JP2010232173A - Nonaqueous electrolytic solution and nonaqueous electrolytic solution battery - Google Patents

Nonaqueous electrolytic solution and nonaqueous electrolytic solution battery Download PDF

Info

Publication number
JP2010232173A
JP2010232173A JP2010049587A JP2010049587A JP2010232173A JP 2010232173 A JP2010232173 A JP 2010232173A JP 2010049587 A JP2010049587 A JP 2010049587A JP 2010049587 A JP2010049587 A JP 2010049587A JP 2010232173 A JP2010232173 A JP 2010232173A
Authority
JP
Japan
Prior art keywords
carbonate
aqueous electrolyte
group
mass
battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010049587A
Other languages
Japanese (ja)
Other versions
JP5348024B2 (en
Inventor
Minoru Kotado
稔 古田土
Noriko Shima
紀子 島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Original Assignee
Mitsubishi Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp filed Critical Mitsubishi Chemical Corp
Priority to JP2010049587A priority Critical patent/JP5348024B2/en
Publication of JP2010232173A publication Critical patent/JP2010232173A/en
Application granted granted Critical
Publication of JP5348024B2 publication Critical patent/JP5348024B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a nonaqueous electrolytic solution capable of providing a battery high in capacity and superior in storage characteristics, and to provide a nonaqueous electrolytic solution battery. <P>SOLUTION: One or more compounds expressed by general formula (1) are contained in a nonaqueous electrolytic solution. Here, in the general formula (1), R<SB>1</SB>to R<SB>4</SB>are each independently a 1-12C alkyl group, a 2-12C alkenyl group, a 6-12C allyl group, or a 7-12C aralkyl group, which may be substituted by fluorine atom. X is a 1-12C bivalent coupling group which may be substituted by the fluorine atom. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、非水系電解液、及びそれを用いた非水系電解液電池に関する。   The present invention relates to a non-aqueous electrolyte and a non-aqueous electrolyte battery using the same.

携帯電話、ノートパソコンなどのいわゆる民生用の電源から自動車用などの駆動用車載電源まで広範な用途に、リチウム二次電池などの非水系電解液電池が実用化されつつある。しかしながら、近年の非水系電解液電池に対する高性能化の要求はますます高くなっており、電池特性の改善が要望されている。
非水系電解液電池に用いる電解液は、通常、主として電解質と非水溶媒とから構成されている。非水溶媒の主成分としては、エチレンカーボネートやプロピレンカーボネート等の環状カーボネート;ジメチルカーボネートやジエチルカーボネート、エチルメチルカーボネート等の鎖状カーボネート;γ−ブチロラクトン、γ−バレロラクトン等の環状カルボン酸エステル等が用いられている。
Non-aqueous electrolyte batteries such as lithium secondary batteries are being put to practical use in a wide range of applications from so-called consumer power sources such as mobile phones and laptop computers to in-vehicle power sources for automobiles and the like. However, the demand for higher performance of non-aqueous electrolyte batteries in recent years is increasing, and there is a demand for improvement in battery characteristics.
The electrolyte used for a non-aqueous electrolyte battery is usually composed mainly of an electrolyte and a non-aqueous solvent. The main components of the nonaqueous solvent include cyclic carbonates such as ethylene carbonate and propylene carbonate; chain carbonates such as dimethyl carbonate, diethyl carbonate, and ethyl methyl carbonate; cyclic carboxylic acid esters such as γ-butyrolactone and γ-valerolactone. It is used.

また、こうした非水系電解液電池の負荷特性、サイクル特性、保存特性等の電池特性を改良するために、非水溶媒や電解質について種々の検討がなされている。
例えば、サイクル特性を向上させるために、非水電解液にアミンおよびジアミン化合物を添加することが提案されている。
In order to improve battery characteristics such as load characteristics, cycle characteristics, and storage characteristics of such non-aqueous electrolyte batteries, various studies have been made on non-aqueous solvents and electrolytes.
For example, in order to improve cycle characteristics, it has been proposed to add an amine and a diamine compound to the nonaqueous electrolytic solution.

特開平8−236155号公報JP-A-8-236155

しかしながら、近年の電池に対する高性能化への要求は、ますます高くなっており、高容量、高温保存特性、サイクル特性を高い次元で達成することが求められている。
高容量化する方法として、限られた電池体積の中にできるだけ多くの活物質を詰めることが検討されており、電極の活物質層を加圧して高密度化したり、電池内部の活物質以外の占める体積を極力少なくする設計が一般的となっている。しかし、電極の活物質層を加圧して高密度化したり、電解液量を少なくすることにより、活物質を均一に使用することができなくなり、不均一な反応により一部リチウムが析出したり、活物質の劣化が促進されたりして、十分な特性が得られないという問題が発生しやすくなる。特に、高温で保存した場合には、電池の劣化が大きくなり、高温で保存しても特性劣化の少ない非水系電解液電池が求められている。
However, the demand for higher performance of batteries in recent years is increasing, and it is required to achieve high capacity, high temperature storage characteristics, and cycle characteristics at a high level.
As a method for increasing the capacity, it has been studied to pack as many active materials as possible in a limited battery volume. The active material layer of the electrode can be pressurized to increase the density, or other than the active material inside the battery. Designs that occupy as little volume as possible are common. However, pressurizing the active material layer of the electrode to increase the density or reducing the amount of the electrolyte makes it impossible to use the active material uniformly, and some lithium is precipitated due to a non-uniform reaction, Deterioration of the active material is promoted, and a problem that sufficient characteristics cannot be obtained easily occurs. In particular, when the battery is stored at a high temperature, the deterioration of the battery becomes large, and a non-aqueous electrolyte battery with little characteristic deterioration even when stored at a high temperature is demanded.

特許文献1に記載されている電解液を用いた非水系電解液二次電池では、高温保存特性の面で、未だ満足しうるものではなかった。   The non-aqueous electrolyte secondary battery using the electrolyte described in Patent Document 1 has not yet been satisfactory in terms of high-temperature storage characteristics.

本発明者らは、上記目的を達成するために種々の検討を重ねた結果、特定の化合物を含有する電解液を用いることによって、上記課題を解決できることを見出し、本発明を完成させるに至った。
すなわち、本発明の要旨は、下記に示すとおりである。
(1)電解質及びこれを溶解する非水溶媒を含む非水系電解液において、該非水系電解液が、下記一般式(1)で表される化合物を1種あるいは2種以上含有していることを特徴とする非水系電解液。
As a result of various studies to achieve the above object, the present inventors have found that the above problems can be solved by using an electrolytic solution containing a specific compound, and have completed the present invention. .
That is, the gist of the present invention is as follows.
(1) In a non-aqueous electrolyte solution containing an electrolyte and a non-aqueous solvent that dissolves the electrolyte, the non-aqueous electrolyte solution contains one or more compounds represented by the following general formula (1). A non-aqueous electrolyte solution.

Figure 2010232173
Figure 2010232173

(一般式(1)中、R〜Rはそれぞれ独立して、フッ素原子で置換されていてもよい、炭素数1〜12のアルキル基、炭素数2〜12のアルケニル基、炭素数6〜12のアリール基、又は炭素数7〜12のアラルキル基を示し、Xはフッ素原子で置換されていてもよい炭素数1〜12の2価の連結基を表す。)
(2)炭素−炭素不飽和結合を有する環状カーボネート化合物、フッ素原子を有する環状カーボネート化合物、モノフルオロリン酸塩およびジフルオロリン酸塩からなる群から選ばれる少なくとも一種の化合物を含有していることを特徴とする上記(1)に記載の非水系電解液。
(3)炭素−炭素不飽和結合を有する環状カーボネート化合物が、非水系電解液中に0.01質量%以上8質量%以下の割合で含まれていることを特徴とする上記(1)または(2)に記載の非水系電解液。
(4)リチウムイオンを吸蔵・放出可能な負極及び正極、並びに非水系電解液を含む非水系電解液電池であって、該非水系電解液が上記(1)ないし(3)のいずれか1項に記載の非水系電解液であることを特徴とする非水系電解液電池。
(In General Formula (1), R 1 to R 4 are each independently an alkyl group having 1 to 12 carbon atoms, an alkenyl group having 2 to 12 carbon atoms, and 6 carbon atoms that may be substituted with a fluorine atom. A -12 aryl group or a C7-12 aralkyl group, X represents a C1-C12 divalent linking group optionally substituted with a fluorine atom.)
(2) It contains at least one compound selected from the group consisting of a cyclic carbonate compound having a carbon-carbon unsaturated bond, a cyclic carbonate compound having a fluorine atom, a monofluorophosphate and a difluorophosphate. The nonaqueous electrolytic solution according to (1) above, which is characterized.
(3) The above (1) or (1), wherein the cyclic carbonate compound having a carbon-carbon unsaturated bond is contained in the nonaqueous electrolytic solution at a ratio of 0.01% by mass to 8% by mass. Non-aqueous electrolyte solution as described in 2).
(4) A non-aqueous electrolyte battery including a negative electrode and a positive electrode capable of inserting and extracting lithium ions, and a non-aqueous electrolyte solution, wherein the non-aqueous electrolyte solution is any one of the above (1) to (3) A non-aqueous electrolyte battery characterized by being the non-aqueous electrolyte solution described.

本発明によれば、高容量で、保存特性に優れた非水系電解液電池を提供することができ、非水系電解液電池の小型化、高性能化を達成することができる。   According to the present invention, a non-aqueous electrolyte battery having a high capacity and excellent storage characteristics can be provided, and the non-aqueous electrolyte battery can be reduced in size and performance.

以下、本発明の実施の形態について詳細に説明するが、以下に記載する構成要件の説明は、本発明の実施態様の一例(代表例)であり、これらの内容に特定はされない。
<非水系電解液>
本発明の非水系電解液は、常用の非水系電解液と同じく、電解質及びこれを溶解する非水溶媒を含有するものであり、通常、これらを主成分とするものである。
DESCRIPTION OF EMBODIMENTS Hereinafter, embodiments of the present invention will be described in detail. However, the description of constituent elements described below is an example (representative example) of an embodiment of the present invention, and is not specified by these contents.
<Non-aqueous electrolyte>
The non-aqueous electrolyte solution of the present invention contains an electrolyte and a non-aqueous solvent that dissolves the electrolyte, as is the case with conventional non-aqueous electrolyte solutions.

(電解質)
電解質としては、通常、リチウム塩が用いられる。リチウム塩としては、この用途に用いることが知られているものであれば特に制限がなく、任意のものを用いることができ、具体的には以下のものが挙げられる。
例えば、LiPF6及びLiBF4、Li1212等の無機リチウム塩;LiCF3SO3、LiN(CF3SO22 、LiN(C25SO22、リチウム環状1,2−パ−フルオロエタンジスルホニルイミド、リチウム環状1,3−パーフルオロプロパンジスルホニルイミド、LiN(CF3SO2)(C49SO2)、LiC(CF3SO23、LiPF4(CF32、LiPF4(C252、LiPF4(CF3SO22、LiPF4(C25SO22、LiBF2(CF32、LiBF2(C252、LiBF2(CF3SO22、LiBF2(C25SO22等の含フッ素有機リチウム塩及びリチウムビス(オキサラト)ボレート、リチウムジフルオロ(オキサラト)ボレート等が挙げられる。
(Electrolytes)
As the electrolyte, a lithium salt is usually used. The lithium salt is not particularly limited as long as it is known to be used for this purpose, and any lithium salt can be used. Specific examples include the following.
For example, inorganic lithium salts such as LiPF 6 and LiBF 4 , Li 2 B 12 F 12 ; LiCF 3 SO 3 , LiN (CF 3 SO 2 ) 2 , LiN (C 2 F 5 SO 2 ) 2 , lithium cyclic 1,2 - Pa - tetrafluoroethane disulfonylimide, lithium cyclic 1,3-perfluoropropanedisulfonylimide, LiN (CF 3 SO 2) (C 4 F 9 SO 2), LiC (CF 3 SO 2) 3, LiPF 4 ( CF 3) 2, LiPF 4 ( C 2 F 5) 2, LiPF 4 (CF 3 SO 2) 2, LiPF 4 (C 2 F 5 SO 2) 2, LiBF 2 (CF 3) 2, LiBF 2 (C 2 F 5) 2, LiBF 2 ( CF 3 SO 2) 2, LiBF 2 (C 2 F 5 SO 2) fluorine-containing organic lithium salt and lithium bis 2, etc. (oxalato) borate, lithium difluoro (oxalato) borate and the like ani It is.

これらのうち、LiPF6、LiBF4、LiCF3SO3、LiN(CF3SO22又はLiN(C25SO22が電池性能向上の点から好ましく、特にLiPF6又はLiBF4が好ましい。
これらのリチウム塩は単独で用いても、2種以上を併用してもよい。
2種以上を併用する場合の好ましい一例は、LiPF6とLiBF4との併用であり、サイクル特性を向上させる効果がある。この場合には、両者の合計に占めるLiBF4の含有割合は、下限としては、好ましくは0.01質量%以上、より好ましくは0.05質量%以上、特に好ましくは0.1質量%以上であり、上限としては、好ましくは20質量%以下、より好ましくは10質量%以下、特に好ましくは5質量%以下、最も好ましくは3質量%以下である。この下限を下回る場合には所望する効果が得づらい場合があり、上限を上回る場合は高負荷放電特性等の電池の特性が低下する場合がある。
Among these, LiPF 6 , LiBF 4 , LiCF 3 SO 3 , LiN (CF 3 SO 2 ) 2 or LiN (C 2 F 5 SO 2 ) 2 are preferable from the viewpoint of improving battery performance, and LiPF 6 or LiBF 4 is particularly preferable. preferable.
These lithium salts may be used alone or in combination of two or more.
A preferred example in the case of using two or more types in combination is the combined use of LiPF 6 and LiBF 4 , which has an effect of improving cycle characteristics. In this case, the content ratio of LiBF 4 in the total of both is preferably 0.01% by mass or more, more preferably 0.05% by mass or more, and particularly preferably 0.1% by mass or more as a lower limit. The upper limit is preferably 20% by mass or less, more preferably 10% by mass or less, particularly preferably 5% by mass or less, and most preferably 3% by mass or less. If the lower limit is not reached, it may be difficult to obtain a desired effect. If the upper limit is exceeded, battery characteristics such as high load discharge characteristics may be deteriorated.

また、他の一例は、無機リチウム塩と含フッ素有機リチウム塩との併用であり、この場合には、両者の合計に占める無機リチウム塩の含有割合は、70質量%以上、99質量%以下であることが望ましい。無機リチウム塩はLiPF6が好ましい。含フッ素有機リチウム塩としては、LiN(CF3SO22 、LiN(C25SO22、リチウム環状1,2−パーフルオロエタンジスルホニルイミド、リチウム環状1,3−パーフルオロプロパンジスルホニルイミドのいずれかであるのが好ましい。この両者の併用は、高温保存による劣化を抑制する効果がある。 Another example is the combined use of an inorganic lithium salt and a fluorine-containing organic lithium salt. In this case, the content of the inorganic lithium salt in the total of both is 70% by mass or more and 99% by mass or less. It is desirable to be. The inorganic lithium salt is preferably LiPF 6 . Examples of the fluorine-containing organic lithium salt include LiN (CF 3 SO 2 ) 2 , LiN (C 2 F 5 SO 2 ) 2 , lithium cyclic 1,2-perfluoroethanedisulfonylimide, lithium cyclic 1,3-perfluoropropane. It is preferably any of disulfonylimide. The combined use of both has the effect of suppressing deterioration due to high temperature storage.

非水系電解液中のこれらの電解質の濃度は、本願発明の効果を発現するためには、特に制限はないが、通常0.5モル/リットル以上、好ましくは0.8モル/リットル以上、より好ましくは1.0モル/リットル以上であるが、1.1モル/リットル以上が更に好ましく、1.2モル/リットル以上が特に好ましい。また、その上限は、通常3モル/リットル以下、好ましくは2モル/リットル以下、より好ましくは1.8モル/リットル以下、更に好ましくは1.6モル/リットル以下である。濃度が低すぎると、電解液の電気伝導度が不十分の場合があり、一方、濃度が高すぎると、粘度上昇のため電気伝導度が低下する場合があり、電池性能が低下する場合がある。   The concentration of these electrolytes in the non-aqueous electrolyte solution is not particularly limited in order to exhibit the effects of the present invention, but is usually 0.5 mol / liter or more, preferably 0.8 mol / liter or more, more The amount is preferably 1.0 mol / liter or more, more preferably 1.1 mol / liter or more, and particularly preferably 1.2 mol / liter or more. The upper limit is usually 3 mol / liter or less, preferably 2 mol / liter or less, more preferably 1.8 mol / liter or less, and still more preferably 1.6 mol / liter or less. If the concentration is too low, the electrical conductivity of the electrolyte solution may be insufficient. On the other hand, if the concentration is too high, the electrical conductivity may decrease due to an increase in viscosity, and the battery performance may decrease. .

(非水溶媒)
非水溶媒も、従来から非水系電解液の溶媒として公知のものの中から適宜選択して用いることができる。例えば、炭素−炭素不飽和結合やフッ素原子を有さない環状カーボネート類、鎖状カーボネート類、環状エーテル類、鎖状エーテル類、環状カルボン酸エステル類、鎖状カルボン酸エステル類、含硫黄有機溶媒、含燐有機溶媒等が挙げられる。
(Non-aqueous solvent)
The non-aqueous solvent can also be appropriately selected from conventionally known solvents for non-aqueous electrolyte solutions. For example, cyclic carbonates having no carbon-carbon unsaturated bond or fluorine atom, chain carbonates, cyclic ethers, chain ethers, cyclic carboxylic acid esters, chain carboxylic acid esters, sulfur-containing organic solvents And phosphorus-containing organic solvents.

炭素−炭素不飽和結合やフッ素原子を有さない環状カーボネート類としては、エチレンカーボネート、プロピレンカーボネート、ブチレンカーボネート等の炭素数2〜4のアルキレン基を有するアルキレンカーボネート類が挙げられ、これらの中では、エチレンカーボネート、プロピレンカーボネートが電池特性向上の点から好ましく、特に、エチレンカーボネートが好ましい。   Examples of the cyclic carbonates having no carbon-carbon unsaturated bond or fluorine atom include alkylene carbonates having an alkylene group having 2 to 4 carbon atoms such as ethylene carbonate, propylene carbonate, butylene carbonate, among these. , Ethylene carbonate and propylene carbonate are preferable from the viewpoint of improving battery characteristics, and ethylene carbonate is particularly preferable.

鎖状カーボネート類としては、ジアルキルカーボネートが好ましく、構成するアルキル基の炭素数は、それぞれ、1〜5が好ましく、特に好ましくは1〜4である。また、アルキル基の水素の一部をフッ素で置換していてもよい。
具体的には例えば、ジメチルカーボネート、ジエチルカーボネート、ジ−n−プロピルカーボネート等の対称鎖状アルキルカーボネート類;エチルメチルカーボネート、メチル−n−プロピルカーボネート、エチル−n−プロピルカーボネート等の非対称鎖状アルキルカーボネート類等のジアルキルカーボネートが挙げられる。中でも、ジメチルカーボネート、ジエチルカーボネート、エチルメチルカーボネートが電池特性向上の点から好ましい。
As the chain carbonates, dialkyl carbonates are preferable, and the number of carbon atoms of the alkyl group constituting each is preferably 1 to 5, particularly preferably 1 to 4. Further, a part of hydrogen of the alkyl group may be substituted with fluorine.
Specifically, for example, symmetric chain alkyl carbonates such as dimethyl carbonate, diethyl carbonate, and di-n-propyl carbonate; asymmetric chain alkyls such as ethyl methyl carbonate, methyl-n-propyl carbonate, and ethyl-n-propyl carbonate Examples thereof include dialkyl carbonates such as carbonates. Among these, dimethyl carbonate, diethyl carbonate, and ethyl methyl carbonate are preferable from the viewpoint of improving battery characteristics.

環状エーテル類としては、テトラヒドロフラン、2−メチルテトラヒドロフラン等及びこれらの化合物の水素の一部をフッ素で置換した化合物等が挙げられる。
鎖状エーテル類としては、ジメトキシエタン、ジエトキシエタン等及びビス(トリフルオロエトキシ)エタン、エトキシトリフルオロエトキシエタン、メトキシトリフルオロエトキシエタン、1,1,1,2,2,3,4,5,5,5−デカフルオロ―3―メトキシ―4―トリフルオロメチル−ペンタン、1,1,1,2,2,3,4,5,5,5−デカフルオロ―3―エトキシ―4―トリフルオロメチル−ペンタン、1,1,1,2,2,3,4,5,5,5−デカフルオロ―3―プロポキシ―4―トリフルオロメチル−ペンタン、1,1,2,2−テトラフルオロエチル−2,2,3,3−テトラフルオロプロピルエーテル、2,2−ジフルオロエチル−2,2,3,3−テトラフルオロプロピルエーテル等のこれらの化合物の水素の一部をフッ素で置換した化合物が挙げられる。
Examples of the cyclic ethers include tetrahydrofuran, 2-methyltetrahydrofuran and the like, and compounds obtained by substituting a part of hydrogen of these compounds with fluorine.
Examples of chain ethers include dimethoxyethane, diethoxyethane, and the like, and bis (trifluoroethoxy) ethane, ethoxytrifluoroethoxyethane, methoxytrifluoroethoxyethane, 1,1,1,2,2,3,4,5. , 5,5-decafluoro-3-methoxy-4-trifluoromethyl-pentane, 1,1,1,2,2,3,4,5,5,5-decafluoro-3-ethoxy-4-tri Fluoromethyl-pentane, 1,1,1,2,2,3,4,5,5,5-decafluoro-3-propoxy-4-trifluoromethyl-pentane, 1,1,2,2-tetrafluoro Some hydrogen of these compounds such as ethyl-2,2,3,3-tetrafluoropropyl ether, 2,2-difluoroethyl-2,2,3,3-tetrafluoropropyl ether Compounds substituted with fluorine, and the like.

環状カルボン酸エステル類としては、γ−ブチロラクトン、γ−バレロラクトン等及びこれらの化合物の水素の一部をフッ素で置換した化合物が挙げられる。
鎖状カルボン酸エステル類としては、酢酸メチル、酢酸エチル、酢酸プロピル、酢酸イソプロピル、酢酸ブチル、酢酸sec−ブチル、酢酸イソブチル、酢酸t−ブチル、プロピオン酸メチル、プロピオン酸エチル、プロピオン酸プロピル、プロピオン酸イソプロピル、酪酸メチル、酪酸エチル、酪酸プロピル、吉草酸メチル、吉草酸エチル等及びトリフルオロ酢酸プロピル、トリフルオロ酢酸ブチル等のこれらの化合物の水素の一部をフッ素で置換した化合物等が挙げられ、酢酸プロピル、酢酸ブチル、プロピオン酸メチル、プロピオン酸エチル、プロピオン酸プロピル、酪酸メチル、酪酸エチル、吉草酸メチルがより好ましい。
Examples of the cyclic carboxylic acid esters include γ-butyrolactone, γ-valerolactone, and the like, and compounds obtained by substituting a part of hydrogen of these compounds with fluorine.
Examples of chain carboxylates include methyl acetate, ethyl acetate, propyl acetate, isopropyl acetate, butyl acetate, sec-butyl acetate, isobutyl acetate, t-butyl acetate, methyl propionate, ethyl propionate, propyl propionate, propion Examples include isopropyl acid, methyl butyrate, ethyl butyrate, propyl butyrate, methyl valerate, ethyl valerate, etc., and compounds in which part of hydrogen of these compounds such as propyl trifluoroacetate and butyl trifluoroacetate is substituted with fluorine. Propyl acetate, butyl acetate, methyl propionate, ethyl propionate, propyl propionate, methyl butyrate, ethyl butyrate and methyl valerate are more preferred.

含硫黄有機溶媒としては、スルホラン、2−メチルスルホラン、3−メチルスルホラン、ジエチルスルホン等及びこれらの化合物の水素の一部をフッ素で置換した化合物が挙げられる。
含燐有機溶媒としては、リン酸トリメチル、リン酸トリエチル、リン酸ジメチルエチル、リン酸メチルジエチル、リン酸エチレンメチル、リン酸エチレンエチル等及びこれらの化合物の水素の一部をフッ素で置換した化合物が挙げられる。
これらは単独で用いても、2種類以上を併用してもよいが、2種以上の化合物を併用するのが好ましい。例えば、アルキレンカーボネート類や環状カルボン酸エステル類等の高誘電率溶媒と、ジアルキルカーボネート類や鎖状カルボン酸エステル類等の低粘度溶媒とを併用するのが好ましい。
Examples of the sulfur-containing organic solvent include sulfolane, 2-methylsulfolane, 3-methylsulfolane, diethylsulfone and the like, and compounds obtained by substituting a part of hydrogen of these compounds with fluorine.
Examples of phosphorus-containing organic solvents include trimethyl phosphate, triethyl phosphate, dimethyl ethyl phosphate, methyl diethyl phosphate, ethylene methyl phosphate, ethylene ethyl phosphate, etc., and compounds in which part of hydrogen in these compounds is substituted with fluorine Is mentioned.
These may be used alone or in combination of two or more, but it is preferable to use in combination of two or more. For example, it is preferable to use a high dielectric constant solvent such as alkylene carbonates or cyclic carboxylic acid esters in combination with a low viscosity solvent such as dialkyl carbonates or chain carboxylic acid esters.

非水溶媒の好ましい組合せの一つは、エチレンカーボネートとジアルキルカーボネートを主体とする組合せである。なかでも、非水溶媒に占めるエチレンカーボネートとジアルキルカーボネートとの合計が、70容量%以上、好ましくは80容量%以上、より好ましくは90容量%以上であり、かつエチレンカーボネートとジアルキルカーボネートとの合計に対するエチレンカーボネートの割合が5容量%以上、好ましくは10容量%以上、より好ましくは15容量%以上であり、通常50容量%以下、好ましくは35容量%以下、より好ましくは30容量%以下、更に好ましくは25容量%以下のものである。これらの非水溶媒の組み合わせを用いると、これを用いて作製された電池のサイクル特性と高温保存特性(特に、高温保存後の残存容量及び高負荷放電容量)のバランスが良くなるので好ましい。   One preferable combination of the non-aqueous solvents is a combination mainly composed of ethylene carbonate and dialkyl carbonate. Among them, the total of ethylene carbonate and dialkyl carbonate in the nonaqueous solvent is 70% by volume or more, preferably 80% by volume or more, more preferably 90% by volume or more, and relative to the total of ethylene carbonate and dialkyl carbonate. The proportion of ethylene carbonate is 5% by volume or more, preferably 10% by volume or more, more preferably 15% by volume or more, usually 50% by volume or less, preferably 35% by volume or less, more preferably 30% by volume or less, and still more preferably Is 25% by volume or less. Use of a combination of these non-aqueous solvents is preferable because the balance between the cycle characteristics and high-temperature storage characteristics (particularly, the remaining capacity and high-load discharge capacity after high-temperature storage) of a battery produced using the non-aqueous solvent is improved.

エチレンカーボネートとジアルキルカーボネートの好ましい組み合わせの具体例としては、エチレンカーボネートとジメチルカーボネート、エチレンカーボネートとジエチルカーボネート、エチレンカーボネートとエチルメチルカーボネート、エチレンカーボネートとジメチルカーボネートとジエチルカーボネート、エチレンカーボネートとジメチルカーボネートとエチルメチルカーボネート、エチレンカーボネートとジエチルカーボネートとエチルメチルカーボネート、エチレンカーボネートとジメチルカーボネートとジエチルカーボネートとエチルメチルカーボネート等が挙げられる。   Specific examples of preferred combinations of ethylene carbonate and dialkyl carbonate include ethylene carbonate and dimethyl carbonate, ethylene carbonate and diethyl carbonate, ethylene carbonate and ethyl methyl carbonate, ethylene carbonate and dimethyl carbonate and diethyl carbonate, ethylene carbonate and dimethyl carbonate and ethyl methyl. Examples thereof include carbonate, ethylene carbonate, diethyl carbonate and ethyl methyl carbonate, ethylene carbonate, dimethyl carbonate, diethyl carbonate and ethyl methyl carbonate.

これらのエチレンカーボネートとジアルキルカーボネート類との組み合わせに、更にプロピレンカーボネートを加えた組み合わせも、好ましい組み合わせとして挙げられる。
プロピレンカーボネートを含有する場合には、エチレンカーボネートとプロピレンカーボネートの容量比は、99:1〜40:60が好ましく、特に好ましくは95:5〜50:50である。更に、非水溶媒全体に占めるプロピレンカーボネートの割合は、下限は、通常0.1容量%以上、好ましくは1容量%以上、より好ましくは2容量%以上、また上限は、通常20容量%以下、好ましくは8容量%以下、より好ましくは5容量%以下である。この濃度範囲でプロピレンカーボネートを含有すると、エチレンカーボネートとジアルキルカーボネートとの組み合わせの特性を維持したまま、更に低温特性が優れるので好ましい。
A combination in which propylene carbonate is further added to a combination of these ethylene carbonate and dialkyl carbonates is also mentioned as a preferable combination.
In the case of containing propylene carbonate, the volume ratio of ethylene carbonate to propylene carbonate is preferably 99: 1 to 40:60, particularly preferably 95: 5 to 50:50. Furthermore, the lower limit of the proportion of propylene carbonate in the entire non-aqueous solvent is usually 0.1% by volume or more, preferably 1% by volume or more, more preferably 2% by volume or more, and the upper limit is usually 20% by volume or less. Preferably it is 8 volume% or less, More preferably, it is 5 volume% or less. It is preferable to contain propylene carbonate in this concentration range because the low temperature characteristics are further excellent while maintaining the characteristics of the combination of ethylene carbonate and dialkyl carbonate.

エチレンカーボネートとジアルキルカーボネートとの組み合わせの中で、ジアルキルカーボネートとして非対称鎖状アルキルカーボネート類を含有するものが更に好ましく、特に、エチレンカーボネートとジメチルカーボネートとエチルメチルカーボネート、エチレンカーボネートとジエチルカーボネートとエチルメチルカーボネート、エチレンカーボネートとジメチルカーボネートとジエチルカーボネートとエチルメチルカーボネートといったエチレンカーボネートと対称鎖状アルキルカーボネート類と非対称鎖状アルキルカーボネート類を含有するものが、サイクル特性と大電流放電特性のバランスが良いので好ましい。中でも、非対称鎖状アルキルカーボネート類がエチルメチルカーボネートであるのが好ましく、又、アルキルカーボネートのアルキル基は炭素数1〜2が好ましい。   Among the combinations of ethylene carbonate and dialkyl carbonate, those containing asymmetrical chain alkyl carbonates as dialkyl carbonate are more preferred, especially ethylene carbonate, dimethyl carbonate and ethyl methyl carbonate, ethylene carbonate, diethyl carbonate and ethyl methyl carbonate. Those containing ethylene carbonate, symmetric chain alkyl carbonates, and asymmetric chain alkyl carbonates such as ethylene carbonate, dimethyl carbonate, diethyl carbonate, and ethyl methyl carbonate are preferred because of a good balance between cycle characteristics and large current discharge characteristics. Among them, the asymmetric chain alkyl carbonate is preferably ethyl methyl carbonate, and the alkyl group of the alkyl carbonate preferably has 1 to 2 carbon atoms.

また、非水溶媒中にジエチルカーボネートを含有する場合は、全非水溶媒中に占めるジエチルカーボネートの割合が、下限は、通常10容量%以上、好ましくは20容量%以上、より好ましくは25容量%以上、更に好ましくは30容量%以上であり、また、上限は、通常90容量%以下、好ましくは80容量%以下、より好ましくは75容量%以下、更に好ましくは、70容量%以下となる範囲で含有させると、高温保存時におけるガス発生が抑制されるので好ましい。   When diethyl carbonate is contained in the non-aqueous solvent, the lower limit of the proportion of diethyl carbonate in the total non-aqueous solvent is usually 10% by volume or more, preferably 20% by volume or more, more preferably 25% by volume. More preferably, it is 30% by volume or more, and the upper limit is usually 90% by volume or less, preferably 80% by volume or less, more preferably 75% by volume or less, and further preferably 70% by volume or less. When contained, gas generation during high-temperature storage is suppressed, which is preferable.

また、非水溶媒中にジメチルカーボネートを含有する場合は、全非水溶媒中に占めるジメチルカーボネートの割合が、下限は、通常10容量%以上、好ましくは20容量%以上、より好ましくは25容量%以上、更に好ましくは30容量%以上であり、また上限は、通常90容量%以下、好ましくは80容量%以下、より好ましくは75容量%以下、更に好ましくは、70容量%以下となる範囲で含有させると、電池の負荷特性が向上するので好ましい。   In the case where dimethyl carbonate is contained in the non-aqueous solvent, the lower limit of the proportion of dimethyl carbonate in the total non-aqueous solvent is usually 10% by volume or more, preferably 20% by volume or more, more preferably 25% by volume. Or more, more preferably 30% by volume or more, and the upper limit is usually 90% by volume or less, preferably 80% by volume or less, more preferably 75% by volume or less, and further preferably 70% by volume or less. This is preferable because the load characteristics of the battery are improved.

また、上記アルキレンカーボネート類とジアルキルカーボネート類を主体とする組合せにおいては、他の溶媒を混合してもよい。
好ましい非水溶媒の他の例は、エチレンカーボネート、プロピレンカーボネート、γ−ブチロラクトン及びγ−バレロラクトンよりなる群から選ばれた1種の有機溶媒、又は該群から選ばれた2以上の有機溶媒からなる混合溶媒を全体の60容量%以上を占めるものである。この混合溶媒を用いた非水系電解液は、高温で使用しても溶媒の蒸発や液漏れが少なくなる。なかでも、非水溶媒に占めるエチレンカーボネートとγ−ブチロラクトンとの合計が、70容量%以上、好ましくは80容量%以上、更に好ましくは90容量%以上であり、かつエチレンカーボネートとγ−ブチロラクトンとの容量比が5:95〜45:55であるもの、又は非水溶媒に占めるエチレンカーボネートとプロピレンカーボネートとの合計が、70容量%以上、好ましくは80容量%以上、更に好ましくは90容量%以上であり、かつエチレンカーボネートとプロピレンカーボネートの容量比が30:70〜60:40であるものを用いると、一般にサイクル特性と高温保存特性等のバランスがよくなる。
In addition, in the combination mainly composed of the alkylene carbonates and dialkyl carbonates, other solvents may be mixed.
Other examples of preferable non-aqueous solvents include one organic solvent selected from the group consisting of ethylene carbonate, propylene carbonate, γ-butyrolactone and γ-valerolactone, or two or more organic solvents selected from the group The mixed solvent becomes 60% by volume or more of the whole. The non-aqueous electrolyte using this mixed solvent is less likely to evaporate or leak when used at high temperatures. Among them, the total of ethylene carbonate and γ-butyrolactone in the nonaqueous solvent is 70% by volume or more, preferably 80% by volume or more, more preferably 90% by volume or more, and ethylene carbonate and γ-butyrolactone. The volume ratio is 5:95 to 45:55, or the total of ethylene carbonate and propylene carbonate in the non-aqueous solvent is 70% by volume or more, preferably 80% by volume or more, more preferably 90% by volume or more. In addition, if a volume ratio of ethylene carbonate to propylene carbonate of 30:70 to 60:40 is used, the balance between cycle characteristics and high temperature storage characteristics is generally improved.

なお、本明細書において、非水溶媒の容量は25℃での測定値であるが、エチレンカーボネートのように25℃で固体のものは融点での測定値を用いる。
(一般式(1)で表される化合物)
本発明に係る非水系電解液は、上述の電解質と非水溶媒を含有するが、これに更に下記一般式(1)で表される化合物を含有する。
In the present specification, the capacity of the non-aqueous solvent is a measured value at 25 ° C., but a measured value at the melting point is used for a solid at 25 ° C. such as ethylene carbonate.
(Compound represented by the general formula (1))
The nonaqueous electrolytic solution according to the present invention contains the above-described electrolyte and a nonaqueous solvent, and further contains a compound represented by the following general formula (1).

Figure 2010232173
Figure 2010232173

(一般式(1)中、R〜Rはそれぞれ独立して、フッ素原子で置換されていてもよい、炭素数1〜12のアルキル基、炭素数2〜12のアルケニル基、炭素数6〜12のアリール基、又は炭素数7〜12のアラルキル基を示し、Xは炭素数1〜12の2価の連結基を表す。) (In General Formula (1), R 1 to R 4 are each independently an alkyl group having 1 to 12 carbon atoms, an alkenyl group having 2 to 12 carbon atoms, and 6 carbon atoms that may be substituted with a fluorine atom. An -12 aryl group or an aralkyl group having 7 to 12 carbon atoms, X represents a divalent linking group having 1 to 12 carbon atoms.)

炭素数1〜12のアルキル基としては、メチル基、エチル基、n−プロピル基、i−プロピル基、n−ブチル基、i−ブチル基、sec−ブチル基、tert−ブチル基、ペンチル基、シクロペンチル基、シクロヘキシル基等が挙げられ、好ましくは炭素数1〜6、特に好ましくは炭素数1〜4の鎖状又は環状アルキル基が挙げられるが、鎖状アルキル基であるのが好ましい。   Examples of the alkyl group having 1 to 12 carbon atoms include methyl group, ethyl group, n-propyl group, i-propyl group, n-butyl group, i-butyl group, sec-butyl group, tert-butyl group, pentyl group, A cyclopentyl group, a cyclohexyl group, etc. are mentioned, Preferably it is a C1-C6, Especially preferably, a C1-C4 linear or cyclic alkyl group is mentioned, However, It is preferable that it is a linear alkyl group.

炭素数2〜12のアルケニル基としては、ビニル基、プロペニル基等が挙げられ、好ましくは炭素数2〜8、特に好ましくは炭素数2〜4のものが挙げられる。
炭素数6〜12のアリール基としては、フェニル基、トリル基、キシリル基等が挙げられ、なかでもフェニル基が好ましい。
炭素数7〜12のアラルキル基としては、ベンジル基、フェネチル基等が挙げられ、なかでもベンジル基が好ましい。
As a C2-C12 alkenyl group, a vinyl group, a propenyl group, etc. are mentioned, Preferably it is C2-C8, Most preferably, a C2-C4 thing is mentioned.
Examples of the aryl group having 6 to 12 carbon atoms include a phenyl group, a tolyl group, and a xylyl group, and among them, a phenyl group is preferable.
Examples of the aralkyl group having 7 to 12 carbon atoms include a benzyl group and a phenethyl group, and among them, a benzyl group is preferable.

また、上記アルキル基、アルケニル基、アリール基およびアラルキル基はフッ素原子で置換されていてもよく、フッ素原子で置換されている基が好ましい。
フッ素置換されている基としては、トリフルオロメチル基、トリフルオロエチル基、ペンタフルオロエチル基等のフッ化アルキル基、2−フルオロビニル基、3−フルオロ−2−プロペニル基等のフッ化アルケニル基、2−フルオロフェニル基、3−フルオロフェニル基、4−フルオロフェニル基等のフッ化アリール基、2−フルオロベンジル基、3−フルオロベンジル基、4−フルオロベンジル基等のフッ化アラルキル基が挙げられる。中でもトリフルオロメチル基、トリフルオロエチル基、ペンタフルオロエチル基等の炭素数1〜3のフッ化アルキル基が好ましい。
炭素数1〜12の2価の連結基としては、例えば、次のものが挙げられる。
The alkyl group, alkenyl group, aryl group and aralkyl group may be substituted with a fluorine atom, and a group substituted with a fluorine atom is preferred.
Examples of the fluorine-substituted group include fluorinated alkyl groups such as trifluoromethyl group, trifluoroethyl group and pentafluoroethyl group, and fluorinated alkenyl groups such as 2-fluorovinyl group and 3-fluoro-2-propenyl group. Fluorinated aryl groups such as 2-fluorophenyl group, 3-fluorophenyl group and 4-fluorophenyl group, and fluorinated aralkyl groups such as 2-fluorobenzyl group, 3-fluorobenzyl group and 4-fluorobenzyl group. It is done. Of these, fluorinated alkyl groups having 1 to 3 carbon atoms such as a trifluoromethyl group, a trifluoroethyl group, and a pentafluoroethyl group are preferable.
As a C1-C12 bivalent coupling group, the following are mentioned, for example.

Figure 2010232173
Figure 2010232173

これらの炭素数1〜12の2価の連結基はフッ素原子で置換されていてもよい。好ましい連結基としては、フッ素原子で置換されていてもよい、飽和又は不飽和の炭化水素基が挙げられ、特には飽和炭化水素基が好ましい。また、連結基の炭素数は1〜8が好ましく、もっとも好ましい連結基は、−(CH)n−(但し、nは1〜4)である。
一般式(1)で表される化合物の分子量は、通常214以上であり、通常2000以下、好ましくは1000以下、より好ましくは500以下である。
一般式(1)で表される化合物の具体例としては、例えば、以下の化合物が挙げられる。
These divalent linking groups having 1 to 12 carbon atoms may be substituted with a fluorine atom. A preferable linking group includes a saturated or unsaturated hydrocarbon group which may be substituted with a fluorine atom, and a saturated hydrocarbon group is particularly preferable. The number of carbon atoms of the linking group is 1-8 preferably, most preferred linking group, - (CH 2) n- (where, n is 1 to 4) is.
The molecular weight of the compound represented by the general formula (1) is usually 214 or more, usually 2000 or less, preferably 1000 or less, more preferably 500 or less.
Specific examples of the compound represented by the general formula (1) include the following compounds.

Figure 2010232173
Figure 2010232173

中でも、A1、A2、A3、A6、A7、A8、A9、A10、A11、A12が好ましく、A6、A7、A8、A9、A10、A11、A12がより好ましく、A6、A7、A8、A9、A10が更に好ましく、A8、A9、A10が特に好ましい。
一般式(1)で表される化合物は単独で用いても、2種類以上を併用してもよい。
非水系電解液中の一般式(1)で表される化合物の含有量は、通常、0.001質量%以上であり、0.1質量%以上が好ましく、0.2質量%以上がより好ましく、特に0.3質量%以上が好ましい。これより低濃度では本発明の効果がほとんど発現しない場合がある。逆に濃度が高すぎると電池の保存特性が低下する傾向があるので、上限は通常5質量%以下であり、好ましくは3質量%以下、より好ましくは2質量%以下、更に好ましくは1質量%以下、特に好ましくは0.8質量%以下である。
Among them, A1, A2, A3, A6, A7, A8, A9, A10, A11, A12 are preferable, A6, A7, A8, A9, A10, A11, A12 are more preferable, A6, A7, A8, A9, A10. Is more preferable, and A8, A9, and A10 are particularly preferable.
The compound represented by the general formula (1) may be used alone or in combination of two or more.
The content of the compound represented by the general formula (1) in the nonaqueous electrolytic solution is usually 0.001% by mass or more, preferably 0.1% by mass or more, and more preferably 0.2% by mass or more. In particular, 0.3 mass% or more is preferable. If the concentration is lower than this, the effect of the present invention may be hardly exhibited. On the other hand, if the concentration is too high, the storage characteristics of the battery tend to deteriorate. Therefore, the upper limit is usually 5% by mass or less, preferably 3% by mass or less, more preferably 2% by mass or less, and still more preferably 1% by mass. Hereinafter, it is particularly preferably 0.8% by mass or less.

本発明に係る非水系電解液を用いた場合に、非水系電解液電池が、高温保存特性に優れる理由は明らかではなく、また、本発明は下記作用原理に限定されるものではないが、次のように推察される。
まず、一般式(1)で表される化合物は、窒素原子および酸素原子を有しており、これらの原子を介して正極表面に吸着し、活性の高い正極と電解液との接触を防ぎ、正極と電解液の副反応を抑制し、正極の劣化を抑制するとともにガス発生を抑制することができると思われる。
When the non-aqueous electrolyte solution according to the present invention is used, the reason why the non-aqueous electrolyte battery is excellent in high-temperature storage characteristics is not clear, and the present invention is not limited to the following operation principle. It is guessed as follows.
First, the compound represented by the general formula (1) has a nitrogen atom and an oxygen atom, is adsorbed on the surface of the positive electrode through these atoms, and prevents contact between the positive electrode having high activity and the electrolyte solution, It seems that the side reaction between the positive electrode and the electrolyte can be suppressed to suppress the deterioration of the positive electrode and to suppress the gas generation.

一方、特許文献1に記載されたジアミンなどの化合物では、化合物の酸化電位が低すぎるためか、高温保存後の電池特性の劣化が顕著となり、更に、正極表面への吸着能が低いためか、ガス抑制効果がほとんどみられない。
(他の化合物)
本発明に係る非水系電解液は、本発明の効果を損ねない範囲で、炭素−炭素不飽和結合を有する環状カーボネート化合物、フッ素原子を有する環状カーボネート化合物、モノフルオロリン酸塩およびジフルオロリン酸塩からなる群から選ばれる少なくとも一種の化合物や従来公知の過充電防止剤などの種々の他の化合物を助剤として含有していてもよい。
一般式(1)で表される化合物と、炭素−炭素不飽和結合を有する環状カーボネート化合物、フッ素原子を有する環状カーボネート化合物、モノフルオロリン酸塩およびジフルオロリン酸塩からなる群から選ばれる少なくとも一種の化合物とを併用することにより、高温保存後の電池特性が向上するので好ましい。
On the other hand, in the compound such as diamine described in Patent Document 1, because the oxidation potential of the compound is too low, the deterioration of the battery characteristics after high-temperature storage becomes remarkable, and furthermore, the adsorption ability to the positive electrode surface is low, There is almost no gas suppression effect.
(Other compounds)
The nonaqueous electrolytic solution according to the present invention is a cyclic carbonate compound having a carbon-carbon unsaturated bond, a cyclic carbonate compound having a fluorine atom, a monofluorophosphate, and a difluorophosphate within a range not impairing the effects of the present invention. Various other compounds such as at least one compound selected from the group consisting of and a conventionally known overcharge inhibitor may be contained as an auxiliary agent.
At least one selected from the group consisting of a compound represented by the general formula (1), a cyclic carbonate compound having a carbon-carbon unsaturated bond, a cyclic carbonate compound having a fluorine atom, a monofluorophosphate, and a difluorophosphate. It is preferable to use together with the compound because the battery characteristics after high-temperature storage are improved.

(炭素−炭素不飽和結合を有する環状カーボネート化合物)
炭素−炭素不飽和結合を有する環状カーボネート化合物としては、例えば、ビニレンカーボネート、メチルビニレンカーボネート、エチルビニレンカーボネート、4,5−ジメチルビニレンカーボネート、4,5−ジエチルビニレンカーボネート、フルオロビニレンカーボネート、トリフルオロメチルビニレンカーボネート等のビニレンカーボネート化合物;ビニルエチレンカーボネート、4−メチル−4−ビニルエチレンカーボネート、4−エチル−4−ビニルエチレンカーボネート、4−n−プロピル−4−ビニルエチレンカーボネート、5−メチル−4−ビニルエチレンカーボネート、4,4−ジビニルエチレンカーボネート、4,5−ジビニルエチレンカーボネート等のビニルエチレンカーボネート化合物;4,4−ジメチル−5−メチレンエチレンカーボネート、4,4−ジエチル−5−メチレンエチレンカーボネート等のメチレンエチレンカーボネート化合物などが挙げられる。これらのうち、ビニレンカーボネート、ビニルエチレンカーボネート、4−メチル−4−ビニルエチレンカーボネートまたは4,5−ジビニルエチレンカーボネートがサイクル特性や高温保存後の容量維持特性向上の点から好ましく、なかでもビニレンカーボネートまたはビニルエチレンカーボネートがより好ましく、特にビニレンカーボネートが好ましい。これらは単独で用いても、2種類以上を併用してもよい。
(Cyclic carbonate compound having a carbon-carbon unsaturated bond)
Examples of the cyclic carbonate compound having a carbon-carbon unsaturated bond include vinylene carbonate, methyl vinylene carbonate, ethyl vinylene carbonate, 4,5-dimethyl vinylene carbonate, 4,5-diethyl vinylene carbonate, fluoro vinylene carbonate, trifluoromethyl. Vinylene carbonate compounds such as vinylene carbonate; vinyl ethylene carbonate, 4-methyl-4-vinylethylene carbonate, 4-ethyl-4-vinylethylene carbonate, 4-n-propyl-4-vinylethylene carbonate, 5-methyl-4- Vinyl ethylene carbonate compounds such as vinyl ethylene carbonate, 4,4-divinyl ethylene carbonate, 4,5-divinyl ethylene carbonate; 4,4-dimethyl-5- Chi Ren ethylene carbonate, methylene ethylene carbonate compounds such as 4,4-diethyl-5-methylene ethylene carbonate. Among these, vinylene carbonate, vinyl ethylene carbonate, 4-methyl-4-vinyl ethylene carbonate or 4,5-divinyl ethylene carbonate is preferable from the viewpoint of cycle characteristics and capacity maintenance characteristics improvement after high-temperature storage. Among them, vinylene carbonate or Vinyl ethylene carbonate is more preferable, and vinylene carbonate is particularly preferable. These may be used alone or in combination of two or more.

2種類以上を併用する場合は、ビニレンカーボネートとビニルエチレンカーボネートとを併用するのが好ましい。
非水系電解液が炭素−炭素不飽和結合を有する環状カーボネート化合物を含有する場合、非水系電解液中におけるその割合は、通常0.01質量%以上、好ましくは0.1質量%以上、特に好ましくは0.3質量%以上、最も好ましくは0.5質量%以上である。炭素−炭素不飽和結合を有する環状カーボネート化合物が少なすぎると、電池のサイクル特性や高温保存後の容量維持特性を向上させるという効果を十分に発揮できない場合がある。しかし、炭素−炭素不飽和結合を有する環状カーボネート化合物の含有量が多すぎると、高温保存時にガス発生量が増大したりする場合があるので、その上限は、通常8質量%以下、好ましくは4質量%以下、特に好ましくは3質量%以下である。
When using 2 or more types together, it is preferable to use together vinylene carbonate and vinyl ethylene carbonate.
When the non-aqueous electrolyte contains a cyclic carbonate compound having a carbon-carbon unsaturated bond, the proportion in the non-aqueous electrolyte is usually 0.01% by mass or more, preferably 0.1% by mass or more, particularly preferably. Is 0.3% by mass or more, and most preferably 0.5% by mass or more. When there are too few cyclic carbonate compounds which have a carbon-carbon unsaturated bond, the effect of improving the cycling characteristics of a battery and the capacity maintenance characteristics after high temperature storage may not be fully exhibited. However, if the content of the cyclic carbonate compound having a carbon-carbon unsaturated bond is too large, the amount of gas generated may increase during high-temperature storage, so the upper limit is usually 8% by mass or less, preferably 4 It is at most 3% by mass, particularly preferably at most 3% by mass.

(フッ素原子を有する環状カーボネート化合物)
フッ素原子を有する環状カーボネート化合物としては、例えば、フルオロエチレンカーボネート、4,5−ジフルオロエチレンカーボネート、4,4−ジフルオロエチレンカーボネート、4,4,5−トリフルオロエチレンカーボネート、4,4,5,5−テトラフルオロエチレンカーボネート、4−フルオロ−5−メチルエチレンカーボネート、4−フルオロ−4−メチルエチレンカーボネート、4,5−ジフルオロ−4−メチルエチレンカーボネート、4,4,5−トリフルオロ−5−メチルエチレンカーボネート、トリフルオロメチルエチレンカーボネート、4−フルオロ−4,5−ジメチルエチレンカーボネート、4,5−ジフルオロ−4,5−ジメチルエチレンカーボネート等が挙げられる。これらのうち、フルオロエチレンカーボネート、4,5−ジフルオロエチレンカーボネート、4−フルオロ−5−メチルエチレンカーボネートがサイクル特性や高温保存後の容量維持特性向上の点から好ましい。
(Cyclic carbonate compound having a fluorine atom)
Examples of the cyclic carbonate compound having a fluorine atom include fluoroethylene carbonate, 4,5-difluoroethylene carbonate, 4,4-difluoroethylene carbonate, 4,4,5-trifluoroethylene carbonate, 4,4,5,5. -Tetrafluoroethylene carbonate, 4-fluoro-5-methylethylene carbonate, 4-fluoro-4-methylethylene carbonate, 4,5-difluoro-4-methylethylene carbonate, 4,4,5-trifluoro-5-methyl Examples include ethylene carbonate, trifluoromethyl ethylene carbonate, 4-fluoro-4,5-dimethylethylene carbonate, 4,5-difluoro-4,5-dimethylethylene carbonate, and the like. Of these, fluoroethylene carbonate, 4,5-difluoroethylene carbonate, and 4-fluoro-5-methylethylene carbonate are preferred from the viewpoint of improving cycle characteristics and capacity maintenance characteristics after high-temperature storage.

これらは単独で用いても、2種類以上を併用してもよい。
また、炭素−炭素不飽和結合を有する環状カーボネート化合物と併用して用いても良く、サイクル特性や高温保存後の容量維持特性向上の点からは、ビニレンカーボネートやビニルエチレンカーボネートと併用するのが好ましい。
非水系電解液がフッ素原子を有する環状カーボネート化合物を含有する場合、非水系電解液中におけるその割合は、通常0.01質量%以上、好ましくは0.1質量%以上、特に好ましくは0.3質量%以上、最も好ましくは0.5質量%以上である。フッ素原子を有する環状カーボネート化合物が少なすぎると、電池のサイクル特性や高温保存後の容量維持特性を向上させるという効果を十分に発揮できない場合がある。しかし、フッ素原子を有する環状カーボネート化合物の含有量が多すぎると、高温保存時にガス発生量が増大したりする場合があるので、その上限は、通常30質量%以下、好ましくは20質量%以下、より好ましくは10質量%以下、更に好ましくは5質量%以下、特に好ましくは3質量%以下である。
These may be used alone or in combination of two or more.
Further, it may be used in combination with a cyclic carbonate compound having a carbon-carbon unsaturated bond, and it is preferably used in combination with vinylene carbonate or vinyl ethylene carbonate from the viewpoint of improving cycle characteristics and capacity maintenance characteristics after high temperature storage. .
When the non-aqueous electrolyte contains a cyclic carbonate compound having a fluorine atom, the proportion in the non-aqueous electrolyte is usually 0.01% by mass or more, preferably 0.1% by mass or more, particularly preferably 0.3%. % By mass or more, most preferably 0.5% by mass or more. When there are too few cyclic carbonate compounds which have a fluorine atom, the effect of improving the cycling characteristics of a battery and the capacity maintenance characteristic after high temperature storage may not fully be exhibited. However, if the content of the cyclic carbonate compound having a fluorine atom is too large, the amount of gas generated may increase during high-temperature storage, so the upper limit is usually 30% by mass or less, preferably 20% by mass or less, More preferably, it is 10 mass% or less, More preferably, it is 5 mass% or less, Most preferably, it is 3 mass% or less.

(モノフルオロリン酸塩およびジフルオロリン酸塩)
モノフルオロリン酸塩およびジフルオロリン酸塩のカウンターカチオンとしては特に限定はないが、リチウム、ナトリウム、カリウム、マグネシウム、カルシウム等が挙げられ、リチウムが好ましい。
モノフルオロリン酸塩およびジフルオロリン酸塩の具体例としては、モノフルオロリン酸リチウム、モノフルオロリン酸ナトリウム、モノフルオロリン酸カリウム、ジフルオロリン酸リチウム、ジフルオロリン酸ナトリウム、ジフルオロリン酸カリウム等が挙げられ、モノフルオロリン酸リチウム、ジフルオロリン酸リチウムが好ましく、ジフルオロリン酸リチウムがより好ましい。
(Monofluorophosphate and difluorophosphate)
The counter cation of monofluorophosphate and difluorophosphate is not particularly limited, and examples thereof include lithium, sodium, potassium, magnesium, calcium, and lithium is preferable.
Specific examples of monofluorophosphate and difluorophosphate include lithium monofluorophosphate, sodium monofluorophosphate, potassium monofluorophosphate, lithium difluorophosphate, sodium difluorophosphate, and potassium difluorophosphate. And lithium monofluorophosphate and lithium difluorophosphate are preferable, and lithium difluorophosphate is more preferable.

これらは単独で用いても、2種類以上を併用してもよい。
また、炭素−炭素不飽和結合を有する環状カーボネート化合物やフッ素原子を有する環状カーボネート化合物と併用して用いても良く、サイクル特性や高温保存後の容量維持特性向上の点からは、ビニレンカーボネートやビニルエチレンカーボネート、フルオロエチレンカーボネートと併用するのが好ましい。
These may be used alone or in combination of two or more.
In addition, it may be used in combination with a cyclic carbonate compound having a carbon-carbon unsaturated bond or a cyclic carbonate compound having a fluorine atom. From the viewpoint of improving cycle characteristics and capacity retention characteristics after high-temperature storage, vinylene carbonate and vinyl are used. It is preferable to use in combination with ethylene carbonate and fluoroethylene carbonate.

非水系電解液がモノフルオロリン酸塩および/またはジフルオロリン酸塩を含有する場合、非水系電解液中におけるその割合は、通常0.001質量%以上、好ましくは0.01質量%以上、特に好ましくは0.1質量%以上、最も好ましくは0.2質量%以上である。含有量が少なすぎると、電池のサイクル特性や高温保存後の容量維持特性を向上させるという効果を十分に発揮できない場合がある。その上限は、通常5質量%以下、好ましくは3質量%以下、特に好ましくは2質量%以下である。   When the non-aqueous electrolyte contains a monofluorophosphate and / or difluorophosphate, the proportion in the non-aqueous electrolyte is usually 0.001% by mass or more, preferably 0.01% by mass or more, particularly Preferably it is 0.1 mass% or more, Most preferably, it is 0.2 mass% or more. If the content is too small, the effect of improving the cycle characteristics of the battery and the capacity maintenance characteristics after high-temperature storage may not be sufficiently exhibited. The upper limit is usually 5% by mass or less, preferably 3% by mass or less, and particularly preferably 2% by mass or less.

過充電防止剤としては、ビフェニル、2−メチルビフェニル、2−エチルビフェニル等のアルキルビフェニル、ターフェニル、ターフェニルの部分水素化体、シクロペンチルベンゼン、シクロヘキシルベンゼン、シス−1−プロピル−4−フェニルシクロヘキサン、トランス−1−プロピル−4−フェニルシクロヘキサン、シス−1−ブチル−4−フェニルシクロヘキサン、トランス−1−ブチル−4−フェニルシクロヘキサン、t−ブチルベンゼン、t−アミルベンゼン、ジフェニルエーテル、ジベンゾフラン、メチルフェニルカーボネート、エチルフェニルカーボネート、ジフェニルカーボネート、トリフェニルホスフェート、トリス(2−t−ブチルフェニル)ホスフェート、トリス(3−t−ブチルフェニル)ホスフェート、トリス(4−t−ブチルフェニル)ホスフェート、トリス(2−t−アミルフェニル)ホスフェート、トリス(3−t−アミルフェニル)ホスフェート、トリス(4−t−アミルフェニル)ホスフェート、トリス(2−シクロヘキシルフェニル)ホスフェート、トリス(3−シクロヘキシルフェニル)ホスフェート、トリス(4−シクロヘキシルフェニル)ホスフェート等の芳香族化合物;2−フルオロビフェニル、3−フルオロビフェニル、4−フルオロビフェニル、4,4’−ジフルオロビフェニル、o−シクロヘキシルフルオロベンゼン、p−シクロヘキシルフルオロベンゼン等の前記芳香族化合物の部分フッ素化物;2,4−ジフルオロアニソール、2,5−ジフルオロアニソール、2,6−ジフルオロアニソール、3,5−ジフルオロアニソール等の含フッ素アニソール化合物等が挙げられる。   As the overcharge inhibitor, alkylbiphenyl such as biphenyl, 2-methylbiphenyl, 2-ethylbiphenyl, terphenyl, partially hydrogenated terphenyl, cyclopentylbenzene, cyclohexylbenzene, cis-1-propyl-4-phenylcyclohexane , Trans-1-propyl-4-phenylcyclohexane, cis-1-butyl-4-phenylcyclohexane, trans-1-butyl-4-phenylcyclohexane, t-butylbenzene, t-amylbenzene, diphenyl ether, dibenzofuran, methylphenyl Carbonate, ethylphenyl carbonate, diphenyl carbonate, triphenyl phosphate, tris (2-tert-butylphenyl) phosphate, tris (3-tert-butylphenyl) phosphate, tris (4- -Butylphenyl) phosphate, tris (2-t-amylphenyl) phosphate, tris (3-t-amylphenyl) phosphate, tris (4-t-amylphenyl) phosphate, tris (2-cyclohexylphenyl) phosphate, tris ( Aromatic compounds such as 3-cyclohexylphenyl) phosphate and tris (4-cyclohexylphenyl) phosphate; 2-fluorobiphenyl, 3-fluorobiphenyl, 4-fluorobiphenyl, 4,4′-difluorobiphenyl, o-cyclohexylfluorobenzene, Partially fluorinated products of the above aromatic compounds such as p-cyclohexylfluorobenzene; fluorine-containing anisols such as 2,4-difluoroanisole, 2,5-difluoroanisole, 2,6-difluoroanisole, and 3,5-difluoroanisole Le compounds.

これらの中でビフェニル、2−メチルビフェニル等のアルキルビフェニル、ターフェニル、ターフェニルの部分水素化体、シクロペンチルベンゼン、シクロヘキシルベンゼン、シス−1−プロピル−4−フェニルシクロヘキサン、トランス−1−プロピル−4−フェニルシクロヘキサン、シス−1−ブチル−4−フェニルシクロヘキサン、トランス−1−ブチル−4−フェニルシクロヘキサン、t−ブチルベンゼン、t−アミルベンゼン、ジフェニルエーテル、ジベンゾフラン、メチルフェニルカーボネート、ジフェニルカーボネート、トリフェニルホスフェート、トリス(4−t−ブチルフェニル)ホスフェート、トリス(4−シクロヘキシルフェニル)ホスフェート等の芳香族化合物;2−フルオロビフェニル、3−フルオロビフェニル、4−フルオロビフェニル、4,4’−ジフルオロビフェニル、o−シクロヘキシルフルオロベンゼン、p−シクロヘキシルフルオロベンゼン等の前記芳香族化合物の部分フッ素化物が好ましく、ターフェニルの部分水素化体、シクロペンチルベンゼン、シクロヘキシルベンゼン、シス−1−プロピル−4−フェニルシクロヘキサン、トランス−1−プロピル−4−フェニルシクロヘキサン、シス−1−ブチル−4−フェニルシクロヘキサン、トランス−1−ブチル−4−フェニルシクロヘキサン、t−ブチルベンゼン、t−アミルベンゼン、メチルフェニルカーボネート、ジフェニルカーボネート、トリフェニルホスフェート、トリス(4−t−ブチルフェニル)ホスフェート、トリス(4−シクロヘキシルフェニル)ホスフェート、o−シクロヘキシルフルオロベンゼン、p−シクロヘキシルフルオロベンゼンがより好ましく、ターフェニルの部分水素化体およびシクロヘキシルベンゼンが特に好ましい。   Among these, biphenyl, alkylbiphenyl such as 2-methylbiphenyl, terphenyl, partially hydrogenated terphenyl, cyclopentylbenzene, cyclohexylbenzene, cis-1-propyl-4-phenylcyclohexane, trans-1-propyl-4 -Phenylcyclohexane, cis-1-butyl-4-phenylcyclohexane, trans-1-butyl-4-phenylcyclohexane, t-butylbenzene, t-amylbenzene, diphenyl ether, dibenzofuran, methylphenyl carbonate, diphenyl carbonate, triphenyl phosphate , Aromatic compounds such as tris (4-t-butylphenyl) phosphate, tris (4-cyclohexylphenyl) phosphate; 2-fluorobiphenyl, 3-fluorobiphenyl, 4- Partially fluorinated products of the above-mentioned aromatic compounds such as fluorobiphenyl, 4,4′-difluorobiphenyl, o-cyclohexylfluorobenzene, p-cyclohexylfluorobenzene, etc. are preferable. Partially hydrogenated terphenyl, cyclopentylbenzene, cyclohexylbenzene, cis -1-propyl-4-phenylcyclohexane, trans-1-propyl-4-phenylcyclohexane, cis-1-butyl-4-phenylcyclohexane, trans-1-butyl-4-phenylcyclohexane, t-butylbenzene, t- Amylbenzene, methylphenyl carbonate, diphenyl carbonate, triphenyl phosphate, tris (4-tert-butylphenyl) phosphate, tris (4-cyclohexylphenyl) phosphate, o-cyclohexyl Fluorobenzene, more preferably p- cyclohexyl fluorobenzene, partially hydrogenated member and cyclohexylbenzene terphenyl is particularly preferred.

これらは2種類以上併用して用いてもよい。2種以上併用する場合は、特に、ターフェニルの部分水素化体やシクロヘキシルベンゼンとt−ブチルベンゼンやt−アミルベンゼンとの組み合わせや、ビフェニル、アルキルビフェニル、ターフェニル、ターフェニルの部分水素化体、シクロヘキシルベンゼン、t−ブチルベンゼン、t−アミルベンゼン等の酸素を含有しない芳香族化合物から選ばれるものと、ジフェニルエーテル、ジベンゾフラン等の含酸素芳香族化合物から選ばれるものとを併用するのが過充電防止特性と高温保存特性のバランスの点から好ましい。   Two or more of these may be used in combination. When two or more types are used in combination, in particular, a partially hydrogenated terphenyl, a combination of cyclohexylbenzene and t-butylbenzene or t-amylbenzene, or a partially hydrogenated biphenyl, alkylbiphenyl, terphenyl or terphenyl. It is overcharged to use together those selected from oxygen-free aromatic compounds such as cyclohexylbenzene, t-butylbenzene, t-amylbenzene and those selected from oxygen-containing aromatic compounds such as diphenyl ether and dibenzofuran. This is preferable from the viewpoint of the balance between prevention characteristics and high-temperature storage characteristics.

非水系電解液中におけるこれらの過充電防止剤の含有割合は、通常0.1質量%以上、好ましくは0.2質量%以上、特に好ましくは0.3質量%以上、最も好ましくは0.5質量%以上であり、上限は、通常5質量%以下、好ましくは3質量%以下、特に好ましくは2質量%以下である。この下限より低濃度では所望する過充電防止剤の効果がほとんど発現しない場合がある。逆に濃度が高すぎると高温保存特性などの電池の特性が低下する傾向がある。   The content ratio of these overcharge inhibitors in the non-aqueous electrolyte is usually 0.1% by mass or more, preferably 0.2% by mass or more, particularly preferably 0.3% by mass or more, and most preferably 0.5% by mass. The upper limit is usually 5% by mass or less, preferably 3% by mass or less, and particularly preferably 2% by mass or less. If the concentration is lower than this lower limit, the desired effect of the overcharge inhibitor may hardly be exhibited. Conversely, if the concentration is too high, battery characteristics such as high-temperature storage characteristics tend to deteriorate.

他の助剤としては、エリスリタンカーボネート、スピロ−ビス−ジメチレンカーボネート、メトキシエチル−メチルカーボネート、メトキシエチル−エチルカーボネート、エトキシエチル−メチルカーボネート、エトキシエチル−エチルカーボネート等のカーボネート化合物;無水コハク酸、無水グルタル酸、無水マレイン酸、無水イタコン酸、無水シトラコン酸、無水グルタコン酸、無水ジグリコール酸、シクロヘキサンジカルボン酸無水物、シクロペンタンテトラカルボン酸二無水物及びフェニルコハク酸無水物等のカルボン酸無水物;コハク酸ジメチル、コハク酸ジエチル、コハク酸ジアリル、マレイン酸ジメチル、マレイン酸ジエチル、マレイン酸ジアリル、マレイン酸ジプロピル、マレイン酸ジブチル、マレイン酸ビス(トリフルオロメチル)、マレイン酸ビス(ペンタフルオロエチル)、マレイン酸ビス(2,2,2−トリフルオロエチル)等のジカルボン酸ジエステル化合物;2,4,8,10−テトラオキサスピロ[5.5]ウンデカン、3,9−ジビニル−2,4,8,10−テトラオキサスピロ[5.5]ウンデカン等のスピロ化合物;エチレンサルファイト、プロピレンサルファイト、1,3−プロパンスルトン、1,4−ブタンスルトン、1,3−プロペンスルトン、1,4−ブテンスルトン、メチルメタンスルホネート、エチルメタンスルホネート、メチル−メトキシメタンスルホネート、メチル−2−メトキシエタンスルホネート、ブスルファン、ジエチレングリコールジメタンスルホネート、1,2−エタンジオールビス(2,2,2−トリフルオロエタンスルホネート)、1,4−ブタンジオールビス(2,2,2−トリフルオロエタンスルホネート)、スルホラン、3−スルホレン、2−スルホレン、ジメチルスルホン、ジエチルスルホン、ジビニルスルホン、ジフェニルスルホン、N,N−ジメチルメタンスルホンアミド、N,N−ジエチルメタンスルホンアミド等の含硫黄化合物;1−メチル−2−ピロリジノン、1−メチル−2−ピペリドン、3−メチル−2−オキサゾリジノン、1,3−ジメチル−2−イミダゾリジノン及びN−メチルスクシイミド等の含窒素化合物;ヘプタン、オクタン、ノナン、デカン、シクロヘプタン、メチルシクロヘキサン、エチルシクロヘキサン、プロピルシクロヘキサン、n−ブチルシクロヘキサン、t−ブチルシクロヘキサン、ジシクロヘキシル等の炭化水素化合物;フルオロベンゼン、ジフルオロベンゼン、ヘキサフルオロベンゼン等のフッ化ベンゼン;アセトニトリル、プロピオニトリル、ブチロニトリル、マロノニトリル、スクシノニトリル、グルタロニトリル、アジポニトリル、ピメロニトリル等のニトリル化合物;メチルジメチルホスフィネート、エチルジメチルホスフィネート、エチルジエチルホスフィネート、トリメチルホスホノフォルメート、トリエチルホスホノフォルメート、トリメチルホスホノアセテート、トリエチルホスホノアセテート、トリメチル−3−ホスホノプロピオネート、トリエチル−3−ホスホノプロピオネート等の含リン化合物等が挙げられる。これらの中で、高温保存後の電池特性向上の点からエチレンサルファイト、1,3−プロパンスルトン、1,4−ブタンスルトン、1,3−プロペンスルトン、1,4−ブテンスルトン、ブスルファン、1,4−ブタンジオールビス(2,2,2−トリフルオロエタンスルホネート)等の含硫黄化合物;アセトニトリル、プロピオニトリル、ブチロニトリル、マロノニトリル、スクシノニトリル、グルタロニトリル、アジポニトリル、ピメロニトリル等のニトリル化合物が好ましい。   Other auxiliaries include carbonate compounds such as erythritan carbonate, spiro-bis-dimethylene carbonate, methoxyethyl-methyl carbonate, methoxyethyl-ethyl carbonate, ethoxyethyl-methyl carbonate, ethoxyethyl-ethyl carbonate; succinic anhydride Carboxylic acids such as glutaric anhydride, maleic anhydride, itaconic anhydride, citraconic anhydride, glutaconic anhydride, diglycolic anhydride, cyclohexanedicarboxylic anhydride, cyclopentanetetracarboxylic dianhydride and phenylsuccinic anhydride Anhydride: dimethyl succinate, diethyl succinate, diallyl succinate, dimethyl maleate, diethyl maleate, diallyl maleate, dipropyl maleate, dibutyl maleate, bis maleate (trifluoro Dicarboxylic acid diester compounds such as bis (pentafluoroethyl) maleate, bis (2,2,2-trifluoroethyl) maleate; 2,4,8,10-tetraoxaspiro [5.5] undecane Spiro compounds such as 3,9-divinyl-2,4,8,10-tetraoxaspiro [5.5] undecane; ethylene sulfite, propylene sulfite, 1,3-propane sultone, 1,4-butane sultone, 1,3-propene sultone, 1,4-butene sultone, methyl methanesulfonate, ethyl methanesulfonate, methyl-methoxymethanesulfonate, methyl-2-methoxyethanesulfonate, busulfan, diethylene glycol dimethanesulfonate, 1,2-ethanediol bis ( 2,2,2-trifluoroethane Sulfonate), 1,4-butanediol bis (2,2,2-trifluoroethanesulfonate), sulfolane, 3-sulfolene, 2-sulfolene, dimethylsulfone, diethylsulfone, divinylsulfone, diphenylsulfone, N, N-dimethyl Sulfur-containing compounds such as methanesulfonamide, N, N-diethylmethanesulfonamide; 1-methyl-2-pyrrolidinone, 1-methyl-2-piperidone, 3-methyl-2-oxazolidinone, 1,3-dimethyl-2- Nitrogen-containing compounds such as imidazolidinone and N-methylsuccinimide; charcoal such as heptane, octane, nonane, decane, cycloheptane, methylcyclohexane, ethylcyclohexane, propylcyclohexane, n-butylcyclohexane, t-butylcyclohexane, dicyclohexyl Hydrogen fluoride compounds; Fluorinated benzenes such as fluorobenzene, difluorobenzene and hexafluorobenzene; Nitrile compounds such as acetonitrile, propionitrile, butyronitrile, malononitrile, succinonitrile, glutaronitrile, adiponitrile, and pimelonitrile; methyldimethylphosphinate, Ethyldimethylphosphinate, ethyldiethylphosphinate, trimethylphosphonoformate, triethylphosphonoformate, trimethylphosphonoacetate, triethylphosphonoacetate, trimethyl-3-phosphonopropionate, triethyl-3-phosphonopropioate Examples thereof include phosphorus-containing compounds such as nates. Among these, ethylene sulfite, 1,3-propane sultone, 1,4-butane sultone, 1,3-propene sultone, 1,4-butene sultone, busulfan, 1,4 in terms of improving battery characteristics after high-temperature storage -Sulfur-containing compounds such as butanediol bis (2,2,2-trifluoroethanesulfonate); nitrile compounds such as acetonitrile, propionitrile, butyronitrile, malononitrile, succinonitrile, glutaronitrile, adiponitrile, and pimelonitrile are preferable.

これらは2種類以上併用して用いてもよい。
非水系電解液中におけるこれらの助剤の含有割合は、本願発明の効果を発現するためには、特に制限はないが、通常0.01質量%以上、好ましくは0.1質量%以上、特に好ましくは0.2質量%以上であり、上限は、通常10質量%以下、好ましくは5質量%以下、より好ましくは3質量%以下、特に好ましくは1質量%以下である。これらの助剤を添加することにより、高温保存後の容量維持特性やサイクル特性を向上させることができる。この下限より低濃度では助剤の効果がほとんど発現しない場合がある。また、逆に濃度が高すぎると高負荷放電特性などの電池の特性が低下する場合がある。
Two or more of these may be used in combination.
The content ratio of these auxiliaries in the non-aqueous electrolyte solution is not particularly limited in order to express the effect of the present invention, but is usually 0.01% by mass or more, preferably 0.1% by mass or more, particularly The upper limit is usually 10% by mass or less, preferably 5% by mass or less, more preferably 3% by mass or less, and particularly preferably 1% by mass or less. By adding these auxiliaries, capacity maintenance characteristics and cycle characteristics after high temperature storage can be improved. If the concentration is lower than this lower limit, the effect of the auxiliary agent may be hardly exhibited. On the other hand, if the concentration is too high, battery characteristics such as high load discharge characteristics may deteriorate.

(電解液の調製)
本発明に係る非水系電解液は、非水溶媒に、電解質、必要に応じて他の化合物を溶解することにより調製することができる。非水系電解液の調製に際しては、各原料は、電解液とした場合の水分を低減させるため予め脱水しておくのが好ましい。通常50ppm以下、好ましくは30ppm以下、特に好ましくは10ppm以下まで脱水するのがよい。また、電解液調製後に、脱水、脱酸処理等を実施してもよい。
(Preparation of electrolyte)
The non-aqueous electrolyte solution according to the present invention can be prepared by dissolving an electrolyte and, if necessary, other compounds in a non-aqueous solvent. In preparing the non-aqueous electrolyte solution, each raw material is preferably dehydrated in advance in order to reduce the water content when the electrolyte solution is used. Usually, it is good to dehydrate to 50 ppm or less, preferably 30 ppm or less, particularly preferably 10 ppm or less. Moreover, you may implement dehydration, a deoxidation process, etc. after electrolyte solution preparation.

本発明の非水系電解液は、非水系電解液電池の中でも二次電池用、即ち非水系電解液二次電池、例えばリチウム二次電池用の電解液として用いるのに好適である。以下、本発明の電解液を用いた非水系電解液二次電池について説明する。   The non-aqueous electrolyte of the present invention is suitable for use as a secondary battery among non-aqueous electrolyte batteries, that is, as an electrolyte for a non-aqueous electrolyte secondary battery, for example, a lithium secondary battery. Hereinafter, a non-aqueous electrolyte secondary battery using the electrolyte of the present invention will be described.

<非水系電解液二次電池>
本発明の非水系電解液二次電池は、リチウムイオンを吸蔵・放出可能な負極及び正極、並びに非水系電解液を含む非水系電解液電池であって、該非水系電解液が上記した電解液であることを特徴とするものである。
<Non-aqueous electrolyte secondary battery>
The non-aqueous electrolyte secondary battery of the present invention is a non-aqueous electrolyte battery including a negative electrode and a positive electrode capable of occluding and releasing lithium ions, and a non-aqueous electrolyte, and the non-aqueous electrolyte is the above-described electrolyte. It is characterized by being.

(電池構成)
本発明に係る非水系電解液二次電池は、上記本発明の電解液を用いて作製される以外は従来公知の非水系電解液二次電池と同様、リチウムイオンを吸蔵・放出可能な負極及び正極、並びに非水系電解液を含む非水系電解液電池であり、通常、正極と負極とを本発明に係る非水系電解液が含浸されている多孔膜を介してケースに収納することで得られる。従って、本発明に係る二次電池の形状は特に制限されるものではなく、円筒型、角型、ラミネート型、コイン型、大型等のいずれであってもよい。
(Battery configuration)
The non-aqueous electrolyte secondary battery according to the present invention is the same as the conventionally known non-aqueous electrolyte secondary battery except that it is produced using the electrolyte of the present invention, and a negative electrode capable of inserting and extracting lithium ions and A non-aqueous electrolyte battery including a positive electrode and a non-aqueous electrolyte solution, usually obtained by housing the positive electrode and the negative electrode in a case through a porous membrane impregnated with the non-aqueous electrolyte solution according to the present invention. . Therefore, the shape of the secondary battery according to the present invention is not particularly limited, and may be any of a cylindrical shape, a square shape, a laminate shape, a coin shape, a large size, and the like.

(負極)
負極活物質としては、リチウムイオンを吸蔵・放出可能なものであれば特に制限はない。リチウムを吸蔵・放出可能な炭素質材料や金属化合物、リチウム金属及びリチウム合金などを用いることができる。これらの負極活物質は、単独で用いても、2種類以上を混合して用いてもよい。なかでも好ましいものは炭素質材料、リチウムを吸蔵および放出可能な金属化合物である。
(Negative electrode)
The negative electrode active material is not particularly limited as long as it can occlude and release lithium ions. Carbonaceous materials and metal compounds capable of inserting and extracting lithium, lithium metal, lithium alloys, and the like can be used. These negative electrode active materials may be used alone or in combination of two or more. Among these, a carbonaceous material and a metal compound capable of occluding and releasing lithium are preferable.

炭素質材料のなかでは、特に、黒鉛や黒鉛の表面を黒鉛に比べて非晶質の炭素で被覆したものが好ましい。
黒鉛は、学振法によるX線回折で求めた格子面(002面)のd値(層間距離)が0.335〜0.338nm、特に0.335〜0.337nmであるものが好ましい。また、学振法によるX線回折で求めた結晶子サイズ(Lc)は、通常30nm以上、好ましくは50nm以上、特に好ましくは100nm以上である。灰分は、通常1質量%以下、好ましくは0.5質量%以下、特に好ましくは0.1質量%以下である。
Among the carbonaceous materials, graphite and graphite whose surface is coated with amorphous carbon as compared with graphite are particularly preferable.
Graphite preferably has a lattice plane (002 plane) d value (interlayer distance) of 0.335 to 0.338 nm, particularly 0.335 to 0.337 nm, as determined by X-ray diffraction using the Gakushin method. The crystallite size (Lc) determined by X-ray diffraction by the Gakushin method is usually 30 nm or more, preferably 50 nm or more, particularly preferably 100 nm or more. The ash content is usually 1% by mass or less, preferably 0.5% by mass or less, and particularly preferably 0.1% by mass or less.

黒鉛の表面を非晶質の炭素で被覆したものとして好ましいのは、X線回折における格子面(002面)のd値が0.335〜0.338nmである黒鉛を核材とし、その表面に該核材よりもX線回折における格子面(002面)のd値が大きい炭素質材料が付着しており、かつ核材と核材よりもX線回折における格子面(002面)のd値が大きい炭素質材料との含有割合が重量比で99/1〜80/20であるものである。これを用いると、高い容量で、かつ電解液と反応しにくい負極を製造することができる。   The graphite surface coated with amorphous carbon is preferably graphite having a d-value of 0.335 to 0.338 nm on the lattice plane (002 plane) in X-ray diffraction as a core material. A carbonaceous material having a larger d-value on the lattice plane (002 plane) in X-ray diffraction than the core material is attached, and the d-value on the lattice plane (002 plane) in X-ray diffraction is greater than that of the core material and the core material. The content ratio with a large carbonaceous material is 99/1 to 80/20 by weight ratio. When this is used, a negative electrode having a high capacity and hardly reacting with the electrolytic solution can be produced.

炭素質材料の粒径は、レーザー回折・散乱法によるメジアン径で、通常1μm以上、好ましくは3μm以上、より好ましくは5μm以上、最も好ましくは7μm以上であり、通常100μm以下、好ましくは50μm以下、より好ましくは40μm以下、最も好ましくは30μm以下である。
炭素質材料のBET法による比表面積は、通常0.3m2/g以上、好ましくは0.5m2/g以上、より好ましくは0.7m2/g以上、最も好ましくは0.8m2/g以上であり、通常25.0m2/g以下、好ましくは20.0m2/g以下、より好ましくは15.0m2/g以下、最も好ましくは10.0m2/g以下である。
The particle size of the carbonaceous material is a median diameter measured by a laser diffraction / scattering method, and is usually 1 μm or more, preferably 3 μm or more, more preferably 5 μm or more, most preferably 7 μm or more, and usually 100 μm or less, preferably 50 μm or less. More preferably, it is 40 micrometers or less, Most preferably, it is 30 micrometers or less.
The specific surface area of the carbonaceous material by the BET method is usually 0.3 m 2 / g or more, preferably 0.5 m 2 / g or more, more preferably 0.7 m 2 / g or more, and most preferably 0.8 m 2 / g. or more, usually 25.0 m 2 / g or less, preferably 20.0 m 2 / g, more preferably 15.0 m 2 / g or less, and most preferably 10.0 m 2 / g or less.

また、炭素質材料は、アルゴンイオンレーザー光を用いたラマンスペクトルで分析し、1570〜1620cm-1の範囲にあるピークPAのピーク強度をIA、1300〜1400cm-1の範囲にあるピークPBのピーク強度をIBとした場合、IBとIAの比で表されるR値(=IB/IA)が、0.01〜0.7の範囲であるものが好ましい。また、1570〜1620cm-1の範囲にあるピークの半値幅が、26cm-1以下、特に25cm-1以下であるものが好ましい。 Further, the carbonaceous material is analyzed by Raman spectrum using argon ion laser light, the peak is the peak intensity of the peak P A in the range of 1570~1620cm -1 I A, in the range of 1300~1400cm -1 P If the peak intensity of the B was I B, R value represented by the ratio of I B and I a (= I B / I a) is what is preferably in the range of 0.01 to 0.7. Further, the half width of the peak in the range of 1570~1620Cm -1 is, 26cm -1 or less, are preferred in particular 25 cm -1 or less.

リチウムを吸蔵及び放出可能な金属化合物としては、Ag、Zn、Al、Ga、In、Si、Ge、Sn、Pb、P、Sb、Bi、Cu、Ni、Sr、Ba等の金属を含有する化合物が挙げられ、これらの金属は単体、酸化物、リチウムとの合金などとして用いられる。本発明においては、Si、Sn、Ge及びAlから選ばれる元素を含有するものが好ましく、Si、Sn及びAlから選ばれる金属の酸化物又はリチウム合金がより好ましい。 また、これらは粉末のものでも薄膜状のものでもよく、結晶質のものでもアモルファスのものでもよい。   Examples of metal compounds capable of inserting and extracting lithium include compounds containing metals such as Ag, Zn, Al, Ga, In, Si, Ge, Sn, Pb, P, Sb, Bi, Cu, Ni, Sr, and Ba. These metals are used as simple substances, oxides, alloys with lithium, and the like. In the present invention, those containing an element selected from Si, Sn, Ge and Al are preferred, and oxides or lithium alloys of metals selected from Si, Sn and Al are more preferred. These may be in the form of powder or thin film, and may be crystalline or amorphous.

リチウムを吸蔵・放出可能な金属化合物あるいはこの酸化物やリチウムとの合金は、一般に黒鉛に代表される炭素質材料に比較し、単位重量あたりの容量が大きいので、より高エネルギー密度が求められるリチウム二次電池には好適である。
リチウムを吸蔵・放出可能な金属化合物あるいはこの酸化物やリチウムとの合金の平均粒径は、本願発明の効果を発現するためには、特に制限はないが、通常50μm以下、好ましくは20μm以下、特に好ましくは10μm以下、通常0.1μm以上、好ましくは1μm以上、特に好ましくは2μm以上である。この上限を上回る場合、電極の膨張が大きくなり、サイクル特性が低下してしまう可能性がある。また、この下限を下回る場合、集電が取りにくくなり、容量が十分に発現しない可能性がある。
Lithium is a metal compound that can occlude and release lithium, or its oxides and alloys with lithium generally have higher capacity per unit weight than carbonaceous materials typified by graphite. It is suitable for a secondary battery.
The average particle size of the metal compound capable of occluding and releasing lithium or the oxide or an alloy thereof with lithium is not particularly limited to express the effect of the present invention, but is usually 50 μm or less, preferably 20 μm or less, Particularly preferably, it is 10 μm or less, usually 0.1 μm or more, preferably 1 μm or more, particularly preferably 2 μm or more. When this upper limit is exceeded, the expansion of the electrode increases, and the cycle characteristics may deteriorate. Moreover, when less than this minimum, it becomes difficult to collect current and there is a possibility that the capacity is not sufficiently developed.

(正極)
正極活物質としては、リチウムイオンを吸蔵・放出可能なものであれば特に制限はない。リチウムと少なくとも1種の遷移金属を含有する物質が好ましく、例えば、リチウム遷移金属複合酸化物、リチウム含有遷移金属リン酸化合物が挙げられる。
リチウム遷移金属複合酸化物の遷移金属としてはV、Ti、Cr、Mn、Fe、Co、Ni、Cu等が好ましく、具体例としては、LiCoO2等のリチウム・コバルト複合酸化物、LiNiO2等のリチウム・ニッケル複合酸化物、LiMnO2、LiMn、Li2MnO3等のリチウム・マンガン複合酸化物、これらのリチウム遷移金属複合酸化物の主体となる遷移金属原子の一部をAl、Ti、V、Cr、Mn、Fe、Co、Li、Ni、Cu、Zn、Mg、Ga、Zr、Si等の他の金属で置換したもの等が挙げられる。置換されたものの具体例としては、例えば、LiNi0.5Mn0.52、LiNi0.85Co0.10Al0.052、LiNi0.33Co0.33Mn0.332、LiMn1.8Al0.24、LiMn1.5Ni0.54等が挙げられる。
(Positive electrode)
The positive electrode active material is not particularly limited as long as it can occlude and release lithium ions. A substance containing lithium and at least one transition metal is preferable, and examples thereof include a lithium transition metal composite oxide and a lithium-containing transition metal phosphate compound.
The transition metal of the lithium transition metal composite oxide is preferably V, Ti, Cr, Mn, Fe, Co, Ni, Cu or the like, and specific examples include lithium / cobalt composite oxide such as LiCoO 2 or LiNiO 2 . Lithium / nickel composite oxide, LiMnO 2 , LiMn 2 O 4 , Li 2 MnO 3 and other lithium / manganese composite oxides, Al, Ti , V, Cr, Mn, Fe, Co, Li, Ni, Cu, Zn, Mg, Ga, Zr, and those substituted with other metals such as Si. Specific examples of the substituted ones include, for example, LiNi 0.5 Mn 0.5 O 2 , LiNi 0.85 Co 0.10 Al 0.05 O 2 , LiNi 0.33 Co 0.33 Mn 0.33 O 2 , LiMn 1.8 Al 0.2 O 4 , LiMn 1.5 Ni 0.5 O 4, etc. Is mentioned.

リチウム含有遷移金属リン酸化合物の遷移金属としては、V、Ti、Cr、Mn、Fe、Co、Ni、Cu等が好ましく、具体例としては、例えば、LiFePO、Li3Fe2(PO3、LiFeP27等のリン酸鉄類、LiCoPO4等のリン酸コバルト類、これらのリチウム遷移金属リン酸化合物の主体となる遷移金属原子の一部をAl、Ti、V、Cr、Mn、Fe、Co、Li、Ni、Cu、Zn、Mg、Ga、Zr、Nb、Si等の他の金属で置換したもの等が挙げられる。 As the transition metal of the lithium-containing transition metal phosphate compound, V, Ti, Cr, Mn, Fe, Co, Ni, Cu and the like are preferable, and specific examples include, for example, LiFePO 4 , Li 3 Fe 2 (PO 4 ). 3 , iron phosphates such as LiFeP 2 O 7 , cobalt phosphates such as LiCoPO 4 , and some of the transition metal atoms that are the main components of these lithium transition metal phosphate compounds are Al, Ti, V, Cr, Mn , Fe, Co, Li, Ni, Cu, Zn, Mg, Ga, Zr, Nb, Si and the like substituted with other metals.

これらの正極活物質は単独で用いても、複数を併用しても良い。
また、これら正極活物質の表面に、主体となる正極活物質を構成する物質とは異なる組成の物質が付着したものを用いることもできる。表面付着物質としては酸化アルミニウム、酸化ケイ素、酸化チタン、酸化ジルコニウム、酸化マグネシウム、酸化カルシウム、酸化ホウ素、酸化アンチモン、酸化ビスマス等の酸化物、硫酸リチウム、硫酸ナトリウム、硫酸カリウム、硫酸マグネシウム、硫酸カルシウム、硫酸アルミニウム等の硫酸塩、炭酸リチウム、炭酸カルシウム、炭酸マグネシウム等の炭酸塩等が挙げられる。
These positive electrode active materials may be used alone or in combination.
In addition, a material in which a substance having a composition different from that of the substance constituting the main cathode active material is attached to the surface of the cathode active material can be used. Surface adhering substances include aluminum oxide, silicon oxide, titanium oxide, zirconium oxide, magnesium oxide, calcium oxide, boron oxide, antimony oxide, bismuth oxide, lithium sulfate, sodium sulfate, potassium sulfate, magnesium sulfate, calcium sulfate And sulfates such as aluminum sulfate and carbonates such as lithium carbonate, calcium carbonate and magnesium carbonate.

表面付着物質の量としては、本願発明の効果を発現するためには、特に制限はないが、正極活物質に対して質量で、下限として好ましくは0.1ppm以上、より好ましくは1ppm以上、更に好ましくは10ppm以上、上限として好ましくは20%以下、より好ましくは10%以下、更に好ましくは5%以下で用いられる。表面付着物質により、正極活物質表面での非水系電解液の酸化反応を抑制することができ、電池寿命を向上させることができるが、その付着量が少なすぎる場合その効果は十分に発現せず、多すぎる場合には、リチウムイオンの出入りを阻害するため抵抗が増加する場合がある。   The amount of the surface adhering substance is not particularly limited in order to exhibit the effects of the present invention, but is preferably 0.1 ppm or more, more preferably 1 ppm or more as a lower limit in terms of mass with respect to the positive electrode active material. The upper limit is preferably 10 ppm or more, preferably 20% or less, more preferably 10% or less, and still more preferably 5% or less. The surface adhering substance can suppress the oxidation reaction of the non-aqueous electrolyte solution on the surface of the positive electrode active material, and can improve the battery life. However, when the amount of the adhering quantity is too small, the effect is not sufficiently exhibited. If the amount is too large, the resistance may increase in order to inhibit the entry and exit of lithium ions.

(電極)
活物質を結着する結着剤としては、電極製造時に使用する溶媒や電解液に対して安定な材料であれば、任意のものを使用することができる。例えば、ポリフッ化ビニリデン、ポリテトラフルオロエチレン等のフッ素系樹脂、ポリエチレン、ポリプロピレン等のポリオレフィン、スチレン・ブタジエンゴム、イソプレンゴム、ブタジエンゴム等の不飽和結合を有するポリマー及びその共重合体、エチレン−アクリル酸共重合体、エチレン−メタクリル酸共重合体等のアクリル酸系ポリマー及びその共重合体などが挙げられる。
(electrode)
As the binder for binding the active material, any material can be used as long as it is a material that is stable with respect to the solvent and the electrolytic solution used during electrode production. For example, fluororesins such as polyvinylidene fluoride and polytetrafluoroethylene, polyolefins such as polyethylene and polypropylene, polymers having unsaturated bonds such as styrene / butadiene rubber, isoprene rubber and butadiene rubber, and copolymers thereof, ethylene-acrylic Examples thereof include acrylic acid polymers such as acid copolymers and ethylene-methacrylic acid copolymers, and copolymers thereof.

電極中には、機械的強度や電気伝導度を高めるために増粘剤、導電材、充填剤などを含有させてもよい。
増粘剤としては、カルボキシルメチルセルロース、メチルセルロース、ヒドロキシメチルセルロース、エチルセルロース、ポリビニルアルコール、酸化スターチ、リン酸化スターチ、カゼイン等が挙げられる。
The electrode may contain a thickener, a conductive material, a filler and the like in order to increase mechanical strength and electrical conductivity.
Examples of the thickener include carboxymethyl cellulose, methyl cellulose, hydroxymethyl cellulose, ethyl cellulose, polyvinyl alcohol, oxidized starch, phosphorylated starch, and casein.

導電材としては、銅又はニッケル等の金属材料、グラファイト又はカーボンブラック等の炭素材料などが挙げられる。
電極の製造は、常法によればよい。例えば、負極又は正極活物質に、結着剤、増粘剤、導電材、溶媒等を加えてスラリー化し、これを集電体に塗布、乾燥した後に、プレスすることによって形成することができる。
Examples of the conductive material include a metal material such as copper or nickel, and a carbon material such as graphite or carbon black.
The electrode may be manufactured by a conventional method. For example, it can be formed by adding a binder, a thickener, a conductive material, a solvent or the like to a negative electrode or a positive electrode active material to form a slurry, applying the slurry to a current collector, drying it, and then pressing it.

また、活物質に結着剤や導電材などを加えたものをそのままロール成形してシート電極としたり、圧縮成型によりペレット電極としたり、蒸着・スパッタ・メッキ等の手法で集電体上に電極材料の薄膜を形成することもできる。
負極活物質に黒鉛を用いた場合、負極活物質層の乾燥、プレス後の密度は、通常1.45g/cm3以上であり、好ましくは1.55g/cm3以上、より好ましくは1.60g/cm3以上、特に好ましくは1.65g/cm3以上、である。
In addition, a material obtained by adding a binder or a conductive material to an active material is roll-formed as it is to form a sheet electrode, a pellet electrode is formed by compression molding, and an electrode is formed on the current collector by a technique such as vapor deposition, sputtering, or plating. A thin film of material can also be formed.
When graphite is used as the negative electrode active material, the density of the negative electrode active material layer after drying and pressing is usually 1.45 g / cm 3 or more, preferably 1.55 g / cm 3 or more, more preferably 1.60 g. / Cm 3 or more, particularly preferably 1.65 g / cm 3 or more.

また、正極活物質層の乾燥、プレス後の密度は、通常2.0g/cm3以上であり、好ましくは2.5g/cm3以上、より好ましくは3.0g/cm3以上である。
集電体としては各種のものが用いることができるが、通常は金属や合金が用いられる。負極の集電体としては、銅、ニッケル、ステンレス等が挙げられ、好ましいのは銅である。また、正極の集電体としては、アルミニウム、チタン、タンタル等の金属又はその合金が挙げられ、好ましいのはアルミニウム又はその合金である。
The density of the positive electrode active material layer after drying and pressing is usually 2.0 g / cm 3 or more, preferably 2.5 g / cm 3 or more, more preferably 3.0 g / cm 3 or more.
Various types of current collectors can be used, but metals and alloys are usually used. Examples of the current collector for the negative electrode include copper, nickel, and stainless steel, and copper is preferred. Examples of the positive electrode current collector include metals such as aluminum, titanium, and tantalum, and alloys thereof, and aluminum or an alloy thereof is preferable.

(セパレータ、外装体)
正極と負極の間には、短絡を防止するために多孔膜(セパレータ)を介在させる。この場合、電解液は多孔膜に含浸させて用いる。多孔膜の材質や形状は、電解液に安定であり、かつ保液性に優れていれば、特に制限はなく、ポリエチレン、ポリプロピレン等のポリオレフィンを原料とする多孔性シート又は不織布等が好ましい。
(Separator, exterior body)
A porous film (separator) is interposed between the positive electrode and the negative electrode to prevent a short circuit. In this case, the electrolytic solution is used by impregnating the porous membrane. The material and shape of the porous film are not particularly limited as long as it is stable to the electrolytic solution and excellent in liquid retention, and a porous sheet or nonwoven fabric made of a polyolefin such as polyethylene or polypropylene is preferable.

本発明に係る電池に使用する電池の外装体の材質も任意であり、ニッケルメッキを施した鉄、ステンレス、アルミニウム又はその合金、ニッケル、チタン、ラミネートフィルム等が用いられる。
上記した本発明の非水系電解液二次電池の作動電圧は通常2V〜6Vの範囲である。
The material of the battery casing used in the battery according to the present invention is also arbitrary, and nickel-plated iron, stainless steel, aluminum or an alloy thereof, nickel, titanium, a laminate film, or the like is used.
The operating voltage of the non-aqueous electrolyte secondary battery of the present invention described above is usually in the range of 2V to 6V.

以下に、実施例及び比較例を挙げて本発明をさらに具体的に説明するが、本発明は、その要旨を超えない限りこれらの実施例に限定されるものではない。
尚、下記実施例および比較例で得られた電池の各評価方法を以下に示す。
[容量評価]
非水系電解液二次電池を、電極間の密着性を高めるためにガラス板で挟んだ状態で、25℃において、0.2Cに相当する定電流で4.2Vまで充電した後、0.2Cの定電流で3Vまで放電した。これを3サイクル行って電池を安定させ、4サイクル目は、0.5Cの定電流で4.2Vまで充電後、4.2Vの定電圧で電流値が0.05Cになるまで充電を実施し、0.2Cの定電流で3Vまで放電して、初期放電容量を求めた。
ここで、1Cとは電池の基準容量を1時間で放電する電流値を表し、0.2Cとはその1/5の電流値を表す。
Hereinafter, the present invention will be described more specifically with reference to examples and comparative examples. However, the present invention is not limited to these examples as long as the gist thereof is not exceeded.
In addition, each evaluation method of the battery obtained by the following Example and the comparative example is shown below.
[Capacity evaluation]
The non-aqueous electrolyte secondary battery is charged to 4.2 V at a constant current corresponding to 0.2 C at 25 ° C. in a state of being sandwiched between glass plates in order to improve the adhesion between the electrodes, and then 0.2 C The battery was discharged to 3 V at a constant current of. This is done for 3 cycles to stabilize the battery. In the 4th cycle, after charging to 4.2V with a constant current of 0.5C, charging is performed until the current value reaches 0.05C with a constant voltage of 4.2V. The initial discharge capacity was determined by discharging to 3 V at a constant current of 0.2C.
Here, 1C represents a current value for discharging the reference capacity of the battery in one hour, and 0.2C represents a current value of 1/5 thereof.

[高温保存特性の評価]
容量評価試験の終了した電池を、エタノール浴中に浸して体積を測定した後、25℃において0.5Cの定電流で4.2Vまで充電後、4.2Vの定電圧で電流値が0.05Cになるまで充電した。その後、85℃で1日間保存した電池を十分に冷却させた後、エタノール浴中に浸して体積を測定し、保存前後の体積変化から発生したガス量を求めた。
[Evaluation of high-temperature storage characteristics]
After the capacity evaluation test was completed, the battery was immersed in an ethanol bath and the volume was measured. Then, the battery was charged to 4.2 V at a constant current of 0.5 C at 25 ° C., and the current value was set to 0.2 at a constant voltage of 4.2 V. The battery was charged until it reached 05C. Thereafter, the battery stored at 85 ° C. for 1 day was sufficiently cooled and then immersed in an ethanol bath to measure the volume, and the amount of gas generated from the volume change before and after storage was determined.

次に、25℃において0.2Cの定電流で3Vまで放電させ、高温保存試験後の残存容量を測定し、初期放電容量に対する保存試験後の放電容量の割合を求め、これを高温保存後の残存容量(%)とした。
次に、25℃において0.5Cの定電流で4.2Vまで充電後、4.2Vの定電圧で電流値が0.05Cになるまで充電を実施し、0.2Cの定電流で3Vまで放電して、高温保存試験後の0.2C放電容量を測定し、初期放電容量に対する保存試験後の0.2C放電容量の割合を求め、これを高温保存後の回復容量(%)とした。
Next, it was discharged to 3 V at a constant current of 0.2 C at 25 ° C., the remaining capacity after the high-temperature storage test was measured, and the ratio of the discharge capacity after the storage test to the initial discharge capacity was obtained. The remaining capacity (%) was used.
Next, after charging to 4.2 V at a constant current of 0.5 C at 25 ° C., charging is performed until the current value reaches 0.05 C at a constant voltage of 4.2 V, and to 3 V at a constant current of 0.2 C. After discharging, the 0.2C discharge capacity after the high temperature storage test was measured, the ratio of the 0.2C discharge capacity after the storage test to the initial discharge capacity was determined, and this was defined as the recovery capacity (%) after the high temperature storage.

(実施例1)
[負極の製造]
X線回折における格子面(002面)のd値が0.336nm、結晶子サイズ(Lc)が652nm、灰分が0.07質量%、レーザー回折・散乱法によるメジアン径が12μm、BET法による比表面積が7.5m2/g、アルゴンイオンレーザー光を用いたラマンスペクトル分析から求めたR値(=IB/IA)が0.12、1570〜1620cm-1の範囲にあるピークの半値幅が19.9cm-1である天然黒鉛粉末94質量部とポリフッ化ビニリデン6質量部とを混合し、N−メチル−2−ピロリドンを加えスラリー状にした。このスラリーを厚さ12μmの銅箔の片面に均一に塗布、乾燥した後、負極活物質層の密度が1.68g/cm3になるようにプレスして負極とした。
Example 1
[Manufacture of negative electrode]
The d value of the lattice plane (002 plane) in X-ray diffraction is 0.336 nm, the crystallite size (Lc) is 652 nm, the ash content is 0.07% by mass, the median diameter by laser diffraction / scattering method is 12 μm, and the ratio by BET method The half-value width of a peak whose surface area is 7.5 m 2 / g and R value (= I B / I A ) determined from Raman spectrum analysis using argon ion laser light is 0.12, 1570 to 1620 cm −1. Was mixed with 94 parts by mass of natural graphite powder of 19.9 cm −1 and 6 parts by mass of polyvinylidene fluoride, and N-methyl-2-pyrrolidone was added to form a slurry. This slurry was uniformly applied to one side of a 12 μm thick copper foil, dried, and then pressed so that the density of the negative electrode active material layer was 1.68 g / cm 3 to form a negative electrode.

[正極の製造]
LiCoO2 90質量部、カーボンブラック4質量部及びポリフッ化ビニリデン(呉羽化学社製、商品名「KF−1000」)6質量部を混合し、N−メチル−2−ピロリドンを加えスラリー化し、これを厚さ15μmのアルミニウム箔の両面に均一に塗布、乾燥した後、正極活物質層の密度が3.2g/cm3になるようにプレスして正極とした。
[Production of positive electrode]
90 parts by mass of LiCoO 2 , 4 parts by mass of carbon black and 6 parts by mass of polyvinylidene fluoride (manufactured by Kureha Chemical Co., Ltd., trade name “KF-1000”) are mixed, and N-methyl-2-pyrrolidone is added to form a slurry. After uniformly applying and drying on both surfaces of an aluminum foil having a thickness of 15 μm, the positive electrode active material layer was pressed to a density of 3.2 g / cm 3 to obtain a positive electrode.

[電解液の製造]
乾燥アルゴン雰囲気下、エチレンカーボネートとジメチルカーボネートとエチルメチルカーボネートの混合物(容量比20:40:40)に、非水系電解液中の含有量としてビニレンカーボネート2質量部およびテトラアセチルエチレンジアミン(前記化合物A6)0.5質量部を混合し、次いで、十分に乾燥したLiPF6を1.0モル/リットルの含有割合となるように溶解して電解液とした。
[Manufacture of electrolyte]
Under a dry argon atmosphere, a mixture of ethylene carbonate, dimethyl carbonate and ethyl methyl carbonate (capacity ratio 20:40:40), 2 parts by weight of vinylene carbonate and tetraacetylethylenediamine (compound A6) as content in the non-aqueous electrolyte solution 0.5 parts by mass was mixed, and then sufficiently dried LiPF 6 was dissolved so as to have a content ratio of 1.0 mol / liter to obtain an electrolytic solution.

[リチウム二次電池の製造]
上記の正極、負極、及びポリエチレン製のセパレータを、負極、セパレータ、正極、セパレータ、負極の順に積層して電池要素を作製した。この電池要素をアルミニウム(厚さ40μm)の両面を樹脂層で被覆したラミネートフィルムからなる袋内に正極負極の端子を突設させながら挿入した後、上記電解液を袋内に注入し、真空封止を行い、シート状電池を作製し、高温保存特性の評価を行った。評価結果を表1に示す。
[Manufacture of lithium secondary batteries]
The positive electrode, the negative electrode, and the polyethylene separator were laminated in the order of the negative electrode, the separator, the positive electrode, the separator, and the negative electrode to produce a battery element. The battery element was inserted into a bag made of a laminate film in which both surfaces of aluminum (thickness: 40 μm) were coated with a resin layer while projecting positive and negative terminals, and then the electrolyte was poured into the bag and vacuum sealed. The sheet-shaped battery was manufactured and the high-temperature storage characteristics were evaluated. The evaluation results are shown in Table 1.

(実施例2)
エチレンカーボネートとジメチルカーボネートとエチルメチルカーボネートの混合物(容量比20:40:40)に、非水系電解液中の含有量としてビニレンカーボネート2質量部とフルオロエチレンカーボネート0.5質量部およびテトラアセチルエチレンジアミン(前記化合物A6)0.5質量部を混合した。次いで十分に乾燥したLiPF6を1.0モル/リットルの含有割合となるように溶解して調製した電解液を使用した以外、実施例1と同様にしてシート状リチウム二次電池を作製し、高温保存特性の評価を行った。評価結果を表1に示す。
(Example 2)
To a mixture of ethylene carbonate, dimethyl carbonate and ethyl methyl carbonate (capacity ratio 20:40:40), the content in the non-aqueous electrolyte is 2 parts by weight of vinylene carbonate, 0.5 parts by weight of fluoroethylene carbonate and tetraacetylethylenediamine ( 0.5 part by mass of the compound A6) was mixed. Subsequently, a sheet-like lithium secondary battery was produced in the same manner as in Example 1 except that an electrolyte prepared by dissolving LiPF 6 sufficiently dried to a content ratio of 1.0 mol / liter was used. The high temperature storage characteristics were evaluated. The evaluation results are shown in Table 1.

(実施例3)
エチレンカーボネートとジメチルカーボネートとエチルメチルカーボネートの混合物(容量比20:40:40)に、非水系電解液中の含有量としてビニレンカーボネート2質量部とジフルオロリン酸リチウム0.5質量部およびテトラアセチルエチレンジアミン(前記化合物A6)0.5質量部を混合した。次いで十分に乾燥したLiPF6を1.0モル/リットルの含有割合となるように溶解して調製した電解液を使用した以外、実施例1と同様にしてシート状リチウム二次電池を作製し、高温保存特性の評価を行った。評価結果を表1に示す。
Example 3
In a mixture of ethylene carbonate, dimethyl carbonate and ethyl methyl carbonate (capacity ratio 20:40:40), the content in the non-aqueous electrolyte is 2 parts by weight of vinylene carbonate, 0.5 parts by weight of lithium difluorophosphate, and tetraacetylethylenediamine. (Compound A6) 0.5 parts by mass was mixed. Subsequently, a sheet-like lithium secondary battery was produced in the same manner as in Example 1 except that an electrolyte prepared by dissolving LiPF 6 sufficiently dried to a content ratio of 1.0 mol / liter was used. The high temperature storage characteristics were evaluated. The evaluation results are shown in Table 1.

(実施例4)
実施例1の電解液において、テトラアセチルエチレンジアミン(前記化合物A6)に代えて、テトラキス(トリフルオロアセチル)エチレンジアミン(前記化合物A8)を使用した以外、実施例1と同様にしてシート状リチウム二次電池を作製し、高温保存特性の評価を行った。評価結果を表1に示す。
Example 4
In the electrolytic solution of Example 1, a sheet-like lithium secondary battery was obtained in the same manner as in Example 1 except that tetrakis (trifluoroacetyl) ethylenediamine (the compound A8) was used instead of tetraacetylethylenediamine (the compound A6). And the high temperature storage characteristics were evaluated. The evaluation results are shown in Table 1.

(比較例1)
エチレンカーボネートとジメチルカーボネートとエチルメチルカーボネートの混合物(容量比20:40:40)に、非水系電解液中の含有量としてビニレンカーボネート2質量部を混合した。次いで十分に乾燥したLiPF6を1.0モル/リットルの含有割合となるように溶解して調製した電解液を使用した以外、実施例1と同様にしてシート状リチウム二次電池を作製し、高温保存特性の評価を行った。評価結果を表1に示す。
(Comparative Example 1)
To a mixture of ethylene carbonate, dimethyl carbonate and ethyl methyl carbonate (capacity ratio 20:40:40), 2 parts by mass of vinylene carbonate was mixed as the content in the non-aqueous electrolyte. Subsequently, a sheet-like lithium secondary battery was produced in the same manner as in Example 1 except that an electrolyte prepared by dissolving LiPF 6 sufficiently dried to a content ratio of 1.0 mol / liter was used. The high temperature storage characteristics were evaluated. The evaluation results are shown in Table 1.

(比較例2)
実施例1の電解液において、テトラアセチルエチレンジアミン(前記化合物A6)に代えて、テトラメチルエチレンジアミンを使用した以外、実施例1と同様にしてシート状リチウム二次電池を作製し、高温保存特性の評価を行った。評価結果を表1に示す。
(Comparative Example 2)
A sheet-like lithium secondary battery was prepared in the same manner as in Example 1 except that tetramethylethylenediamine was used instead of tetraacetylethylenediamine (compound A6) in the electrolytic solution of Example 1, and evaluation of high-temperature storage characteristics was made. Went. The evaluation results are shown in Table 1.

Figure 2010232173
表1から明らかなように、本発明に係る電池は、高温保存後のガス発生量が少なく、高温保存後の残存容量、回復容量に優れていることがわかる。
Figure 2010232173
As is apparent from Table 1, the battery according to the present invention has a small amount of gas generated after high-temperature storage and is excellent in remaining capacity and recovery capacity after high-temperature storage.

本発明によれば、高容量で、保存特性に優れた非水系電解液電池を提供することができ、非水系電解液電池の小型化、高性能化を達成することができる。   According to the present invention, a non-aqueous electrolyte battery having a high capacity and excellent storage characteristics can be provided, and the non-aqueous electrolyte battery can be reduced in size and performance.

Claims (4)

電解質及びこれを溶解する非水溶媒を含む非水系電解液において、該非水系電解液が、下記一般式(1)で表される化合物を1種あるいは2種以上含有していることを特徴とする非水系電解液。
Figure 2010232173
(一般式(1)中、R〜Rはそれぞれ独立して、フッ素原子で置換されていてもよい、炭素数1〜12のアルキル基、炭素数2〜12のアルケニル基、炭素数6〜12のアリール基、又は炭素数7〜12のアラルキル基を示し、Xはフッ素原子で置換されていてもよい炭素数1〜12の2価の連結基を表す。)
In a non-aqueous electrolyte solution containing an electrolyte and a non-aqueous solvent that dissolves the electrolyte, the non-aqueous electrolyte solution contains one or more compounds represented by the following general formula (1). Non-aqueous electrolyte.
Figure 2010232173
(In General Formula (1), R 1 to R 4 are each independently an alkyl group having 1 to 12 carbon atoms, an alkenyl group having 2 to 12 carbon atoms, and 6 carbon atoms that may be substituted with a fluorine atom. A -12 aryl group or a C7-12 aralkyl group, X represents a C1-C12 divalent linking group optionally substituted with a fluorine atom.)
炭素−炭素不飽和結合を有する環状カーボネート化合物、フッ素原子を有する環状カーボネート化合物、モノフルオロリン酸塩およびジフルオロリン酸塩からなる群から選ばれる少なくとも一種の化合物を含有していることを特徴とする請求項1に記載の非水系電解液。   It contains at least one compound selected from the group consisting of a cyclic carbonate compound having a carbon-carbon unsaturated bond, a cyclic carbonate compound having a fluorine atom, a monofluorophosphate and a difluorophosphate. The non-aqueous electrolyte solution according to claim 1. 炭素−炭素不飽和結合を有する環状カーボネート化合物が、非水系電解液中に0.01質量%以上8質量%以下の割合で含まれていることを特徴とする請求項1または2に記載の非水系電解液。   3. The non-carbon electrolyte compound having a carbon-carbon unsaturated bond is contained in the nonaqueous electrolytic solution in a proportion of 0.01% by mass or more and 8% by mass or less. Aqueous electrolyte. リチウムイオンを吸蔵・放出可能な負極及び正極、並びに非水系電解液を含む非水系電解液電池であって、該非水系電解液が請求項1ないし3のいずれか1項に記載の非水系電解液であることを特徴とする非水系電解液電池。   4. A non-aqueous electrolyte battery comprising a negative electrode and a positive electrode capable of inserting and extracting lithium ions, and a non-aqueous electrolyte solution, wherein the non-aqueous electrolyte solution is a non-aqueous electrolyte solution according to claim 1. A non-aqueous electrolyte battery characterized by the above.
JP2010049587A 2009-03-06 2010-03-05 Non-aqueous electrolyte and non-aqueous electrolyte battery Active JP5348024B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010049587A JP5348024B2 (en) 2009-03-06 2010-03-05 Non-aqueous electrolyte and non-aqueous electrolyte battery

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2009052897 2009-03-06
JP2009052897 2009-03-06
JP2010049587A JP5348024B2 (en) 2009-03-06 2010-03-05 Non-aqueous electrolyte and non-aqueous electrolyte battery

Publications (2)

Publication Number Publication Date
JP2010232173A true JP2010232173A (en) 2010-10-14
JP5348024B2 JP5348024B2 (en) 2013-11-20

Family

ID=43047785

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010049587A Active JP5348024B2 (en) 2009-03-06 2010-03-05 Non-aqueous electrolyte and non-aqueous electrolyte battery

Country Status (1)

Country Link
JP (1) JP5348024B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012160316A (en) * 2011-01-31 2012-08-23 Mitsubishi Chemicals Corp Nonaqueous electrolyte and battery including the same
JP2013008599A (en) * 2011-06-24 2013-01-10 Sharp Corp Nonaqueous electrolyte and lithium ion rechargeable battery
JP2014002976A (en) * 2012-06-20 2014-01-09 Mitsubishi Chemicals Corp Nonaqueous electrolyte and nonaqueous electrolyte battery including the same
JP2016105373A (en) * 2014-12-01 2016-06-09 トヨタ自動車株式会社 Nonaqueous electrolyte secondary battery
CN113851712A (en) * 2021-08-26 2021-12-28 合肥国轩高科动力能源有限公司 High-voltage lithium ion battery electrolyte and lithium ion battery

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08236155A (en) * 1995-02-27 1996-09-13 Sanyo Electric Co Ltd Lithium secondary battery
JPH11195430A (en) * 1998-01-06 1999-07-21 Fuji Photo Film Co Ltd Nonaqueous electrolyte secondary battery
JP2001167790A (en) * 1999-12-09 2001-06-22 Tonen Chem Corp Nonaqueous electrolyte and nonaqueous electrolyte cell containing the same
JP2005251556A (en) * 2004-03-04 2005-09-15 Mitsubishi Chemicals Corp Non-aqueous electrolytic solution for lithium secondary battery and lithium secondary battery using it
WO2007041113A1 (en) * 2005-10-05 2007-04-12 Medtronic, Inc Lithium-ion battery
WO2007091817A1 (en) * 2006-02-06 2007-08-16 Hee Jung Kim Anion receptor, and electrolyte using the same
JP2007227395A (en) * 2007-04-10 2007-09-06 Ube Ind Ltd Nonaqueous electrolyte for secondary battery

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08236155A (en) * 1995-02-27 1996-09-13 Sanyo Electric Co Ltd Lithium secondary battery
JPH11195430A (en) * 1998-01-06 1999-07-21 Fuji Photo Film Co Ltd Nonaqueous electrolyte secondary battery
JP2001167790A (en) * 1999-12-09 2001-06-22 Tonen Chem Corp Nonaqueous electrolyte and nonaqueous electrolyte cell containing the same
JP2005251556A (en) * 2004-03-04 2005-09-15 Mitsubishi Chemicals Corp Non-aqueous electrolytic solution for lithium secondary battery and lithium secondary battery using it
WO2007041113A1 (en) * 2005-10-05 2007-04-12 Medtronic, Inc Lithium-ion battery
WO2007091817A1 (en) * 2006-02-06 2007-08-16 Hee Jung Kim Anion receptor, and electrolyte using the same
JP2007227395A (en) * 2007-04-10 2007-09-06 Ube Ind Ltd Nonaqueous electrolyte for secondary battery

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012160316A (en) * 2011-01-31 2012-08-23 Mitsubishi Chemicals Corp Nonaqueous electrolyte and battery including the same
JP2013008599A (en) * 2011-06-24 2013-01-10 Sharp Corp Nonaqueous electrolyte and lithium ion rechargeable battery
JP2014002976A (en) * 2012-06-20 2014-01-09 Mitsubishi Chemicals Corp Nonaqueous electrolyte and nonaqueous electrolyte battery including the same
JP2016105373A (en) * 2014-12-01 2016-06-09 トヨタ自動車株式会社 Nonaqueous electrolyte secondary battery
CN113851712A (en) * 2021-08-26 2021-12-28 合肥国轩高科动力能源有限公司 High-voltage lithium ion battery electrolyte and lithium ion battery

Also Published As

Publication number Publication date
JP5348024B2 (en) 2013-11-20

Similar Documents

Publication Publication Date Title
JP5223395B2 (en) Non-aqueous electrolyte solution for non-aqueous electrolyte battery and non-aqueous electrolyte battery
JP5338151B2 (en) Non-aqueous electrolyte and non-aqueous electrolyte battery
JP5217200B2 (en) Non-aqueous electrolyte and non-aqueous electrolyte battery
JP5589264B2 (en) Non-aqueous electrolyte and non-aqueous electrolyte battery
JP5817797B2 (en) Non-aqueous electrolyte and non-aqueous electrolyte battery
JP5169091B2 (en) Non-aqueous electrolyte and non-aqueous electrolyte battery
JP5471616B2 (en) Non-aqueous electrolyte and non-aqueous electrolyte secondary battery using the same
JP5565212B2 (en) Non-aqueous electrolyte and non-aqueous electrolyte battery using the same
JP5499542B2 (en) Non-aqueous electrolyte and non-aqueous electrolyte battery
JP6107814B2 (en) Non-aqueous electrolyte and non-aqueous electrolyte battery
JP5348024B2 (en) Non-aqueous electrolyte and non-aqueous electrolyte battery
JP6064357B2 (en) Non-aqueous electrolyte and non-aqueous electrolyte battery using the same
JP5978796B2 (en) Non-aqueous electrolyte and non-aqueous electrolyte battery using the same
JP5568853B2 (en) Non-aqueous electrolyte and non-aqueous electrolyte battery
JP2008262902A (en) Non-aqueous electrolytic solution and non-aqueous electrolytic solution battery
JP5103765B2 (en) Non-aqueous electrolyte and non-aqueous electrolyte battery
JP5103766B2 (en) Non-aqueous electrolyte and non-aqueous electrolyte battery
JP5251174B2 (en) Non-aqueous electrolyte and non-aqueous electrolyte battery
JP5098240B2 (en) Non-aqueous electrolyte and non-aqueous electrolyte battery
JP5651931B2 (en) Nonaqueous electrolyte for battery and nonaqueous electrolyte battery
JP5842952B2 (en) Non-aqueous electrolyte and non-aqueous electrolyte battery
JP6024387B2 (en) Non-aqueous electrolyte and non-aqueous electrolyte battery using the same
JP5223258B2 (en) Non-aqueous electrolyte for non-aqueous electrolyte secondary battery and non-aqueous electrolyte battery
JP2014089991A (en) Nonaqueous electrolyte and nonaqueous electrolyte battery
JP2012038716A (en) Nonaqueous electrolyte and nonaqueous electrolyte battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130228

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130507

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130625

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130723

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130805

R150 Certificate of patent or registration of utility model

Ref document number: 5348024

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313121

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350