configured to output a cable connection signal PISW when connection to charging inlet 270 is detected. The connector 330 is also provided with a terminal pin of a power line 310 that supplies AC power, a terminal pin of a signal line 340 that outputs a control pilot signal CPLT, and a terminal pin of a connection detection circuit that outputs a cable connection signal PISW. .

充電用インレット270には、コネクタ330に設けられた各端子ピンと夫々接続する複数の端子ピンが設けられ、イグニッションスイッチがオフされた状態で、コネクタ330が充電インレット270に挿入されると、コネクタ330の接続検出回路からケーブル接続信号PISWが出力され、充電インレット270とPIHV−ECU10を両端とする信号線を介してPIHV−ECU10に入力される。   The charging inlet 270 is provided with a plurality of terminal pins respectively connected to the respective terminal pins provided on the connector 330. When the connector 330 is inserted into the charging inlet 270 with the ignition switch turned off, the connector 330 is provided. The cable connection signal PISW is output from the connection detection circuit, and is input to the PIHV-ECU 10 via a signal line having both ends of the charging inlet 270 and the PIHV-ECU 10.

さらに、充電ケーブル300のプラグ320が外部電源に接続されると、CCID360の信号生成部から所定の信号レベル(以下、「CPLT第一電圧レベル」と記す。)のコントロールパイロット信号CPLTが出力され、充電インレット270とPIHV−ECU10を両端とする信号線を介してPIHV−ECU10に入力される。   Further, when plug 320 of charging cable 300 is connected to an external power source, control pilot signal CPLT of a predetermined signal level (hereinafter referred to as “CPLT first voltage level”) is output from the signal generation unit of CCID 360, The signal is input to the PIHV-ECU 10 via a signal line having both ends of the charging inlet 270 and the PIHV-ECU 10.

PIHV−ECU10は、コントロールパイロット信号CPLTが入力されたことを検知すると、電源リレーを閉じて低圧の蓄電装置240からの給電を開始して各ECUを起動後、システムメインリレーSMRを閉じ、充電装置200を制御して、高圧の蓄電装置150への充電を制御する。   When the PIHV-ECU 10 detects that the control pilot signal CPLT has been input, the PIHV-ECU 10 closes the power relay, starts power feeding from the low-voltage power storage device 240 and activates each ECU, then closes the system main relay SMR, and the charging device 200 is controlled to control charging of the high-voltage power storage device 150.

充電装置200は、充電ケーブル300を介して車両外部の商用電源から給電される交流電力を直流電力に変換する整流回路と、整流回路で整流された直流電圧を所定の充電電圧に変換するコンバータ回路21と、PIHV−ECU10から出力されたパルス幅変調信号PWMを受信し、当該パルス幅変調信号PWMが示す目標充電状態まで充電するのに必要な電力情報に基づいて、コンバータ回路21を制御するCHG−ECU20を備えている。   Charging apparatus 200 includes a rectifier circuit that converts AC power supplied from a commercial power supply outside the vehicle via charging cable 300 into DC power, and a converter circuit that converts DC voltage rectified by the rectifier circuit into a predetermined charging voltage. 21 and CHG that receives the pulse width modulation signal PWM output from the PIHV-ECU 10 and controls the converter circuit 21 based on the power information necessary for charging to the target charging state indicated by the pulse width modulation signal PWM. -An ECU 20 is provided.

即ち、充電インレット270に接続された充電ケーブル300を介して給電される交流電力が充電装置200に給電され、充電装置200で直流電力に変換された後に高圧の蓄電装置150に充電されるように構成されている。   That is, AC power supplied via the charging cable 300 connected to the charging inlet 270 is supplied to the charging device 200 and converted into DC power by the charging device 200 and then charged to the high-voltage power storage device 150. It is configured.

図3に示すように、プラグインハイブリッド車1は、さらに、車両を目的地までルート案内するナビゲーションシステムを構成するナビゲーション装置250と、充電処理により発熱する発熱部を冷却する冷却装置280を備えている。   As shown in FIG. 3, the plug-in hybrid vehicle 1 further includes a navigation device 250 that constitutes a navigation system that guides the vehicle to a destination, and a cooling device 280 that cools a heat generating portion that generates heat by the charging process. Yes.

ナビゲーション装置250は、地図情報、目的地情報、車両走行中の車両速度及び車両位置情報等に基づいて、目的地までの走行経路を表示する、或いは各種情報を設定操作するタッチパネル51や、走行経路を音声通知するスピーカ等を備えてなる操作表示部と、地図情報や各種設定情報を記憶するためのハードディスクやメモリ等の記憶媒体とを備えている。   The navigation device 250 displays a travel route to the destination based on map information, destination information, vehicle speed and vehicle position information during vehicle travel, or a touch panel 51 for setting and operating various information, An operation display unit including a speaker for voice notification, and a storage medium such as a hard disk and a memory for storing map information and various setting information.

ナビゲーション装置250は、他ECUからの制御指令に基づいて、他ECUから受信した制御情報をタッチパネル51に表示する、または、タッチパネル51に表示され、或いは設定操作された各種設定情報を他ECUへ送信する等、操作表示部を制御するナビゲーションECU50(以下、「NAVI−ECU」と記す。)を備えている。   The navigation device 250 displays the control information received from the other ECU on the touch panel 51 based on the control command from the other ECU, or transmits various setting information displayed or set on the touch panel 51 to the other ECU. For example, a navigation ECU 50 (hereinafter referred to as “NAVI-ECU”) for controlling the operation display unit is provided.

例えば、CAN通信線800を介してPIHV−ECU10からNAVI−ECU50に速度情報等の車両情報が送信されると、NAVI−ECU50は、当該速度情報とタッチパネル51に設定された目的地及び走行経路等に基づいて、到着時間情報を算出し、タッチパネル51に到着予測時刻等を表示する。   For example, when vehicle information such as speed information is transmitted from the PIHV-ECU 10 to the NAVI-ECU 50 via the CAN communication line 800, the NAVI-ECU 50 causes the speed information, a destination set on the touch panel 51, a travel route, and the like. Based on the above, arrival time information is calculated, and the predicted arrival time and the like are displayed on the touch panel 51.

一方、タッチパネル51で設定された、充電完了時刻や発車時刻が、NAVI−ECU50を介してCAN通信線800に送信されると、PIHV−ECU10は、当該設定情報を受信して自身に備えられたRAM等のメモリに記憶し、当設設定情報を高圧の蓄電装置150の充電制御に利用する。   On the other hand, when the charging completion time and the departure time set on the touch panel 51 are transmitted to the CAN communication line 800 via the NAVI-ECU 50, the PIHV-ECU 10 receives the setting information and is provided to itself. The present setting information is stored in a memory such as a RAM and used for charging control of the high-voltage power storage device 150.

冷却装置280は、PIHV−ECU10からの制御指令に基づいてオンオフ制御されるファンスイッチFANSWと、充電処理による発熱部としての高圧の蓄電装置150に設けられた、冷却ファンFANを備えて構成されている。   The cooling device 280 includes a fan switch FANSW that is controlled to be turned on / off based on a control command from the PIHV-ECU 10, and a cooling fan FAN that is provided in a high-voltage power storage device 150 that serves as a heat generating unit by charging processing. Yes.

冷却ファンFANは、高圧の蓄電装置150から給電されて駆動する補機として構成され、ファンスイッチFANSWがオンの場合に送風して、高圧の蓄電装置150を強制冷却するように構成されている。   The cooling fan FAN is configured as an auxiliary device that is powered and driven from the high-voltage power storage device 150, and is configured to forcibly cool the high-voltage power storage device 150 by blowing air when the fan switch FANSW is on.

プラグインハイブリッド車1には、高圧の蓄電装置150の温度を計測する温度検知部としての電池温度センサTbc、車両の外気温を計測する温度検知部としての外気温センサTec、高圧の蓄電装置150の電圧値を計測する充電量検知部としての電圧センサVc、及び充電装置200から出力される充電電流を計測する充電量検知部としての充電電流センサIc等、各ECUの制御対象である被制御装置の稼働状態を計測するセンサが設けられている。   The plug-in hybrid vehicle 1 includes a battery temperature sensor Tbc as a temperature detection unit that measures the temperature of the high-voltage power storage device 150, an outside air temperature sensor Tec as a temperature detection unit that measures the outside air temperature of the vehicle, and the high-voltage power storage device 150. A voltage sensor Vc as a charge amount detection unit that measures the voltage value of the battery, and a charge current sensor Ic as a charge amount detection unit that measures the charge current output from the charging device 200, etc. A sensor for measuring the operating state of the apparatus is provided.

各センサで計測される計測値は、各ECUと当該センサを両端にして直接接続された信号線を介して、或いは、他のECUから出力される制御情報に含められ、CAN通信線800を介して、各ECUにより受信される。   The measured value measured by each sensor is included in the control information output from another ECU via a signal line directly connected to each ECU and the sensor at both ends, and via the CAN communication line 800. And received by each ECU.

例えば、PIHV−ECU10は、高圧の蓄電装置150の温度及び電圧の計測値を、それぞれ電池温度センサTbc及び電圧センサVcと直接接続された信号線を介して受信し、さらに、充電装置200から出力される充電電流を、充電電流センサIcと直接接続された信号線を介して受信可能に構成されている。   For example, the PIHV-ECU 10 receives the measured values of the temperature and voltage of the high-voltage power storage device 150 via the signal lines directly connected to the battery temperature sensor Tbc and the voltage sensor Vc, respectively, and further outputs from the charging device 200. The charging current is received via a signal line directly connected to the charging current sensor Ic.

図4に示すように、PIHV−ECU10は、CPU11と、CPU11により実行される制御プログラムが格納されるROM12と、CPU11のワーキング領域として使用されるRAM13と、CAN−I/F14と、入出力回路15と、低圧の蓄電装置240から供給される直流電圧(例えばDC12V)を所定レベルの制御電圧(例えばDC5V)に降圧するレギュレータ16を備えている。   As shown in FIG. 4, the PIHV-ECU 10 includes a CPU 11, a ROM 12 that stores a control program executed by the CPU 11, a RAM 13 that is used as a working area of the CPU 11, a CAN-I / F 14, and an input / output circuit. 15 and a regulator 16 that steps down a direct-current voltage (for example, DC12V) supplied from the low-voltage power storage device 240 to a predetermined level of control voltage (for example, DC5V).

入出力回路15は、ケーブル接続信号PISW、コントロールパイロット信号CPLT、高圧の蓄電装置150及び低圧の蓄電装置240のSOC、電池温度センサTbc及び外気温センサTecから出力される温度を示す計測値、又は、電圧センサVc及び充電電流センサIcから出力される電圧及び電流を示す計測値等を入力し、システムメインリレーSMR及びファンスイッチFANSWをオンオフする制御信号や、CHG−ECU20への充電指令を示すパルス幅変調信号PWM等を出力するように構成されている。   The input / output circuit 15 includes a cable connection signal PISW, a control pilot signal CPLT, SOCs of the high-voltage power storage device 150 and the low-voltage power storage device 240, measured values indicating temperatures output from the battery temperature sensor Tbc and the outside air temperature sensor Tec, or , A measurement value indicating voltage and current output from the voltage sensor Vc and the charging current sensor Ic, etc. are input, a control signal for turning on and off the system main relay SMR and the fan switch FANSW, and a pulse indicating a charging command to the CHG-ECU 20 It is configured to output a width modulation signal PWM or the like.

CAN−I/F14は、CANトランシーバと、プロトコル制御部と、メールボックスであるCAN用データ格納RAM等を備え、CANバス800を介して接続されたCHG−ECU20,NAVI−ECU50等の他のECUと、CANプロトコルに基づいて各種制御信号を通信可能なインタフェース回路として構成されている。   The CAN-I / F 14 includes a CAN transceiver, a protocol control unit, a CAN data storage RAM as a mail box, and the like, and other ECUs such as a CHG-ECU 20 and a NAVI-ECU 50 connected via the CAN bus 800. And an interface circuit capable of communicating various control signals based on the CAN protocol.

PIHV−ECU10は、低圧の蓄電装置240からレギュレータ16を介して供給される直流電力により駆動し、入出力回路15及びCAN−I/F14を介して、高圧の蓄電装置150及び低圧の蓄電装置240等の蓄電装置や、電池温度センサTbc及び電圧センサVc等の各種センサや、NAVI−ECU50等の他のECUから、SOC、温度計測値及び電圧計測値、充電完了時刻や発車時刻等の制御情報を受信してRAM13に記憶するとともに、当該記憶した制御情報に基づいて、車両の走行制御や高圧の蓄電装置150及び低圧の蓄電装置240の充電制御を実行し、実行結果の制御情報をRAM13に記憶する。   The PIHV-ECU 10 is driven by DC power supplied from the low-voltage power storage device 240 via the regulator 16, and the high-voltage power storage device 150 and the low-voltage power storage device 240 via the input / output circuit 15 and the CAN-I / F 14. Control information such as SOC, temperature measurement value and voltage measurement value, charging completion time and departure time from various sensors such as battery temperature sensor Tbc and voltage sensor Vc, and other ECUs such as NAVI-ECU 50 Is stored in the RAM 13, and on the basis of the stored control information, the vehicle traveling control and the charging control of the high-voltage power storage device 150 and the low-voltage power storage device 240 are executed, and the control information of the execution result is stored in the RAM 13. Remember.

RAM13に記憶された制御情報は、イグニッションスイッチがオフされた場合等、CPU11への給電が停止する前に行われるシャットダウン処理により、車両に備えられたEPROM等の不揮発性メモリに退避される。即ち、本発明による記憶部は、RAM13及び不揮発性メモリにより構成されている。 The control information stored in the RAM 13 is saved in a non-volatile memory such as an E 2 PROM provided in the vehicle by a shutdown process performed before power supply to the CPU 11 is stopped, such as when the ignition switch is turned off. . That is, the storage unit according to the present invention includes the RAM 13 and the nonvolatile memory.

尚、不揮発性メモリは、EPROM等の高価なメモリに代えて、電源リレーを介さない低圧の蓄電装置240から常時給電可能な給電線を設け、当該給電線を介して給電されるRAMで構成されていても構わない。 The non-volatile memory is a RAM that is provided with a power supply line that can always be supplied from a low-voltage power storage device 240 not via a power relay, and that is supplied with power via the power supply line, instead of an expensive memory such as E 2 PROM. It may be configured.

PIHV−ECU10は、充電制御時にはRAM13に記憶されたSOC及び充電完了時刻等の制御情報に基づいて、所定の目標充電状態まで充電するのに必要な電力情報を示すパルス幅変調信号PWMをCHG−ECU20に送信する。   The PIHV-ECU 10 outputs a pulse width modulation signal PWM indicating power information necessary for charging up to a predetermined target charging state based on control information such as SOC and charging completion time stored in the RAM 13 during charging control. It transmits to ECU20.

PIHV−ECU10による高圧の蓄電装置150の充電制御について詳述する。図5に示すように、イグニッションスイッチがオフされ、PIHV−ECU10が待機状態である場合に、コネクタ330が充電インレット270に挿入されると、充電インレット270から出力されるケーブル接続信号PISWがPIHV−ECU10に入力される。   The charging control of the high-voltage power storage device 150 by the PIHV-ECU 10 will be described in detail. As shown in FIG. 5, when the ignition switch is turned off and the PIHV-ECU 10 is in a standby state, when the connector 330 is inserted into the charging inlet 270, the cable connection signal PISW output from the charging inlet 270 is PIHV-. Input to the ECU 10.

さらに、プラグ320が外部電源のコンセントに接続されると、CCID360からCPLT第一電圧レベル(例えば、+12V)のコントロールパイロット信号CPLTが出力され、PIHV−ECU10に入力される(S1)。   Further, when plug 320 is connected to an outlet of an external power supply, control pilot signal CPLT having a CPLT first voltage level (for example, + 12V) is output from CCID 360 and input to PIHV-ECU 10 (S1).

PIHV−ECU10は、ケーブル接続信号PISW及びコントロールパイロット信号CPLTが入力されると、待機状態から通常の動作状態に復帰し、電源リレーをオンして低圧の蓄電装置240からCHG−ECU20への給電を開始し、高圧の蓄電装置150の充電制御を開始する(S2)。   When the cable connection signal PISW and the control pilot signal CPLT are input, the PIHV-ECU 10 returns from the standby state to the normal operation state, turns on the power relay, and supplies power from the low-voltage power storage device 240 to the CHG-ECU 20. The charge control of the high-voltage power storage device 150 is started (S2).

PIHV−ECU10は、入出力回路15を介してコントロールパイロット信号CPLTの信号レベルを、CPLT第一電圧レベルよりも低圧の所定の信号レベル(以下、「CPLT第二電圧レベル」と記す。)に低下させる(例えば、+9V)(S3)。   The PIHV-ECU 10 lowers the signal level of the control pilot signal CPLT to a predetermined signal level lower than the CPLT first voltage level (hereinafter referred to as “CPLT second voltage level”) via the input / output circuit 15. (For example, + 9V) (S3).

このとき、CCID360は、コントロールパイロット信号CPLTの信号レベルが低下したことを検知して、充電ケーブル300の給電能力に基づく所定のデューティーサイクルで所定周波数(例えば1KHz)のコントロールパイロット信号CPLTを出力する。   At this time, the CCID 360 detects that the signal level of the control pilot signal CPLT has decreased, and outputs a control pilot signal CPLT having a predetermined frequency (for example, 1 KHz) at a predetermined duty cycle based on the power supply capability of the charging cable 300.

図6(a),(b)に示すように、デューティー比は、車両外部の商用電源から充電ケーブル300を介して車両へ供給可能な電流容量に基づいて設定される値で、充電ケーブル300毎に予め設定されている。例えば、電流容量が12Aの場合には20%、電流容量が24Aの場合には40%に設定されている。   As shown in FIGS. 6A and 6B, the duty ratio is a value set based on the current capacity that can be supplied from the commercial power supply outside the vehicle to the vehicle via the charging cable 300. Is set in advance. For example, 20% is set when the current capacity is 12A, and 40% when the current capacity is 24A.

PIHV−ECU10は、CCID360から出力されるコントロールパイロット信号CPLTを所定時間計測してデューティー比を検知し、充電ケーブル300の電流容量を認識すると(S4)、入出力回路15を介してコントロールパイロット信号CPLTの信号レベルを、CPLT第二電圧レベルよりも低圧の所定の信号レベル(以下、「CPLT第三電圧レベル」と記す。)に低下させる(例えば、+6V)(S5)。   When the PIHV-ECU 10 measures the control pilot signal CPLT output from the CCID 360 for a predetermined time to detect the duty ratio and recognizes the current capacity of the charging cable 300 (S4), the PIHV-ECU 10 receives the control pilot signal CPLT via the input / output circuit 15. Is reduced to a predetermined signal level lower than the CPLT second voltage level (hereinafter referred to as “CPLT third voltage level”) (for example, +6 V) (S5).

このとき、CCID360は、コントロールパイロット信号CPLTの信号レベルが低下したことを検知して、コネクタ330の給電用リレーをオンし、充電装置200への交流電力の供給を開始する。   At this time, CCID 360 detects that the signal level of control pilot signal CPLT has decreased, turns on the power feeding relay of connector 330, and starts supplying AC power to charging device 200.

続いて、PIHV−ECU10は、システムメインリレーSMR(図3参照)をオンし(S6)、充電完了時刻がRAM13に記憶されているか否かを確認し(S7)、充電完了時刻がRAM13に記憶されている場合は、充電量算出処理(S8)を実行する。   Subsequently, the PIHV-ECU 10 turns on the system main relay SMR (see FIG. 3) (S6), checks whether or not the charging completion time is stored in the RAM 13 (S7), and stores the charging completion time in the RAM 13. If so, the charge amount calculation process (S8) is executed.

充電量算出処理は、充電量検知部からの情報により判定した蓄電装置の充電量と目標充電量に基づいて必要充電量を算出し、温度検知部からの情報により判定した蓄電装置に関する温度に基づいて補正した単位時間当たりに充電可能な充電量と充電開始時刻から記憶部に記憶された充電完了時刻または発車時刻までの充電時間とに基づいて算出した最大充電量を算出する処理である。   The charge amount calculation process calculates the necessary charge amount based on the charge amount of the power storage device determined from the information from the charge amount detection unit and the target charge amount, and based on the temperature related to the power storage device determined from the information from the temperature detection unit. This is a process of calculating the maximum charge amount calculated based on the charge amount that can be charged per unit time and the charge time from the charge start time to the charge completion time or the departure time stored in the storage unit.

具体的には、充電量算出処理は、RAM13に記憶された蓄電装置150の充電状態に基づいて蓄電装置150を目標充電状態まで充電するための必要充電量と、外気温または蓄電装置150の温度で定まる温度依存係数に基づいて補正した単位時間当たりの充電量と充電開始時からRAM13に記憶された充電完了時刻までの充電時間とを乗算した最大充電量を算出する処理である。   Specifically, the charge amount calculation processing includes the necessary charge amount for charging the power storage device 150 to the target charge state based on the charge state of the power storage device 150 stored in the RAM 13, the outside air temperature, or the temperature of the power storage device 150. This is a process of calculating the maximum charge amount obtained by multiplying the charge amount per unit time corrected based on the temperature dependence coefficient determined by the charge time from the charge start time to the charge completion time stored in the RAM 13.

詳述すると、PIHV−ECU10は、上述した構成に加えて、前回車両走行時等のイグニッションスイッチがオンされている場合に、タッチパネル51で設定された目標充電状態SOCgをNAVI−ECU50を介して受信し、RAM13に記憶するように構成されている。   More specifically, the PIHV-ECU 10 receives the target charge state SOCg set on the touch panel 51 via the NAVI-ECU 50 when the ignition switch at the time of the previous vehicle travel is turned on in addition to the above-described configuration. And it is configured to store in the RAM 13.

尚、目標充電状態SOCgがRAM13に記憶されていない場合は、蓄電装置150の満充電の状態を目標充電状態SOCgとする等、所定の充電状態を目標充電状態SOCgとして適宜規定して構わない。   When the target charge state SOCg is not stored in the RAM 13, a predetermined charge state may be appropriately defined as the target charge state SOCg, for example, the full charge state of the power storage device 150 is set as the target charge state SOCg.

充電量算出処理では、必要充電量SOCn(t)が〔数1〕に基づいて算出される。

Figure 2010233360
In the charge amount calculation process, the required charge amount SOCn (t) is calculated based on [Equation 1].
Figure 2010233360

ここで、SOCgは蓄電装置150の目標充電状態(目標充電量)を示し、SOC(t)は実行時刻tにおける蓄電装置150の充電状態を示す。   Here, SOCg indicates a target charge state (target charge amount) of power storage device 150, and SOC (t) indicates a charge state of power storage device 150 at execution time t.

即ち、必要充電量SOCn(t)は、実行時刻tにおける目標充電量SOCgまでに必要な残充電量を示す。   That is, the required charge amount SOCn (t) indicates the remaining charge amount required up to the target charge amount SOCg at the execution time t.

また、充電量算出処理では、最大充電量SOCm(t)が〔数2〕に基づいて算出される。

Figure 2010233360
In the charge amount calculation process, the maximum charge amount SOCm (t) is calculated based on [Equation 2].
Figure 2010233360

ここで、Ttは、実行時刻tにおいて外気温センサTecで計測される外気温または電池温度センサTbcで計測される電池温度の温度を示し、α(Tt)は、温度Ttで定まる温度依存係数を示し、I(t)は、実行時刻tにおいて充電電流センサIcで計測される充電電流を示し、SOCu(I(t),Tt)は、温度Ttにおける二次電池の充電特性を維持して、充電電流I(t)で充電する場合の単位時間当たりの充電量を示し、SOCα(t)は、実行時刻tにおける温度依存係数α(Tt)に基づいて補正した単位時間当たりの充電量を示し、taは、充電完了時刻を示す。   Here, Tt indicates the temperature of the outside air temperature measured by the outside air temperature sensor Tec at the execution time t or the temperature of the battery temperature measured by the battery temperature sensor Tbc, and α (Tt) is a temperature dependence coefficient determined by the temperature Tt. I (t) indicates a charging current measured by the charging current sensor Ic at the execution time t, SOCu (I (t), Tt) maintains the charging characteristics of the secondary battery at the temperature Tt, The charge amount per unit time when charging with the charge current I (t) is shown, and SOC α (t) indicates the charge amount per unit time corrected based on the temperature dependence coefficient α (Tt) at the execution time t. , Ta indicates the charging completion time.

即ち、最大充電量SOCm(t)は、温度Ttが変化しないと仮定して、実行時刻tから充電完了時刻までの間、温度Ttにおける二次電池の充電特性を維持して充電した場合に充電される充電量を示している。   That is, the maximum charge amount SOCm (t) is charged when charging is performed while maintaining the charging characteristics of the secondary battery at the temperature Tt from the execution time t to the charge completion time, assuming that the temperature Tt does not change. Indicates the amount of charge to be performed.

尚、PIHV−ECU10は、温度Ttで定まる温度依存係数α(Tt)を示す特性マップを予めROM12に記憶するように構成されている。当該特性マップは、車両の適合試験等による二次電池の実験値に基づいて予め導出されるものであり、二次電池の充電特性に応じて異なるものとなる。   The PIHV-ECU 10 is configured to store in advance in the ROM 12 a characteristic map indicating a temperature dependence coefficient α (Tt) determined by the temperature Tt. The characteristic map is derived in advance based on the experimental value of the secondary battery by a vehicle compatibility test or the like, and differs depending on the charging characteristic of the secondary battery.

当該特性マップは、例えば、図7(a)に示すように、横軸を外気温または電池温度の温度Tt、縦軸を温度依存係数α(Tt)とする特性曲線で示される。当該特性曲線は、横軸を外気温または電池温度の温度、縦軸を単位時間当たりの充電量の増加量とする二次元座標系に実験値をプロットし、さらに、プロットされた縦軸の各単位時間当たりの充電量の増加量を単位時間当たりの充電量の増加量の最大値で除算した結果を温度依存係数α(Tt)とするようにして導出される。したがって、温度依存係数α(Tt)は、0よりも大きく、1以下の値を示す。   For example, as shown in FIG. 7A, the characteristic map is represented by a characteristic curve in which the horizontal axis represents the outside temperature or the battery temperature Tt, and the vertical axis represents the temperature dependence coefficient α (Tt). The characteristic curve plots experimental values in a two-dimensional coordinate system in which the horizontal axis is the temperature of the outside air temperature or the battery temperature, and the vertical axis is the amount of increase in the charge amount per unit time. The temperature dependence coefficient α (Tt) is derived by dividing the increase amount of the charge amount per unit time by the maximum value of the increase amount of the charge amount per unit time. Therefore, the temperature dependence coefficient α (Tt) is greater than 0 and 1 or less.

例えば、二次電池がニッケル・水素電池の場合は、約10℃から30℃の電池温度の場合に充電効率がよいことが知られており、例えば、図7(a)に示す特性マップでは、温度T1,T2がそれぞれ10℃,30℃を示すといえる。   For example, when the secondary battery is a nickel-hydrogen battery, it is known that the charging efficiency is good when the battery temperature is about 10 ° C. to 30 ° C. For example, in the characteristic map shown in FIG. It can be said that the temperatures T1 and T2 indicate 10 ° C. and 30 ° C., respectively.

尚、上述の図7(a)に示す特性マップ、及び温度T1,T2の値は、例示に過ぎず、二次電池の充電特性の実験値に基づいて導出されるものであって、これに限るものではない。   Note that the characteristic map shown in FIG. 7A and the values of the temperatures T1 and T2 are merely examples, and are derived based on experimental values of the charging characteristics of the secondary battery. It is not limited.

また、温度Ttにおける二次電池の充電特性を維持して、充電電流I(t)で充電する場合の単位時間当たりの充電量SOCu(I(t),Tt)([数2]参照)は、PIHV−ECU10のROM12に予め記憶された特性マップにより決定される。尚、当該特性マップも、車両の適合試験等による蓄電装置150を構成する二次電池の実験値に基づいて予め導出されるものであり、二次電池の充電特性に応じて異なるものとなる。   Further, the charge amount SOCu (I (t), Tt) per unit time when charging with the charging current I (t) while maintaining the charging characteristics of the secondary battery at the temperature Tt (see [Equation 2]) is , Determined by a characteristic map stored in advance in the ROM 12 of the PIHV-ECU 10. Note that the characteristic map is also derived in advance based on experimental values of the secondary battery that constitutes the power storage device 150 based on a vehicle suitability test or the like, and differs depending on the charging characteristics of the secondary battery.

当該特性マップは、例えば、図7(b)に示すように、横軸を外気温または電池温度の温度Ttにおける充電電流I(t)、縦軸を外気温または電池温度の温度Ttにおける単位時間当たりの充電量SOCu(I(t),Tt)とする特性曲線で示される。ただし、充電電流I(t)が0の場合は、単位時間当たりの充電量の増加量が0とならないよう、十分に小さい所定の補正値(例えば、図7(b)では0.1)が設定される。   For example, as shown in FIG. 7B, the characteristic map includes a charging current I (t) at the temperature Tt of the outside air temperature or the battery temperature on the horizontal axis, and a unit time at the temperature Tt of the outside air temperature or the battery temperature on the vertical axis. It is indicated by a characteristic curve having a per-charge amount SOCu (I (t), Tt). However, when the charging current I (t) is 0, a sufficiently small predetermined correction value (for example, 0.1 in FIG. 7B) is set so that the amount of increase in the charging amount per unit time does not become 0. Is set.

例えば、二次電池がニッケル・水素電池の場合は、充電電流を大きくすると、電極反応の過電圧が大きくなる、或いは、正極からの酸素ガスの発生が大きくなる等の原因で、充電効率が下がることが知られており、図7(b)に示すように、充電電流I1の2倍の充電電流で充電を行う場合の単位時間当たりの充電量の増加量S2は、充電電流I1の単位時間当たりの充電量の増加量S1を2倍した値よりも低い値を示す。   For example, when the secondary battery is a nickel-hydrogen battery, if the charging current is increased, the charging efficiency decreases due to an increase in the overvoltage of the electrode reaction or the generation of oxygen gas from the positive electrode. As shown in FIG. 7B, the increase S2 in the charge amount per unit time when charging is performed with a charge current twice as large as the charge current I1 per unit time of the charge current I1. The value is lower than the value obtained by doubling the increase amount S1 of the charging amount.

尚、図7(b)に示す特性マップは例示に過ぎず、二次電池の充電特性の実験値に基づいて導出されるものであって、これに限るものではない。   The characteristic map shown in FIG. 7B is merely an example, and is derived based on experimental values of the charging characteristics of the secondary battery, and is not limited to this.

図5に戻り、PIHV−ECU10は、ステップS8において、充電電流I(t)を蓄電装置150に充電可能な最大充電電流Imaxとして、充電量算出処理を実行し、当該充電量算出処理により算出された必要充電量SOCnと最大充電量SOCmとの比較を行う(S9)。   Returning to FIG. 5, in step S <b> 8, the PIHV-ECU 10 executes the charge amount calculation process using the charge current I (t) as the maximum charge current Imax that can charge the power storage device 150, and is calculated by the charge amount calculation process. The required charge amount SOCn and the maximum charge amount SOCm are compared (S9).

例えば、図8(a)に示すように、時刻t10において充電制御が開始された後、縦軸に示す蓄電装置150の温度は、時間の経過とともに次第に上昇する。尚、図8(a)においては、説明の便宜上、蓄電装置150の温度が線形的に上昇するように記載しているが、あくまで例示であって、これに限るものではない。   For example, as shown in FIG. 8A, after the charging control is started at time t10, the temperature of the power storage device 150 shown on the vertical axis gradually increases with the passage of time. In FIG. 8A, for convenience of explanation, the temperature of the power storage device 150 is described so as to rise linearly. However, this is merely an example, and the present invention is not limited to this.

PIHV−ECU10は、最大充電量SOCm(t)よりも必要充電量SOCn(t)が少ないと判定した場合に、蓄電装置150の温度が所定の許容温度Thよりも高いと判定すると(S10)、所定時間経過するまでの間、充電を停止することを示すデューティー比(図6(b)参照)が0のパルス幅変調信号PWMをCHG−ECU20に送信して、CHG−ECU20に充電電流の出力を停止するよう指令する(S11a)。   When the PIHV-ECU 10 determines that the required charge amount SOCn (t) is less than the maximum charge amount SOCm (t) and determines that the temperature of the power storage device 150 is higher than the predetermined allowable temperature Th (S10). Until the predetermined time elapses, a pulse width modulation signal PWM having a duty ratio (see FIG. 6B) indicating that charging is stopped is transmitted to the CHG-ECU 20 and the charging current is output to the CHG-ECU 20. Is stopped (S11a).

即ち、PIHV−ECU10は、冷却ファンFANを駆動せずに、自然放熱によって蓄電装置150を冷却する(例えば、図8(a)に示す時刻t11からt12の期間)。   That is, the PIHV-ECU 10 cools the power storage device 150 by natural heat dissipation without driving the cooling fan FAN (for example, a period from time t11 to time t12 shown in FIG. 8A).

一方、PIHV−ECU10は、最大充電量SOCm(t)よりも必要充電量SOCn(t)が少ないと判定した場合に、蓄電装置150の温度が所定の許容温度Th以下であると判定すると(S10)、所定時間経過するまでの間、最大充電電流Imaxを示すデューティー比のパルス幅変調信号PWMをCHG−ECU20に送信して、CHG−ECU20に最大充電電流Imaxを出力するよう指令する(S11b;例えば、図8(a)に示す時刻t12からt13の期間)。   On the other hand, when PIHV-ECU 10 determines that required charge amount SOCn (t) is smaller than maximum charge amount SOCm (t), PIHV-ECU 10 determines that temperature of power storage device 150 is equal to or lower than predetermined allowable temperature Th (S10). ), A pulse width modulation signal PWM having a duty ratio indicating the maximum charging current Imax is transmitted to the CHG-ECU 20 until the predetermined time elapses, and the CHG-ECU 20 is instructed to output the maximum charging current Imax (S11b; For example, the period from time t12 to t13 shown in FIG.

CHG−ECU20は、コンバータ回路21の出力電圧等を制御し、PIHV−ECU10から受信したパルス幅変調信号PWMのデューティー比で示される最大充電電流Imaxの電流を出力する。   The CHG-ECU 20 controls the output voltage of the converter circuit 21 and outputs a maximum charging current Imax indicated by the duty ratio of the pulse width modulation signal PWM received from the PIHV-ECU 10.

即ち、充電量算出処理の結果、最大充電量SOCmよりも必要充電量SOCnが少ない場合に、蓄電装置150を蓄電装置150から給電される冷却装置280で冷却することなく、蓄電装置150の温度が許容温度Th以下のときに所定の充電電流で蓄電装置150を充電する間歇充電処理が、ステップS11aとステップS11bにより構成されている。   That is, as a result of the charge amount calculation process, when the required charge amount SOCn is smaller than the maximum charge amount SOCm, the temperature of the power storage device 150 is not cooled by the cooling device 280 supplied with power from the power storage device 150. The intermittent charging process of charging the power storage device 150 with a predetermined charging current when the temperature is equal to or lower than the allowable temperature Th includes steps S11a and S11b.

一方、PIHV−ECU10は、最大充電量SOCm(t)よりも必要充電量SOCn(t)が多いと判定した場合、或いは、ステップ7において充電完了時刻がRAM13に記憶されていないと判定した場合は、所定時間経過するまでの間、蓄電装置150を冷却装置280で冷却しながら、最大充電電流Imaxで蓄電装置150を充電する強制冷却充電処理を実行する(S12)。   On the other hand, when the PIHV-ECU 10 determines that the required charge amount SOCn (t) is greater than the maximum charge amount SOCm (t), or when it is determined in step 7 that the charge completion time is not stored in the RAM 13. Until the predetermined time elapses, while the power storage device 150 is cooled by the cooling device 280, the forced cooling charging process for charging the power storage device 150 with the maximum charging current Imax is executed (S12).

即ち、強制冷却充電処理は、充電を実施するとともに、所定の条件を満たす場合に蓄電装置150を冷却装置280により冷却する本発明による冷却・充電制御処理として構成されている。   That is, the forced cooling charging process is configured as a cooling / charging control process according to the present invention in which charging is performed and the power storage device 150 is cooled by the cooling device 280 when a predetermined condition is satisfied.

PIHV−ECU10は、間歇充電処理或いは強制冷却充電処理を実行後、蓄電装置150のSOCが目標充電状態SOCgに達していないと判定した場合は、ステップS8を実行し、蓄電装置150のSOCが目標充電状態SOCgに達し、充電が完了したと判定した場合は(S13)、システムメインリレーSMRをオフするとともに、コンバータ回路21を停止するようCHG−ECU20に指令する(S14)。   When the PIHV-ECU 10 determines that the SOC of the power storage device 150 has not reached the target charge state SOCg after executing the intermittent charging process or the forced cooling charging process, the PIHV-ECU 10 executes step S8, and the SOC of the power storage device 150 is the target. When it is determined that the state of charge SOCg has been reached and charging is complete (S13), the system main relay SMR is turned off and the CHG-ECU 20 is commanded to stop the converter circuit 21 (S14).

続いて、PIHV−ECU10は、入出力回路15を介してコントロールパイロット信号CPLTの信号レベルを、CPLT第三電圧レベルからCPLT第二電圧レベルに上昇させる(S15)。   Subsequently, the PIHV-ECU 10 increases the signal level of the control pilot signal CPLT from the CPLT third voltage level to the CPLT second voltage level via the input / output circuit 15 (S15).

このとき、CCID360は、コントロールパイロット信号CPLTの信号レベルが上昇したことを検知して、コネクタ330の給電用リレーをオフし、充電装置200への交流電力の供給を停止する。   At this time, CCID 360 detects that the signal level of control pilot signal CPLT has risen, turns off the power feeding relay of connector 330, and stops the supply of AC power to charging device 200.

続いて、PIHV−ECU10は、入出力回路15を介してコントロールパイロット信号CPLTの信号レベルを、CPLT第二電圧レベルからCPLT第一電圧レベルに上昇させる(S16)。   Subsequently, the PIHV-ECU 10 increases the signal level of the control pilot signal CPLT from the CPLT second voltage level to the CPLT first voltage level via the input / output circuit 15 (S16).

このとき、CCID360は、コントロールパイロット信号CPLTの信号レベルが上昇したことを検知して、コントロールパイロット信号CPLTの出力を停止する。   At this time, CCID 360 detects that the signal level of control pilot signal CPLT has increased, and stops outputting control pilot signal CPLT.

PIHV−ECU10は、コントロールパイロット信号CPLTの入力が停止されたことを検知すると、シャットダウン処理を実行してRAM13に記憶された制御情報を不揮発性メモリに退避し(S17)、電源リレーをオフして、低圧の蓄電装置240からCHG−ECU20への給電を終了し(S18)、待機状態に戻り(S19)、充電制御を終了する。   When the PIHV-ECU 10 detects that the input of the control pilot signal CPLT has been stopped, the PIHV-ECU 10 executes a shutdown process to save the control information stored in the RAM 13 in the nonvolatile memory (S17), and turns off the power relay. Then, the power supply from the low-voltage power storage device 240 to the CHG-ECU 20 is terminated (S18), the standby state is returned (S19), and the charging control is terminated.

即ち、本発明による制御部はPIHV−ECU10により構成されている。PIHV−ECU10は、予め設定された充電完了時刻taまでの間に、蓄電装置150に供給可能な最大充電量SOCm(t)よりも、蓄電装置150を充電するために必要な充電量SOCn(t)が少ない場合に、蓄電装置150を蓄電装置150から給電される冷却装置280で冷却することなく、蓄電装置150の温度が許容温度以下のときに最大充電電流Imaxで蓄電装置150を充電する間歇充電処理が実行されるため、冷却ファンFAN等の補機による電力損失や騒音の発生を招くことなく、充電完了時刻までに充電処理を終了することができるようになる。   That is, the control part by this invention is comprised by PIHV-ECU10. The PIHV-ECU 10 determines the charge amount SOCn (t required for charging the power storage device 150 from the maximum charge amount SOCm (t) that can be supplied to the power storage device 150 until a preset charge completion time ta. When the temperature of the power storage device 150 is equal to or lower than the allowable temperature, the power storage device 150 is charged with the maximum charging current Imax without being cooled by the cooling device 280 supplied with power from the power storage device 150. Since the charging process is executed, the charging process can be completed before the charging completion time without causing power loss and noise generation by an auxiliary device such as the cooling fan FAN.

尚、最大充電量SOCm(t)を、一定の単位時間当たりの充電量SOCu(I(t),Tt)と充電開始時からRAM13に記憶された充電完了時刻taまでの充電時間との積で求めると、充電時の外気温または電池温度の温度により蓄電装置150の充電特性が変動するため、正確な値が得られない。例えばニッケル・水素電池は、零度未満の低温時や40℃以上の高温時において、一定の電流で充電可能な充電量が常温時よりも低くなる充電特性をもっている。   The maximum charge amount SOCm (t) is the product of the charge amount SOCu (I (t), Tt) per unit time and the charge time from the start of charge to the charge completion time ta stored in the RAM 13. In other words, since the charging characteristics of the power storage device 150 vary depending on the outside air temperature or battery temperature during charging, an accurate value cannot be obtained. For example, a nickel-hydrogen battery has a charge characteristic that a charge amount that can be charged with a constant current is lower than that at room temperature at a low temperature of less than zero degrees or at a high temperature of 40 ° C. or higher.

そこで、単位時間当たりの充電量SOCu(I(t),Tt)を外気温または蓄電装置150の電池温度の温度Ttで定まる温度依存係数α(Tt)に基づいて補正することにより、正確な最大充電量SOCm(t)を求めることができ、適正に間歇充電制御ができるようになる。   Therefore, by correcting the charge amount SOCu (I (t), Tt) per unit time based on the temperature dependence coefficient α (Tt) determined by the outside air temperature or the temperature Tt of the battery temperature of the power storage device 150, the accurate maximum The charge amount SOCm (t) can be obtained, and intermittent charge control can be appropriately performed.

以下に、別の実施形態について説明する。   Another embodiment will be described below.

PIHV−ECU10は、上述した構成に加えて、ステップS11a,S11b,S12における間歇充電処理または強制冷却充電処理において、図8(a)に示すように、予めROM12に設定された蓄電装置150の低温側の許容温度Tlよりも、外気温または蓄電装置150の電池温度の温度が低温になったことを検知すると、ステップS8を実行するように構成されている。   In addition to the above-described configuration, the PIHV-ECU 10 performs the low-temperature operation of the power storage device 150 set in advance in the ROM 12 as shown in FIG. 8A in the intermittent charging process or the forced cooling charging process in steps S11a, S11b, and S12. When it is detected that the outside air temperature or the temperature of the battery temperature of the power storage device 150 is lower than the allowable temperature Tl on the side, step S8 is executed.

この場合、ステップS10による判定後、所定時間経過するまでに、蓄電装置150が許容温度Tlにまで冷却されたことを検知して、充電制御を再開することができる。したがって、外気温が低い寒冷地や冬季等において、制御装置及び被制御装置を過冷却することを回避できるようになる。   In this case, after the determination in step S10, the charging control can be resumed by detecting that the power storage device 150 has been cooled to the allowable temperature Tl until a predetermined time has elapsed. Therefore, it is possible to avoid overcooling the control device and the controlled device in a cold region where the outside air temperature is low or in winter.

さらに、上述した構成では、PIHV−ECU10は、ステップS11b、及び、ステップS12において、最大充電電流Imaxを充電電流I(t)に設定していたが、これに代えて、最大充電電流Imaxよりも低下させた電流を充電電流I(t)として設定するように構成しても構わない。   Further, in the configuration described above, the PIHV-ECU 10 sets the maximum charging current Imax to the charging current I (t) in steps S11b and S12. Instead, the PIHV-ECU 10 replaces the maximum charging current Imax with the maximum charging current Imax. You may comprise so that the reduced electric current may be set as charging current I (t).

例えば、図8(b)に示すように、充電電流I(t)を時間の経過とともに線形的に低下させるように設定した場合は、蓄電装置150の温度上昇率が緩やかになり、蓄電装置150が許容温度Taに達するまでに至る時間を遅延させることができるようになる。   For example, as shown in FIG. 8B, when the charging current I (t) is set to linearly decrease with time, the rate of temperature increase of the power storage device 150 becomes gradual, and the power storage device 150 It is possible to delay the time until the temperature reaches the allowable temperature Ta.

したがって、蓄電装置150から給電される冷却ファンFANの駆動時間が削減され、これに伴って蓄電装置150の消費電力が削減されるため、車両外部から供給される電力を蓄電装置150の充電に効率よく利用することができるようになる。   Therefore, the driving time of the cooling fan FAN fed from the power storage device 150 is reduced, and the power consumption of the power storage device 150 is reduced accordingly. Therefore, the power supplied from the outside of the vehicle is efficiently used for charging the power storage device 150. You can use it well.

尚、最大充電電流Imaxよりも低下させた電流を充電電流I(t)として設定する例として、充電電流I(t)を時間の経過とともに線形的に低下させるように設定する場合を上述したが、これに代えて、充電電流I(t)を時間の経過とともに段階的に低下させる、或いは、蓄電装置150を構成する二次電池の実験値に基づいて、蓄電装置150の温度上昇率と充電電流の大きさの関係を示す特性マップを予め導出しておき、当該特性マップに基づいて、蓄電装置150の温度上昇を抑制するように、充電電流I(t)を時間の経過とともに低下させるように構成しても構わない。   Note that, as an example of setting the current lower than the maximum charging current Imax as the charging current I (t), the case where the charging current I (t) is set so as to decrease linearly with time has been described above. Instead, the charging current I (t) is decreased stepwise over time, or the rate of temperature increase and charging of the power storage device 150 based on the experimental value of the secondary battery constituting the power storage device 150. A characteristic map indicating the relationship between the magnitudes of the currents is derived in advance, and the charging current I (t) is decreased with time so as to suppress the temperature increase of the power storage device 150 based on the characteristic map. You may comprise.

さらに、上述した構成に代えて、ステップS8における充電量算出処理で算出する必要充電量SOCn(t)に、蓄電装置150から給電されて駆動する補機で消費される放電量を含めるように構成しても構わない。即ち、必要充電量SOCn(t)は、〔数3〕に基づいて算出される。

Figure 2010233360
Further, instead of the above-described configuration, the required charge amount SOCn (t) calculated in the charge amount calculation process in step S8 includes the discharge amount consumed by the auxiliary device that is powered by the power storage device 150 and driven. It doesn't matter. That is, the required charge amount SOCn (t) is calculated based on [Equation 3].
Figure 2010233360

ここで、SOCβ(t)は、補機で消費される放電量を示す。尚、当該放電量SOCβ(t)を算出するために、補機で消費される放電量を算出するための電圧センサや電流センサ等のセンサを設定する必要があることは言うまでもない。   Here, SOCβ (t) indicates the amount of discharge consumed by the auxiliary machine. Needless to say, in order to calculate the discharge amount SOCβ (t), it is necessary to set a sensor such as a voltage sensor or a current sensor for calculating the discharge amount consumed by the auxiliary machine.

この場合、PIHV−ECU10は、実行時刻tに補機で消費される放電量を把握して、必要充電量SOCn(t)を適切に算出することができるようになる。したがって、例えば、充電中に車内で音楽やラジオを聴く場合等、補機で消費される放電量が大きくなった場合であっても、PIHV−ECU10は、必要充電量SOCn(t)を適切に算出し、必要充電量SOCn(t)が最大充電量SOCm(t)よりも大きくなることを即座に検知して、強制冷却充電処理を開始できるようになる。   In this case, the PIHV-ECU 10 can grasp the amount of discharge consumed by the auxiliary machine at the execution time t and appropriately calculate the required charge amount SOCn (t). Therefore, for example, even when the amount of discharge consumed by the auxiliary device becomes large, such as when listening to music or radio in the car during charging, the PIHV-ECU 10 appropriately sets the required charge amount SOCn (t). The forced cooling charging process can be started by immediately detecting that the required charge amount SOCn (t) is greater than the maximum charge amount SOCm (t).

また、上述した構成に代えて、充電完了時刻taが、発車時刻から蓄電装置150が所定温度に放熱されるまでの時間だけ遡った時刻に設定されるように構成しても構わない。   Further, instead of the above-described configuration, the charging completion time ta may be set to a time that goes back from the departure time by the time until the power storage device 150 is radiated to a predetermined temperature.

即ち、ステップS8における充電量算出処理で算出する最大充電量SOCm(t)は、〔数2〕に基づいて算出されていたが、これに代えて、〔数4〕に示す式に基づいて算出される。

Figure 2010233360
That is, the maximum charge amount SOCm (t) calculated in the charge amount calculation process in step S8 was calculated based on [Equation 2], but instead is calculated based on the equation shown in [Equation 4]. Is done.
Figure 2010233360

ここで、tc(Tt)は、充電終了後、蓄電装置150を所定温度に放熱するための放置期間を示し、蓄電装置150を構成する二次電池の実験値に基づいて、充電時の外気温または蓄電装置150の電池温度の温度Ttから車両走行時に放電効率が最も高くなる適正な温度に至るまで、自然放熱するのに必要な期間として予め導出することができる。   Here, tc (Tt) indicates a leaving period for dissipating the power storage device 150 to a predetermined temperature after the end of charging, and the outside air temperature during charging is based on the experimental value of the secondary battery constituting the power storage device 150. Or it can derive | lead-out previously as a period required in order to carry out natural heat dissipation from temperature Tt of the battery temperature of the electrical storage apparatus 150 to the appropriate temperature from which discharge efficiency becomes the highest at the time of vehicle travel.

この場合、充電完了直後の蓄電装置150は、既に車両走行開始時には適切な温度にまで冷却されているため、車両走行間際に充電完了時刻taを設定していた場合であっても、車両走行直前に冷却装置280で蓄電装置150を強制冷却するのにかかる消費電力を削減できるようになる。   In this case, since the power storage device 150 immediately after the completion of charging is already cooled to an appropriate temperature when the vehicle starts to travel, even if the charging completion time ta is set just before the vehicle travels, In addition, power consumption required for forcibly cooling the power storage device 150 by the cooling device 280 can be reduced.

また、上述した構成では、充電処理により発熱する発熱部を高圧の蓄電装置150として構成していたが、これに加えて、充電処理により発熱する、充電装置200に備えられたコンバータ回路21や、充電装置200から出力される充電電力を蓄電装置150に給電するための給電線を発熱部として構成しても構わない。   Further, in the configuration described above, the heat generating portion that generates heat by the charging process is configured as the high-voltage power storage device 150, but in addition to this, the converter circuit 21 provided in the charging device 200 that generates heat by the charging process, A power supply line for supplying charging power output from the charging device 200 to the power storage device 150 may be configured as a heat generating unit.

この場合、冷却装置280は、各装置に設けても構わないし、例えば、ファンスイッチFANSWを共有し、ファンスイッチFANSWのオンオフに基づいて駆動する冷却ファンFANを増設して送風可能な領域を拡大するように構成しても構わない。   In this case, the cooling device 280 may be provided in each device. For example, the fan switch FANSW is shared, and the cooling fan FAN that is driven based on the on / off of the fan switch FANSW is added to expand the air blowing area. You may comprise as follows.

また、上述の構成では、ナビゲーション装置250に備えられたタッチパネル51の設定操作により、充電完了時刻ta等の制御情報が設定されていたが、これに代えて、例えば、CCID360に充電完了時刻の表示及び設定操作が可能なタッチパネル等の操作表示部を設け、さらに、当該操作表示部で設定された情報を通信するための通信線を充電ケーブル300に設け、充電ケーブル300が車両に接続されたときに、PIHV−ECU10は、当該操作表示部で設定した充電完了時刻ta等の制御情報を当該通信線を介して受信できるように構成しても構わない。   In the above configuration, the control information such as the charging completion time ta is set by the setting operation of the touch panel 51 provided in the navigation device 250. Instead, for example, the charging completion time is displayed on the CCID 360. When an operation display unit such as a touch panel capable of setting operation is provided, a communication line for communicating information set in the operation display unit is provided in the charging cable 300, and the charging cable 300 is connected to the vehicle. In addition, the PIHV-ECU 10 may be configured to receive control information such as the charging completion time ta set in the operation display unit via the communication line.

また、上述の構成では、蓄電装置150を構成する二次電池をニッケル・水素電池として構成していたが、リチウムイオン電池等の他の二次電池であっても構わない。   In the above configuration, the secondary battery constituting the power storage device 150 is configured as a nickel-hydrogen battery, but may be another secondary battery such as a lithium ion battery.

例えば、リチウムイオン電池では、一般的に、所定の電圧値までは定電流充電を行い、充電量が増加して所定電圧に達した場合に定電圧充電にして電流量を絞るという定電圧定電流充電方式が採用されている。しかし、定電流充電時に本発明による制御方法を適用して、定電流充電時における電池温度の上昇による充電効率の低下を回避し、電池を強制冷却するための補機の消費電力を削減して、効率よく充電することができる。   For example, in a lithium ion battery, in general, constant current charging is performed up to a predetermined voltage value, and when the amount of charge increases to reach a predetermined voltage, constant current charging is performed by reducing the amount of current by constant voltage charging. The charging method is adopted. However, by applying the control method according to the present invention at the time of constant current charging, avoiding a decrease in charging efficiency due to an increase in battery temperature at the time of constant current charging, reducing the power consumption of auxiliary equipment for forcibly cooling the battery. Can be charged efficiently.

上述した実施形態は、何れも本発明の一例であり、該記載により本発明が限定されるものではなく、各部の具体的構成は本発明の作用効果が奏される範囲で適宜変更設計可能であることはいうまでもない。   Each of the above-described embodiments is an example of the present invention, and the present invention is not limited by the description. The specific configuration of each part can be appropriately changed and designed within the range where the effects of the present invention are exhibited. Needless to say.

1:プラグインハイブリッド車
10:プラグインハイブリッドビークルECU(PIHV―ECU,制御部)
12:ROM(記憶部)
13:RAM(記憶部)
20:充電ECU(CHG−ECU)
21:コンバータ回路
50:ナビゲーションECU(NAVI−ECU)
51:タッチパネル
150:高圧の蓄電装置
200:充電装置
240:低圧の蓄電装置
250:ナビゲーション装置
270:充電インレット
280:冷却装置
300:充電ケーブル
330:コネクタ
360:CCID(Charging Circuit Interrupt Device)
CPLT:コントロールパイロット信号
FAN:冷却ファン
PWM:パルス幅変調信号
ta:充電完了時刻
Ta:許容温度
Imax:最大充電電流
I(t):実行時刻tにおける充電電流
α(Tt):外気温または蓄電装置の電池温度が温度Ttの場合の温度依存係数
SOC:充電状態(State of Charge)
SOCg:目標充電状態
SOCn(t):実行時刻tにおける必要充電量
SOCm(t):実行時刻tにおける最大充電量
SOCβ(t):実行時刻tにおける補機で消費される放電量
Tbc:電池温度センサ
Tec:外気温センサ
Ic:充電電流センサ
Vc:電圧センサ
1: Plug-in hybrid vehicle 10: Plug-in hybrid vehicle ECU (PIHV-ECU, control unit)
12: ROM (storage unit)
13: RAM (storage unit)
20: Charging ECU (CHG-ECU)
21: Converter circuit 50: Navigation ECU (NAVI-ECU)
51: Touch panel 150: High-voltage power storage device 200: Charging device 240: Low-voltage power storage device 250: Navigation device 270: Charging inlet 280: Cooling device 300: Charging cable 330: Connector 360: CCID (Charging Circuit Interrupt Device)
CPLT: Control pilot signal FAN: Cooling fan PWM: Pulse width modulation signal ta: Charging completion time Ta: Allowable temperature Imax: Maximum charging current I (t): Charging current α (Tt) at execution time t: outside temperature or power storage device Temperature dependence coefficient SOC when the battery temperature of the battery is the temperature Tt: State of Charge
SOCg: target charge state SOCn (t): required charge amount at execution time t SOCm (t): maximum charge amount at execution time t SOCβ (t): discharge amount consumed by auxiliary equipment at execution time t: battery temperature Sensor Tec: Outside air temperature sensor Ic: Charging current sensor Vc: Voltage sensor

Claims (5)

車両外部電源と車両を繋ぐケーブルを介して、車両外部電源からの電力を蓄電装置へ充電する制御装置であって、
充電完了時刻または発車時刻が入力される装置から受信した充電完了時刻または発車時刻に関する情報を記憶する記憶部と、
充電量検知部からの情報により判定した蓄電装置の充電量と目標充電量に基づいて必要充電量を算出し、温度検知部からの情報により判定した蓄電装置に関する温度に基づいて補正した単位時間当たりに充電可能な充電量と充電開始時刻から記憶部に記憶された充電完了時刻または発車時刻までの充電時間とに基づいて算出した最大充電量を算出する充電量算出処理と、
充電量算出処理を所定のタイミングで実行し、最大充電量よりも必要充電量が少ない場合は、冷却装置を駆動することなく充電を間歇的に行なう間歇充電処理と、
充電量算出処理を所定のタイミングで実行し、最大充電量よりも必要充電量が多い場合は、充電を実施するとともに、所定の条件を満たす場合に蓄電装置を冷却装置により冷却する冷却・充電制御処理と、を実行する制御部と、
を備えている制御装置。
A control device that charges power from a vehicle external power source to a power storage device via a cable connecting the vehicle external power source and the vehicle,
A storage unit for storing information on the charging completion time or departure time received from the device to which the charging completion time or departure time is input;
Per unit time calculated based on the temperature related to the power storage device determined based on the information from the temperature detection unit, the required charge amount calculated based on the charge amount of the power storage device determined based on the information from the charge amount detection unit and the target charge amount A charge amount calculation process for calculating a maximum charge amount calculated based on a charge amount that can be charged and a charge time from a charge start time to a charge completion time or departure time stored in the storage unit;
When the charge amount calculation process is executed at a predetermined timing and the required charge amount is less than the maximum charge amount, the intermittent charge process for intermittently charging without driving the cooling device; and
Cooling / charging control that executes the charge amount calculation process at a predetermined timing and performs charging when the required charge amount is larger than the maximum charge amount, and cools the power storage device with the cooling device when the predetermined condition is satisfied A control unit that executes processing;
A control device comprising:
制御部は、間歇充電処理時に最大充電電流で蓄電装置を充電する請求項1記載の制御装置。   The control device according to claim 1, wherein the control unit charges the power storage device with a maximum charging current during the intermittent charging process. 制御部は、冷却・充電制御処理時に蓄電装置の温度上昇とともに充電電流を最大充電電流から低下させる請求項1記載の制御装置。   The control device according to claim 1, wherein the control unit decreases the charging current from the maximum charging current as the temperature of the power storage device increases during the cooling / charging control process. 制御部により、充電量算出処理時に算出される必要充電量に、補機で消費される放電量が含まれている請求項1から3の何れかに記載の制御装置。   The control device according to claim 1, wherein the required charge amount calculated during the charge amount calculation process by the control unit includes a discharge amount consumed by the auxiliary machine. 車両外部電源と車両を繋ぐケーブルを介して、車両外部電源からの電力を蓄電装置へ充電する制御方法であって、
充電完了時刻または発車時刻が入力される装置から受信した充電完了時刻または発車時刻に関する情報を記憶部に記憶する処理と、
充電量検知部からの情報により判定した蓄電装置の充電量と目標充電量に基づいて必要充電量を算出し、温度検知部からの情報により判定した蓄電装置に関する温度に基づいて補正した単位時間当たりに充電可能な充電量と充電開始時刻から記憶部に記憶された充電完了時刻または発車時刻までの充電時間とに基づいて算出した最大充電量を算出する充電量算出処理と、
充電量算出処理を所定のタイミングで実行し、最大充電量よりも必要充電量が少ない場合は、冷却装置を駆動することなく充電を間歇的に行なう間歇充電処理と、
充電量算出処理を所定のタイミングで実行し、最大充電量よりも必要充電量が多い場合は、充電を実施するとともに、所定の条件を満たす場合に蓄電装置を冷却装置により冷却する冷却・充電制御処理と、
を実行する制御方法。
A control method for charging power from a vehicle external power source to a power storage device via a cable connecting the vehicle external power source and the vehicle,
A process for storing information on the charging completion time or departure time received from the device to which the charging completion time or departure time is input in the storage unit;
Per unit time calculated based on the temperature related to the power storage device determined based on the information from the temperature detection unit, the required charge amount calculated based on the charge amount of the power storage device determined based on the information from the charge amount detection unit and the target charge amount A charge amount calculation process for calculating a maximum charge amount calculated based on a charge amount that can be charged and a charge time from a charge start time to a charge completion time or departure time stored in the storage unit;
When the charge amount calculation process is executed at a predetermined timing and the required charge amount is less than the maximum charge amount, the intermittent charge process for intermittently charging without driving the cooling device; and
Cooling / charging control that executes the charge amount calculation process at a predetermined timing and performs charging when the required charge amount is larger than the maximum charge amount, and cools the power storage device with the cooling device when the predetermined condition is satisfied Processing,
Control method to execute.
JP2009078495A 2009-03-27 2009-03-27 Control apparatus and control method Active JP5213180B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009078495A JP5213180B2 (en) 2009-03-27 2009-03-27 Control apparatus and control method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009078495A JP5213180B2 (en) 2009-03-27 2009-03-27 Control apparatus and control method

Publications (2)

Publication Number Publication Date
JP2010233360A true JP2010233360A (en) 2010-10-14
JP5213180B2 JP5213180B2 (en) 2013-06-19

Family

ID=43048658

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009078495A Active JP5213180B2 (en) 2009-03-27 2009-03-27 Control apparatus and control method

Country Status (1)

Country Link
JP (1) JP5213180B2 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010246320A (en) * 2009-04-09 2010-10-28 Fujitsu Ten Ltd Controller and control method
WO2012059551A1 (en) * 2010-11-05 2012-05-10 Renault S.A.S. Method for charging a battery for supplying power to a drive motor of a motor vehicle
JP2012095487A (en) * 2010-10-28 2012-05-17 Nichicon Corp On-vehicle charging unit and charging system including on-vehicle charging unit
JP2013143817A (en) * 2012-01-10 2013-07-22 Toyota Motor Corp Vehicle-mounted charging apparatus and charging system for vehicle
KR101420340B1 (en) * 2012-03-23 2014-07-16 삼성에스디아이 주식회사 Vehicle operating system and method for controlling the same
KR101567239B1 (en) 2014-10-02 2015-11-13 현대자동차주식회사 Vehicle charger and method for detecting control pilot of electric vehicle supply equipment thereof
KR20160007800A (en) * 2014-06-30 2016-01-21 주식회사 경신 Electric vehicle state judgement apparatus for in-cable-control box
WO2016190252A1 (en) * 2015-05-27 2016-12-01 株式会社Ihi Cooling system and contactless power supply system
WO2018061814A1 (en) * 2016-09-29 2018-04-05 パナソニックIpマネジメント株式会社 Power supply device
KR20200038848A (en) * 2018-10-04 2020-04-14 도요타 지도샤(주) Charging apparatus
WO2021065959A1 (en) * 2019-10-02 2021-04-08 株式会社デンソー Charging control device
WO2022056012A1 (en) * 2020-09-08 2022-03-17 Southwest Research Institute Fast charging for lithium-ion batteries using pulse width modulated charging and cooling

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2023182387A (en) * 2022-06-14 2023-12-26 トヨタ自動車株式会社 Charge control apparatus

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07304338A (en) * 1994-05-12 1995-11-21 Mitsubishi Motors Corp Cooling device of battery for electric vehicle
JP2000197212A (en) * 1998-12-28 2000-07-14 Yamaha Motor Co Ltd Power supply system for motor-driven car
JP2001145213A (en) * 1999-11-11 2001-05-25 Honda Motor Co Ltd Battery charging method
JP2007143370A (en) * 2005-11-22 2007-06-07 Toyota Motor Corp Charging unit, electric vehicle, and charging system
JP2008211955A (en) * 2007-02-28 2008-09-11 Toyota Motor Corp Charge controller of electricity storage mechanism for traveling
JP2009022061A (en) * 2007-07-10 2009-01-29 Toyota Motor Corp Power system and vehicle equipped with the same
JP2010104108A (en) * 2008-10-22 2010-05-06 Mazda Motor Corp Method and device for controlling hybrid vehicle
JP2010124652A (en) * 2008-11-21 2010-06-03 Honda Motor Co Ltd Charge controller

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07304338A (en) * 1994-05-12 1995-11-21 Mitsubishi Motors Corp Cooling device of battery for electric vehicle
JP2000197212A (en) * 1998-12-28 2000-07-14 Yamaha Motor Co Ltd Power supply system for motor-driven car
JP2001145213A (en) * 1999-11-11 2001-05-25 Honda Motor Co Ltd Battery charging method
JP2007143370A (en) * 2005-11-22 2007-06-07 Toyota Motor Corp Charging unit, electric vehicle, and charging system
JP2008211955A (en) * 2007-02-28 2008-09-11 Toyota Motor Corp Charge controller of electricity storage mechanism for traveling
JP2009022061A (en) * 2007-07-10 2009-01-29 Toyota Motor Corp Power system and vehicle equipped with the same
JP2010104108A (en) * 2008-10-22 2010-05-06 Mazda Motor Corp Method and device for controlling hybrid vehicle
JP2010124652A (en) * 2008-11-21 2010-06-03 Honda Motor Co Ltd Charge controller

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010246320A (en) * 2009-04-09 2010-10-28 Fujitsu Ten Ltd Controller and control method
JP2012095487A (en) * 2010-10-28 2012-05-17 Nichicon Corp On-vehicle charging unit and charging system including on-vehicle charging unit
WO2012059551A1 (en) * 2010-11-05 2012-05-10 Renault S.A.S. Method for charging a battery for supplying power to a drive motor of a motor vehicle
FR2967303A1 (en) * 2010-11-05 2012-05-11 Renault Sa CHARGING METHOD FOR A POWER BATTERY OF A DRIVE MOTOR OF A MOTOR VEHICLE
US9174544B2 (en) 2010-11-05 2015-11-03 Renault S.A.S. Method for charging a battery for supplying power to a drive motor of a motor vehicle
JP2013143817A (en) * 2012-01-10 2013-07-22 Toyota Motor Corp Vehicle-mounted charging apparatus and charging system for vehicle
KR101420340B1 (en) * 2012-03-23 2014-07-16 삼성에스디아이 주식회사 Vehicle operating system and method for controlling the same
US9150106B2 (en) 2012-03-23 2015-10-06 Samsung Sdi Co., Ltd. Vehicle operating system and method of controlling the same
KR20160007800A (en) * 2014-06-30 2016-01-21 주식회사 경신 Electric vehicle state judgement apparatus for in-cable-control box
KR101658230B1 (en) 2014-06-30 2016-09-21 주식회사 경신 Electric vehicle state judgement apparatus for in-cable-control box
KR101567239B1 (en) 2014-10-02 2015-11-13 현대자동차주식회사 Vehicle charger and method for detecting control pilot of electric vehicle supply equipment thereof
US10232726B2 (en) 2014-10-02 2019-03-19 Hyundai Motor Company Vehicle charger and control pilot signal detection method thereof
JP2016226087A (en) * 2015-05-27 2016-12-28 株式会社Ihi Cooling system and non-contact power supply system
CN107431366A (en) * 2015-05-27 2017-12-01 株式会社Ihi Cooling system and contactless power supply system
WO2016190252A1 (en) * 2015-05-27 2016-12-01 株式会社Ihi Cooling system and contactless power supply system
US10315529B2 (en) 2015-05-27 2019-06-11 Ihi Corporation Cooling system and wireless power transfer system
CN107431366B (en) * 2015-05-27 2020-06-16 株式会社Ihi Cooling system and non-contact power supply system
WO2018061814A1 (en) * 2016-09-29 2018-04-05 パナソニックIpマネジメント株式会社 Power supply device
KR20200038848A (en) * 2018-10-04 2020-04-14 도요타 지도샤(주) Charging apparatus
KR102258217B1 (en) * 2018-10-04 2021-05-28 도요타 지도샤(주) Charging apparatus
US11180045B2 (en) 2018-10-04 2021-11-23 Toyota Jidosha Kabushiki Kaisha Charging apparatus
WO2021065959A1 (en) * 2019-10-02 2021-04-08 株式会社デンソー Charging control device
JP2021061643A (en) * 2019-10-02 2021-04-15 株式会社デンソー Charge control device
JP7234892B2 (en) 2019-10-02 2023-03-08 株式会社デンソー charging controller
WO2022056012A1 (en) * 2020-09-08 2022-03-17 Southwest Research Institute Fast charging for lithium-ion batteries using pulse width modulated charging and cooling

Also Published As

Publication number Publication date
JP5213180B2 (en) 2013-06-19

Similar Documents

Publication Publication Date Title
JP5213180B2 (en) Control apparatus and control method
JP4957827B2 (en) Power supply system and vehicle equipped with the same
US8395355B2 (en) Power supply system and vehicle with the system
JP5480670B2 (en) Charge control device and vehicle equipped with charge control device
US8035247B2 (en) Power supply device for vehicle
JP5168308B2 (en) Power supply system and vehicle equipped with the same
JP5660102B2 (en) Vehicle power supply
JP5585564B2 (en) VEHICLE CONTROL DEVICE, CONTROL METHOD, AND VEHICLE
JP2010246320A (en) Controller and control method
JP5144819B2 (en) Vehicle and vehicle control method
US20120161698A1 (en) Method and system for charging a vehicle high voltage battery
JP2013165635A (en) Electric vehicle
US9701186B2 (en) Vehicle
JP5515897B2 (en) Vehicle control device and vehicle equipped with the same
JP2010283944A (en) Controller and control method of plug-in vehicle
US10604025B2 (en) Battery charging systems and methods
JP2012244875A (en) Vehicular power supply system and vehicle with the same
JP2009254212A (en) Electric vehicle
CN104584373A (en) Vehicle power control system and power control method
US20160257296A1 (en) Controller for hybrid vehicle
JP2014090639A (en) Vehicular charge control system
JP2013236490A (en) Dc charging method of electric car
JP2015047972A (en) Vehicle
JP2012157189A (en) Vehicle and method for controlling the same
JP2013226007A (en) Vehicle and control method of the same

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20110214

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20110215

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110927

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130201

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130212

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130222

R150 Certificate of patent or registration of utility model

Ref document number: 5213180

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160308

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250