JP2010232088A - Nonaqueous electrolyte secondary battery - Google Patents

Nonaqueous electrolyte secondary battery Download PDF

Info

Publication number
JP2010232088A
JP2010232088A JP2009080071A JP2009080071A JP2010232088A JP 2010232088 A JP2010232088 A JP 2010232088A JP 2009080071 A JP2009080071 A JP 2009080071A JP 2009080071 A JP2009080071 A JP 2009080071A JP 2010232088 A JP2010232088 A JP 2010232088A
Authority
JP
Japan
Prior art keywords
copper foil
secondary battery
negative electrode
nonaqueous electrolyte
electrolyte secondary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009080071A
Other languages
Japanese (ja)
Inventor
Katsuya Imai
克哉 今井
Takuya Sunakawa
拓也 砂川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2009080071A priority Critical patent/JP2010232088A/en
Publication of JP2010232088A publication Critical patent/JP2010232088A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

<P>PROBLEM TO BE SOLVED: To solve the following problem of a nonaqueous secondary battery that a bad condition such as breakage of an electrode plate may take place in due course of repeated charge and discharge by inadequate evaluation of strength of an electrode core body. <P>SOLUTION: The nonaqueous secondary battery includes a cathode, an anode made by coating an anode active material on an anode core body, and a nonaqueous electrolyte, wherein a copper foil having a width of 6 to 12 μm with a folding endurance of 100 times or more is used as the anode core body. By adopting the copper foil, strength of the electrode core body is adequately evaluated, and a nonaqueous electrolyte secondary battery with excellent cycle characteristics is obtained. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、非水電解質二次電池のサイクル特性の向上に関する。   The present invention relates to an improvement in cycle characteristics of a nonaqueous electrolyte secondary battery.

リチウムイオン二次電池に代表される非水電解質二次電池は、高いエネルギー密度を有し、高容量であるため、携帯電話などの小型情報通信機器、映像機器又は電動工具等の駆動電源として広く利用されている。   Nonaqueous electrolyte secondary batteries typified by lithium ion secondary batteries have high energy density and high capacity, so they are widely used as driving power sources for small information communication equipment such as mobile phones, video equipment or electric tools. It's being used.

非水電解質二次電池の電極板は、アルミ箔又は銅箔などの芯体に電極活物質を被覆させたものが一般的である。この種の電池は、充放電の際に電極活物質が膨張・収縮することにより、極板芯体に応力によるストレスが繰り返しかかるため、これによる応力歪みが極板芯体に蓄積し、極板を変形させ、ついには極板を破断させるという問題を抱えている。   The electrode plate of the nonaqueous electrolyte secondary battery is generally a core body such as an aluminum foil or a copper foil coated with an electrode active material. In this type of battery, since the electrode active material expands and contracts during charge and discharge, stress due to stress is repeatedly applied to the electrode plate core, so that stress strain is accumulated in the electrode plate core, Is deformed, and finally the electrode plate is broken.

特に、非水電解質二次電池においては、一般に、正極活物質よりも負極活物質の方が充放電に伴う体積の膨張・収縮が大きいので、負極芯体の方が継続的な応力の影響を強く受ける。   In particular, in a non-aqueous electrolyte secondary battery, the negative electrode active material generally has a larger volume expansion / contraction due to charge / discharge than the positive electrode active material. Receive strongly.

上記応力の影響を緩和する方法として、極板芯体の厚みを変えてみることが考えられる。しかし、極板芯体は発電に直接寄与するものでないため、極板芯体の厚みを大きくすると、エネルギー密度が低下する。   As a method of alleviating the influence of the stress, it can be considered to change the thickness of the electrode plate core. However, since the electrode plate core does not directly contribute to power generation, increasing the thickness of the electrode plate core decreases the energy density.

他方、極板芯体の厚みを薄くすると、柔軟にはなるが、強度不足による破断や取り扱い性の低下などの問題を生じる。このため、極板芯体の厚みを一定範囲としたままで、継続的な応力(以下、「繰り返し応力」と称する)に対する機械的耐性を備えた芯体が望まれる。   On the other hand, when the thickness of the electrode plate core is reduced, it becomes flexible, but problems such as breakage due to insufficient strength and deterioration in handleability occur. For this reason, a core body having mechanical resistance against continuous stress (hereinafter referred to as “repetitive stress”) is desired while keeping the thickness of the electrode core body within a certain range.

ここで極板芯体(特に負極)の伸び率や引張強度に関する技術が、特許文献1,2に開示されている。   Here, technologies relating to the elongation and tensile strength of the electrode plate core (particularly the negative electrode) are disclosed in Patent Documents 1 and 2.

特開2001−283862号公報JP 2001-283862 A 特開2005−135856号公報JP 2005-135856 A

特許文献1は、伸び率5.0%以上の銅箔を用いた負極芯体と、充填密度が1.65g/mlの負極活物質を用いた非水電解質二次電池に関するものであり、特許文献1は、負極芯体から負極活物質が剥がれることを防止する技術を開示している。   Patent Document 1 relates to a non-aqueous electrolyte secondary battery using a negative electrode core body using a copper foil having an elongation of 5.0% or more and a negative electrode active material having a packing density of 1.65 g / ml. Document 1 discloses a technique for preventing the negative electrode active material from peeling off from the negative electrode core.

特許文献2は、伸び率13%以上の集電体(電極芯体)を用いたリチウム二次電池に関するものであり、好ましい集電体の例を、伸び率の他、引張強度でも特定している。これによりシリコン活物質等の電極での膨張・収縮に伴う微粉化・脱落を防ぐことができるとされている。   Patent Document 2 relates to a lithium secondary battery using a current collector (electrode core) having an elongation of 13% or more. Examples of preferable current collectors are specified by tensile strength in addition to elongation. Yes. Thereby, it is said that pulverization / drop-off due to expansion / contraction of the electrode such as silicon active material can be prevented.

しかし、上記特許文献における伸び率又は引張強度は、繰り返し応力に対する耐性を適正に評価する指標とはならない。また、上記各特許文献は、電極活物質の膨張・収縮により生じる芯体歪みに起因する極板の変形、破断に対する対応策を提示していない。   However, the elongation rate or tensile strength in the above-mentioned patent document does not serve as an index for appropriately evaluating resistance to repeated stress. Moreover, each said patent document does not present the countermeasure with respect to a deformation | transformation and a fracture | rupture of an electrode plate resulting from the core distortion which arises by expansion and contraction of an electrode active material.

本発明は上記課題を解決するものであり、本発明の目的は、繰り返し応力に耐え得る負極板芯体の条件を定め、この条件を満たす負極芯体を用いることにより、負極板の耐久性を高め、もって長期サイクル特性に優れた非水電解質二次電池を提供することにある。   The present invention solves the above-mentioned problems, and the object of the present invention is to determine the conditions of a negative electrode plate core that can withstand repeated stress, and to improve the durability of the negative electrode plate by using a negative electrode core that satisfies this condition. An object of the present invention is to provide a non-aqueous electrolyte secondary battery that is enhanced and has excellent long-term cycle characteristics.

上述の課題を解決するために、本発明は、正極と、負極芯体に負極活物質が被覆されてなる負極と、非水電解質とを備える非水電解質二次電池において、前記負極芯体が、6〜12μmの厚みを有し、かつ耐折強度100回以上の銅箔であることを特徴とする非水電解質二次電池である。   In order to solve the above-described problems, the present invention provides a nonaqueous electrolyte secondary battery comprising a positive electrode, a negative electrode in which a negative electrode core is coated with a negative electrode active material, and a nonaqueous electrolyte. The non-aqueous electrolyte secondary battery is a copper foil having a thickness of 6 to 12 μm and a folding strength of 100 times or more.

この構成では負極芯体の繰り返し応力に対する耐性を表す指標として耐折強度を用いるが、これにより単純な一度の応力に対する耐性ではなく、充放電により繰り返される応力に対する長期耐性が評価できる。よって適正な耐性を備えた負極芯体を選定することができ、これにより長期サイクル特性を備えた非水電解質二次電池を実現することができることになる。   In this configuration, the bending strength is used as an index representing the resistance to the repeated stress of the negative electrode core, but this makes it possible to evaluate the long-term resistance to the stress repeated by charging / discharging rather than the simple resistance to the single stress. Therefore, a negative electrode core body having appropriate durability can be selected, and thereby a non-aqueous electrolyte secondary battery having long-term cycle characteristics can be realized.

上記「耐折強度」とは、JIS−R3420等の試験において使用されるMIT形試験器を用いて試料を繰り返し折り曲げ、試料が破断したときの折り曲げ回数をもって計測したものをいい、耐折強度の単位は「回」で表される。また、本明細書における伸び率とは、引張試験器により引き伸ばされた試験片の元の長さに対する伸びの割合(%)をいう。   The above “folding strength” refers to a value obtained by repeatedly bending a sample using an MIT type tester used in a test such as JIS-R3420 and measuring the number of times the sample is bent. The unit is expressed in “times”. Moreover, the elongation rate in this specification means the ratio (%) of elongation with respect to the original length of the test piece extended | stretched with the tensile tester.

また、本発明の負極板芯体として使用される銅箔は、厚みを6〜12μmの範囲のものとする。銅箔がこの範囲より厚い場合、極板の質量増加を招き、エネルギー密度が低下するために好ましくない。また、この範囲より薄い場合は、強度が十分でなく、充放電を行う前の電極板製造工程の際に破断する恐れがあり、不適当である。   Moreover, the copper foil used as the negative electrode plate core of the present invention has a thickness in the range of 6 to 12 μm. If the copper foil is thicker than this range, it is not preferable because the mass of the electrode plate is increased and the energy density is lowered. On the other hand, if the thickness is less than this range, the strength is not sufficient, and there is a risk of breaking during the electrode plate manufacturing process before charging and discharging, which is inappropriate.

上記の銅箔の厚みは、好ましくは8〜10μmとする。   The thickness of the copper foil is preferably 8 to 10 μm.

上記の銅箔としては、電解銅箔又は圧延銅箔のどちらでも用いることができる。電解銅箔の方が、厚さ等の製箔条件の制御が容易であるため、好ましい。   As said copper foil, either electrolytic copper foil or rolled copper foil can be used. Electrolytic copper foil is preferred because it is easier to control foil-making conditions such as thickness.

上記の銅箔としては、電極芯体の材料としての妥当性を考慮して、その伸び率が3%〜15%であることが好ましい。   As said copper foil, considering the validity as a material of an electrode core body, it is preferable that the elongation rate is 3%-15%.

本発明は、負極芯体に用いられる銅箔の機械特性、特に耐折強度を制御することで、実現される。耐折強度を制御する方法としては、任意の方法が使用でき、例えば、電解銅箔であれば成膜条件の変更、又は一般的には成膜後のアニーリング等の熱処理が使用できる。   This invention is implement | achieved by controlling the mechanical characteristic of the copper foil used for a negative electrode core, especially folding strength. As a method for controlling the bending strength, any method can be used. For example, in the case of an electrolytic copper foil, a film forming condition can be changed, or generally a heat treatment such as annealing after film forming can be used.

上記本発明によると、充放電を繰り返しても、耐久性の高い極板が得られ、したがって、長期サイクル特性に優れた非水電解質二次電池が得られる。   According to the present invention, a highly durable electrode plate can be obtained even when charging and discharging are repeated, and thus a nonaqueous electrolyte secondary battery excellent in long-term cycle characteristics can be obtained.

以下の実施例に基づいて、本発明を実施するための形態を説明する。なお、本発明は、下記の実施例に限定されるものではない。その要旨を変更しない範囲において適宜変更して実施することができる。   The form for implementing this invention is demonstrated based on the following Examples. In addition, this invention is not limited to the following Example. As long as the gist of the invention is not changed, the present invention can be implemented with appropriate modifications.

各実施例及び各比較例にかかる非水電解質二次電池を以下のように作製した。   Nonaqueous electrolyte secondary batteries according to the respective Examples and Comparative Examples were produced as follows.

<正極の作製>
正極活物質としてのコバルト酸リチウム(LiCoO2)95質量部と、導電剤としての黒鉛5質量部とを混合した。この混合物95質量部と、結着剤としてのポリビニリデンフルオライド(PVDF)5質量部とを、N−メチル−2−ピロリドンに分散させて、正極活物質スラリーを調製した。次に、厚み15μmのアルミニウム箔からなる正極芯体の両面に、この正極活物質スラリーを均一な厚みで塗布した。この極板を乾燥機内に通して上記有機溶剤を除去した。この後、ロールプレス機を用いて圧延して、正極板を作製した。
<Preparation of positive electrode>
95 parts by mass of lithium cobaltate (LiCoO 2 ) as a positive electrode active material and 5 parts by mass of graphite as a conductive agent were mixed. 95 parts by mass of this mixture and 5 parts by mass of polyvinylidene fluoride (PVDF) as a binder were dispersed in N-methyl-2-pyrrolidone to prepare a positive electrode active material slurry. Next, this positive electrode active material slurry was applied to both surfaces of a positive electrode core made of an aluminum foil having a thickness of 15 μm with a uniform thickness. This electrode plate was passed through a dryer to remove the organic solvent. Then, it rolled using the roll press machine and produced the positive electrode plate.

<負極芯体の作製>
負極芯体としての銅箔を電解法により、作製した。電解成膜条件を電流密度30A/dm2〜50A/dm2の範囲で変動させ、その後の熱処理条件を30℃〜160℃の範囲で変動させることにより、以下の表1に示す物性を有する7種類の銅箔を作製した。
<Preparation of negative electrode core>
A copper foil as a negative electrode core was produced by an electrolytic method. Varying the electrolysis film formation conditions are adjusted within the range of current density 30A / dm 2 ~50A / dm 2 , by varying the subsequent heat treatment conditions in the range of 30 ° C. to 160 ° C., 7 having physical properties as shown in Table 1 below Various types of copper foil were prepared.

Figure 2010232088
Figure 2010232088

伸び率及び耐折強度は、下記条件で測定した。
〔機械特性の測定条件〕
1.耐折強度(回)
試験器:MIT形耐折試験器 試験片:幅25mm×長さ180mm
荷重:500g 折り曲げ角度:135° 折り曲げR:0.8
2.伸び率(%)
試験器:テンシロンRTC1210 試験片:幅15mm×長さ150mm
引張速度:5mm/分 チャック間距離:50mm
The elongation and the bending strength were measured under the following conditions.
[Measuring conditions for mechanical properties]
1. Folding strength (times)
Tester: MIT type folding tester Test piece: width 25mm x length 180mm
Load: 500g Bending angle: 135 ° Bending R: 0.8
2. Growth rate(%)
Tester: Tensilon RTC1210 Test piece: width 15mm x length 150mm
Tensile speed: 5 mm / min Distance between chucks: 50 mm

<負極の作製>
人造黒鉛を水に分散させ、増粘剤としてのカルボキシメチルセルロース(CMC)を添加した。さらに結着剤としてのスチレンブタジエンゴム(SBR)を水に分散させたものを添加しスラリーを調製した。これらの物質は、乾燥後の質量比が人造黒鉛:CMC:SBR=100:2:3となるように混合した。調製されたスラリーをドクターブレード法により、上記で作製された銅箔の両面に塗布した。この極板を110℃で2時間真空乾燥し、その後、この乾燥極板を、ロールプレス機により圧延し、裁断して、負極を作製した。銅箔の両面には厚み約100μmの活物質層が形成された。
<Production of negative electrode>
Artificial graphite was dispersed in water, and carboxymethyl cellulose (CMC) as a thickener was added. Further, a slurry in which styrene butadiene rubber (SBR) as a binder was dispersed in water was added to prepare a slurry. These substances were mixed so that the mass ratio after drying was artificial graphite: CMC: SBR = 100: 2: 3. The prepared slurry was applied to both surfaces of the copper foil prepared above by a doctor blade method. The electrode plate was vacuum-dried at 110 ° C. for 2 hours, and then the dried electrode plate was rolled with a roll press and cut to produce a negative electrode. An active material layer having a thickness of about 100 μm was formed on both sides of the copper foil.

<電極体の作製>
上記正極と、上記負極と、ポリプロピレン製微多孔膜からなるセパレータとを巻き取り機により捲回し、捲回電極体を完成させた。
<Production of electrode body>
The positive electrode, the negative electrode, and a separator made of a polypropylene microporous film were wound with a winder to complete a wound electrode body.

<非水電解質の調製>
エチレンカーボネート(EC)とジエチルカーボネート(DEC)とを体積比1:1(1気圧、25℃)の割合で混合した非水溶媒に、電解質塩としてのLiPF6を1.0M(モル/リットル)の割合で溶解したものを非水電解質とした。
<Preparation of non-aqueous electrolyte>
In a non-aqueous solvent in which ethylene carbonate (EC) and diethyl carbonate (DEC) are mixed at a volume ratio of 1: 1 (1 atm, 25 ° C.), LiPF 6 as an electrolyte salt is 1.0 M (mol / liter). Those dissolved at a ratio of 5 were used as nonaqueous electrolytes.

<電池の組み立て>
上記電極体と上記で調製した非水電解質とを角形の電池缶に入れ、設計容量1000mAhの角形非水電解質二次電池を完成させた(厚み55mm×幅34mm×高さ50mm)。
<Battery assembly>
The electrode body and the nonaqueous electrolyte prepared above were placed in a rectangular battery can to complete a rectangular nonaqueous electrolyte secondary battery having a design capacity of 1000 mAh (thickness 55 mm × width 34 mm × height 50 mm).

(実施例1)
銅箔Aを負極芯体として用い、上記の製法に従って、実施例1に係る電池を作製した。
Example 1
Using the copper foil A as the negative electrode core, a battery according to Example 1 was produced according to the above production method.

(実施例2)
銅箔Aの代わりに銅箔Bを負極芯体として用いた以外は、実施例1と同様にして、実施例2に係る電池を作製した。
(Example 2)
A battery according to Example 2 was fabricated in the same manner as Example 1 except that copper foil B was used as the negative electrode core instead of copper foil A.

(実施例3)
銅箔Aの代わりに銅箔Cを負極芯体として用いた以外は、実施例1と同様にして、実施例3に係る電池を作製した。
Example 3
A battery according to Example 3 was fabricated in the same manner as in Example 1 except that the copper foil C was used as the negative electrode core instead of the copper foil A.

(実施例4)
銅箔Aの代わりに銅箔Dを有する銅箔を負極芯体として用いた以外は、実施例1と同様にして、実施例4に係る電池を作製した。
Example 4
A battery according to Example 4 was produced in the same manner as in Example 1 except that a copper foil having a copper foil D instead of the copper foil A was used as the negative electrode core.

(比較例1)
銅箔Aの代わりに銅箔Eを負極芯体として用いた以外は、実施例1と同様にして、比較例1に係る電池を作製した。
(Comparative Example 1)
A battery according to Comparative Example 1 was produced in the same manner as in Example 1 except that the copper foil E was used as the negative electrode core instead of the copper foil A.

(比較例2)
銅箔Aの代わりに銅箔Fを負極芯体として用いた以外は、実施例1と同様にして、比較例2に係る電池を作製した。
(Comparative Example 2)
A battery according to Comparative Example 2 was fabricated in the same manner as in Example 1 except that the copper foil F was used as the negative electrode core instead of the copper foil A.

(比較例3)
銅箔Aの代わりに銅箔Gを負極芯体として用いた以外は、実施例1と同様にして、比較例3に係る電池を作製した。
(Comparative Example 3)
A battery according to Comparative Example 3 was produced in the same manner as in Example 1 except that the copper foil G was used as the negative electrode core instead of the copper foil A.

〔サイクル試験〕
上記の各実施例及び各比較例で作製した電池に対し、以下のようにしてサイクル試験を気温25℃において行った。まず、定電流1000mAで電圧が4.2Vとなるまで充電し、その後定電圧4.2Vで電流が20mAとなるまで充電した。次いで、充電した電池を定電流1000mAで2.75Vまで放電させた。この充放電の過程を1サイクルとし
た。そして、極板破断又は亀裂による抵抗増大により電池が充放電不可能となるまでの、サイクル数を限界サイクル数として計測した。この結果を下記表2に示す。
[Cycle test]
A cycle test was performed at a temperature of 25 ° C. as follows for the batteries prepared in the above Examples and Comparative Examples. First, the battery was charged at a constant current of 1000 mA until the voltage reached 4.2 V, and then charged at a constant voltage of 4.2 V until the current reached 20 mA. Next, the charged battery was discharged to 2.75 V at a constant current of 1000 mA. This charging / discharging process was defined as one cycle. The number of cycles until the battery became unchargeable / dischargeable due to an increase in resistance due to electrode plate breakage or cracking was measured as the limit cycle number. The results are shown in Table 2 below.

Figure 2010232088
Figure 2010232088

上記表1の範囲において、厚み及び伸び率には関係なく、耐折強度100回以上の銅箔を負極芯体として用いた場合、充放電サイクル数が1000サイクルを超えても充電可能であった。一方、耐折強度が85回のものは、700サイクル以下で充放電不可能となった。これより、繰り返し応力に対する強度は、伸び率よりも耐折強度に大きく依存することが示された。   In the range of Table 1 above, when a copper foil having a bending strength of 100 times or more was used as the negative electrode core regardless of the thickness and elongation rate, charging was possible even when the number of charge / discharge cycles exceeded 1000 cycles. . On the other hand, when the folding strength was 85 times, charging and discharging became impossible after 700 cycles. From this, it was shown that the strength against repeated stress depends more on the bending strength than the elongation.

(追加事項)
本発明の非水電解質二次電池で用いることのできる正極活物質としては、実施例で用いたコバルト酸リチウム以外にも、例えば、ニッケル酸リチウム(LiNiO2)、マンガン酸リチウム(LiMn24)、リン酸鉄リチウム(LiFePO4)、マンガンニッケルコバルト酸リチウム、もしくはこれらの酸化物に含まれる遷移金属の一部を他の元素で置換した酸化物等のリチウム含有遷移金属複合酸化物を単独で、又は2種以上を混合して用いることができる。
(extra content)
Examples of the positive electrode active material that can be used in the non-aqueous electrolyte secondary battery of the present invention include lithium nickelate (LiNiO 2 ) and lithium manganate (LiMn 2 O 4 ) in addition to the lithium cobaltate used in the examples. ), Lithium iron phosphate (LiFePO 4 ), manganese nickel cobalt oxide lithium, or a lithium-containing transition metal composite oxide such as an oxide obtained by substituting part of the transition metal contained in these oxides with other elements Or a mixture of two or more.

本発明の非水電解質二次電池で用いることのできる負極活物質としては、例えば、天然黒鉛、人造黒鉛、カーボンブラック、コークス、ガラス状炭素、炭素繊維、及びこれらの焼成体等の炭素質物、ならびにそれらの混合物を用いることができる。   Examples of the negative electrode active material that can be used in the nonaqueous electrolyte secondary battery of the present invention include carbonaceous materials such as natural graphite, artificial graphite, carbon black, coke, glassy carbon, carbon fiber, and fired bodies thereof, As well as mixtures thereof.

本発明の非水電解質二次電池で用いることのできる非水溶媒としては、例えば、エチレンカーボネート、プロピレンカーボネート、ブチレンカーボネート、ジエチルカーボネート、ジメチルカーボネート、エチルメチルカーボネート、γ−ブチロラクトン、1,2−ジメトキシエタン、テトラヒドロフラン、アニソール、1,4−ジオキサン、4−メチル−2−ペンタノン、シクロヘキサノン、アセトニトリル、プロピオニトリル、ジメチルホルムアミド、スルホラン、ギ酸メチル、ギ酸エチル、酢酸メチル、酢酸エチル、酢酸プロピル、プロピオン酸エチルなど、ならびにそれらの2種以上の混合溶媒を挙げることができる。   Examples of the nonaqueous solvent that can be used in the nonaqueous electrolyte secondary battery of the present invention include ethylene carbonate, propylene carbonate, butylene carbonate, diethyl carbonate, dimethyl carbonate, ethyl methyl carbonate, γ-butyrolactone, and 1,2-dimethoxy. Ethane, tetrahydrofuran, anisole, 1,4-dioxane, 4-methyl-2-pentanone, cyclohexanone, acetonitrile, propionitrile, dimethylformamide, sulfolane, methyl formate, ethyl formate, methyl acetate, ethyl acetate, propyl acetate, propionic acid Examples thereof include ethyl and the like, as well as a mixed solvent of two or more thereof.

また、本発明の非水電解質二次電池で用いることのできる電解質塩としては、実施例で用いたLiPF6以外にも、例えば、LiBF4、LiN(C25SO22、LiN(CF3SO22もしくはLiClO4などを単独で、又は2種以上混合して用いることができる。 In addition to LiPF 6 used in the examples, electrolyte salts that can be used in the nonaqueous electrolyte secondary battery of the present invention include, for example, LiBF 4 , LiN (C 2 F 5 SO 2 ) 2 , LiN ( CF 3 SO 2 ) 2 or LiClO 4 can be used alone or in admixture of two or more.

以上説明したように、本発明によると、充放電を繰り返しても変形及び破損しにくい極板芯体が実現でき、これを用いた非水電解質二次電池では優れたサイクル特性が得られる。よって、産業上の意義は大きい。   As described above, according to the present invention, an electrode plate core that is not easily deformed or damaged even after repeated charge and discharge can be realized, and excellent cycle characteristics can be obtained in a nonaqueous electrolyte secondary battery using the same. Therefore, the industrial significance is great.

Claims (3)

正極と、負極芯体に負極活物質が被覆されてなる負極と、非水電解質とを備える非水電解質二次電池であって、
前記負極芯体が、6〜12μmの厚みを有し、かつ耐折強度100回以上の銅箔である、
ことを特徴とする、非水電解質二次電池。
A nonaqueous electrolyte secondary battery comprising a positive electrode, a negative electrode in which a negative electrode core is coated with a negative electrode active material, and a nonaqueous electrolyte,
The negative electrode core is a copper foil having a thickness of 6 to 12 μm and a folding strength of 100 times or more.
A non-aqueous electrolyte secondary battery characterized by the above.
前記銅箔の厚みが、8〜10μmである、
ことを特徴とする、請求項1に記載の非水電解質二次電池。
The thickness of the copper foil is 8 to 10 μm.
The nonaqueous electrolyte secondary battery according to claim 1, wherein:
前記銅箔が電解銅箔である、
ことを特徴とする、請求項1又は2に記載の非水電解質二次電池。
The copper foil is an electrolytic copper foil,
The nonaqueous electrolyte secondary battery according to claim 1 or 2, characterized in that
JP2009080071A 2009-03-27 2009-03-27 Nonaqueous electrolyte secondary battery Pending JP2010232088A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009080071A JP2010232088A (en) 2009-03-27 2009-03-27 Nonaqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009080071A JP2010232088A (en) 2009-03-27 2009-03-27 Nonaqueous electrolyte secondary battery

Publications (1)

Publication Number Publication Date
JP2010232088A true JP2010232088A (en) 2010-10-14

Family

ID=43047716

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009080071A Pending JP2010232088A (en) 2009-03-27 2009-03-27 Nonaqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JP2010232088A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109935765A (en) * 2017-12-19 2019-06-25 住友化学株式会社 Nonaqueous electrolytic solution secondary battery
US10950838B2 (en) 2017-12-19 2021-03-16 Sumitomo Chemical Company, Limited Nonaqueous electrolyte secondary battery
US10957941B2 (en) 2017-12-19 2021-03-23 Sumitomo Chemical Company, Limited Nonaqueous electrolyte secondary battery
US11038208B2 (en) 2017-12-19 2021-06-15 Sumitomo Chemical Company, Limited Nonaqueous electrolyte secondary battery
WO2021149489A1 (en) * 2020-01-23 2021-07-29 三洋電機株式会社 Secondary battery
US11094997B2 (en) 2017-05-29 2021-08-17 Sumitomo Chemical Company, Limited Nonaqueous electrolyte secondary battery
US11158907B2 (en) 2017-12-19 2021-10-26 Sumitomo Chemical Company, Limited Nonaqueous electrolyte secondary battery
US11158883B2 (en) 2017-12-19 2021-10-26 Sumitomo Chemical Company, Limited Nonaqueous electrolyte secondary battery
US11205799B2 (en) 2017-12-19 2021-12-21 Sumitomo Chemical Company, Limited Nonaqueous electrolyte secondary battery

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10330983A (en) * 1997-05-30 1998-12-15 Fukuda Metal Foil & Powder Co Ltd Electrolytic copper foil and its production

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10330983A (en) * 1997-05-30 1998-12-15 Fukuda Metal Foil & Powder Co Ltd Electrolytic copper foil and its production

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11094997B2 (en) 2017-05-29 2021-08-17 Sumitomo Chemical Company, Limited Nonaqueous electrolyte secondary battery
CN109935765A (en) * 2017-12-19 2019-06-25 住友化学株式会社 Nonaqueous electrolytic solution secondary battery
US10950838B2 (en) 2017-12-19 2021-03-16 Sumitomo Chemical Company, Limited Nonaqueous electrolyte secondary battery
US10957941B2 (en) 2017-12-19 2021-03-23 Sumitomo Chemical Company, Limited Nonaqueous electrolyte secondary battery
US11038208B2 (en) 2017-12-19 2021-06-15 Sumitomo Chemical Company, Limited Nonaqueous electrolyte secondary battery
US11158907B2 (en) 2017-12-19 2021-10-26 Sumitomo Chemical Company, Limited Nonaqueous electrolyte secondary battery
US11158883B2 (en) 2017-12-19 2021-10-26 Sumitomo Chemical Company, Limited Nonaqueous electrolyte secondary battery
US11205799B2 (en) 2017-12-19 2021-12-21 Sumitomo Chemical Company, Limited Nonaqueous electrolyte secondary battery
CN109935765B (en) * 2017-12-19 2022-09-02 住友化学株式会社 Non-aqueous electrolyte secondary battery
WO2021149489A1 (en) * 2020-01-23 2021-07-29 三洋電機株式会社 Secondary battery
CN114946053A (en) * 2020-01-23 2022-08-26 三洋电机株式会社 Secondary battery

Similar Documents

Publication Publication Date Title
KR102402391B1 (en) Composite anode active material, anode including the composite anode active material, and lithium secondary battery including the anode
KR102537225B1 (en) Composite anode active material, anode including the material, and lithium secondary battery including the anode
JP2010232088A (en) Nonaqueous electrolyte secondary battery
JP6219302B2 (en) Electrode plate for non-aqueous electrolyte secondary battery, non-aqueous electrolyte secondary battery using the same, and method for producing the same
KR102557725B1 (en) Composite anode active material, anode including the material, and lithium secondary battery including the anode
US11710815B2 (en) Negative electrode for lithium secondary battery, lithium secondary battery comprising the same, and method of preparing the negative electrode
JP2008186704A (en) Positive electrode plate for non-aqueous secondary battery and non-aqueous secondary battery
JP2015053152A (en) Nonaqueous electrolytic secondary battery
CN106104874B (en) Binder composition for lithium ion secondary battery electrode, slurry composition, lithium ion secondary battery, and electrode
US20220384781A1 (en) Negative electrode and secondary battery including the same
JP2008027904A (en) Aqueous dispersing element with starch and lithium-titanium mixed oxide base for lithium storage battery electrode
US20220013784A1 (en) Negative electrode and secondary battery including same
KR102341406B1 (en) Composite for anode active material, anode including the composite, lithium secondary battery including the anode, and method of preparing the composite
EP3043407B1 (en) Positive electrode active material for lithium secondary battery having surface treated using fluoropolymer and manufacturing method therefor
US11508953B2 (en) Negative electrode for lithium secondary battery, lithium secondary battery comprising the same, and method of preparing the negative electrode
KR20210001708A (en) Negative electrode and secondary battery comprising the same
JP2016184484A (en) Negative electrode for lithium ion secondary battery and lithium ion secondary battery
EP3460882B1 (en) Negative electrode for lithium secondary battery, lithium secondary battery comprising same, and method for manufacturing same
KR20150005502A (en) Anode Active Material Having High Capacity and Lithium Secondary Battery Comprising The Same
KR102534215B1 (en) Lithium Secondary Battery Comprising Si Anode
KR102477833B1 (en) positive electrode active material composition, positive electrode prepared using the same, and a secondary battery employing the same
CN114747041A (en) Positive electrode optimized for improved high temperature life characteristics and secondary battery comprising the same
US20220013766A1 (en) Secondary battery
CN114270571A (en) Battery system, method of using the same, and battery pack including the same
JP2015125972A (en) Nonaqueous electrolyte secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120306

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20131210