JP2010231912A - Manufacturing method of photoelectric conversion element - Google Patents

Manufacturing method of photoelectric conversion element Download PDF

Info

Publication number
JP2010231912A
JP2010231912A JP2009075575A JP2009075575A JP2010231912A JP 2010231912 A JP2010231912 A JP 2010231912A JP 2009075575 A JP2009075575 A JP 2009075575A JP 2009075575 A JP2009075575 A JP 2009075575A JP 2010231912 A JP2010231912 A JP 2010231912A
Authority
JP
Japan
Prior art keywords
film
working electrode
electrode substrate
photoelectric conversion
conversion element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009075575A
Other languages
Japanese (ja)
Other versions
JP5530648B2 (en
Inventor
Takeshi Sugio
剛 杉生
Tetsuya Inoue
鉄也 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Zosen Corp
Original Assignee
Hitachi Zosen Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Zosen Corp filed Critical Hitachi Zosen Corp
Priority to JP2009075575A priority Critical patent/JP5530648B2/en
Publication of JP2010231912A publication Critical patent/JP2010231912A/en
Application granted granted Critical
Publication of JP5530648B2 publication Critical patent/JP5530648B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/542Dye sensitized solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Photovoltaic Devices (AREA)
  • Hybrid Cells (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a manufacturing method of a photoelectric conversion element capable of sealing with high durability, even when a resin film is used for an action pole substrate. <P>SOLUTION: At least an action pole substrate (1) is constituted of a sheet film made of synthetic resin; a glass shaped film (2) is formed on an inner face of the sheet/film; and as for the glass shaped film (2) a bonding face of a sealing member (10) is bonded to at least the glass-shaped film (2) of the action pole substrate (1). <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、透明の作用極基板上に透明導電膜とその上に光触媒膜を有する作用極と、対極基板上に少なくとも導電部材を有する対極とが所定間隔で対向状に配置され、両電極間に電解質が配置されてなる光電変換素子の製造方法に関する。   In the present invention, a transparent conductive film on a transparent working electrode substrate, a working electrode having a photocatalytic film thereon, and a counter electrode having at least a conductive member on the counter electrode substrate are arranged in a facing manner at a predetermined interval, The present invention relates to a method for producing a photoelectric conversion element in which an electrolyte is disposed.

本明細書および特許請求の範囲を通して、内外関係は光電変換素子の構造を基準としその内方を内側とし外方を外側とする。   Throughout the present specification and claims, the internal / external relationship is based on the structure of the photoelectric conversion element, with the inside being the inside and the outside being the outside.

一般に、色素増感型太陽電池などの光電変換素子は、ガラス板などの透明の作用極基板上に透明導電膜を形成し、その上に酸化チタンのような金属酸化物からなる光触媒膜を形成し、同膜にルテニウム錯体などの光増感色素を吸着してなる作用極と、対極基板上に導電膜を形成してなる対極とを対向状に配置し、両電極間にヨウ素系電解質などからなる電解質層を介在させたものが知られている。   In general, photoelectric conversion elements such as dye-sensitized solar cells form a transparent conductive film on a transparent working electrode substrate such as a glass plate, and a photocatalytic film made of a metal oxide such as titanium oxide on the transparent conductive film. The working electrode formed by adsorbing a photosensitizing dye such as a ruthenium complex on the same film and the counter electrode formed by forming a conductive film on the counter electrode substrate are arranged opposite to each other, and an iodine-based electrolyte or the like is disposed between both electrodes. The thing which intervened the electrolyte layer which consists of is known.

このような構成の光電変換素子では、その電池性能を維持しつつ寿命を延ばすために封止技術が重要となる。例えば、光電変換素子中の電解質が外部に漏洩することがないように、封止の構造や封止材料など種々の研究開発が行われている(例えば特許文献1)。   In the photoelectric conversion element having such a configuration, a sealing technique is important in order to extend the life while maintaining the battery performance. For example, various research and developments such as a sealing structure and a sealing material have been performed so that the electrolyte in the photoelectric conversion element does not leak to the outside (for example, Patent Document 1).

特開2007−194075号公報JP 2007-194075 A

透明の作用極基板として、従来主流であったガラス板などの無機基板に代わりに、ポリエチレンテレフタレート(PET)やポリエチレンナフタレート(PEN)などの合成樹脂からなる樹脂フィルム製の有機基板を用いたフレキシブルタイプの光電変換素子が開発されている。この場合、前記樹脂フィルム製の基板は、通常の樹脂系封止材との接着強度が十分でなく、封止できても耐久性が悪いといった問題がある。   As a transparent working electrode substrate, a flexible resin substrate made of an organic substrate made of a synthetic resin such as polyethylene terephthalate (PET) or polyethylene naphthalate (PEN) is used instead of the conventional glass substrate or other inorganic substrate. A type of photoelectric conversion element has been developed. In this case, the substrate made of the resin film has a problem that the adhesive strength with a normal resin-based sealing material is not sufficient, and the durability is poor even if it can be sealed.

また、封止材としてガラスフリットを用いる場合、前記樹脂系の封止材に比べ、比較的封止の耐久性が向上するものの、これを300〜600℃程度の高温で加熱、溶融させる必要があり、前記樹脂フィルム製の基板には適用できないという問題があった。   Further, when glass frit is used as the sealing material, the sealing durability is relatively improved as compared with the resin-based sealing material, but it is necessary to heat and melt it at a high temperature of about 300 to 600 ° C. There is a problem that it cannot be applied to the resin film substrate.

そこで、本発明では作用極基板に樹脂フィルムを用いた場合であっても、耐久性の高い封止が可能な光電変換素子の製造方法を提供する。   Therefore, the present invention provides a method for producing a photoelectric conversion element capable of highly durable sealing even when a resin film is used for the working electrode substrate.

請求項1に係る発明は、透明の作用極基板の内面に透明導電部材とその内面に光触媒膜を有する作用極と、対極基板の内面に少なくとも導電部材を有する対極とが封止部材を介して対向状に配置され、両電極間に電解質が配置されてなる光電変換素子の製造方法であって、
前記作用極用基板および対極用基板のうち少なくとも作用極用基板を合成樹脂製のシート/フィルムで構成し、該シート/フィルムの内面にガラス状膜を形成し、少なくとも作用極基板のガラス状膜に前記封止部材の接合すべき面を接合することを特徴とする、光電変換素子の製造方法である。
In the first aspect of the invention, the transparent conductive member on the inner surface of the transparent working electrode substrate, the working electrode having the photocatalytic film on the inner surface, and the counter electrode having at least the conductive member on the inner surface of the counter electrode substrate are interposed via the sealing member. A method for producing a photoelectric conversion element, which is arranged in an opposing manner and in which an electrolyte is arranged between both electrodes,
Of the working electrode substrate and the counter electrode substrate, at least the working electrode substrate is composed of a synthetic resin sheet / film, a glassy film is formed on the inner surface of the sheet / film, and at least the glassy film of the working electrode substrate. The method for manufacturing a photoelectric conversion element is characterized in that surfaces to be bonded of the sealing member are bonded to each other.

請求項2に係る発明は、前記ガラス状膜の内面を凹凸状にすることを特徴とする、請求項1記載の光電変換素子の製造方法である。   The invention according to claim 2 is the method for producing a photoelectric conversion element according to claim 1, wherein the inner surface of the glassy film is uneven.

請求項3に係る発明は、前記ガラス状膜を、該シート/フィルムの内面にシリカ化合物から成るゾルを塗布し、乾燥、焼成して、形成することを特徴とする、請求項1または2記載の光電変換素子の製造方法である。   The invention according to claim 3 is characterized in that the glassy film is formed by applying a sol made of a silica compound to the inner surface of the sheet / film, drying and firing, and forming the glassy film. It is a manufacturing method of this photoelectric conversion element.

請求項1の発明によれば、少なくとも作用極用基板を合成樹脂製のシート/フィルムで構成し、該シート/フィルムの内面にガラス状膜を形成し、少なくとも作用極基板のガラス状膜に前記封止部材の接合すべき面を接合することで、従来のガラスフリットによる封止のように高温で加熱、溶融することなく、樹脂系封止材との親和性(封止力)が向上する。   According to the invention of claim 1, at least the working electrode substrate is composed of a synthetic resin sheet / film, a glassy film is formed on the inner surface of the sheet / film, and at least the glassy film of the working electrode substrate is By joining the surfaces to be joined of the sealing member, the affinity (sealing force) with the resin-based sealing material is improved without being heated and melted at a high temperature as in the case of sealing with a conventional glass frit. .

よって、光電変換素子からなる太陽電池を作製する際に封止を容易かつ強固になし得、光電変換素子外部からの水分や不純物が内部に侵入することを確実に防止することができ、太陽電池の発電効率を高く維持しつつ寿命を伸ばすことができる。加えて、ガラス状膜が光電変換素子外部からの光線を内部で散乱させることにより光線を内部に閉じ込める効果(閉じ込め効果)があるため、太陽電池の耐久性と発電効率を一層高めることができる。   Therefore, when producing a solar cell composed of a photoelectric conversion element, sealing can be easily and firmly performed, and moisture and impurities from the outside of the photoelectric conversion element can be reliably prevented from entering the solar cell. It is possible to extend the life while maintaining high power generation efficiency. In addition, since the glassy film has the effect of confining the light beam inside by scattering the light beam from the outside of the photoelectric conversion element (confinement effect), the durability and power generation efficiency of the solar cell can be further enhanced.

請求項2の発明によれば、前記ガラス状膜の内面を凹凸状にすることで、広範囲の方向から入射する光線を光電変換素子内の光触媒層に取り込むことができるため、光閉じ込め効果をさらに向上させることができる。   According to the invention of claim 2, by making the inner surface of the glassy film uneven, it is possible to take in light incident from a wide range of directions into the photocatalyst layer in the photoelectric conversion element. Can be improved.

請求項3の発明によれば、前記効果が一層高められる。   According to invention of Claim 3, the said effect is further heightened.

光電変換素子を示す垂直断面図である。It is a vertical sectional view showing a photoelectric conversion element. 凹凸状のシート/フィルムからなる作用極基板の内面にガラス状膜を形成した例を示す垂直断面図である。It is a vertical sectional view showing an example in which a glassy film is formed on the inner surface of a working electrode substrate composed of an uneven sheet / film. 凹凸状のシート/フィルムの変形例を示す平面図である。It is a top view which shows the modification of an uneven | corrugated sheet | seat / film.

作用極基板の材料としては、PET(ポリエチレン・テレフタレート)が好ましいが、その外にPEN(ポリエチレン・ナフタレート)フィルム、ポリエステル、ポリカーボネート、ポリオレフィンなどであってもよい。   As a material for the working electrode substrate, PET (polyethylene terephthalate) is preferable, but PEN (polyethylene naphthalate) film, polyester, polycarbonate, polyolefin and the like may be used.

作用極基板の厚さは好ましくは数十μm〜1mmである。
対極基板の材料は作用極基板のものと同じものであってもよいが、その他の絶縁性材料であってもよい。なお、作用極側において主に光線を素子内に取り入れ、対極側では光線を素子内に取り入れる必要がない場合は、対極基板は透明である必要はない。
The thickness of the working electrode substrate is preferably several tens of μm to 1 mm.
The material of the counter electrode substrate may be the same as that of the working electrode substrate, but may be other insulating materials. In the case where it is not necessary to mainly incorporate light rays into the element on the working electrode side and to incorporate light rays into the element on the counter electrode side, the counter electrode substrate does not need to be transparent.

対極基板の厚さは好ましくは数十μm〜1mmである。   The thickness of the counter electrode substrate is preferably several tens of μm to 1 mm.


作用極基板の表面(すなわち内面)へのガラス状膜の形成手段は特に限定しないが、シリケート、アルミナシリケートなどを含む塗布液を、作用極基板の表面に塗布し、塗膜を常温で乾燥後、150℃以下、好ましくは120℃〜150℃で焼成することでガラス状膜を形成することができる。

The means for forming a glassy film on the surface of the working electrode substrate (ie, the inner surface) is not particularly limited, but a coating solution containing silicate, alumina silicate, etc. is applied to the surface of the working electrode substrate, and the coating film is dried at room temperature. The glassy film can be formed by firing at 150 ° C. or lower, preferably 120 ° C. to 150 ° C.

前記ガラス状膜の原料は、珪素を原料とするガラス系のコーティング材料であれば特に
限定されず、珪素を原料としたガラス系と石油が原料のフッ素系を化学反応で合体させたシリコーン系の材料であっても良い。
The raw material of the glassy film is not particularly limited as long as it is a glass-based coating material using silicon as a raw material, and is a silicone-based material obtained by combining a glass system using silicon as a raw material and a fluorine system using petroleum as a raw material. It may be a material.

また、前記ガラス状膜は、有機溶剤に溶解する無機ポリマー(パーヒドロポリシラザン[PHPS]など)を含む塗布液を、塗布し、焼成することで得られた、ポリシラザンをシリカ(酸化ケイ素SiO2)に転化させたものであっても良い。この場合、塗布面がシリカガラス系の素材で覆われ、表面性質がガラスのようになるため、封止部材との結合力が向上する。 Also, the glass-like film, a coating solution containing an inorganic polymer (perhydropolysilazane [PHPS], etc.) which are soluble in an organic solvent, coated, were obtained by firing polysilazane silica (silicon oxide SiO 2) It may be converted to In this case, since the coated surface is covered with a silica glass material and the surface property is like glass, the bonding force with the sealing member is improved.

ガラス状膜の厚さは、好ましくは1サブμm〜20μmである。塗布方法としては、スピンコートやスキージ法により塗布、あるいは静電塗布(静電スプレー)や超音波スプレーが好ましい。静電塗布や超音波スプレーでは、シリカ化合物から成るゾルを作用極基板内面に霧状に塗布できるため、後述する作用極基板の凹凸の形状・寸法に合致したガラス状膜を形成することができる。   The thickness of the glassy film is preferably 1 sub μm to 20 μm. As the application method, application by spin coating or squeegee method, electrostatic application (electrostatic spray) or ultrasonic spray is preferable. In electrostatic coating and ultrasonic spraying, a sol composed of a silica compound can be applied in the form of a mist on the inner surface of the working electrode substrate, so that a glassy film can be formed that matches the shape and dimensions of the irregularities of the working electrode substrate, which will be described later. .

なお、静電塗布の場合は、スプレーノズルと樹脂基板間の距離を50〜2000mmとし、該ノズルと基板下の電極間に10〜30kVの電圧を印加して塗装を行うのが好ましい。   In the case of electrostatic coating, it is preferable that the distance between the spray nozzle and the resin substrate is 50 to 2000 mm, and the coating is performed by applying a voltage of 10 to 30 kV between the nozzle and the electrode under the substrate.

また、シリカ化合物から成るゾルとしては、例えば、金属アルコキシド(ケイ素のアルコキシド)であるテトラエトキシシラン(Si(C2H5)4)にエタノール、水、塩酸などを加えたものが用いられる。 As the sol composed of a silica compound, for example, a material obtained by adding ethanol, water, hydrochloric acid or the like to tetraethoxysilane (Si (C 2 H 5 ) 4 ) which is a metal alkoxide (silicon alkoxide) is used.

対極基板内面にもガラス状膜を形成する場合、その形成手段は前記と同じであってよい。   When a glassy film is formed also on the inner surface of the counter electrode substrate, the forming means may be the same as described above.

前記ガラス状膜の内面すなわちちガラス状膜を形成すべき面を凹凸状にすることが好ましい。前記ガラス状膜の内面を凹凸状にする方法は、(i)作用極基板の内面を凹凸状に形成した後、この凹凸部形状に沿って均一厚みのガラス状膜を形成する方法や、(ii)作用極基板の平坦な内面にガラス状膜をその表面が凹凸状になるように形成する方法であってよい。   The inner surface of the glassy film, that is, the surface on which the glassy film is to be formed is preferably uneven. The method of making the inner surface of the glassy film uneven is (i) a method of forming a glassy film having a uniform thickness along the uneven part shape after forming the inner surface of the working electrode substrate into an uneven shape, ii) A method of forming a glassy film on the flat inner surface of the working electrode substrate so that the surface thereof is uneven.

(i)の方法では、透明の作用極基板の材料であるシート/フィルムの内面を凹凸状にする。対極基板側から光線を入射させる場合は、透明の対極基板の材料であるシート/フィルムの内面も凹凸状にすることが好ましい。対極基板側から光線を入射させない場合(対極基板が透明でない場合)であっても、対極基板の材料であるシート/フィルムの内面を凹凸状にすることが好ましい。この対向基板の凹凸面により、作用極基板側から光触媒層を経由して入射し対極基板へ至った光線の閉じ込め効果が期待できる。   In the method (i), the inner surface of the sheet / film, which is a material of the transparent working electrode substrate, is made uneven. When the light beam is incident from the counter electrode substrate side, it is preferable that the inner surface of the sheet / film, which is a material of the transparent counter electrode substrate, is also uneven. Even when light is not incident from the counter electrode substrate side (when the counter electrode substrate is not transparent), it is preferable to make the inner surface of the sheet / film, which is the material of the counter electrode substrate, uneven. Due to the concavo-convex surface of the counter substrate, it is possible to expect a confinement effect of light rays that are incident from the working electrode substrate side through the photocatalyst layer and reach the counter electrode substrate.

(ii)の方法では、作用極基板の平坦な内面に均一厚みでガラス状膜を形成し、その上における、凸部となる部分にのみさらにガラス状膜を形成する。または、前記均一厚みで形成したガラス状膜に溝加工を施すことで凹部分を形成する。   In the method (ii), a glassy film is formed with a uniform thickness on the flat inner surface of the working electrode substrate, and a glassy film is further formed only on a portion that becomes a convex portion on the glassy film. Alternatively, the concave portion is formed by performing groove processing on the glassy film formed with the uniform thickness.

凹凸部の谷底から山頂までの高さは、光触媒粒子の直径の2倍(約40nm)以上〜光触媒膜の厚みの半分(約10〜15μm)以下が好ましい。   The height from the valley bottom to the peak of the concavo-convex portion is preferably not less than twice the diameter of the photocatalyst particles (about 40 nm) and not more than half the thickness of the photocatalyst film (about 10 to 15 μm).

これは、この高さが光触媒粒子の直径の2倍未満であると、凹部が光触媒粒子により埋まり、前記閉じ込め効果が十分に得られず、逆に光触媒膜の厚みの半分を超えると光が触媒層の奥まで届かないため、効率が落ち、好ましくない。   This is because if the height is less than twice the diameter of the photocatalyst particle, the concave portion is filled with the photocatalyst particle, and the confinement effect cannot be obtained sufficiently. Since it does not reach the depth of the layer, the efficiency is lowered, which is not preferable.

凹凸部の形状(パターン)は、特に限定されないが、光増感色素から放出する電子の寿命は短いため、前記溝間隔が大きすぎると、途中で電子が消滅するため発電効率が低下し、逆に溝間隔が狭すぎると、太陽電池の開口率が低下し(発電可能面積が減少するため)発電効率が低下する傾向にあるため、この点を考慮して形状(パターン)が形成される。   The shape (pattern) of the concavo-convex portion is not particularly limited. However, since the life of electrons emitted from the photosensitizing dye is short, if the groove interval is too large, the electrons disappear in the middle, and the power generation efficiency decreases. If the groove interval is too narrow, the aperture ratio of the solar cell tends to decrease (because the area capable of generating power decreases), and the power generation efficiency tends to decrease. Therefore, the shape (pattern) is formed in consideration of this point.

凹凸部の形状として例えば図3に記載のものが挙げられる。図3(a)(b)(c)において、(21)は凹部、(22)は凸部である。   Examples of the shape of the uneven portion include those shown in FIG. 3A, 3B, and 3C, (21) is a concave portion, and (22) is a convex portion.

作用極では導電性向上のために、ガラス状膜内面に透明導電膜を形成する。透明導電膜の形成方法はイオン化蒸着、CVD法などいろいろあり限定されないが、特にスパッタ法により行うことが好ましい。スパッタ法での金属ターゲットとしては、透明導電膜のスズ添加酸化インジウム(ITO)、フッ素添加酸化スズ(FTO)、酸化スズ(SnO)、インジウム亜鉛酸化物(IZO)、酸化亜鉛(ZnO)の材料となる、In−Sn合金、Zn、In−Zn合金、Sn、Ga−Zn合金、Al−Zn合金などが好適に使用されるが、非酸化物金属で透明導電膜が形成できるものであれば特に限定はされない。透明導電膜の厚さは好ましくは数十〜数百nmである。 In the working electrode, a transparent conductive film is formed on the inner surface of the glassy film in order to improve conductivity. There are various methods for forming the transparent conductive film, such as ionization vapor deposition and CVD, and it is not particularly limited. As a metal target in the sputtering method, tin-doped indium oxide (ITO), fluorine-doped tin oxide (FTO), tin oxide (SnO 2 ), indium zinc oxide (IZO), and zinc oxide (ZnO) of a transparent conductive film are used. Materials such as In—Sn alloy, Zn, In—Zn alloy, Sn, Ga—Zn alloy, Al—Zn alloy, etc. are preferably used. There is no particular limitation. The thickness of the transparent conductive film is preferably several tens to several hundreds nm.

対極でも、その基板の内面にガラス状膜を形成しその上に導電膜を形成してもよい。対極の導電膜は白金、ポリエチレンジオキシチオフェン(PEDOT)などで構成されたものであってよい。   Even with the counter electrode, a glassy film may be formed on the inner surface of the substrate and a conductive film may be formed thereon. The counter electrode conductive film may be composed of platinum, polyethylenedioxythiophene (PEDOT), or the like.


透明導電膜上に光触媒膜を形成する。これは、例えば、i)光触媒粒子(金属酸化物粒子)を含むペーストを透明導電膜上に塗布し、乾燥し、場合によっては焼成する方法や、ii)金属酸化物ゾルを透明導電膜上に静電塗布し、乾燥し、場合によっては焼成する方法によって行われる。

A photocatalytic film is formed on the transparent conductive film. For example, i) a method in which a paste containing photocatalyst particles (metal oxide particles) is applied on a transparent conductive film, dried and optionally fired, or ii) a metal oxide sol is applied on the transparent conductive film It is performed by a method of applying electrostatically, drying, and optionally firing.

光触媒粒子は、酸化チタン(TiO)、酸化スズ(SnO)、酸化タングステン(WO)、酸化亜鉛(ZnO)、酸化ニオブ(Nb)などの金属酸化物からなる。さらに粒径数百nmの光触媒粒子を混ぜることが好ましい。 The photocatalytic particles are made of a metal oxide such as titanium oxide (TiO 2 ), tin oxide (SnO 2 ), tungsten oxide (WO 3 ), zinc oxide (ZnO), or niobium oxide (Nb 2 O 5 ). Furthermore, it is preferable to mix photocatalyst particles having a particle size of several hundred nm.

i)の方法において、光触媒含有ペーストは、純水、エタノール、プロパノール、t-ブタノール等に光触媒粒子を添加したものであってよい。   In the method i), the photocatalyst-containing paste may be one obtained by adding photocatalyst particles to pure water, ethanol, propanol, t-butanol or the like.

ii)の方法では、静電塗布装置をマイナス側とし被塗物である透明導電膜をプラス側として、この間に高電圧を加えて静電界を形成し、静電塗布装置のスプレーノズルから噴霧された金属酸化物ゾルをマイナス側に帯電させて透明導電膜内面に塗装する。この場合、静電塗布しながらレーザ照射し、前記乾燥、焼成を同時に行うようにしても良い。静電塗布装置は金属酸化物ゾルを透明導電膜上に塗布できるものであれば良く、前記構成に限定されない。レーザとしては、好ましくは可視光域〜近赤外域(700nm〜1100nm)、具体的にはNd:YAGレーザ(1064nm)やNd:YVO4レーザ(1064nm)、またはTI:サファイアレーザ(650-1100nm)、Cr:LiSAFレーザ(780-1010nm)、アレキサンドライトレーザ(700-820nm)、CO2レーザのような波長可変レーザが適用可能である。 In the method ii), the electrostatic coating apparatus is on the negative side and the transparent conductive film that is the object to be coated is on the positive side, a high voltage is applied between them to form an electrostatic field, which is sprayed from the spray nozzle of the electrostatic coating apparatus. The metal oxide sol is charged to the negative side and coated on the inner surface of the transparent conductive film. In this case, laser irradiation may be performed while electrostatic coating, and the drying and baking may be performed simultaneously. The electrostatic coating apparatus is not limited to the above configuration as long as it can apply the metal oxide sol onto the transparent conductive film. The laser is preferably visible light region to near infrared region (700 nm to 1100 nm), specifically, Nd: YAG laser (1064 nm), Nd: YVO4 laser (1064 nm), or TI: sapphire laser (650-1100 nm), A tunable laser such as a Cr: LiSAF laser (780-1010 nm), an alexandrite laser (700-820 nm), or a CO 2 laser is applicable.

金属酸化物ゾルの出発原料となる金属化合物としては、金属有機化合物では、例えば金属アルコキシド、金属アセチルアセトネート、金属カルボキシレート、金属無機化合物では、例えば金属の硝酸塩、オキシ塩化物、塩化物などが挙げられる。   Examples of the metal compound used as a starting material for the metal oxide sol include metal alkoxides, metal acetylacetonates, metal carboxylates, and metal inorganic compounds such as metal nitrates, oxychlorides, and chlorides. Can be mentioned.

前記金属酸化物としては、酸化チタンが好ましく、その他酸化スズ、酸化タングステン、酸化亜鉛、酸化ニオブなどが挙げられる。   The metal oxide is preferably titanium oxide, and other examples include tin oxide, tungsten oxide, zinc oxide, and niobium oxide.

酸化チタンを用いた一例として、金属アルコキシドとしては、チタンテトラメトキシド、チタンエトキシド、チタンイソプロポキシド、チタンブタキシドなど、金属アセチルアセトネートとしては、チタンアセチルアセトネートなど、金属カルボキシレートとしては、チタンカルボキシレートなど、硝酸チタン、オキシ塩化チタン、四塩化チタンなどが挙げられる。   As an example of using titanium oxide, as metal alkoxide, titanium tetramethoxide, titanium ethoxide, titanium isopropoxide, titanium butoxide, etc., as metal acetylacetonate, as titanium acetylacetonate, as metal carboxylate , Titanium carboxylate, titanium nitrate, titanium oxychloride, titanium tetrachloride and the like.

さらに、前記金属化合物に、水、メタノール、エタノール、1−プロパノール、イソプロピルアルコール、1−ブタノール、2−ブタノール、イソブタノール、t−ブタノール、1−ペンタノール、2−ペンタノール、3−ペンタノールなどの溶媒、酸またはアンモニア、その他添加物などを加えることでゾル化、ゲル化を行う。   Further, the metal compound includes water, methanol, ethanol, 1-propanol, isopropyl alcohol, 1-butanol, 2-butanol, isobutanol, t-butanol, 1-pentanol, 2-pentanol, 3-pentanol and the like. By adding a solvent, acid or ammonia, and other additives, sol-formation and gelation are performed.

i)およびii)の方法において、乾燥は、室温で、5〜15分程度行われる。焼成は、温度120〜150℃で、10〜30分程度行われる。   In the methods i) and ii), drying is performed at room temperature for about 5 to 15 minutes. Firing is performed at a temperature of 120 to 150 ° C. for about 10 to 30 minutes.

光触媒膜の厚みは、好ましくは5〜20μmである。   The thickness of the photocatalyst film is preferably 5 to 20 μm.

次に、同光触媒膜に作用極基板側からレーザを照射することが好ましい。このレーザは前記のものと同じであってよい。   Next, it is preferable to irradiate the photocatalytic film with a laser from the working electrode substrate side. This laser may be the same as described above.

その後、光触媒膜に光増感色素を吸着させる。光増感色素の吸着は、例えば、光触媒膜を有する作用極を、光増感色素を含む浸漬液に浸して光触媒膜の表面に同色素を吸着させることにより行われる。浸漬後、乾燥さらには焼成を行うことが好ましい。光増感色素は、例えばビピリジン構造、ターピリジン構造などを含む配位子を有するルテニウム錯体や鉄錯体、ポルフィリン系やフタロシアニン系の金属錯体、さらにはエオシン、ローダミン、メロシアニン、クマリンなどの有機色素などであってよい。   Thereafter, the photosensitizing dye is adsorbed on the photocatalyst film. Adsorption of the photosensitizing dye is performed, for example, by immersing a working electrode having a photocatalyst film in an immersion liquid containing the photosensitizing dye to adsorb the dye on the surface of the photocatalyst film. After immersion, it is preferable to perform drying and further firing. Photosensitizing dyes include, for example, ruthenium complexes and iron complexes having a ligand containing a bipyridine structure, a terpyridine structure, etc., porphyrin-based and phthalocyanine-based metal complexes, and organic dyes such as eosin, rhodamine, merocyanine, and coumarin. It may be.

光増感色素で染色された光触媒膜を形成するには、例えば、光増感色素と光触媒粒子とを含むペーストを透明導電膜内面に塗布し、乾燥により、色素で染色された光触媒粒子を透明導電膜に担持するようにしてもよい。   To form a photocatalyst film dyed with a photosensitizing dye, for example, a paste containing a photosensitizing dye and photocatalyst particles is applied to the inner surface of the transparent conductive film, and the photocatalyst particles dyed with the dye are transparent by drying. You may make it carry | support to an electrically conductive film.

ここで形成するガラス状膜は、前記作用極における作用に加えて、ヨウ素などの電解質による対極基板の腐食を防ぐ作用も奏する。   The glassy film formed here has an effect of preventing corrosion of the counter electrode substrate by an electrolyte such as iodine in addition to the effect of the working electrode.

光電変換素子は、透明の作用極基板上に透明導電部材とその上に光触媒膜を有する作用極と、対極基板上に少なくとも導電部材を有する対極とが所定間隔で対向状に配置され、両電極間に電解質が配置されることにより、主として構成されている。   In the photoelectric conversion element, a transparent conductive member on a transparent working electrode substrate, a working electrode having a photocatalyst film thereon, and a counter electrode having at least a conductive member on a counter electrode substrate are arranged at a predetermined interval to face each other. It is mainly configured by disposing an electrolyte between them.

電解質としては、例えば、ヨウ素系電解液が使用され、具体的には、ヨウ素、ヨウ化物イオン、ターシャリーブチルピリジンなどの電解質成分が、エチレンカーボネートやメトキシアセトニトリルなどの有機溶媒に溶解されてなるものが例示される。電解質は、電解液からなるものに限定されず、固体電解質であってもよい。固体電解質としては、例えば、DMPImI(ジメチルプロピルイミダゾリウムヨウ化物)が例示され、このほか、LiI、NaI、KI、CsI、CaIなどの金属ヨウ化物、およびテトラアルキルアンモニウムヨーダイドなど4級アンモニウム化合物のヨウ素塩などのヨウ化物とIとを組み合わせたもの;LiBr、NaBr、KBr、CsBr、CaBrなどの金属臭化物、およびテトラアルキルアンモニウムブロマイドなど4級アンモニウム化合物の臭素塩などの臭化物とBrとを組み合わせたものなどを適宜使用することができる。 As the electrolyte, for example, an iodine-based electrolyte is used. Specifically, an electrolyte component such as iodine, iodide ion, or tertiary butyl pyridine is dissolved in an organic solvent such as ethylene carbonate or methoxyacetonitrile. Is exemplified. The electrolyte is not limited to an electrolyte and may be a solid electrolyte. The solid electrolyte, for example, is illustrated DMPImI (dimethylpropyl imidazolium iodide) is, in addition, LiI, NaI, KI, CsI, metal iodide such as CaI 2, and tetraalkylammonium iodide and quaternary ammonium compounds A combination of iodides such as the iodine salts of I 2 and I 2 ; bromides such as bromides of metal bromides such as LiBr, NaBr, KBr, CsBr, CaBr 2 and quaternary ammonium compounds such as tetraalkylammonium bromide and Br 2. And the like can be used as appropriate.

光電変換素子は、例えば、方形の透明の作用極基板と方形の対極基板との間に、作用極用透明導電部材、対極用導電部材、集電電極、電解質層および光触媒膜が所定間隔で配置されることにより形成され、この際の作用極と対極との接続は、直列とされることがあり、並列とされることもある。いずれの場合でも、電解質層および光触媒膜はセパレータとなる封止部材によって隣り合うもの同士の間が仕切られる。直列接続の場合、作用極用透明導電部材、対極用導電部材および集電電極は、隣り合うもの同士の間に間隙が形成され、隣り合う作用極用透明導電部材と対極用導電部材とが導体によって接続される。並列接続の場合、作用極用透明導電部材、対極用導電部材および集電電極は、隣り合うもの同士の間に隙間がない形状とされる。   In the photoelectric conversion element, for example, a transparent conductive member for a working electrode, a conductive member for a counter electrode, a collecting electrode, an electrolyte layer, and a photocatalyst film are arranged at a predetermined interval between a square transparent working electrode substrate and a square counter electrode substrate. In this case, the working electrode and the counter electrode may be connected in series or in parallel. In either case, the electrolyte layer and the photocatalyst film are separated from each other by a sealing member that serves as a separator. In the case of series connection, a gap is formed between the adjacent conductive electrode for the working electrode, the conductive member for the counter electrode, and the collecting electrode, and the adjacent transparent conductive member for the working electrode and the conductive member for the counter electrode are conductors. Connected by. In the case of parallel connection, the transparent conductive member for the working electrode, the conductive member for the counter electrode, and the current collecting electrode have a shape with no gap between adjacent ones.

作用極は、作用極基板上に透明導電膜が形成されたもの(ITOガラス、FTOガラスなど)や金属板あるいは金属箔(アルミニウム、銅、スズ、チタンなど)などであってよく、対極は、対極基板に透明導電膜が形成したもの、あるいはアルミニウム、銅、スズなどの金属シート内面に、白金、PEDOTなどの導電膜を形成したものであってもよい。   The working electrode may be a transparent conductive film formed on a working electrode substrate (ITO glass, FTO glass, etc.), a metal plate or a metal foil (aluminum, copper, tin, titanium, etc.), etc. A transparent conductive film formed on a counter electrode substrate or a conductive film such as platinum or PEDOT formed on the inner surface of a metal sheet such as aluminum, copper, or tin may be used.

光電変換素子を組み立てるには、例えば、作用極と対極とが数μm〜数十μmの間隔で対向状に位置合わせされて、両極間が熱融着フィルムや封止部材などで密封され、対極または作用極などに予め設けておいた孔や隙間から電解質が注入される。また、固体電解質を用いる場合は、両極間に光触媒膜および電解質層が挟まれるように重ね合わせられて、その周縁部同士が加熱接着されるようにしてもよい。加熱は、金型によってもよく、プラズマ(波長の長いもの)、マイクロ波、可視光(600nm以上)や赤外線などのエネルギービームを照射することによってもよい。   In order to assemble the photoelectric conversion element, for example, the working electrode and the counter electrode are aligned to face each other at intervals of several μm to several tens of μm, and both electrodes are sealed with a heat-sealing film or a sealing member. Alternatively, the electrolyte is injected from holes or gaps provided in advance in the working electrode or the like. When a solid electrolyte is used, the photocatalyst film and the electrolyte layer may be stacked so as to be sandwiched between the two electrodes, and the peripheral portions thereof may be heat bonded. Heating may be performed by a mold, or may be performed by irradiation with an energy beam such as plasma (having a long wavelength), microwave, visible light (600 nm or more), or infrared light.

電解質層および光触媒膜を隣り合うもの同士の間で仕切るセパレータとなる封止部材は、例えば熱硬化性樹脂などからなるものであってよい。   The sealing member serving as a separator that partitions the electrolyte layer and the photocatalyst film between adjacent ones may be made of, for example, a thermosetting resin.

つぎに、本発明を具体的に説明するために、本発明の実施例をいくつか挙げる。   Next, in order to explain the present invention specifically, some examples of the present invention will be given.

実施例1
図1において、透明の作用極基板(1)となる厚み100μmの2軸延伸PETフィルムの表面(すなわち内面)全面に、シリカ化合物から成るゾル(テトラエトキシシラン(Si(C2H5)4)25g、エタノール37.6g、水23.5g、塩酸0.3g)をスプレー静電塗布法により塗布し、得られた塗膜を常温で乾燥した後、150℃で焼成し、シリケートからなるガラス状膜(2)を形成した。その後、このガラス状膜(2)の内面に、スズ添加酸化インジウム(ITO)からなる厚さ150nmの透明導電膜(3)を形成した。透明導電膜(3)が色素増感太陽電池の作用極として機能するよう、これを所定の形状にカットした。さらにその上に、光触媒粒子として酸化チタン粒子を含むペースト(エタノールと水に酸化チタンを添加したもの)を塗布し、室温で、15分間乾燥し、温度150℃で、15分間焼成し、透明導電膜(3)の上に厚さ10μmの光触媒膜(4)を形成した。こうして作用極基板(1)とガラス状膜(2)と透明導電膜(3)と光触媒膜(4)からなる作用極(5)を構成した。
Example 1
In FIG. 1, a sol (tetraethoxysilane (Si (C 2 H 5 ) 4 ) made of a silica compound is formed on the entire surface (ie, the inner surface) of a 100 μm-thick biaxially stretched PET film to be a transparent working electrode substrate (1). 25g, 37.6g of ethanol, 23.5g of water, 0.3g of hydrochloric acid) were applied by the spray electrostatic coating method, and the resulting coating film was dried at room temperature and then baked at 150 ° C to form a glassy film consisting of silicate (2 ) Was formed. Thereafter, a transparent conductive film (3) having a thickness of 150 nm made of tin-added indium oxide (ITO) was formed on the inner surface of the glassy film (2). This was cut into a predetermined shape so that the transparent conductive film (3) functions as a working electrode of the dye-sensitized solar cell. Furthermore, a paste containing titanium oxide particles as photocatalyst particles (ethanol and water added with titanium oxide) is applied, dried at room temperature for 15 minutes, baked at 150 ° C for 15 minutes, and transparent conductive A photocatalytic film (4) having a thickness of 10 μm was formed on the film (3). Thus, the working electrode (5) composed of the working electrode substrate (1), the glassy film (2), the transparent conductive film (3) and the photocatalytic film (4) was constructed.

作用極(5)を、光増感色素を含む浸漬液(ルテニウム錯体(N719、分子量1187.7g./mol)をt-ブタノール:アセトニトリル(容量比1:1)に溶解させたもので、色素濃度:0.3mM)に温度40℃で40分間浸して光触媒膜(4)の表面に同色素を吸着させた。   Working electrode (5) is an immersion liquid containing a photosensitizing dye (ruthenium complex (N719, molecular weight 1187.7 g./mol) dissolved in t-butanol: acetonitrile (volume ratio 1: 1). : 0.3 mM) for 40 minutes at a temperature of 40 ° C., the same dye was adsorbed on the surface of the photocatalyst film (4).

対極基板(6)も作用極基板(1)と同様に2軸延伸PETフィルムからなり、その表面(すなわち内面)全面に、シリカ化合物から成るゾルをスプレー静電塗布法により塗布し、得られた塗膜を常温で乾燥した後、150℃で焼成し、シリケートからなるガラス状膜(7)を形成した。その後、このガラス状膜(7)の内面に、PEDOTからなる厚さ150nmの導電膜(8)を形成した。この導電膜(8)も色素増感太陽電池の作用極として機能するよう、これを所定の形状にカットした。こうして対極基板(6)とガラス状膜(7)と導電膜(8)からなる対極(9)を構成した。   Similarly to the working electrode substrate (1), the counter electrode substrate (6) was made of a biaxially stretched PET film, and was obtained by applying a sol made of a silica compound to the entire surface (that is, the inner surface) by a spray electrostatic coating method. The coating film was dried at room temperature and then baked at 150 ° C. to form a glassy film (7) made of silicate. Thereafter, a 150 nm thick conductive film (8) made of PEDOT was formed on the inner surface of the glassy film (7). This conductive film (8) was cut into a predetermined shape so as to function as a working electrode of the dye-sensitized solar cell. Thus, a counter electrode (9) composed of a counter electrode substrate (6), a glassy film (7), and a conductive film (8) was constructed.

作用極(5)と対極(9)を、図1に示すように、各導電膜を内側にして15μmの間隔で向き合うように配置した。作用極ガラス状膜(2)の上面(内面)に下側封止部材(10)の下端面を接合し、下側封止部材(10)の上端面を対極(9)の透明導電膜(8)に接合した。また、対極ガラス状膜(7)の下面(内面)に上側封止部材(11)の上端面を接合し、上側封止部材(11)の下端面を作用極(5)の透明導電膜(2)に接合した。その後、両電極間の空間に電解液を充填し電解質層(12)を形成した。(13)は極間配線である。   As shown in FIG. 1, the working electrode (5) and the counter electrode (9) were arranged so as to face each other at an interval of 15 μm with each conductive film inside. The lower end surface of the lower sealing member (10) is joined to the upper surface (inner surface) of the working electrode glass film (2), and the upper end surface of the lower sealing member (10) is connected to the transparent conductive film of the counter electrode (9) ( Joined to 8). Further, the upper end surface of the upper sealing member (11) is bonded to the lower surface (inner surface) of the counter electrode glassy film (7), and the lower end surface of the upper sealing member (11) is connected to the transparent conductive film (5) Joined to 2). Thereafter, an electrolyte solution (12) was formed by filling the space between both electrodes with an electrolytic solution. (13) is the inter-electrode wiring.

こうして、図1に示す光電変換素子からなる色素増感太陽電池を作製した。   Thus, a dye-sensitized solar cell composed of the photoelectric conversion element shown in FIG. 1 was produced.


実施例2
図2において、作用極基板(1)として表面(内面)に図3(a)に示す凹凸を有するものを用い、この凹凸表面(内面)上にガラス状膜(2)を均一厚みで形成した。その他の構成は実施例1と同じである。

Example 2
In FIG. 2, the working electrode substrate (1) having the surface (inner surface) having the unevenness shown in FIG. 3 (a) is used, and the glassy film (2) is formed on the uneven surface (inner surface) with a uniform thickness. . Other configurations are the same as those of the first embodiment.

(1)は作用極基板
(2)はガラス状膜
(3)は透明導電膜
(4)は光触媒膜
(5)は作用極
(6)は対極基板
(7)はガラス状膜
(8)は透明導電膜
(9)は対極
(10)は下側封止部材
(11)は上側封止部材
(12)は電解質層
(21)は凹部
(22)は凸部
(1) is the working electrode substrate
(2) is a glassy membrane
(3) is transparent conductive film
(4) is a photocatalytic film
(5) is the working electrode
(6) is the counter electrode substrate
(7) is a glassy membrane
(8) is a transparent conductive film
(9) is the counter electrode
(10) is the lower sealing member
(11) is the upper sealing member
(12) is the electrolyte layer
(21) is a recess
(22) is convex

Claims (3)

透明の作用極基板の内面に透明導電部材とその内面に光触媒膜を有する作用極と、対極基板の内面に少なくとも導電部材を有する対極とが封止部材を介して対向状に配置され、両電極間に電解質が配置されてなる光電変換素子の製造方法であって、
前記作用極用基板および対極用基板のうち少なくとも作用極用基板を合成樹脂製のシート/フィルムで構成し、該シート/フィルムの内面にガラス状膜を形成し、少なくとも作用極基板のガラス状膜に前記封止部材の接合すべき面を接合することを特徴とする、光電変換素子の製造方法。
A transparent conductive member on the inner surface of the transparent working electrode substrate, a working electrode having a photocatalyst film on the inner surface thereof, and a counter electrode having at least a conductive member on the inner surface of the counter electrode substrate are disposed opposite to each other with a sealing member therebetween. A method for producing a photoelectric conversion element in which an electrolyte is disposed between
Of the working electrode substrate and the counter electrode substrate, at least the working electrode substrate is composed of a synthetic resin sheet / film, a glassy film is formed on the inner surface of the sheet / film, and at least the glassy film of the working electrode substrate. A method for producing a photoelectric conversion element, comprising joining the surfaces of the sealing member to be joined to each other.
前記ガラス状膜の内面を凹凸状にすることを特徴とする、請求項1記載の光電変換素子の製造方法。 The method for manufacturing a photoelectric conversion element according to claim 1, wherein an inner surface of the glassy film is uneven. 前記ガラス状膜を、該シート/フィルムの内面にシリカ化合物から成るゾルを塗布し、乾燥、焼成して、形成することを特徴とする、請求項1または2記載の光電変換素子の製造方法。 The method for producing a photoelectric conversion element according to claim 1, wherein the glassy film is formed by applying a sol made of a silica compound to the inner surface of the sheet / film, drying and firing.
JP2009075575A 2009-03-26 2009-03-26 Method for manufacturing photoelectric conversion element Expired - Fee Related JP5530648B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009075575A JP5530648B2 (en) 2009-03-26 2009-03-26 Method for manufacturing photoelectric conversion element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009075575A JP5530648B2 (en) 2009-03-26 2009-03-26 Method for manufacturing photoelectric conversion element

Publications (2)

Publication Number Publication Date
JP2010231912A true JP2010231912A (en) 2010-10-14
JP5530648B2 JP5530648B2 (en) 2014-06-25

Family

ID=43047563

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009075575A Expired - Fee Related JP5530648B2 (en) 2009-03-26 2009-03-26 Method for manufacturing photoelectric conversion element

Country Status (1)

Country Link
JP (1) JP5530648B2 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009144899A1 (en) * 2008-05-27 2009-12-03 株式会社フジクラ Photoelectric conversion element

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009144899A1 (en) * 2008-05-27 2009-12-03 株式会社フジクラ Photoelectric conversion element

Also Published As

Publication number Publication date
JP5530648B2 (en) 2014-06-25

Similar Documents

Publication Publication Date Title
JP5028804B2 (en) Functional device
JP5486996B2 (en) Dye-sensitized solar cell module and manufacturing method thereof
JP2011238472A (en) Photoelectric conversion device
US20100218823A1 (en) Electrode substrate for photoelectric conversion element, method of manufacturing electrode substrate for photoelectric conversion element, and photoelectric conversion element
JP5465783B2 (en) Dye-sensitized solar cell electrode, method for producing the same, and dye-sensitized solar cell
US8592243B2 (en) Method for forming buffer layer in dye-sensitized solar cell
US20120288977A1 (en) Method for manufacturing dye-sensitized solar cell
JP2007227260A (en) Photoelectric converter and photovoltaic generator
JP5465446B2 (en) Photoelectric conversion element
JP5508730B2 (en) Method for forming photocatalytic film on transparent electrode
JP5530648B2 (en) Method for manufacturing photoelectric conversion element
JP2010205581A (en) Manufacturing method of photoelectric conversion element using conductive mesh
JP5095148B2 (en) Working electrode substrate and photoelectric conversion element
JP5303298B2 (en) Method for forming photocatalytic film on transparent electrode
WO2011132286A1 (en) Method of forming a photocatalytic film on transparent electrode
WO2011132288A1 (en) Method for producing electrode for photoelectric conversion element
JP5452037B2 (en) Method for producing electrode for photoelectric conversion element
JP2016143822A (en) Photoelectric conversion element
JP2007299709A (en) Photoelectric conversion device and photovoltaic generator
WO2011132287A1 (en) Method of forming a photocatalytic film on a transparent electrode
JP5689773B2 (en) Photoelectric conversion element electrode, photoelectric conversion element, and silver paste used for manufacturing photoelectric conversion element electrode
JP6694341B2 (en) Photoelectric conversion element
JP2013200960A (en) Photoelectric conversion element module and manufacturing method thereof
JP6338458B2 (en) Photoelectric conversion element, photoelectric conversion module, and method for manufacturing photoelectric conversion element
JP2008192427A (en) Electrode substrate and photoelectric conversion element

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120126

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130910

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20131203

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140228

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20140310

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140325

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140421

R150 Certificate of patent or registration of utility model

Ref document number: 5530648

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees