JP2010232161A - Negative electrode material for lithium secondary battery, and method of manufacturing the same - Google Patents

Negative electrode material for lithium secondary battery, and method of manufacturing the same Download PDF

Info

Publication number
JP2010232161A
JP2010232161A JP2009269906A JP2009269906A JP2010232161A JP 2010232161 A JP2010232161 A JP 2010232161A JP 2009269906 A JP2009269906 A JP 2009269906A JP 2009269906 A JP2009269906 A JP 2009269906A JP 2010232161 A JP2010232161 A JP 2010232161A
Authority
JP
Japan
Prior art keywords
component
metal
negative electrode
composite powder
electrode material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009269906A
Other languages
Japanese (ja)
Other versions
JP5516860B2 (en
Inventor
Tetsuo Sakai
哲男 境
Hitoshi Wada
仁 和田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fukuda Metal Foil and Powder Co Ltd
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Fukuda Metal Foil and Powder Co Ltd
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fukuda Metal Foil and Powder Co Ltd, National Institute of Advanced Industrial Science and Technology AIST filed Critical Fukuda Metal Foil and Powder Co Ltd
Priority to JP2009269906A priority Critical patent/JP5516860B2/en
Publication of JP2010232161A publication Critical patent/JP2010232161A/en
Application granted granted Critical
Publication of JP5516860B2 publication Critical patent/JP5516860B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a negative electrode material for a lithium secondary battery easy to manufacture compared with a conventional technology, and capable of imparting superior cycle characteristics while maintaining a high discharge capacity. <P>SOLUTION: The negative electrode material for the lithium secondary battery composed of composite powder satisfies the following conditions (1) to (4): (1) the composite powder is composed of A component of a metal such as Cu, B component composed of at least one selected from SnO and SnO<SB>2</SB>and at least one selected from CuO and Cu<SB>2</SB>O, Sn metal, carbon material, and alloy of the A component and Sn metal; (2) the proportion of the A component and Sn metal in the whole composite powder is A component of 30 to 70 atom% and Sn metal of 70 to 30 atom% based on the total amount of both as 100 atom%; (3) the proportion of the total of the A component and Sn metal, the B component, and the carbon material is the total 20 to 95 mass% of the A component and Sn metal, the B component of 5 to 80 mass%, and the carbon material of 0 to 20 mass% based on the total amount of them as 100 mass%; and (4) the primary particle diameter of 10% or more of the numbers is 1 μm or less, and the average secondary particle diameter of the numbers of 10% or more is within a range of 1 μm to 10 μm. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、リチウム二次電池用負極材料及びその製造方法に関する。   The present invention relates to a negative electrode material for a lithium secondary battery and a method for producing the same.

リチウムイオン電池、リチウムポリマー電池等のリチウム二次電池は、高いエネルギー密度を有するものであり、近年、移動体通信機器、携帯用電子機器等の主電源としての利用が拡大している。   Lithium secondary batteries such as lithium ion batteries and lithium polymer batteries have a high energy density, and in recent years, their use as main power sources for mobile communication devices, portable electronic devices, and the like is expanding.

このリチウム二次電池の負極としては、黒鉛、結晶化度の低い炭素等の各種炭素材料が広く用いられている。しかしながら、炭素材料からなる電極は、使用可能な電流密度が低く、理論容量も不十分である。例えば、炭素材料のひとつである黒鉛は、理論容量が372mAh/gに過ぎないため、より一層の高容量化が望まれている。   As the negative electrode of this lithium secondary battery, various carbon materials such as graphite and carbon having a low crystallinity are widely used. However, an electrode made of a carbon material has a low usable current density and an insufficient theoretical capacity. For example, graphite, which is one of the carbon materials, has a theoretical capacity of only 372 mAh / g, and therefore a higher capacity is desired.

リチウム金属をリチウム二次電池の負極材料とする場合には、高い理論容量が得られるが、充電時に負極にデンドライトが析出し、充放電を繰り返すことによって正極側に達して、内部短絡の現象が起こるというという大きな欠点がある。その上、析出したデンドライトは、比表面積が大きいために反応活性度が高く、その表面で電子伝導性のない溶媒の分解生成物からなる界面被膜が形成され、これにより電池の内部抵抗が高くなって充放電効率の低下を生じる。このような理由により、リチウム金属(以後Liと記載する。)を用いるリチウム二次電池は、信頼性が低く、サイクル寿命が短いという欠点があり、広く実用化される段階には達していない(特許文献1)。   When lithium metal is used as a negative electrode material for a lithium secondary battery, a high theoretical capacity can be obtained, but dendrites are deposited on the negative electrode during charging, reaching the positive electrode side by repeated charge and discharge, and the phenomenon of internal short circuit is observed. There is a big drawback that it happens. In addition, the deposited dendrites have high reaction activity due to their large specific surface area, and an interfacial film consisting of decomposition products of solvents having no electron conductivity is formed on the surface, thereby increasing the internal resistance of the battery. As a result, the charge / discharge efficiency decreases. For these reasons, lithium secondary batteries using lithium metal (hereinafter referred to as Li) have the disadvantages of low reliability and short cycle life, and have not yet reached a stage where they are widely put into practical use ( Patent Document 1).

このような背景から、汎用の炭素材料よりも放電容量の大きい物質であって、Li以外の材料からなる負極材料が望まれている。例えば、錫、珪素などの元素、これらの窒化物、酸化物等は、Liと合金を形成することによってLiを吸蔵することができ、その吸蔵量は炭素よりはるかに大きい値を示すことが知られており、これらの物質を含む各種の合金負極が提案されている。   From such a background, a negative electrode material which is a substance having a discharge capacity larger than that of a general-purpose carbon material and made of a material other than Li is desired. For example, it is known that elements such as tin and silicon, nitrides and oxides thereof can occlude Li by forming an alloy with Li, and the occlusion amount is much larger than that of carbon. Various alloy negative electrodes containing these substances have been proposed.

例えば、特許文献2には、Li複合錫酸化物を負極、遷移金属複合酸化物を正極とする非水電解質二次電池が提案されている。また、特許文献3には、錫合金とLi含有窒化物との混合負極が提案されている。さらに、特許文献4には、LixSnOを負極、金属Liを正極とする非水電解質二次電池が提案されている。   For example, Patent Document 2 proposes a non-aqueous electrolyte secondary battery using a Li composite tin oxide as a negative electrode and a transition metal composite oxide as a positive electrode. Patent Document 3 proposes a mixed negative electrode of a tin alloy and a Li-containing nitride. Further, Patent Document 4 proposes a non-aqueous electrolyte secondary battery using LixSnO as a negative electrode and metal Li as a positive electrode.

しかしながら、これらの物質を負極材料とする場合には、充放電のサイクルを繰り返すうちに、Liの吸蔵・放出に伴って大きな膨張・収縮が生じ、電極そのものが瓦解することがある。   However, when these materials are used as the negative electrode material, as the charge / discharge cycle is repeated, large expansion / contraction occurs due to insertion / extraction of Li, and the electrode itself may collapse.

その対策として、Liを吸蔵・放出しやすい金属と、吸蔵・放出を行わない金属とからなる合金を負極材料とすることが試みられている。この様な合金によれば、Liの吸蔵・放出を行わない金属が存在することによって、膨潤、微細化を抑制することが可能になると考えることができ、各種の合金が提案されている。   As a countermeasure, an attempt has been made to use an alloy composed of a metal that easily stores and releases Li and a metal that does not store and release Li as a negative electrode material. According to such an alloy, it can be considered that the presence of a metal that does not occlude and release Li makes it possible to suppress swelling and miniaturization, and various alloys have been proposed.

特許文献5には、例えば、急冷凝固させた組織を有する合金が開示されている。また、特許文献6には、A相とB相のどちらか一方の相が他方の相のマトリックス中に平均粒子径0.05〜20μmの島状に分散した構造の合金が開示されている。   For example, Patent Literature 5 discloses an alloy having a rapidly solidified structure. Patent Document 6 discloses an alloy having a structure in which one of the A phase and the B phase is dispersed in an island shape having an average particle diameter of 0.05 to 20 μm in the matrix of the other phase.

しかしながら、これらの合金材料についても、大きな初期放電容量は得られるものの、充放電を繰り返すうちに膨張、微細化することは避けられず、放電容量の低下を十分に抑制できる段階には達していない。   However, even with these alloy materials, although a large initial discharge capacity can be obtained, expansion and miniaturization are unavoidable while charging and discharging are repeated, and the stage has not yet reached a stage where the reduction in discharge capacity can be sufficiently suppressed. .

特開平10−302741号公報Japanese Patent Laid-Open No. 10-302741 特開平7−201318号公報Japanese Patent Laid-Open No. 7-201318 特開2001−52699公報JP 2001-52699 A 特開平6−275268号公報JP-A-6-275268 特開2001−297757号公報JP 2001-297757 A 特開2001−93524号公報JP 2001-93524 A

本発明は、上記従来技術の現状に鑑みてなされたものであり、その主な目的は、高い放電容量を維持しつつ、優れたサイクル特性を発揮できるリチウム二次電池用負極材料を提供することにある。   The present invention has been made in view of the current state of the prior art, and its main object is to provide a negative electrode material for a lithium secondary battery that can exhibit excellent cycle characteristics while maintaining a high discharge capacity. It is in.

本発明者は、上記した従来技術の現状に留意しつつ鋭意研究を重ねてきた。その結果、Liを吸蔵しない金属、Liを吸蔵するSn金属やSnやCuの酸化物、及び必要に応じて炭素材料を含むマイクロメーター(μm)オーダー以下の一次粒子径を有する複合粉末をリチウム二次電池の負極材料とする場合には、Liの吸蔵・放出に伴う膨張及び収縮が緩和されて、電極の劣化を防止できることを見出し、ここに本発明を完成するに至った。   The inventor has conducted extensive research while paying attention to the current state of the prior art. As a result, a composite powder having a primary particle size of the order of micrometer (μm) or less containing a metal that does not occlude Li, an Sn metal that occludes Li, an oxide of Sn or Cu, and, if necessary, a carbon material is obtained. In the case of a negative electrode material for a secondary battery, it has been found that expansion and contraction associated with insertion and extraction of Li can be mitigated to prevent electrode deterioration, and the present invention has been completed here.

即ち、本発明は、下記のリチウム二次電池用負極材料及びその製造方法を提供するものである。   That is, this invention provides the following negative electrode material for lithium secondary batteries, and its manufacturing method.

項1. 下記(1)〜(4)の条件を満足する複合粉末からなるリチウム二次電池用負極材料:
(1)該複合粉末が、(i) Mg、Al、Ca、Ti、V、Cr、Mn、Fe、Co、Ni、Cu、Zn、Ge、Y、Zr、Nb、Mo、Pd、Ag、In、Sb、Hf、Ta、W、Bi及び希土類元素からなる群から選ばれた少なくとも一種の金属であるA成分、(ii) SnO及びSnOから選ばれた少なくとも一種と、CuO及びCuOから選ばれた少なくとも一種とからなるB成分、(iii) Sn金属、(iv) A成分とSn金属との合金、並びに(v) 必要に応じて炭素材料からなるものであること、
(2)該複合粉末全体におけるA成分とSn金属の割合が、両者の合計量を100原子%として、A成分30〜70原子%とSn金属70〜30原子%であること、
(3)A成分とSn金属の合計、B成分、及び炭素材料の割合が、これらの合計量を100mass%として、A成分とSn金属の合計20〜95mass%、B成分5〜80mass%、炭素材料0〜20mass%であること、
(4)10%以上の個数の一次粒子径が1μm以下、10%以上の個数の平均二次粒子径が1μm〜10μmの範囲内にあること。
項2. 前記複合粉末全体中の各成分の組成比が、Snが40〜60原子%、A成分が7〜55原子%、Oが3〜43原子%である項1に記載のリチウム二次電池用負極材料。
項3.(i) Mg、Al、Ca、Ti、V、Cr、Mn、Fe、Co、Ni、Cu、Zn、Ge、Y、Zr、Nb、Mo、Pd、Ag、In、Sb、Hf、Ta、W、Bi及び希土類元素からなる群から選ばれた少なくとも一種の金属であるA成分、(ii) SnO及びSnOから選ばれた少なくとも一種と、CuO及びCuOから選ばれた少なくとも一種とからなるB成分、(iii) Sn金属、並びに(iv) 必要に応じて炭素材料からなる原料物質を混合し、メカニカルアロイング処理を行って複合粉末を形成することを特徴とする項1又は2に記載のリチウム二次電池用負極材料の製造方法。
項4. (i) Mg、Al、Ca、Ti、V、Cr、Mn、Fe、Co、Ni、Cu、Zn、Ge、Y、Zr、Nb、Mo、Pd、Ag、In、Sb、Hf、Ta、W、Bi及び希土類元素からなる群から選ばれた少なくとも一種の金属であるA成分、並びに(ii) SnO及びSnOから選ばれた少なくとも一種と、CuO及びCuOから選ばれた少なくとも一種とからなるB成分、並びに(iv) 必要に応じて炭素材料からなる原料物質を混合し、メカニカルアロイング処理を行って複合粉末を形成する工程を有することを特徴とする項1又は2に記載のリチウム二次電池用負極材料の製造方法。
項5. A成分、Sn金属及び前記B成分の合計量を100mass%として、A成分及びSn金属の割合が20〜95mass%、B成分の割合が5〜80mass%である項3又は4に記載のリチウム二次電池用負極材料の製造方法。
項6. 前記A成分の粉末及びSn金属の粉末を均一に混合し、130〜200℃の温度範囲で部分的に合金化した複合粉末を形成する工程、該工程で得られた複合粉末を酸素雰囲気下、200℃以上の温度で酸化する工程を有する項1又は2に記載のリチウム二次電池用負極材料の製造方法。
項7. 前記A成分の粉末、Sn金属の粉末を均一に混合し、メカニカルアロイング処理を行って部分的に合金化した複合粉末を形成する工程、該工程で得られた複合粉末を酸素雰囲気下、300℃以上の温度で酸化する工程を有する項1又は2に記載のリチウム二次電池用負極材料の製造方法。
項8. 項1又は2に記載の二次電池用負極材料を搭載したリチウム二次電池であって、初充電を経た後の該負極材料がLixAySn型中間化合物(但し、Aは前記A成分を示し、0<x、y≦2である)を含むリチウム二次電池。
Item 1. Negative electrode material for lithium secondary battery comprising composite powder satisfying the following conditions (1) to (4):
(1) The composite powder is (i) Mg, Al, Ca, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Ge, Y, Zr, Nb, Mo, Pd, Ag, In A component which is at least one metal selected from the group consisting of Sb, Hf, Ta, W, Bi and rare earth elements, (ii) at least one selected from SnO and SnO 2 , and CuO and Cu 2 O A component B consisting of at least one selected from (iii) Sn metal, (iv) an alloy of A component and Sn metal, and (v) a carbon material as required,
(2) The ratio of the A component and the Sn metal in the entire composite powder is 30 to 70 atomic percent of the A component and 70 to 30 atomic percent of the Sn metal, with the total amount of both being 100 atomic percent.
(3) The sum of the A component and the Sn metal, the ratio of the B component, and the carbon material, the total amount of which is 100 mass%, the total of the A component and the Sn metal is 20 to 95 mass%, the B component is 5 to 80 mass%, carbon The material is 0-20 mass%,
(4) The primary particle diameter of 10% or more is 1 μm or less, and the average secondary particle diameter of 10% or more is in the range of 1 μm to 10 μm.
Item 2. Item 2. The negative electrode for a lithium secondary battery according to Item 1, wherein the composition ratio of each component in the whole composite powder is Sn 60 to 60 atomic%, A component 7 to 55 atomic%, and O 3 to 43 atomic%. material.
Item 3. (i) Mg, Al, Ca, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Ge, Y, Zr, Nb, Mo, Pd, Ag, In, Sb, Hf, Ta, W , of Bi, and component a is at least one metal selected from the group consisting of rare earth elements, at least one selected from (ii) SnO and SnO 2, and at least one selected from CuO and Cu 2 O Item 1 or 2, wherein a composite powder is formed by mixing a component B, (iii) Sn metal, and (iv) a raw material made of a carbon material if necessary, and performing mechanical alloying treatment. Manufacturing method of negative electrode material for lithium secondary battery.
Item 4. (i) Mg, Al, Ca, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Ge, Y, Zr, Nb, Mo, Pd, Ag, In, Sb, Hf, Ta, W A component which is at least one metal selected from the group consisting of Bi, rare earth elements, and (ii) at least one selected from SnO and SnO 2 and at least one selected from CuO and Cu 2 O Item (1) or (2), comprising a step of mixing a component B and (iv) a raw material material made of a carbon material as necessary and performing a mechanical alloying treatment to form a composite powder. A method for producing a negative electrode material for a secondary battery.
Item 5. Item 5 or 5 wherein the total amount of the A component, the Sn metal, and the B component is 100 mass%, the ratio of the A component and the Sn metal is 20 to 95 mass%, and the ratio of the B component is 5 to 80 mass%. A method for producing a negative electrode material for a secondary battery.
Item 6. A step of uniformly mixing the powder of the component A and the powder of Sn metal to form a composite powder partially alloyed in a temperature range of 130 to 200 ° C., and the composite powder obtained in the step under an oxygen atmosphere. Item 3. The method for producing a negative electrode material for a lithium secondary battery according to Item 1 or 2, comprising a step of oxidizing at a temperature of 200 ° C or higher.
Item 7. A step of uniformly mixing the powder of the component A and the powder of Sn metal and performing a mechanical alloying process to form a partially alloyed composite powder. The composite powder obtained in the step is 300 in an oxygen atmosphere. Item 3. The method for producing a negative electrode material for a lithium secondary battery according to Item 1 or 2, further comprising a step of oxidizing at a temperature of at least ° C.
Item 8. A lithium secondary battery including the secondary battery negative electrode material according to Item 1 or 2, wherein the negative electrode material after initial charge is a LixAySn type intermediate compound (where A represents the A component, and 0 <X, y ≦ 2).

本発明のリチウム二次電池用負極材料は、下記(1)〜(4)の条件を満足する複合粉末である。
(1)該複合粉末が、(i) Mg、Al、Ca、Ti、V、Cr、Mn、Fe、Co、Ni、Cu、Zn、Ge、Y、Zr、Nb、Mo、Pd、Ag、In、Sb、Hf、Ta、W、Bi及び希土類元素からなる群から選ばれた少なくとも一種の金属であるA成分、(ii) SnO及びSnOから選ばれた少なくとも一種と、CuO及びCuOから選ばれた少なくとも一種とからなるB成分、(iii) Sn金属、(iv) A成分とSn金属との合金、並びに(v) 必要に応じて炭素材料からなるものであること、
(2)該複合粉末全体におけるA成分とSn金属の割合が、両者の合計量を100原子%として、A成分30〜70原子%とSn金属70〜30原子%であること、
(3)A成分とSn金属の合計、B成分、及び炭素材料の割合が、これらの合計量を100mass%として、A成分とSn金属の合計20〜95mass%、B成分5〜80mass%、炭素材料0〜20mass%であること、
(4)10%以上の個数の一次粒子径が1μm以下、10%以上の個数の平均二次粒子径が1μm〜10μmの範囲内にあること。
The negative electrode material for a lithium secondary battery of the present invention is a composite powder that satisfies the following conditions (1) to (4).
(1) The composite powder is (i) Mg, Al, Ca, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Ge, Y, Zr, Nb, Mo, Pd, Ag, In A component which is at least one metal selected from the group consisting of Sb, Hf, Ta, W, Bi and rare earth elements, (ii) at least one selected from SnO and SnO 2 , and CuO and Cu 2 O A component B consisting of at least one selected from (iii) Sn metal, (iv) an alloy of A component and Sn metal, and (v) a carbon material as required,
(2) The ratio of the A component and the Sn metal in the entire composite powder is 30 to 70 atomic percent of the A component and 70 to 30 atomic percent of the Sn metal, with the total amount of both being 100 atomic percent.
(3) The sum of the A component and the Sn metal, the ratio of the B component, and the carbon material, the total amount of which is 100 mass%, the total of the A component and the Sn metal is 20 to 95 mass%, the B component is 5 to 80 mass%, carbon The material is 0-20 mass%,
(4) The primary particle diameter of 10% or more is 1 μm or less, and the average secondary particle diameter of 10% or more is in the range of 1 μm to 10 μm.

以下、本発明のリチウム二次電池用負極材料として使用される複合粉末について詳述する。   Hereinafter, the composite powder used as the negative electrode material for the lithium secondary battery of the present invention will be described in detail.

本発明の複合粉末に含まれるA成分は、Mg、Al、Ca、Ti、V、Cr、Mn、Fe、Co、Ni、Cu、Zn、Ge、Y、Zr、Nb、Mo、Pd、Ag、In、Sb、Hf、Ta、W、Bi及び希土類元素からなる群から選ばれた少なくとも一種の金属である。   A component contained in the composite powder of the present invention includes Mg, Al, Ca, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Ge, Y, Zr, Nb, Mo, Pd, Ag, It is at least one metal selected from the group consisting of In, Sb, Hf, Ta, W, Bi and rare earth elements.

該A成分の希土類元素としては、La、Ce、Pr、Nd、Pm、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb、Lu等を例示できる。   Examples of the rare earth element of component A include La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, and Lu.

本発明の複合粉末においては、A成分は、Mg、Al、Ca、Ti、V、Cr、Mn、Fe、Co、Ni、Cu、Zn、Ge、Y、Zr、Nb、Mo、Pd、Ag、In、Sb、Hf、Ta、W、Bi及び希土類元素からなる群から選ばれた少なくとも一種の金属が好ましく、Fe、Co、Ni、Cu、Zn、Ge、Ag及びSbからなる群から選ばれた少なくとも一種の金属がより好ましい。A成分を2種以上使用する場合、特に好ましいA成分同士の組合せは、例えば、Cu−Co、Cu−Ni、Cu−Zn、Cu−Ge、Cu−Ag、Cu−Sb、Ag−Ti、Ag−Fe、Ag−Co、Ag−Ni、Ag−Ge、Ag−Sb、Ge−Sb等の各組合せが挙げられる。   In the composite powder of the present invention, the A component is Mg, Al, Ca, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Ge, Y, Zr, Nb, Mo, Pd, Ag, At least one metal selected from the group consisting of In, Sb, Hf, Ta, W, Bi and rare earth elements is preferred, and selected from the group consisting of Fe, Co, Ni, Cu, Zn, Ge, Ag and Sb. At least one metal is more preferred. When two or more A components are used, particularly preferred combinations of the A components include, for example, Cu—Co, Cu—Ni, Cu—Zn, Cu—Ge, Cu—Ag, Cu—Sb, Ag—Ti, Ag. Each combination of -Fe, Ag-Co, Ag-Ni, Ag-Ge, Ag-Sb, Ge-Sb and the like can be mentioned.

本発明において、B成分は、SnO及びSnOから選ばれた少なくとも一種と、CuO及びCuOから選ばれた少なくとも一種とからなる。すなわち、B成分は、Sn酸化物とCu酸化物の両成分からなる。 In the present invention, the component B is composed of at least one selected from SnO and SnO 2 and at least one selected from CuO and Cu 2 O. That is, B component consists of both components of Sn oxide and Cu oxide.

該複合粉末全体量中のB成分の割合が、約50mass%以下である場合には、B成分は複合粉末全体に分布、分散し、約50mass%以上の場合は、B成分は複合粉末中の主成分となり、基地として存在する。   When the proportion of the B component in the total amount of the composite powder is about 50 mass% or less, the B component is distributed and dispersed throughout the composite powder. When the proportion is about 50 mass% or more, the B component is contained in the composite powder. It becomes the main component and exists as a base.

本発明において、前記複合粉末中のSnCuO成分系では、SnとCuとOが複合したSn-Cu-O系酸化物が存在すると考えられる。複合粉末は、1回目の充電でLiを吸蔵して、LiCuOとSnに分相する。LiCuO相は、Liに対しておよそ2V以上の高電位になるとLiを放出し可逆性を示す。一方、1V程度の電位ではLiCuO相は不可逆成分となり、以後の充放電反応に関与せず、複合粉末中に骨格として存在し、充放電反応に関与するSnやLi中間化合物が体積変化をしても、複合粉末全体としての体積変化を効果的に抑制できる。分相したSnは、更にLiを吸蔵していくとLiSn系相になり、可逆的な容量成分相になる。一部存在するCu酸化物も、Liを吸蔵して、LiCuO相になる。また、一部存在するSn酸化物相は、1回目の充電でLiを吸蔵して、SnとLiO相に分相する。このLiO相も不可逆成分であり、複合粉末中に骨格として存在し、充放電反応に関与するSnやLi中間化合物が体積変化をしても、複合粉末全体としての体積変化を効果的に抑制できる。このときのLiO相はイオン伝導性に優れる。A成分は主に金属成分であり、電気伝導性に優れる。よって、本発明の複合粉末の充放電過程では、イオン伝導性と電気伝導性の両方の点で優れた伝導性が得られる。分相したSnは、更にLiを吸蔵していくとLiSn系相になり、可逆的な容量成分相になる。以上から、本発明の複合粉末は、SnやLi中間化合物のもつ可逆的な電気容量と、LiCuO相や一部LiO相のもつ不可逆成分の骨格構造をもつことで、高容量でサイクル寿命に優れた特性を示す。 In the present invention, in the SnCuO component system in the composite powder, it is considered that Sn—Cu—O system oxide in which Sn, Cu and O are combined exists. The composite powder occludes Li in the first charge, and phase-divides into Li 2 CuO and Sn. The Li 2 CuO phase releases Li and exhibits reversibility when it reaches a high potential of about 2 V or more with respect to Li. On the other hand, at a potential of about 1 V, the Li 2 CuO phase becomes an irreversible component, does not participate in the subsequent charge / discharge reaction, exists as a skeleton in the composite powder, and Sn and Li intermediate compounds involved in the charge / discharge reaction change in volume. Even so, the volume change of the composite powder as a whole can be effectively suppressed. The phase-separated Sn becomes a LiSn-based phase when Li is further occluded, and becomes a reversible capacitive component phase. Some Cu oxides also occlude Li and become a Li 2 CuO phase. In addition, a part of the Sn oxide phase that is present occludes Li in the first charge and separates into a Sn and Li 2 O phase. This Li 2 O phase is also an irreversible component, exists as a skeleton in the composite powder, and effectively changes the volume of the composite powder as a whole even if the Sn or Li intermediate compound involved in the charge / discharge reaction undergoes a volume change. Can be suppressed. The Li 2 O phase at this time is excellent in ionic conductivity. A component is mainly a metal component and is excellent in electrical conductivity. Therefore, in the charge / discharge process of the composite powder of the present invention, excellent conductivity is obtained in terms of both ion conductivity and electrical conductivity. The phase-separated Sn becomes a LiSn-based phase when Li is further occluded, and becomes a reversible capacitive component phase. From the above, the composite powder of the present invention has a high capacity by having a reversible electric capacity possessed by Sn or Li intermediate compound and a skeletal structure of an irreversible component possessed by a Li 2 CuO phase or a part of Li 2 O phase. Excellent characteristics in cycle life.

また、本発明の複合粉末には、Sn金属が含まれる。   The composite powder of the present invention contains Sn metal.

さらに、本発明の複合粉末は、必要に応じて炭素材料を含んでいてもよい。炭素材料を含む場合、炭素材料の種類(構造等)は特に限定されないが、複合粉末中に導電性の3次元網目構造を形成できるものが好ましい。導電性の3次元網目構造が形成されていれば、リチウム二次電池用負極材料として十分な集電効果が得られるとともに、Li吸蔵時の電極(特に合金成分)の体積膨張を効果的に抑制できる。   Furthermore, the composite powder of the present invention may contain a carbon material as necessary. When a carbon material is included, the type (structure, etc.) of the carbon material is not particularly limited, but a carbon material that can form a conductive three-dimensional network structure in the composite powder is preferable. If a conductive three-dimensional network structure is formed, a sufficient current collecting effect can be obtained as a negative electrode material for lithium secondary batteries, and volume expansion of electrodes (particularly alloy components) during Li occlusion can be effectively suppressed. it can.

好ましい炭素材料としては、例えば、微細炭素材料が挙げられる。具体的には、径50〜300nm程度、好ましくは75〜200nm程度、且つ、長さ1〜20μm程度、好ましくは2〜10μm程度の微細炭素材料が挙げられる。このような形状特性は、導電性の3次元網目構造を形成し易いため有利である。   A preferable carbon material includes, for example, a fine carbon material. Specifically, a fine carbon material having a diameter of about 50 to 300 nm, preferably about 75 to 200 nm, and a length of about 1 to 20 μm, preferably about 2 to 10 μm. Such a shape characteristic is advantageous because it is easy to form a conductive three-dimensional network structure.

微細炭素材料としては、具体的には、カーボンファイバー、単層カーボンナノチューブ、多層カーボンナノチューブ、単層カーボンナノチューブと多層カーボンナノチューブとの混合物等が挙げられる。これらの微細炭素材料は、1種単独で使用してもよいし、2種以上を混合して使用してもよい。これらの微細炭素材料の中でも、特にカーボンファイバー、多層カーボンナノチューブ、単層カーボンナノチューブと多層カーボンナノチューブとの混合物を好適に使用できる。尚、多層カーボンナノチューブは、チューブ径の異なる大小の単層カーボンナノチューブが入れ子状に数層重なったものである。   Specific examples of the fine carbon material include carbon fibers, single-walled carbon nanotubes, multi-walled carbon nanotubes, a mixture of single-walled carbon nanotubes and multi-walled carbon nanotubes, and the like. These fine carbon materials may be used individually by 1 type, and 2 or more types may be mixed and used for them. Among these fine carbon materials, carbon fibers, multi-walled carbon nanotubes, and mixtures of single-walled carbon nanotubes and multi-walled carbon nanotubes can be preferably used. Multi-walled carbon nanotubes are obtained by nesting several single-walled carbon nanotubes having different tube diameters in a nested manner.

炭素材料としてカーボンナノチューブを用いる場合には、金属的な導電性が発現されるため高い集電機能が得られる。また、カーボンナノチューブはしなやかな柔軟構造を有しているため、Li吸蔵時の体積膨張を緩和させる機能が得られ、高容量且つサイクル特性の維持に寄与する。単層カーボンナノチューブと多層カーボンナノチューブとの混合物であれば、多層カーボンナノチューブを単独で用いる場合に比して、複合粉末のより内部(微細)にまで3次元網目構造を形成し得るため好ましい。   In the case of using carbon nanotubes as the carbon material, a high current collecting function is obtained because metallic conductivity is exhibited. Moreover, since the carbon nanotube has a supple flexible structure, a function of relaxing volume expansion during Li storage is obtained, contributing to the maintenance of high capacity and cycle characteristics. A mixture of single-walled carbon nanotubes and multi-walled carbon nanotubes is preferable because a three-dimensional network structure can be formed even more inside (fine) of the composite powder than when single-walled carbon nanotubes are used alone.

また、炭素材料としては、リチウム二次電池の負極材料に用いられている黒鉛系材料等を使用してもよい。負極用炭素材料には、天然黒鉛材料、合成黒鉛材料、難黒鉛化炭素材料等がある。合成黒鉛材料としては、例えば、メソフェーズカーボンマイクロビーズ(MCMB)があり、一般の炭素系材料に比べて粉体としての取扱性に優れる。   Moreover, as the carbon material, a graphite-based material used for a negative electrode material of a lithium secondary battery may be used. Examples of the carbon material for the negative electrode include natural graphite materials, synthetic graphite materials, non-graphitizable carbon materials, and the like. Synthetic graphite materials include, for example, mesophase carbon microbeads (MCMB), which are excellent in handling as powder compared to general carbon-based materials.

さらに、炭素材料としては、前記微細炭素材料に加えて、カーボンブラックを併用することがより好ましい。カーボンブラックを併用することにより、複合粉末のより内部(細部)にまで導電性を付与できる。カーボンブラックの粒子径は特に限定されないが、一次粒子径が通常15〜60nm程度、好ましくは25〜50nm程度である。カーボンブラックを併用する場合、炭素材料中のカーボンブラックの割合は特に限定されず、所望の導電性の程度に応じて適宜設定できる。   Further, as the carbon material, it is more preferable to use carbon black in combination with the fine carbon material. By using carbon black in combination, conductivity can be imparted to the interior (details) of the composite powder. The particle diameter of carbon black is not particularly limited, but the primary particle diameter is usually about 15 to 60 nm, preferably about 25 to 50 nm. When carbon black is used in combination, the ratio of carbon black in the carbon material is not particularly limited, and can be appropriately set according to the desired degree of conductivity.

本発明の複合粉末において、A成分とSn金属との合金とは、A成分にSn金属が固溶した合金相、A成分とSn金属の金属間化合物相、Sn金属にA成分が固溶した合金相などからなるものである。   In the composite powder of the present invention, the alloy of the A component and the Sn metal is an alloy phase in which the Sn metal is dissolved in the A component, an intermetallic compound phase of the A component and the Sn metal, and the A component is dissolved in the Sn metal. It consists of an alloy phase.

本発明における複合粉末は、複合粉末全体におけるA成分とSn金属の割合(但し、A成分及びSn金属には、A成分とSn金属の合金成分中のA成分及びSn金属も含む)が、両者の合計量を100mass%として、A成分30〜70原子%程度、Sn金属70〜30原子%程度である。この中でも、特に、A成分40〜60原子%程度、Sn金属60〜40原子%程度であることが好ましい。   In the composite powder in the present invention, the ratio of the A component and the Sn metal in the entire composite powder (however, the A component and the Sn metal include both the A component and the Sn metal in the alloy component of the A component and the Sn metal). The total amount of A is 100 mass%, and the A component is about 30 to 70 atomic% and the Sn metal is about 70 to 30 atomic%. Among these, it is particularly preferable that the A component is about 40 to 60 atom% and the Sn metal is about 60 to 40 atom%.

また、A成分とSn金属の合計、B成分、及び炭素材料の割合が、これらの合計量を100mass%として、A成分とSn金属の合計20〜95mass%程度、B成分5〜80mass%程度、炭素材料0〜20mass%程度とすることが必要である。さらに、A成分とSn金属の合計、B成分、及び炭素材料の割合が、これらの合計量を100mass%として、A成分とSn金属の合計50〜90mass%程度、B成分5〜40mass%程度、炭素材料5〜15mass%程度とすることが好ましい。   Moreover, the total of A component and Sn metal, the ratio of B component, and a carbon material, these total amount shall be 100 mass%, and about 20-95 mass% of total of A component and Sn metal, B component about 5-80 mass%, The carbon material needs to be about 0 to 20 mass%. Furthermore, the sum of the A component and the Sn metal, the ratio of the B component, and the carbon material, the total amount of which is 100 mass%, the total of the A component and the Sn metal is about 50 to 90 mass%, the B component is about 5 to 40 mass%, The carbon material is preferably about 5 to 15 mass%.

A成分とSn金属の合計、B成分、及び炭素材料の合計量中のB成分の含有量を、5〜80mass%程度の範囲内に設定すれば、A成分及びSn金属を含む組織中にB成分が均一に分散され易くなり、放電容量の低下を抑制できる。また、A成分とSn金属の合計、B成分及び炭素材料の合計量中の炭素材料の含有量を、1〜20mass%程度の範囲内に設定すれば、複合粉末中に導電性の3次元網目構造が形成され易く、且つ、炭素材料(特にカーボンナノチューブ)の凝集及び放電容量の低下を抑制できる。また、負極性能に優れた炭素材料は、放電容量低下の問題がほとんど無いことから、複合粉末の放電容量の低下を効果的に抑制できる。   If the content of the B component in the total amount of the A component and the Sn metal, the B component, and the carbon material is set within a range of about 5 to 80 mass%, B in the structure containing the A component and the Sn metal It becomes easy to disperse | distribute a component uniformly and can suppress the fall of discharge capacity. Moreover, if the content of the carbon material in the total amount of the A component and the Sn metal, the B component and the carbon material is set within a range of about 1 to 20 mass%, a conductive three-dimensional network is formed in the composite powder. A structure is easily formed, and aggregation of carbon materials (particularly carbon nanotubes) and reduction in discharge capacity can be suppressed. Moreover, since the carbon material excellent in negative electrode performance has almost no problem of a discharge capacity fall, the fall of the discharge capacity of composite powder can be suppressed effectively.

本発明における複合粉末全体中の各成分の組成比は、Snが40〜60原子%程度、A成分が7〜55原子%程度、Oが3〜43原子%程度である。好ましくはSnが43〜58原子%程度、A成分が10〜45原子%程度、Oが5〜40原子%程度であり、より好ましくはSnが45〜55原子%程度、A成分が20〜40原子%程度、Oが10〜35原子%程度である。この組成比を満たせば、複合粉末中にSnの酸化物とA成分の酸化物、或いはSnとA成分とOが複合したSn-A-O系酸化物が存在できるものと考えられる。   As for the composition ratio of each component in the whole composite powder in the present invention, Sn is about 40 to 60 atom%, A component is about 7 to 55 atom%, and O is about 3 to 43 atom%. Preferably, Sn is about 43 to 58 atom%, A component is about 10 to 45 atom%, O is about 5 to 40 atom%, more preferably Sn is about 45 to 55 atom%, and A component is about 20 to 40. About atomic percent and O is about 10 to 35 atomic percent. If this composition ratio is satisfied, it is considered that an Sn oxide and an A component oxide or an Sn—A—O based oxide in which Sn, an A component and O are combined can exist in the composite powder.

本発明の複合粉末は、一次粒子径、特に、A成分とSn金属が複合合金化した粒子の少なくとも一部の一次粒子径が1μm以下のナノメーターオーダーであることによって、後述する様な優れた特性を発揮できる。   The composite powder of the present invention has excellent primary particle diameter, particularly at least a part of the primary alloy diameter of the particles in which the A component and the Sn metal are alloyed, in the nanometer order of 1 μm or less as described later. The characteristics can be demonstrated.

なお、後述するメカニカルアロイング法で該複合粒子を製造すると、A成分とSn金属の組合せによっては、該複合粒子中にマイクロメーターオーダーの一次粒子が含まれる場合があるが、この様なマイクロメーターオーダーの一次粒子が存在することは許容できる。この様なマイクロメーターオーダーの一次粒子は、微粉化の防止や導電性の向上に寄与する。この様な点から、本発明においては、複合粉末の約10%以上の個数の一次粒子径が1μm以下、約10%以上の個数の平均二次粒子径が1μm〜10μm程度の範囲内にあればよく、約10%以上の個数の一次粒子径が800nm以下程度であることが好ましい。この場合、特に、ナノメーターオーダーの一次粒子が多く存在するとLiの吸蔵放出に伴う体積変化の抑制効果が大きく、電極を長寿命化することができる。また、電極を高容量化するためには、複合粉末の約50%以上、好ましくは約70%以上、より好ましくは90%以上の個数の一次粒子径が800nm以下程度、特に好ましくは500nm以下程度であることが好適である。   When the composite particles are manufactured by the mechanical alloying method described later, primary particles in the order of micrometers may be included in the composite particles depending on the combination of the component A and the Sn metal. The presence of primary particles of order is acceptable. Such primary particles of micrometer order contribute to prevention of pulverization and improvement of conductivity. From this point, in the present invention, the primary particle diameter of about 10% or more of the composite powder is 1 μm or less, and the average secondary particle diameter of about 10% or more is within the range of about 1 μm to 10 μm. The primary particle diameter of about 10% or more is preferably about 800 nm or less. In this case, in particular, when there are many primary particles in the order of nanometers, the effect of suppressing volume change associated with insertion and extraction of Li is large, and the life of the electrode can be extended. Further, in order to increase the capacity of the electrode, the primary particle diameter of about 50% or more, preferably about 70% or more, more preferably 90% or more of the composite powder is about 800 nm or less, particularly preferably about 500 nm or less. It is preferable that

本発明の複合粉末は、約10%以上の個数の一次粒子の粒子径が上記した範囲内にあることによって、Li吸蔵時の原子の再配列が可逆的に生じ易くなり、所期の特性を発揮することが可能となる。   In the composite powder of the present invention, when the particle diameter of the primary particles having a number of about 10% or more is within the above-described range, the rearrangement of atoms during Li occlusion is likely to occur reversibly, and the desired characteristics are obtained. It becomes possible to demonstrate.

上記した粒子径を上回る一次粒子は、Li吸蔵時の原子の再配列が生じ難くなるとともにLiの吸蔵放出に伴う体積変化が大きくなるので、好ましくない。尚、本願明細書では、一次粒子の粒子径の測定は、走査型電子顕微鏡の視野内に観察される一つの複合粉末を構成する複数個の粒子の長径を測定したもので、視野内の10個以上の複合粉末を測定した。   Primary particles exceeding the above-mentioned particle diameter are not preferable because the rearrangement of atoms at the time of Li occlusion is difficult to occur and the volume change associated with the occlusion and release of Li becomes large. In the specification of the present application, the measurement of the particle diameter of the primary particles is the measurement of the long diameters of a plurality of particles constituting one composite powder observed in the field of view of the scanning electron microscope. More than one composite powder was measured.

本発明においては、この様なナノオーダーの複合粉末を含む負極材料に用いることによって、充電時には、材料全体が容易にリチウムと化合してリチウムを吸蔵することができ、その後、放電時には不可逆の骨格を残して容易にLiを放出して、微粉化を防止することが可能となる。   In the present invention, when used for a negative electrode material containing such a nano-order composite powder, the entire material can easily combine with lithium during charge and occlude lithium, and thereafter, an irreversible skeleton during discharge. It is possible to easily release Li and prevent pulverization.

本発明のリチウム二次電池用負極材料の製造方法は特に限定されないが、例えば、下記工程を有する製造方法1〜4により好適に製造できる。   Although the manufacturing method of the negative electrode material for lithium secondary batteries of this invention is not specifically limited, For example, it can manufacture suitably with the manufacturing methods 1-4 which have the following process.

製造方法1
本発明の製造方法1は、(i) Mg、Al、Ca、Ti、V、Cr、Mn、Fe、Co、Ni、Cu、Zn、Ge、Y、Zr、Nb、Mo、Pd、Ag、In、Sb、Hf、Ta、W、Bi及び希土類元素からなる群から選ばれた少なくとも一種の金属である前記A成分、(ii) SnO及びSnOから選ばれた少なくとも一種と、CuO及びCuOから選ばれた少なくとも一種とからなるB成分、(iii) 前記Sn金属、並びに(iv) 必要に応じて前記炭素材料からなる原料物質を混合し、メカニカルアロイング処理を行って複合粉末を製造する方法である。
Manufacturing method 1
The production method 1 of the present invention includes (i) Mg, Al, Ca, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Ge, Y, Zr, Nb, Mo, Pd, Ag, In A component A which is at least one metal selected from the group consisting of Sb, Hf, Ta, W, Bi and rare earth elements, (ii) at least one selected from SnO and SnO 2 , CuO and Cu 2 O B component consisting of at least one selected from (iii) the Sn metal, and (iv) raw material material consisting of the carbon material if necessary, and mechanical alloying treatment to produce a composite powder Is the method.

製造方法2
本発明の製造方法2は、(1)(i) Mg、Al、Ca、Ti、V、Cr、Mn、Fe、Co、Ni、Cu、Zn、Ge、Y、Zr、Nb、Mo、Pd、Ag、In、Sb、Hf、Ta、W、Bi及び希土類元素からなる群から選ばれた少なくとも一種の金属である前記A成分、(ii) 前記Sn金属からなる原料物質を混合後、メカニカルアロイング処理を行って複合粉末を形成する工程、さらに、
(2)工程(1)で得られた複合粉末に、(iii) SnO及びSnOから選ばれた少なくとも一種と、CuO及びCuOから選ばれた少なくとも一種とからなるB成分、並びに(iv) 必要に応じて前記炭素材料からなる原料物質を混合後、メカニカルアロイング処理を行って複合粉末を形成する工程を有する製造方法である。
Manufacturing method 2
The production method 2 of the present invention comprises (1) (i) Mg, Al, Ca, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Ge, Y, Zr, Nb, Mo, Pd, Mechanical alloying after mixing the component A which is at least one metal selected from the group consisting of Ag, In, Sb, Hf, Ta, W, Bi and rare earth elements, and (ii) the raw material material consisting of the Sn metal. Performing a process to form a composite powder;
(2) In the composite powder obtained in step (1), (iii) a B component consisting of at least one selected from SnO and SnO 2 and at least one selected from CuO and Cu 2 O, and (iv ) A manufacturing method comprising a step of mixing a raw material substance made of the carbon material as necessary and then performing a mechanical alloying process to form a composite powder.

製造方法1では、A成分、B成分、Sn金属、並びに必要に応じて炭素材料からなる原料物質を混合し、メカニカルアロイング処理を行って複合粉末を得る。この場合、各材料の組織の微細化、分散化が同時に進め易くなるが、A成分とSn金属との間で合金化に要する処理時間は、製造方法2よりも長くなりやすい。   In production method 1, component A, component B, Sn metal, and, if necessary, a raw material made of a carbon material are mixed and subjected to mechanical alloying to obtain a composite powder. In this case, it is easy to simultaneously refine and disperse the structure of each material, but the processing time required for alloying between the component A and the Sn metal tends to be longer than that in the manufacturing method 2.

製造方法2では、まずB成分と任意成分である炭素材料以外の原料を混合し、メカニカルアロイング処理を行った後、得られる複合粉末にB成分と必要に応じて炭素材料を加えてさらにメカニカルアロイング処理を行う。   In the production method 2, first, components other than the B material and the optional carbon material are mixed and subjected to mechanical alloying, and then the B powder and, if necessary, the carbon material are added to the resulting composite powder to further mechanically. Perform the alloying process.

即ち、製造方法2では、メカニカルアロイング処理により、A成分(1成分以上)及びSn金属の一部を合金化した後、さらにB成分と必要に応じて炭素材料を加え、メカニカルアロイング処理を施して複合粉末を得る。製造方法2によれば、複合粉末中のA成分とSn金属の間で合金化が容易になり、更に炭素材料を使用する場合には、炭素材料からなる導電性の3次元網目構造が形成され易いため好ましい。   That is, in the manufacturing method 2, after alloying a part of the A component (one component or more) and Sn metal by mechanical alloying treatment, a carbon material is further added as necessary and a mechanical alloying treatment is performed. To obtain a composite powder. According to the production method 2, alloying between the A component and the Sn metal in the composite powder becomes easy, and when a carbon material is used, a conductive three-dimensional network structure made of the carbon material is formed. It is preferable because it is easy.

製造方法3
製造方法3は、前記A成分の粉末、Sn金属の粉末、及び必要に応じて炭素材料の粉末を均一に混合し、130〜200℃程度(好ましくは140〜190℃程度、より好ましくは150〜180℃程度)の温度範囲で部分的に合金化した複合粉末を形成し、その後、酸素雰囲気下で該複合粉末を200℃以上(好ましくは225〜500℃程度、より好ましくは225〜400℃程度)の温度で酸化する方法である。A成分の粉末とSn金属の粉末とを、2段階で加熱するこの製造方法を採用することにより、前記B成分を原料に使用しなくても、本発明のリチウム二次電池用負極材料が得られる。130〜200℃程度の温度範囲で部分的に合金化した複合粉末を形成する1段階目の加熱工程は、非酸素雰囲気化で行うのがよい。2段階目の加熱工程において、熱処理炉中に酸素或いは大気を供給することや大気雰囲気中で熱処理することで容易に酸化処理することができる。1段階目とは、雰囲気を変えることで連続した加熱工程とすることができる。
Manufacturing method 3
In the production method 3, the powder of the component A, the powder of Sn metal, and, if necessary, the powder of the carbon material are uniformly mixed, and about 130 to 200 ° C. (preferably about 140 to 190 ° C., more preferably 150 to A composite powder partially alloyed in a temperature range of about 180 ° C. is formed, and then the composite powder is 200 ° C. or higher (preferably about 225 to 500 ° C., more preferably about 225 to 400 ° C.) in an oxygen atmosphere. ) At a temperature of By adopting this production method in which the A component powder and the Sn metal powder are heated in two stages, the negative electrode material for a lithium secondary battery of the present invention can be obtained without using the B component as a raw material. It is done. The first heating step for forming the composite powder partially alloyed in the temperature range of about 130 to 200 ° C. is preferably performed in a non-oxygen atmosphere. In the second heating step, the oxidation treatment can be easily performed by supplying oxygen or air into the heat treatment furnace or performing heat treatment in the air atmosphere. The first stage can be a continuous heating process by changing the atmosphere.

製造方法4
製造方法4は、前記A成分の粉末、Sn金属の粉末を均一に混合し、メカニカルアロイング処理を行って部分的に合金化した複合粉末を形成し、その後、酸素雰囲気下で該複合粉末を200℃以上(好ましくは225〜500℃程度、より好ましくは225〜400℃程度)の温度で酸化する方法である。加熱工程において、熱処理炉中に酸素或いは大気を供給することや大気雰囲気中で熱処理することで容易に酸化処理することができる。
製造方法4を採用することにより、前記B成分を原料に使用しなくても、本発明のリチウム二次電池用負極材料が得られる。
Manufacturing method 4
In the manufacturing method 4, the powder of the component A and the powder of Sn metal are uniformly mixed, and mechanically alloyed to form a partially alloyed composite powder, and then the composite powder is subjected to an oxygen atmosphere. The oxidation method is performed at a temperature of 200 ° C. or higher (preferably about 225 to 500 ° C., more preferably about 225 to 400 ° C.). In the heating step, it can be easily oxidized by supplying oxygen or air into a heat treatment furnace or heat-treating in an air atmosphere.
By adopting production method 4, the negative electrode material for a lithium secondary battery of the present invention can be obtained without using the component B as a raw material.

なお、前記製造方法1〜4において、原料として使用されるA成分、B成分、Sn金属、必要に応じて使用される炭素材料の使用割合は、前記と同じである。   In addition, in the said manufacturing methods 1-4, the usage-amount of the A material used as a raw material, B component, Sn metal, and the carbon material used as needed is the same as the above.

メカニカルアロイング処理は公知の方法を適用できる。例えば、機械的接合力により原料成分の混合・付着を繰返しながら全体を複合化(一部合金化)する装置を用いて処理すればよい。処理装置としては、メカニカルアロイング処理が可能な、一般に粉体分野で使用される混合機、分散機、粉砕機等が使用できる。具体的には、ライカイ機、ボールミル、振動ミル、アジテーターミル等が例示される。特に、ネットワーク間に存在する電池活物質を主成分とする粉末の積み重なりを少なくするためには、複合化操作中に重なり合ったり、凝集したりした粉末を1粒子ずつに効率良く分散させる必要があるので、せん断力を与えることのできる混合機を用いることが望ましい。これらの装置の操作条件は特に限定されるものではない。   A known method can be applied to the mechanical alloying process. For example, the processing may be performed using a device that combines (partially alloys) the whole while repeating mixing and adhesion of raw material components by mechanical bonding force. As the processing apparatus, a mixer, a disperser, a pulverizer, etc., which can be mechanically alloyed and are generally used in the powder field, can be used. Specific examples include a reiki machine, a ball mill, a vibration mill, an agitator mill, and the like. In particular, in order to reduce the stacking of powders mainly composed of battery active materials existing between networks, it is necessary to efficiently disperse the powders that are overlapped or aggregated during the compositing operation one by one. Therefore, it is desirable to use a mixer that can give a shearing force. The operating conditions of these devices are not particularly limited.

処理装置の操作条件は特に限定されないが、遠心加速度(投入エネルギー)としては、通常5〜20G程度、好ましくは7〜15G程度とすればよい。処理時間は各成分の種類に応じて適宜設定できる。例えば、A成分−Sn金属の混合物の処理では、A成分−Sn金属が混合し、且つ、A成分−Sn金属が一部合金化する限り処理時間は特に限定されないが、通常1〜10時間程度である。また、B成分と必要に応じて炭素材料を添加した後の処理では、A成分−Sn及びB成分と炭素材料を使用する場合は炭素材料の全てが複合化する限り特に限定されないが、通常0.5〜10時間程度である。   The operating conditions of the processing apparatus are not particularly limited, but the centrifugal acceleration (input energy) is usually about 5 to 20 G, preferably about 7 to 15 G. The treatment time can be appropriately set according to the type of each component. For example, in the treatment of the A component-Sn metal mixture, the treatment time is not particularly limited as long as the A component-Sn metal is mixed and the A component-Sn metal is partially alloyed, but usually about 1 to 10 hours. It is. Further, in the treatment after adding the B component and the carbon material as necessary, when the A component-Sn and the B component and the carbon material are used, the carbon material is not particularly limited as long as all of the carbon materials are combined. About 5 to 10 hours.

メカニカルアロイング処理に供するA成分、B成分、Sn金属及び炭素材料の粒子径は限定的ではないが、通常1〜40μm程度、好ましくは2〜20μm程度である。上記範囲内であれば、メカニカルアロイング処理において各成分を均一に分散させ易く、1μm以下、好ましくは粒子径10〜800nm程度の微細な複合粉末一次粒子が得られ易い。   The particle diameters of the A component, B component, Sn metal and carbon material used for the mechanical alloying treatment are not limited, but are usually about 1 to 40 μm, preferably about 2 to 20 μm. Within the above range, it is easy to uniformly disperse each component in the mechanical alloying treatment, and fine composite powder primary particles having a particle diameter of 1 μm or less, preferably about 10 to 800 nm are easily obtained.

上記処理により得られる微細な一次粒子は、通常は凝集して二次凝集物となっている。例えば、メカニカルアロイング法で複合粉末を製造する場合には、レーザー回折法により調べると、二次凝集物の粒子径は最大で38〜150μm程度である。   The fine primary particles obtained by the above treatment are usually aggregated into secondary aggregates. For example, when the composite powder is produced by the mechanical alloying method, the particle size of the secondary aggregate is about 38 to 150 μm at the maximum when examined by the laser diffraction method.

該二次凝集物の粒度は特に限定されないが、負極材料として用いる場合には、二次凝集物の個数の90%以上、好ましくは99.9%以上が粒子径1〜105μmの範囲内にあることが好ましく、1〜50μmの範囲内がより好ましい。   The particle size of the secondary agglomerates is not particularly limited, but when used as a negative electrode material, 90% or more, preferably 99.9% or more of the number of secondary agglomerates is in the range of 1 to 105 μm in particle diameter. It is preferable, and the inside of the range of 1-50 micrometers is more preferable.

また、二次凝集物の平均粒子径は、5〜50μm程度の範囲内が好ましく、5〜10μm程度の範囲内がより好ましい。二次凝集物の粒子径が上記範囲内であれば、電極の作製を高精度に行うことができる。尚、本願明細書では、顕微鏡による二次凝集物の個数の観察は、走査型電子顕微鏡の視野内に観察される複合粉末の長径を測定したもので、視野内の100個以上の複合粉末を測定した。また、二次凝集物である複合粉末の粒子径の測定方法として、レーザー回折法を用いた。具体的には、溶媒中に複合粉末を分散させたところに、レーザー光を照射し、複合粉末からの回折光から統計処理をして粒子径を求めた。   Moreover, the average particle diameter of the secondary aggregate is preferably in the range of about 5 to 50 μm, and more preferably in the range of about 5 to 10 μm. When the particle size of the secondary aggregate is within the above range, the electrode can be produced with high accuracy. In the present specification, the observation of the number of secondary aggregates by a microscope is a measurement of the long diameter of the composite powder observed in the field of view of the scanning electron microscope. It was measured. Further, a laser diffraction method was used as a method for measuring the particle diameter of the composite powder which is a secondary aggregate. Specifically, the composite powder was dispersed in a solvent, irradiated with laser light, and statistical processing was performed from the diffracted light from the composite powder to determine the particle size.

本発明のリチウム二次電池用負極は、本発明のリチウム二次電池用負極材料からなる層を集電体上に有する。負極の構成としては、前記した本発明における複合粉末を負極材料とする他は、公知のものが使用できる。例えば、該複合粉末に必要に応じて樹脂系バインダー、導電助材等を配合し合剤化後、金属箔集電体等の公知の集電体上に合剤層(負極層)を形成して一体化(乾燥・プレス等)することにより負極を作製できる。   The negative electrode for lithium secondary batteries of the present invention has a layer made of the negative electrode material for lithium secondary batteries of the present invention on a current collector. As the structure of the negative electrode, known materials can be used except that the composite powder in the present invention described above is used as a negative electrode material. For example, a resin binder, a conductive additive, etc. are blended into the composite powder as necessary to form a mixture, and then a mixture layer (negative electrode layer) is formed on a known current collector such as a metal foil current collector. And then integrating (drying, pressing, etc.) to produce a negative electrode.

樹脂系バインダーとしては、例えば、ポリビリニデンフルオライド(PVdF)をN−メチルピロリドン(NMP)に溶解させたペースト等が使用できる。導電助材としては、例えば、カーボンブラック等が使用できる。金属箔集電体としては、例えば、銅、ニッケル、鉄、チタン、コバルト等の少なくとも1種からなる金属箔が使用できる。   As the resin binder, for example, a paste in which polybilinidene fluoride (PVdF) is dissolved in N-methylpyrrolidone (NMP) can be used. As the conductive aid, for example, carbon black or the like can be used. As the metal foil current collector, for example, a metal foil made of at least one of copper, nickel, iron, titanium, cobalt and the like can be used.

負極層の厚みは特に限定されないが、一般に2〜100μm程度、好ましくは5〜60μm程度とすればよい。厚みが2μm未満では、実用的な電気容量を得ることが困難な場合がある。厚みが100μm超過では、集電体が負極材料を支持できない場合がある。   The thickness of the negative electrode layer is not particularly limited, but is generally about 2 to 100 μm, preferably about 5 to 60 μm. If the thickness is less than 2 μm, it may be difficult to obtain a practical electric capacity. When the thickness exceeds 100 μm, the current collector may not support the negative electrode material.

上記の方法で得られた負極では、初期の充電と放電の容量差に相当する不可逆容量分が生じるが、予めリチウムを負極中にドープすることで、その容量分を補うことができる。負極表面層に箔状のLiをローラなどで貼り合わせることで、負極表面にLi層を被覆し、更に電解液に浸漬してエージングすることにより、負極中にLiをドープすることができる。   In the negative electrode obtained by the above method, an irreversible capacity corresponding to the capacity difference between the initial charge and discharge occurs, but the capacity can be supplemented by doping lithium into the negative electrode in advance. By bonding foil-like Li to the negative electrode surface layer with a roller or the like, the Li layer can be coated on the negative electrode surface, and further immersed in an electrolytic solution and aged, whereby Li can be doped into the negative electrode.

該負極を搭載したリチウム二次電池を作製する場合には、公知のリチウム二次電池の電池要素(正極、セパレーター、電解液等)を用いて、常法に従って、角型、円筒型、コイン型等のリチウム二次電池に組み立てればよい。   When producing a lithium secondary battery equipped with the negative electrode, a known lithium secondary battery element (a positive electrode, a separator, an electrolytic solution, etc.) is used, and a square, cylindrical, or coin type is used in accordance with an ordinary method. What is necessary is just to assemble to lithium secondary batteries, such as.

正極材料としては、例えば、LiCoO、LiNiO、LiMn等のリチウム含有酸化物等を使用できる。セパレーターとしては、公知のリチウム二次電池に用いられるものが使用できる。電解液を構成する溶媒としては、公知のリチウム塩を溶解できる非プロトン性及び低誘電率の溶媒が好ましい。例えば、エチレンカーボネート(EC)、プロピレンカーボネート、ジメチルカーボネート(DMC)、ジエチレンカーボネート、アセトニトリル、プロピオニトリル、テトラヒドロフラン、γ−ブチロラクトン、2−メチルテトラヒドロフラン、1,3−ジオキソラン、4−メチル−1,3−ジオキソラン、1,2−ジメトキシエタン、1,2−ジエトキシエタン、ジエチルエーテル、スルホラン、メチルスルホラン、ニトロメタン、N,N−ジメチルホルムアミド、ジメチルスルホキシド等の少なくとも1種が挙げられる。電解質リチウム塩としては、例えば、LiClO4、LiAsF6、LiPF6、LiBF4、LiB(C654、LsiCl、LiBr、CH3SO3Li、CF3SO3Li等の少なくとも1種が挙げられる。 As the positive electrode material, for example, lithium-containing oxides such as LiCoO 2 , LiNiO 2 , LiMn 2 O 4 can be used. As a separator, what is used for a well-known lithium secondary battery can be used. As the solvent constituting the electrolytic solution, an aprotic and low dielectric constant solvent capable of dissolving a known lithium salt is preferable. For example, ethylene carbonate (EC), propylene carbonate, dimethyl carbonate (DMC), diethylene carbonate, acetonitrile, propionitrile, tetrahydrofuran, γ-butyrolactone, 2-methyltetrahydrofuran, 1,3-dioxolane, 4-methyl-1,3 Examples include at least one of -dioxolane, 1,2-dimethoxyethane, 1,2-diethoxyethane, diethyl ether, sulfolane, methyl sulfolane, nitromethane, N, N-dimethylformamide, dimethyl sulfoxide and the like. Examples of the electrolyte lithium salt include at least one of LiClO 4 , LiAsF 6 , LiPF 6 , LiBF 4 , LiB (C 6 H 5 ) 4 , LsiCl, LiBr, CH 3 SO 3 Li, and CF 3 SO 3 Li. Can be mentioned.

得られた本発明のリチウム二次電池は、負極材料として前記所定成分を所定割合で含むため、初充電によるリチウム吸蔵時に、負極材料中にLixAySn型中間化合物(0<x、y≦2)を形成する。このリチウム含有三元化合物は、合金の分相がなくリチウム吸蔵することが可能であり、リチウム吸蔵時の体積変化の抑制に寄与する。これにより、単に従来法のようにリチウムを吸蔵・放出する金属と吸蔵・放出しない金属との合金からなる負極材料とは異なる効果が得られる。   Since the obtained lithium secondary battery of the present invention contains the predetermined component in a predetermined ratio as a negative electrode material, a LixAySn type intermediate compound (0 <x, y ≦ 2) is contained in the negative electrode material during lithium occlusion by initial charge. Form. This lithium-containing ternary compound has no alloy phase separation and can occlude lithium, and contributes to suppression of volume change during occlusion of lithium. Thus, an effect different from that of a negative electrode material made of an alloy of a metal that occludes / releases lithium and a metal that does not occlude / release as in the conventional method can be obtained.

即ち、初充電で前記Li含有三元化合物を形成することにより、高容量を長期にわたり維持できる。予めメカニカルアロイング処理で作製したリチウム中間化合物のみを使用した電極では、Li吸蔵量が本来合金のもつ容量まで得られず、低容量になる問題がある。これは充放電反応、即ち電気化学的に形成されるLi中間化合物と異なり、Liに対して不活性の容量分が多いためと考えられる。例えば、LiAgSnやLiAgSnの場合、50サイクル後で、約100mAh/g程度の低い放電容量になる。 That is, high capacity can be maintained over a long period of time by forming the Li-containing ternary compound by initial charging. In an electrode using only a lithium intermediate compound produced by mechanical alloying in advance, the Li occlusion amount cannot be obtained up to the capacity inherent in the alloy, and there is a problem that the capacity becomes low. This is considered to be because there is a large capacity inactive with respect to Li, unlike the Li intermediate compound formed in charge / discharge reaction, that is, electrochemically. For example, in the case of LiAg 2 Sn or Li 2 AgSn, the discharge capacity becomes as low as about 100 mAh / g after 50 cycles.

これに対して、本発明の負極材料では、初充電(Li吸蔵)時に上記リチウム含有三元化合物を形成し、次の放電(Li放出)時に元の複合材料に戻り、一部Liを含む不可逆な化合物が残る。かかるメカニズムにより、初充電(1回目)で形成した不可逆なLi含有三元化合物が骨格として存在し、2回目以後の充放電では、そのLi含有三元化合物を介してLiの吸蔵・放出が行われる。これにより、充放電による電極の体積変化・微粉化が抑制されつつ、電極の劣化抑制・サイクル特性寿命向上の効果が実現される。   On the other hand, in the negative electrode material of the present invention, the lithium-containing ternary compound is formed at the first charge (Li occlusion), returns to the original composite material at the next discharge (Li release), and is irreversible including a part of Li Compound remains. By this mechanism, the irreversible Li-containing ternary compound formed in the first charge (first time) exists as a skeleton, and in the second and subsequent charging / discharging, Li is occluded / released through the Li-containing ternary compound. Is called. Thereby, while suppressing the volume change / micronization of the electrode due to charge / discharge, the effect of suppressing the deterioration of the electrode and improving the cycle characteristic life can be realized.

以下、本発明においてLi含有三元化合物を介して行われるLiの吸蔵・放出のメカニズムについて、具体的に説明する。   Hereinafter, the mechanism of insertion and extraction of Li performed through the Li-containing ternary compound in the present invention will be specifically described.

本発明の負極材料では、Liの吸蔵放出過程が、主にリチウム含有三元化合物LiA2SnやLi2ASnを代表とするLixAySn型中間化合物(但し、Aは前記A成分を示し、0<x、y≦2である)を介して行われる。 In the negative electrode material of the present invention, the Li occlusion / release process is mainly a LixAySn type intermediate compound typified by lithium-containing ternary compounds LiA 2 Sn and Li 2 ASn (where A represents the A component, and 0 <x , Y ≦ 2).

上記した複合粉末からなる負極材料では、初充電(Li吸蔵)時にLiを含む三元化合物であるLixAySn型中間化合物が形成され、次の放電(Li放出)時に元の複合材料に戻るが、Liを含む不可逆な化合物が一部残存する。このことから、Liの吸蔵・放出が、このLiを含む化合物を介して行われ、初充電(1回目)に形成された不可逆なLi化合物が骨格として存在し、2回目以後の充放電では、このLi化合物中にLiが吸蔵されて、放出されるものと思われる。これにより、充放電による体積変化が緩和されて微粉化が抑制され、電極の劣化が防止されてサイクル特性寿命が向上するものと考えられる。またLi吸蔵量の大きなSnが、充電時にLiSn系化合物を形成し、Li4.4Snまで、Liを吸蔵すると大きな体積膨張が生じてしまう。放電時には、徐々にLiを放出し、一部xの小さな数のLiSn系化合物が残るものの大きな可逆容量を示す。 In the negative electrode material composed of the composite powder described above, a LixAySn type intermediate compound, which is a ternary compound containing Li, is formed during the initial charge (Li storage), and returns to the original composite material during the next discharge (Li release). A part of the irreversible compound containing is left. From this, insertion / release of Li is performed through the compound containing Li, and an irreversible Li compound formed in the first charge (first time) exists as a skeleton, and in the second and subsequent charge / discharge, It is thought that Li is occluded in this Li compound and released. Thereby, it is considered that the volume change due to charging / discharging is mitigated, pulverization is suppressed, deterioration of the electrode is prevented, and the cycle characteristic life is improved. Further, Sn having a large Li occlusion amount forms a LiSn-based compound at the time of charging, and if Li is occluded up to Li 4.4 Sn, a large volume expansion occurs. At the time of discharge, Li is gradually released and a large reversible capacity is exhibited although a small number of LiSn compounds of a part x remains.

次に、上記複合粉末を負極材料として用いる場合の充放電反応について説明する。本発明の負極材料の充電時においては、前記Sn−Cu−O複合酸化物等が関与する下式(1)に示す反応等、多くの反応が関係していると考えられる。一般式(1)において、初回の充電では、Liを吸蔵して、LiCuOとSnに分相する。LiCuO相は不可逆相となり、以後の充放電過程では反応しない。Sn相は更にLiを吸蔵して、LiSn相になる。一部存在するSn酸化物相は、Liを吸蔵して、LiOとSn相に分相し、このLiO相も不可逆相となり、以後の充放電過程では反応しない。Sn相は更にLiを吸蔵して、LiSn相になる。また、一部存在するCu酸化物は、Liを吸蔵して、LiCuO相になり、以後の充放電過程では反応しない。 Next, the charge / discharge reaction when the composite powder is used as a negative electrode material will be described. When charging the negative electrode material of the present invention, it is considered that many reactions such as the reaction represented by the following formula (1) involving the Sn—Cu—O composite oxide are involved. In general formula (1), in the first charge, Li is occluded and phase-separated into Li 2 CuO and Sn. The Li 2 CuO phase becomes an irreversible phase and does not react in the subsequent charge / discharge process. The Sn phase further occludes Li and becomes a LiSn phase. The partially present Sn oxide phase occludes Li and separates into Li 2 O and Sn phases. This Li 2 O phase also becomes an irreversible phase and does not react in the subsequent charge / discharge process. The Sn phase further occludes Li and becomes a LiSn phase. Moreover, Cu oxide which exists partially occludes Li, becomes a Li 2 CuO phase, and does not react in the subsequent charge / discharge process.

また、Sn相や式(1)のLiSnは式(2)で示すようにLiSn相に変化する。ASn合金相は式(3)式で示すように、Li吸蔵量が増加するに従って、LiASn相に変化する。式(4)で示すように、式(3)のLiASn相から分相したA相とLiSn相は、相互に拡散することで、相変態が生じる。この場合、LiASn相とLiASn相が生成する。また、式(4)のように、LiSn相は、LiSn相へとLi化が進む。式(5)のように、LiASn相とLiSn相の反応が、LiSn相へのSnの拡散によって生じ、LiASn相とLiSn相の形成をもたらす。更にLiの吸蔵化が進むと、式(6)式で示すように、Li2+y1−ZSn相へと変わる。その後、この相は、ある範囲で固溶体か非晶質相になると考えられる。式(7)に示すように、完全に充電状態、即ちLi4.4Snになると大きな体積膨張から材料の微粉化が生じて、電極特性が劣化するので、Li吸蔵を式(6)までにしておくことで、電極特性の向上ができると考えられる。 Further, the Sn phase and LiSn in the formula (1) change to the Li x Sn phase as shown in the formula (2). As shown in the formula (3), the A 3 Sn alloy phase changes to a LiA 2 Sn phase as the Li storage amount increases. As shown by the formula (4), the phase A and the Li x Sn phase separated from the LiA 2 Sn phase of the formula (3) are diffused to each other to cause phase transformation. In this case, a LiA 2 Sn phase and a Li 2 ASn phase are generated. Further, as shown in the equation (4), the Li x Sn phase proceeds to Li conversion to the Li y Sn phase. As in equation (5), the reaction between the LiA 2 Sn phase and the Li y Sn phase occurs by the diffusion of Sn into the Li y Sn phase, resulting in the formation of the Li 2 ASn phase and the Li z Sn phase. When the occlusion of Li further proceeds, the Li 2 + y A 1-Z Sn phase is changed as shown in the equation (6). Thereafter, this phase is considered to be a solid solution or an amorphous phase within a certain range. As shown in equation (7), when fully charged, that is, Li 4.4 Sn, the material is pulverized due to large volume expansion, and the electrode characteristics deteriorate. It is considered that the electrode characteristics can be improved.

SnCuO+Li → Li2CuO+Sn
2Li+CuO → Li2CuO 又は 4Li+Cu2O+O→ 2Li2CuO (1)
3Li+SnO → LiSn+LiO 又は 5Li+SnO → LiSn+2LiO
xLi +Sn → LiSn (x≦4.4) (2)
Li + ASn → LiASn + A (3)
A+LiSn → LiASn/LiASn + LiSn (x≦4.4, y≦2.4) (4)
LiSn +LiASn →LiASn + LiSn (y≦2.4, z≦1.4) (5)
(y + z)Li + LiASn → Li2+yA1−ZSn + zLiA (y≦2.4,z≦1.4) (6)
(2.4−y + z)Li + Li2+yA1−ZSn →Li4.4Sn + LiA (y≦2.4,z≦1) (7)
本発明の負極材料では、Liの吸蔵放出過程が三元系化合物LiA2SnとLi2ASnを経て行われることが重要である。例えば、Ag/Sn(原子比)=52/48が90mass%、SnOが10mass%の複合材料を用いた負極では、2サイクル目の放電容量は約440mAh/gを超えるが、1サイクルに比べて容量が約400mAh/g低下する。この不可逆な容量変化は、1回目の充電で生成したLiO相や有機電解液の分解で表面皮膜(SEI)の形成などに起因すると考えられる。リチウムの吸蔵放出過程がLiAg2Sn(密度7.920 g/cm)及びLi2AgSn(密度5.630 g/cm)を経て行われることにより、Ag3Sn(密度9.932 g/cm)に対する体積変化は、それぞれ、1.25倍(LiAg2Sn)と1.76倍(Li2AgSn)となる。Sn(密度7.286 g/cm)がLiを吸蔵してLi4.4Sn(密度1.920 g/cm)になる場合には体積変化が3.8倍であることと比較すると、上記した三元化合物が形成される場合には体積増加が非常に少なくなる。このため、電極の膨潤や微細化による容量低下が抑制されてサイクル寿命が向上するものと思われる。その結果、該複合粉末は、放電容量が高く、充放電に伴う劣化が少なく、リチウム電池用負極材料として用いた場合に、高い放電容量と優れたサイクル特性を両立することができる。
SnCuO + Li → Li 2 CuO + Sn
2Li + CuO → Li 2 CuO or 4Li + Cu 2 O + O → 2Li 2 CuO (1)
3Li + SnO → LiSn + Li 2 O or 5Li + SnO 2 → LiSn + 2Li 2 O
xLi + Sn → Li x Sn (x ≦ 4.4) (2)
Li + A 3 Sn → LiA 2 Sn + A (3)
A + Li x Sn → LiA 2 Sn / Li 2 ASn + Li y Sn (x ≦ 4.4, y ≦ 2.4) (4)
Li y Sn + LiA 2 Sn → Li 2 ASn + Li z Sn (y ≦ 2.4, z ≦ 1.4) (5)
(y + z) Li + Li 2 ASn → Li 2 + y A 1-Z Sn + zLiA (y ≦ 2.4, z ≦ 1.4) (6)
(2.4−y + z) Li + Li2 + y A 1−Z Sn → Li 4.4 Sn + LiA (y ≦ 2.4, z ≦ 1) (7)
In the negative electrode material of the present invention, it is important that the process of occluding and releasing Li is performed through the ternary compounds LiA 2 Sn and Li 2 ASn. For example, in a negative electrode using a composite material with Ag / Sn (atomic ratio) = 52/48 of 90 mass% and SnO of 10 mass%, the discharge capacity at the second cycle exceeds about 440 mAh / g, but compared with one cycle. The capacity is reduced by about 400 mAh / g. This irreversible capacity change is considered to be caused by the formation of a surface film (SEI) due to decomposition of the Li 2 O phase generated by the first charge or the organic electrolyte. The lithium storage / release process is performed through LiAg 2 Sn (density 7.920 g / cm 3 ) and Li 2 AgSn (density 5.630 g / cm 3 ), thereby obtaining Ag 3 Sn (density 9.932 g / cm 2 ). The volume changes with respect to cm 3 ) are 1.25 times (LiAg 2 Sn) and 1.76 times (Li 2 AgSn), respectively. When Sn (density 7.286 g / cm 3 ) occludes Li and becomes Li 4.4 Sn (density 1.920 g / cm 3 ), the volume change is 3.8 times. When the above-described ternary compound is formed, the volume increase is very small. For this reason, it seems that the capacity | capacitance fall by swelling and refinement | miniaturization of an electrode is suppressed and a cycle life improves. As a result, the composite powder has a high discharge capacity, little deterioration due to charge / discharge, and can achieve both a high discharge capacity and excellent cycle characteristics when used as a negative electrode material for a lithium battery.

本発明の負極材料は、初期放電容量が大きく、サイクル特性に優れた材料であり、リチウムイオン電池、リチウムポリマー電池などのリチウム二次電池用の負極材料として有用性が高いものである。   The negative electrode material of the present invention is a material having a large initial discharge capacity and excellent cycle characteristics, and is highly useful as a negative electrode material for lithium secondary batteries such as lithium ion batteries and lithium polymer batteries.

実施例4、5、6、8、9及び10並びに比較例5及び7のサイクル寿命を示す図である。It is a figure which shows the cycle life of Examples 4, 5, 6, 8, 9, and 10 and Comparative Examples 5 and 7. 実施例17、18及び19並びに比較例5及び8のサイクル寿命を示す図である。It is a figure which shows the cycle life of Examples 17, 18, and 19 and Comparative Examples 5 and 8. 実施例22及び23並びに比較例5のサイクル寿命を示す図である。It is a figure which shows the cycle life of Examples 22 and 23 and Comparative Example 5.

以下、実施例を挙げて本発明を更に詳細に説明する。但し、本発明は実施例に限定されない。   Hereinafter, the present invention will be described in more detail with reference to examples. However, the present invention is not limited to the examples.

実施例1〜3
電解法で作製したCu粉末、ガスアトマイズ法で作製したSn粉末をそれぞれ、平均粒子径を10μm以下に調整した。SnO粉末は関東化学(株)製を用いた。下記表1に示す比率となるようにCu、Sn、SnOの各材料粉末を混合し、金属粉末100重量部に対して滑剤としてステアリン酸を0.5重量部添加し、フリッチェ製遊星ボ−ルミルに投入し、メカニカルアロイング処理を行うことによって複合粉末を得た。得られた複合粉末の一次粒子の粒子径を走査型電子顕微鏡で測定した結果、全ての一次粒子の粒子径が、1μm以下の範囲内であった。また、得られた複合粉末の二次粒子の粒子径をレーザー回折法で測定した結果、全ての二次粒子の最大粒子径が、75μm以下であった。
Examples 1-3
The average particle diameter was adjusted to 10 μm or less for the Cu powder prepared by the electrolytic method and the Sn powder prepared by the gas atomization method, respectively. SnO powder was manufactured by Kanto Chemical Co., Inc. Each material powder of Cu, Sn, and SnO is mixed so as to have the ratio shown in Table 1 below, and 0.5 parts by weight of stearic acid is added as a lubricant to 100 parts by weight of the metal powder. And a composite powder was obtained by performing mechanical alloying treatment. As a result of measuring the particle diameter of the primary particles of the obtained composite powder with a scanning electron microscope, the particle diameters of all the primary particles were in the range of 1 μm or less. Moreover, as a result of measuring the particle diameter of the secondary particle of the obtained composite powder by a laser diffraction method, the maximum particle diameter of all the secondary particles was 75 μm or less.

このようにして得られた複合粉末85重量部、バインダー(ポリビニリデンフルオライド:PVdF)が5mass%溶解したN-メチルピロリドン(NMP)溶液をPVdF換算分として10重量部、及びカ−ボンブラック5重量部を混合してスラリ−状の合剤を調製した。   85 parts by weight of the composite powder thus obtained, 10 parts by weight of an N-methylpyrrolidone (NMP) solution in which 5% by mass of a binder (polyvinylidene fluoride: PVdF) is dissolved, and carbon black 5 A slurry-like mixture was prepared by mixing parts by weight.

次いで、厚さ18μmの電解銅箔に上記合剤をドクターブレードで塗布し、均一な塗膜(約4〜5mg/cm)を形成した。これを80℃で約10分間乾燥してNMPを揮発・除去した後、ロ−ルプレス機により、電解銅箔と塗膜とを密着接合させ、電極活物質層の平均厚さが約10μmのシートを作製した。このシートを1cmの円形ポンチで抜き取り、120℃で3時間、減圧乾燥させて試験電極(負極)とした。 Subsequently, the said mixture was apply | coated to the electrolytic copper foil of thickness 18 micrometers with the doctor blade, and the uniform coating film (about 4-5 mg / cm < 2 >) was formed. After this was dried at 80 ° C. for about 10 minutes to volatilize and remove NMP, the electrolytic copper foil and the coating film were closely joined with a roll press machine, and the average thickness of the electrode active material layer was about 10 μm. Was made. The sheet was extracted with a 1 cm 2 circular punch and dried under reduced pressure at 120 ° C. for 3 hours to obtain a test electrode (negative electrode).

作製した負極を用い、さらに試験電極計算容量の約20倍以上の容量を有している金属リチウムを対極(正極)として、1モルのLiPF/エチレンカーボネート(EC)+ジエチルカーボネート(DEC)(EC:DEC=1:1(体積比))溶液を電解液として用い、コイン型試験セル(CR2032タイプ)を作製した。次に、作製した試験セルを、約0.2mA/cmの定電流密度で0Vに達するまで充電し、10分間の休止後、約0.2mA/cm の定電流密度で1.0Vに達するまで放電した。これを1サイクルとして、繰り返し充放電を行うことにより評価した。 Using the prepared negative electrode, and using metallic lithium having a capacity of about 20 times or more the calculated test electrode capacity as the counter electrode (positive electrode), 1 mol of LiPF 6 / ethylene carbonate (EC) + diethyl carbonate (DEC) ( An EC: DEC = 1: 1 (volume ratio)) solution was used as an electrolytic solution to prepare a coin-type test cell (CR2032 type). Next, the prepared test cells were charged until reaching 0V at a constant current density of about 0.2 mA / cm 2, after 10 minutes of rest, to 1.0V at a constant current density of about 0.2 mA / cm 2 Discharged until reached. This was evaluated by repeatedly charging and discharging as one cycle.

各実施例の負極材料を用いた試験セルについて、50サイクル数目の放電容量と放電容量維持率を表1に示す。放電容量維持率(%)は、1サイクル数目の放電容量に対する50サイクル数目の放電容量の割合を示す。   Table 1 shows the discharge capacity and discharge capacity retention ratio at the 50th cycle for the test cells using the negative electrode material of each example. The discharge capacity retention rate (%) indicates the ratio of the discharge capacity at the 50th cycle number to the discharge capacity at the first cycle number.

実施例4〜19
電解法で作製したCu粉末とAg粉末、カーボニル法で作製したFe粉末、ガスアトマイズ法で作製したSn粉末をそれぞれ、平均粒子径を10μm以下に調整した。SnO粉末とSnO粉末は関東化学(株)製を用いた。下記表1に示す比率となるようにA成分とSnの各材料粉末を混合し、金属粉末100重量部に対して滑剤としてステアリン酸を0.5重量部添加し、フリッチェ製遊星ボ−ルミルに投入し、メカニカルアロイング処理を行うことによってCu−Sn系、Ag−Fe−Sn系複合粉末を得た。更に、作製した複合粉末に所定の配合でSnO粉末又はSnO粉末を混合し、フリッチェ製遊星ボ−ルミルに投入し、メカニカルアロイング処理を行うことによって、所定の成分の複合合金粉末を得た。得られた複合合金粉末の一次粒子の粒子径を走査型電子顕微鏡で測定した結果、全ての一次粒子の粒子径が、1μm以下の範囲内であった。また、得られた複合粉末の二次粒子の粒子径をレーザー回折法で測定した結果、全ての二次粒子の最大粒子径が、75μm以下であった。以下、実施例1〜3と同様の方法で負極を作製し、評価した。
Examples 4-19
The Cu powder and Ag powder produced by the electrolytic method, the Fe powder produced by the carbonyl method, and the Sn powder produced by the gas atomizing method were each adjusted to have an average particle size of 10 μm or less. SnO powder and SnO 2 powder were manufactured by Kanto Chemical Co., Inc. Each component powder of component A and Sn is mixed so that the ratio shown in Table 1 below is obtained, and 0.5 parts by weight of stearic acid is added as a lubricant to 100 parts by weight of the metal powder. The Cu-Sn based and Ag-Fe-Sn based composite powder was obtained by performing the mechanical alloying process. Furthermore, SnO powder or SnO 2 powder was mixed with the prepared composite powder in a predetermined composition, charged into a planetary ball mill manufactured by Fritche, and subjected to mechanical alloying to obtain a composite alloy powder having predetermined components. . As a result of measuring the particle diameter of the primary particles of the obtained composite alloy powder with a scanning electron microscope, the particle diameters of all the primary particles were in the range of 1 μm or less. Moreover, as a result of measuring the particle diameter of the secondary particle of the obtained composite powder by a laser diffraction method, the maximum particle diameter of all the secondary particles was 75 μm or less. Hereinafter, negative electrodes were produced and evaluated in the same manner as in Examples 1 to 3.

実施例20〜21
電解法で作製したCu粉末、ガスアトマイズ法で作製したSn粉末をそれぞれ、平均粒子径を10μm以下に調整した。SnO粉末は関東化学(株)製、カーボンブラック粉末はケチェンブラックインターナショナル(株)製を用いた。下記表1に示す比率となるようにA成分とSnの各材料粉末を混合し、金属粉末100重量部に対して滑剤としてステアリン酸を0.5重量部添加し、フリッチェ製遊星ボ−ルミルに投入し、メカニカルアロイング処理を行うことによってCu−Sn系複合粉末を得た。更に、作製した複合粉末に所定の配合でSnO粉末とカーボンブラック粉末を混合し、フリッチェ製遊星ボ−ルミルに投入し、メカニカルアロイング処理を行うことによって、所定の成分の複合合金粉末を得た。得られた複合合金粉末の一次粒子の粒子径を走査型電子顕微鏡で測定した結果、全ての一次粒子の粒子径が、1μm以下の範囲内であった。また、得られた複合粉末の二次粒子の粒子径をレーザー回折法で測定した結果、全ての二次粒子の最大粒子径が、75μm以下の範囲内であった。以下、実施例1〜3と同様の方法で、負極を作製し、評価した。
表1から明らかなように、各実施例の複合粉末を負極とした試験セルでは、充放電50サイクル後の放電容量が300mAh/g以上の高い値を示し、しかも50サイクル後の放電容量維持率も70%以上あることから、十分に容量が維持されていることが判る。
Examples 20-21
The average particle diameter was adjusted to 10 μm or less for the Cu powder prepared by the electrolytic method and the Sn powder prepared by the gas atomization method, respectively. SnO powder manufactured by Kanto Chemical Co., Ltd. was used, and carbon black powder manufactured by Kechen Black International Co., Ltd. was used. Each component powder of component A and Sn is mixed so that the ratio shown in Table 1 below is obtained, and 0.5 parts by weight of stearic acid is added as a lubricant to 100 parts by weight of the metal powder. The Cu—Sn based composite powder was obtained by performing the mechanical alloying process. Furthermore, SnO powder and carbon black powder were mixed with the prepared composite powder in a predetermined composition, charged into a planetary ball mill made of Fritche, and subjected to mechanical alloying to obtain a composite alloy powder having predetermined components. . As a result of measuring the particle diameter of the primary particles of the obtained composite alloy powder with a scanning electron microscope, the particle diameters of all the primary particles were in the range of 1 μm or less. Moreover, as a result of measuring the particle diameter of the secondary particle of the obtained composite powder by the laser diffraction method, the maximum particle diameter of all the secondary particles was in the range of 75 μm or less. Hereinafter, negative electrodes were produced and evaluated in the same manner as in Examples 1 to 3.
As is clear from Table 1, in the test cell using the composite powder of each example as a negative electrode, the discharge capacity after 50 cycles of charge / discharge shows a high value of 300 mAh / g or more, and the discharge capacity retention rate after 50 cycles. 70% or more, it can be seen that the capacity is sufficiently maintained.

比較例1〜8
比較例1〜2では、電解法で作製したCu粉末、ガスアトマイズ法で作製したSn粉末をそれぞれ、平均粒子径を10μm以下に調整した(表1)。比較例3〜6では、表1に示す比率となるようにし、実施例1と同様の方法で、複合粉末を得た。得られた複合粉末の一次粒子の粒子径を走査型電子顕微鏡で測定した結果、全ての一次粒子の粒子径が、1μm以下の範囲内であった。比較例7〜8では、SnOとSnOの粉末(関東化学(株)製)を用いた。また、得られた複合粉末の二次粒子の粒子径をレーザー回折法で測定した結果、全ての二次粒子の最大粒子径が、75μm以下の範囲内であった。以下、比較例1〜8においても、実施例1〜3と同様の方法で負極を作製し、評価した。
Comparative Examples 1-8
In Comparative Examples 1 and 2, the Cu powder produced by the electrolytic method and the Sn powder produced by the gas atomizing method were each adjusted to have an average particle diameter of 10 μm or less (Table 1). In Comparative Examples 3 to 6, composite powders were obtained in the same manner as in Example 1 with the ratio shown in Table 1. As a result of measuring the particle diameter of the primary particles of the obtained composite powder with a scanning electron microscope, the particle diameters of all the primary particles were in the range of 1 μm or less. In Comparative Examples 7 to 8, SnO and SnO 2 powder (manufactured by Kanto Chemical Co., Inc.) was used. Moreover, as a result of measuring the particle diameter of the secondary particle of the obtained composite powder by the laser diffraction method, the maximum particle diameter of all the secondary particles was in the range of 75 μm or less. Hereinafter, in Comparative Examples 1 to 8, negative electrodes were produced and evaluated in the same manner as in Examples 1 to 3.

単独金属(比較例1〜2)、2成分系合金(比較例3〜5)、又は3成分系合金(比較例6)、Sn酸化物(比較例7〜8)を負極として用いた場合について、50サイクル数目の放電容量と放電容量維持率を表1に示す。表1から明らかなように、各比較例を負極とした試験セルでは、充放電50サイクル後の放電容量は低く、しかも50サイクル後の放電容量維持率は70%以下であり、サイクル寿命が不十分であることが判る。   About the case where a single metal (Comparative Examples 1-2), a binary alloy (Comparative Examples 3-5), a ternary alloy (Comparative Example 6), or an Sn oxide (Comparative Examples 7-8) is used as a negative electrode Table 1 shows the discharge capacity and discharge capacity retention ratio at the 50th cycle. As is clear from Table 1, in the test cell in which each comparative example was a negative electrode, the discharge capacity after 50 cycles of charge / discharge was low, and the discharge capacity retention rate after 50 cycles was 70% or less, resulting in poor cycle life. It turns out that it is enough.

図1は、実施例4、5、6、8、9及び10並びに比較例5及び7の負極を用いた試験セルについて、放電容量と充放電サイクル数との関係であるサイクル寿命を示すグラフである。図1から明らかなように、各実施例の負極を用いた試験セルについては、100サイクル後でも約300mAh/g以上の容量を維持しており、比較例の負極材料を用いた電池と比較して、優れたサイクル寿命を有することが判る。   FIG. 1 is a graph showing the cycle life which is the relationship between the discharge capacity and the number of charge / discharge cycles for the test cells using the negative electrodes of Examples 4, 5, 6, 8, 9 and 10 and Comparative Examples 5 and 7. is there. As is clear from FIG. 1, the test cell using the negative electrode of each example maintained a capacity of about 300 mAh / g or more even after 100 cycles, compared with the battery using the negative electrode material of the comparative example. It can be seen that it has an excellent cycle life.

図2は、実施例17、18及び19並びに比較例5及び8の負極材料を用いた試験セルについて、放電容量と充放電サイクル数との関係であるサイクル寿命を示すグラフである。図2から明らかなように、実施例の負極材料を用いた試験セルについては、100サイクル後でも約300mAh/g以上の容量を維持しており、比較例の負極を用いた電池と比較して、優れたサイクル寿命を有することが判る。   FIG. 2 is a graph showing the cycle life which is the relationship between the discharge capacity and the number of charge / discharge cycles for the test cells using the negative electrode materials of Examples 17, 18 and 19 and Comparative Examples 5 and 8. As is clear from FIG. 2, the test cell using the negative electrode material of the example maintained a capacity of about 300 mAh / g or more even after 100 cycles, compared with the battery using the negative electrode of the comparative example. It can be seen that it has an excellent cycle life.

Figure 2010232161
Figure 2010232161

実施例22〜23
電解法で作製したCu粉末、ガスアトマイズ法で作製したSn粉末をそれぞれ、平均粒子径を10μm以下に調整した。組成比がSn50Cu50となるようにCu、Snの各材料粉末を混合した。これら金属粉末100重量部に対して滑剤としてステアリン酸を0.5重量部添加し、フリッチェ製遊星ボ−ルミルに投入し、メカニカルアロイング処理を行うことによってSn−Cuの複合粉末化を行い、その後に、大気雰囲気中で225、300℃の温度でそれぞれ加熱処理を行うことによって複合粉末を得た。得られた複合粉末の一次粒子の粒子径を走査型電子顕微鏡で測定した結果、全ての一次粒子の粒子径が、1μm以下の範囲内であった。また、得られた複合粉末の二次粒子の粒子径をレーザー回折法で測定した結果、全ての二次粒子の最大粒子径が、75μm以下であった。以下、実施例1〜3と同様の方法で負極を作製し、評価した。
Examples 22-23
The average particle diameter was adjusted to 10 μm or less for the Cu powder prepared by the electrolytic method and the Sn powder prepared by the gas atomization method, respectively. Cu and Sn material powders were mixed so that the composition ratio was Sn50Cu50. Add 0.5 parts by weight of stearic acid as a lubricant to 100 parts by weight of these metal powders, put into a planetary ball mill made of Fritche, and perform mechanical alloying to make Sn-Cu composite powder, Thereafter, a composite powder was obtained by performing heat treatment at 225 and 300 ° C. in an air atmosphere. As a result of measuring the particle diameter of the primary particles of the obtained composite powder with a scanning electron microscope, the particle diameters of all the primary particles were in the range of 1 μm or less. Moreover, as a result of measuring the particle diameter of the secondary particle of the obtained composite powder by a laser diffraction method, the maximum particle diameter of all the secondary particles was 75 μm or less. Hereinafter, negative electrodes were produced and evaluated in the same manner as in Examples 1 to 3.

実施例22(225℃の加熱処理)と23(300℃の加熱処理)の複合粉末を負極とした試験セルについて、充放電50サイクル後の放電容量が351mAh/g、346mAh/g以上の高い値を示し、しかも50サイクル後の放電容量は、実施例22、実施例23とも、初回の放電容量とほぼ同等の容量であった。このことから、容量が十分に維持されていることが分かる。   For the test cell using the composite powder of Example 22 (225 ° C. heat treatment) and 23 (300 ° C. heat treatment) as the negative electrode, the discharge capacity after 50 cycles of charge / discharge was a high value of 351 mAh / g or more, 346 mAh / g or more. In addition, the discharge capacity after 50 cycles was almost the same as the initial discharge capacity in both Example 22 and Example 23. From this, it can be seen that the capacity is sufficiently maintained.

実施例22及び23の負極を用いた試験セルについて、放電容量と充放電サイクル数との関係であるサイクル寿命を示すグラフを図3に示す。図3から明らかなように、各実施例22及び23の負極材料を用いた試験セルについては、100サイクル後でも約300mAh/g以上の容量を維持しており、比較例5の負極を用いた試験セルと比較して、優れたサイクル寿命を有することが分かる。   About the test cell using the negative electrode of Examples 22 and 23, the graph which shows the cycle life which is the relationship between discharge capacity and the number of charge / discharge cycles is shown in FIG. As apparent from FIG. 3, the test cells using the negative electrode materials of Examples 22 and 23 maintained the capacity of about 300 mAh / g or more even after 100 cycles, and the negative electrode of Comparative Example 5 was used. It can be seen that it has an excellent cycle life compared to the test cell.

Claims (8)

下記(1)〜(4)の条件を満足する複合粉末からなるリチウム二次電池用負極材料:
(1)該複合粉末が、(i) Mg、Al、Ca、Ti、V、Cr、Mn、Fe、Co、Ni、Cu、Zn、Ge、Y、Zr、Nb、Mo、Pd、Ag、In、Sb、Hf、Ta、W、Bi及び希土類元素からなる群から選ばれた少なくとも一種の金属であるA成分、(ii) SnO及びSnOから選ばれた少なくとも一種と、CuO及びCuOから選ばれた少なくとも一種とからなるB成分、(iii) Sn金属、(iv) A成分とSn金属との合金、並びに(v) 必要に応じて炭素材料からなるものであること、
(2)該複合粉末全体におけるA成分とSn金属の割合が、両者の合計量を100原子%として、A成分30〜70原子%とSn金属70〜30原子%であること、
(3)A成分とSn金属の合計、B成分、及び炭素材料の割合が、これらの合計量を100mass%として、A成分とSn金属の合計20〜95mass%、B成分5〜80mass%、炭素材料0〜20mass%であること、
(4)10%以上の個数の一次粒子径が1μm以下、10%以上の個数の平均二次粒子径が1μm〜10μmの範囲内にあること。
Negative electrode material for lithium secondary battery comprising composite powder satisfying the following conditions (1) to (4):
(1) The composite powder is (i) Mg, Al, Ca, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Ge, Y, Zr, Nb, Mo, Pd, Ag, In A component which is at least one metal selected from the group consisting of Sb, Hf, Ta, W, Bi and rare earth elements, (ii) at least one selected from SnO and SnO 2 , and CuO and Cu 2 O A component B consisting of at least one selected from (iii) Sn metal, (iv) an alloy of A component and Sn metal, and (v) a carbon material as required,
(2) The ratio of the A component and the Sn metal in the entire composite powder is 30 to 70 atomic percent of the A component and 70 to 30 atomic percent of the Sn metal, with the total amount of both being 100 atomic percent.
(3) The sum of the A component and the Sn metal, the ratio of the B component, and the carbon material, the total amount of which is 100 mass%, the total of the A component and the Sn metal is 20 to 95 mass%, the B component is 5 to 80 mass%, carbon The material is 0-20 mass%,
(4) The primary particle diameter of 10% or more is 1 μm or less, and the average secondary particle diameter of 10% or more is in the range of 1 μm to 10 μm.
前記複合粉末全体中の各成分の組成比が、Snが40〜60原子%、A成分が7〜55原子%、Oが3〜43原子%である請求項1に記載のリチウム二次電池用負極材料。 2. The lithium secondary battery according to claim 1, wherein the composition ratio of each component in the entire composite powder is 40 to 60 atom% of Sn, 7 to 55 atom% of component A, and 3 to 43 atom% of O. Negative electrode material. (i) Mg、Al、Ca、Ti、V、Cr、Mn、Fe、Co、Ni、Cu、Zn、Ge、Y、Zr、Nb、Mo、Pd、Ag、In、Sb、Hf、Ta、W、Bi及び希土類元素からなる群から選ばれた少なくとも一種の金属であるA成分、(ii) SnO及びSnOから選ばれた少なくとも一種と、CuO及びCuOから選ばれた少なくとも一種とからなるB成分、(iii) Sn金属、並びに(iv) 必要に応じて炭素材料からなる原料物質を混合し、メカニカルアロイング処理を行って複合粉末を形成することを特徴とする請求項1又は2に記載のリチウム二次電池用負極材料の製造方法。 (i) Mg, Al, Ca, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Ge, Y, Zr, Nb, Mo, Pd, Ag, In, Sb, Hf, Ta, W A component which is at least one metal selected from the group consisting of Bi, rare earth elements, (ii) at least one selected from SnO and SnO 2 , and at least one selected from CuO and Cu 2 O A composite powder is formed by mixing a component B, (iii) Sn metal, and (iv) a raw material made of a carbon material if necessary, and performing mechanical alloying treatment. The manufacturing method of the negative electrode material for lithium secondary batteries as described. (i) Mg、Al、Ca、Ti、V、Cr、Mn、Fe、Co、Ni、Cu、Zn、Ge、Y、Zr、Nb、Mo、Pd、Ag、In、Sb、Hf、Ta、W、Bi及び希土類元素からなる群から選ばれた少なくとも一種の金属であるA成分、並びに(ii) Sn金属からなる原料物質を混合し、メカニカルアロイング処理を行って複合粉末を形成する工程、
前記工程で得られた複合粉末に(iii) SnO及びSnOから選ばれた少なくとも一種と、CuO及びCuOから選ばれた少なくとも一種とからなるB成分、並びに(iv) 必要に応じて炭素材料からなる原料物質を混合し、メカニカルアロイング処理を行って複合粉末を形成する工程を有することを特徴とする請求項1又は2に記載のリチウム二次電池用負極材料の製造方法。
(i) Mg, Al, Ca, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Ge, Y, Zr, Nb, Mo, Pd, Ag, In, Sb, Hf, Ta, W A component of A, which is at least one metal selected from the group consisting of Bi and rare earth elements, and (ii) a raw material material made of Sn metal, and mechanically alloying to form a composite powder;
(Iii) B component consisting of at least one selected from SnO and SnO 2 and at least one selected from CuO and Cu 2 O, and (iv) carbon as required The method for producing a negative electrode material for a lithium secondary battery according to claim 1 or 2, further comprising a step of mixing raw materials made of materials and performing a mechanical alloying process to form a composite powder.
A成分、Sn金属及び前記B成分の合計量を100mass%として、A成分及びSn金属の割合が20〜95mass%、B成分の割合が5〜80mass%である請求項3又は4に記載のリチウム二次電池用負極材料の製造方法。 5. The lithium according to claim 3, wherein the total amount of the A component, the Sn metal and the B component is 100 mass%, the proportion of the A component and the Sn metal is 20 to 95 mass%, and the proportion of the B component is 5 to 80 mass%. A method for producing a negative electrode material for a secondary battery. 前記A成分の粉末及びSn金属の粉末を均一に混合し、130〜200℃の温度範囲で部分的に合金化した複合粉末を形成する工程、該工程で得られた複合粉末を酸素雰囲気下、200℃以上の温度で酸化する工程を有する請求項1又は2に記載のリチウム二次電池用負極材料の製造方法。 A step of uniformly mixing the powder of the component A and the powder of Sn metal to form a composite powder partially alloyed in a temperature range of 130 to 200 ° C., and the composite powder obtained in the step under an oxygen atmosphere. The manufacturing method of the negative electrode material for lithium secondary batteries of Claim 1 or 2 which has the process oxidized at the temperature of 200 degreeC or more. 前記A成分の粉末、Sn金属の粉末を均一に混合し、メカニカルアロイング処理を行って部分的に合金化した複合粉末を形成する工程、該工程で得られた複合粉末を酸素雰囲気下、300℃以上の温度で酸化する工程を有する請求項1又は2に記載のリチウム二次電池用負極材料の製造方法。 A step of uniformly mixing the powder of the component A and the powder of Sn metal and performing a mechanical alloying process to form a partially alloyed composite powder. The composite powder obtained in the step is 300 in an oxygen atmosphere. The manufacturing method of the negative electrode material for lithium secondary batteries of Claim 1 or 2 which has the process oxidized at the temperature more than (degreeC). 請求項1又は2に記載の二次電池用負極材料を搭載したリチウム二次電池であって、初充電を経た後の該負極材料がLixAySn型中間化合物(但し、Aは前記A成分を示し、0<x、y≦2である)を含むリチウム二次電池。 A lithium secondary battery comprising the secondary battery negative electrode material according to claim 1 or 2, wherein the negative electrode material after initial charging is a LixAySn type intermediate compound (where A represents the A component, 0 <x, y ≦ 2).
JP2009269906A 2009-03-05 2009-11-27 Negative electrode material for lithium secondary battery and method for producing the same Active JP5516860B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009269906A JP5516860B2 (en) 2009-03-05 2009-11-27 Negative electrode material for lithium secondary battery and method for producing the same

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2009051483 2009-03-05
JP2009051483 2009-03-05
JP2009269906A JP5516860B2 (en) 2009-03-05 2009-11-27 Negative electrode material for lithium secondary battery and method for producing the same

Publications (2)

Publication Number Publication Date
JP2010232161A true JP2010232161A (en) 2010-10-14
JP5516860B2 JP5516860B2 (en) 2014-06-11

Family

ID=43047779

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009269906A Active JP5516860B2 (en) 2009-03-05 2009-11-27 Negative electrode material for lithium secondary battery and method for producing the same

Country Status (1)

Country Link
JP (1) JP5516860B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012104281A (en) * 2010-11-08 2012-05-31 Fukuda Metal Foil & Powder Co Ltd Anode material for lithium secondary battery and method for producing the same
WO2013073695A1 (en) 2011-11-16 2013-05-23 エム・テクニック株式会社 Solid metal alloy
CN106684325A (en) * 2017-01-10 2017-05-17 郑州大学 Niobium-doped tin dioxide thin film lithium ion battery negative pole plate, preparation method thereof and lithium ion battery
KR101836311B1 (en) * 2015-06-11 2018-03-08 금오공과대학교 산학협력단 Methods for manufacturing disproprotionated SnO/C, anode material for composites disproprotionated SnO/C, and rechargeable battery comprising the same
CN109065873A (en) * 2018-08-17 2018-12-21 东莞市凯金新能源科技股份有限公司 A kind of preparation method and material of the mesoporous graphitic nitralloy carbon negative pole material of loaded nano-copper
CN109817954A (en) * 2019-03-26 2019-05-28 四川大学 A kind of 3-D ordered multiporous carbon embeds the preparation method of oxide material
GB2576080A (en) * 2018-06-01 2020-02-05 Allied Gold Ltd Treatment of articles of silver alloy
CN113113576A (en) * 2021-03-01 2021-07-13 三峡大学 Bi/SnOxComposite electrode material of @ C sodium ion battery and preparation method thereof
CN115280426A (en) * 2020-03-31 2022-11-01 松下知识产权经营株式会社 Solid electrolyte material and battery using the same

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004273443A (en) * 2003-02-18 2004-09-30 Mitsubishi Chemicals Corp Negative electrode material for nonaqueous lithium ion secondary battery, and nonaqueous lithium ion secondary battery

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004273443A (en) * 2003-02-18 2004-09-30 Mitsubishi Chemicals Corp Negative electrode material for nonaqueous lithium ion secondary battery, and nonaqueous lithium ion secondary battery

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012104281A (en) * 2010-11-08 2012-05-31 Fukuda Metal Foil & Powder Co Ltd Anode material for lithium secondary battery and method for producing the same
US10829838B2 (en) 2011-11-16 2020-11-10 M. Technique Co., Ltd. Solid metal alloy
WO2013073695A1 (en) 2011-11-16 2013-05-23 エム・テクニック株式会社 Solid metal alloy
KR20140093672A (en) 2011-11-16 2014-07-28 엠. 테크닉 가부시키가이샤 Solid metal alloy
US9732401B2 (en) 2011-11-16 2017-08-15 M. Technique Co., Ltd. Solid metal alloy
KR101836311B1 (en) * 2015-06-11 2018-03-08 금오공과대학교 산학협력단 Methods for manufacturing disproprotionated SnO/C, anode material for composites disproprotionated SnO/C, and rechargeable battery comprising the same
CN106684325A (en) * 2017-01-10 2017-05-17 郑州大学 Niobium-doped tin dioxide thin film lithium ion battery negative pole plate, preparation method thereof and lithium ion battery
GB2576080A (en) * 2018-06-01 2020-02-05 Allied Gold Ltd Treatment of articles of silver alloy
CN109065873A (en) * 2018-08-17 2018-12-21 东莞市凯金新能源科技股份有限公司 A kind of preparation method and material of the mesoporous graphitic nitralloy carbon negative pole material of loaded nano-copper
CN109065873B (en) * 2018-08-17 2021-10-22 广东凯金新能源科技股份有限公司 Preparation method and material of supported nano-copper mesoporous graphite carbon nitride negative electrode material
CN109817954A (en) * 2019-03-26 2019-05-28 四川大学 A kind of 3-D ordered multiporous carbon embeds the preparation method of oxide material
CN115280426A (en) * 2020-03-31 2022-11-01 松下知识产权经营株式会社 Solid electrolyte material and battery using the same
CN113113576A (en) * 2021-03-01 2021-07-13 三峡大学 Bi/SnOxComposite electrode material of @ C sodium ion battery and preparation method thereof
CN113113576B (en) * 2021-03-01 2023-07-28 三峡大学 Bi/SnO x Composite electrode material of@C sodium ion battery and preparation method thereof

Also Published As

Publication number Publication date
JP5516860B2 (en) 2014-06-11

Similar Documents

Publication Publication Date Title
JP5516860B2 (en) Negative electrode material for lithium secondary battery and method for producing the same
JP4406789B2 (en) Negative electrode material for lithium secondary battery and method for producing the same
JP5200339B2 (en) Nonaqueous electrolyte secondary battery
JP5002824B1 (en) Negative electrode material for lithium secondary battery and production method thereof, and negative electrode for lithium secondary battery and lithium secondary battery
JP6315765B2 (en) Negative electrode active material, manufacturing method thereof, and lithium secondary battery employing negative electrode including the same
JP5403669B2 (en) Lithium ion secondary battery
JP2017063026A (en) Composite negative electrode active material, negative electrode and lithium secondary battery including the same, and method of preparing the composite negative electrode active material
JP4623940B2 (en) Negative electrode material and secondary battery using the same
JP4654381B2 (en) Negative electrode for lithium secondary battery and method for producing the same
JP5448555B2 (en) Negative electrode for lithium ion secondary battery, lithium ion secondary battery using the same, slurry for preparing negative electrode for lithium ion secondary battery, and method for producing negative electrode for lithium ion secondary battery
JP6726935B2 (en) Negative electrode for lithium battery, lithium battery, method of manufacturing lithium battery, and method of using lithium battery
KR20240011222A (en) Negative active material and preparation method thereof
JP6601937B2 (en) Negative electrode active material, negative electrode employing the same, lithium battery, and method for producing the negative electrode active material
JP2006261061A (en) Electrode material, electrode and lithium cell using the same, and manufacturing method for electrode material
KR102331725B1 (en) Negative active material and lithium battery including the material
JP4133116B2 (en) Negative electrode active material for lithium ion secondary battery, method for producing the same, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
JP5318129B2 (en) Electrode material for nonaqueous electrolyte battery and method for producing the same, electrode for nonaqueous electrolyte battery, and nonaqueous electrolyte battery
JP4836439B2 (en) Non-aqueous electrolyte battery electrode material, non-aqueous electrolyte battery electrode, and non-aqueous electrolyte battery
JP2005317447A (en) Battery
JP6245954B2 (en) Negative electrode active material for lithium ion secondary battery
JP2018098018A (en) Negative electrode active material for lithium ion secondary battery and manufacturing method thereof, negative electrode, and battery
JP5769578B2 (en) Method for producing negative electrode active material for lithium secondary battery
JP5285033B2 (en) Negative electrode material and secondary battery using the same
WO2021220580A1 (en) Negative electrode material and battery
JP4196894B2 (en) Anode material for non-aqueous secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121025

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121017

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131111

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131203

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140128

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140225

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140318

R150 Certificate of patent or registration of utility model

Ref document number: 5516860

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250