JP2010228046A - Bending mechanism and control device and control method therefor - Google Patents

Bending mechanism and control device and control method therefor Download PDF

Info

Publication number
JP2010228046A
JP2010228046A JP2009078011A JP2009078011A JP2010228046A JP 2010228046 A JP2010228046 A JP 2010228046A JP 2009078011 A JP2009078011 A JP 2009078011A JP 2009078011 A JP2009078011 A JP 2009078011A JP 2010228046 A JP2010228046 A JP 2010228046A
Authority
JP
Japan
Prior art keywords
bending mechanism
control device
force
torque
drive unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009078011A
Other languages
Japanese (ja)
Inventor
Ryosuke Kobayashi
亮介 小林
Satoshi Okada
聡 岡田
Masahiro Fujima
正博 藤間
Masaaki Tanaka
賢彰 田中
Koichi Kurosawa
孝一 黒澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi GE Nuclear Energy Ltd
Original Assignee
Hitachi GE Nuclear Energy Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi GE Nuclear Energy Ltd filed Critical Hitachi GE Nuclear Energy Ltd
Priority to JP2009078011A priority Critical patent/JP2010228046A/en
Publication of JP2010228046A publication Critical patent/JP2010228046A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Abstract

<P>PROBLEM TO BE SOLVED: To provide a bending mechanism for moving a heavy operating device to any position and attitude in a restricted part or a complicated part. <P>SOLUTION: This bending mechanism includes two rigid bodies and a driving part connecting the rigid bodies to each other and a control unit for controlling the driving part. The control unit includes an operation time fixing means which fixes and holds the positional relation between the rigid bodies during the operation and a non-operation time releasing means which does not fix the positional relation between the rigid bodies during the non-operation. When a spherical body is stopped to rotate, an electromagnet is magnetized to generate an attracting force therebetween for adhering them to each other, thereby a holding torque is increased. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、屈曲動作をする機構に係り、特に、狭隘部や複雑形状部において、操作者が検査および補修・保全作業を行う場合に用いる重量のある作業装置へ搭載し、その作業装置を任意の位置および姿勢へ移動するための、屈曲機構に関する。   The present invention relates to a mechanism that performs a bending operation, and in particular, is mounted on a heavy working device used when an operator performs inspection, repair, and maintenance work in a narrow portion or a complicated shape portion. The present invention relates to a bending mechanism for moving to the position and posture.

従来、医療用内視鏡や工業用内視鏡の屈曲機構には、直流モータが用いられている。これに関する公知例として、例えば、直流モータと複数のワイヤを用いて3次元屈曲動作を実現する機構が、特開2007−105868号公報「屈曲駆動機構」で開示されている。   Conventionally, a DC motor has been used for a bending mechanism of a medical endoscope or an industrial endoscope. As a publicly known example regarding this, for example, a mechanism that realizes a three-dimensional bending operation using a DC motor and a plurality of wires is disclosed in Japanese Patent Laid-Open No. 2007-105868, “Bending Drive Mechanism”.

また、ワイヤの代わりに、複数の剛体リンク(駆動用リンクと拘束用リンク)を用いた機構が、特開2004−154877号公報「多節スライダ・リンクによる屈曲機構」に開示されている。   Further, a mechanism using a plurality of rigid links (driving links and restraining links) instead of wires is disclosed in Japanese Patent Application Laid-Open No. 2004-154877 “Bending mechanism using multi-node slider links”.

一方、複数の電磁石とそれに付随した弾性棒2本を平行に設置し、弾性棒間の一部を電磁吸引力で固定させ、そこから離れた位置で電磁反発力による能動的すべりを発生させて屈曲を実現させる機構が、特開2001−96478号公報「索状形屈曲機構および、索状形屈曲機構を備えたマニピュレータ,屈曲形液体内推進体,内視鏡」で開示されている。   On the other hand, a plurality of electromagnets and two elastic rods attached thereto are installed in parallel, a part between the elastic rods is fixed by an electromagnetic attractive force, and an active slip is generated by an electromagnetic repulsive force at a position away from it. A mechanism for realizing the bending is disclosed in Japanese Patent Application Laid-Open No. 2001-96478 “Roll-shaped bending mechanism, manipulator having the bending-shaped bending mechanism, bent-type liquid propellant, and endoscope”.

さらに、機構の駆動部として、球形のロータの周りに3つのステータを配置し、ステータに発生させた超音波振動によりロータを回転させる球面超音波モータが、特開平11−18459号公報「作業領域の広い球面超音波モータ」で開示されている。   Furthermore, a spherical ultrasonic motor in which three stators are arranged around a spherical rotor and the rotor is rotated by ultrasonic vibration generated in the stator is used as a mechanism drive unit. Wide spherical ultrasonic motor ".

特開2007−105868号公報JP 2007-105868 A 特開2004−154877号公報JP 2004-154877 A 特開2001−96478号公報JP 2001-96478 A 特開平11−18459号公報JP-A-11-18459

特許文献1および特許文献2で開示された従来技術では、駆動源として直流モータを複数用いている。そのため、可動範囲を大きくする場合や自由度を増やす場合、駆動部を複数設けなくてはならず直流モータの数が増え、可搬重量を大きくする場合、大型の直流モータを用いなくてはならないため、装置が大型化し、狭隘部や複雑形状部で使用する場合、適用できない。   In the prior art disclosed in Patent Document 1 and Patent Document 2, a plurality of DC motors are used as drive sources. Therefore, when the movable range is increased or the degree of freedom is increased, a plurality of drive units must be provided, and the number of DC motors is increased. When the loadable weight is increased, a large DC motor must be used. For this reason, the apparatus cannot be applied when the apparatus is enlarged and used in a narrow part or a complicated shape part.

また、特許文献3で開示された従来技術では、小型の電磁石を複数用いることで屈曲動作を実現するため、装置の小型化は可能であるが、1軸周りの屈曲動作しかできず、狭隘部や複雑形状部で使用する場合、任意の動作ができないため、適用できない。   Further, in the prior art disclosed in Patent Document 3, since a bending operation is realized by using a plurality of small electromagnets, the apparatus can be downsized, but only a bending operation around one axis can be performed. When used in a complicated shape part, it cannot be applied because it cannot perform any operation.

さらに、特許文献4で開示された従来技術では、1つのモータで3自由度の動作が可能であるため、装置の小型化に適しているが、可搬重量を大きくする場合、保持トルクが小さいため、適用できない。   Furthermore, the conventional technology disclosed in Patent Document 4 is suitable for downsizing the apparatus because it can operate with three motors with a single motor, but the holding torque is small when the loadable weight is increased. Therefore, it is not applicable.

本発明は、上記の問題を解決し、狭隘部や複雑形状部において、搭載装置を任意の位置および姿勢へ移動するための機構およびその制御装置を提供することを目的とする。   An object of the present invention is to solve the above-described problems and provide a mechanism and a control device for moving a mounting device to an arbitrary position and posture in a narrow portion or a complicated shape portion.

本発明の屈曲機構は、2つの剛体と該剛体間を接続する駆動部と、該駆動部を制御する制御装置を備え、該制御装置は、動作時に該剛体の相互の位置関係を固定し保持する動作時固定手段と、非動作時に該剛体の相互の位置関係を固定しない非動作時開放手段を有することを特徴とする。   The bending mechanism of the present invention includes two rigid bodies, a drive unit that connects the rigid bodies, and a control device that controls the drive unit, and the control device fixes and holds the positional relationship between the rigid bodies during operation. And a non-operating opening means that does not fix the mutual positional relationship of the rigid bodies when non-operating.

本発明によれば、狭隘部や複雑形状部において、重量のある作業装置を任意の位置および姿勢へ移動するための屈曲機構を提供できる。   ADVANTAGE OF THE INVENTION According to this invention, the bending mechanism for moving a heavy work apparatus to arbitrary positions and attitude | positions in a narrow part and a complicated shape part can be provided.

本発明の第一の実施例である原子炉内検査作業中における、検査装置の機器配置を示す図である。It is a figure which shows the equipment arrangement | positioning of an inspection apparatus in the inside inspection work which is the 1st Example of this invention. 本発明の第一の実施例における、水中検査装置の構成を示す図である。It is a figure which shows the structure of the underwater inspection apparatus in the 1st Example of this invention. 本発明の第一の実施例における、水中検査装置に搭載する駆動部の水平断面図である。It is a horizontal sectional view of a drive part carried in an underwater inspection device in the 1st example of the present invention. 本発明の第一の実施例における、駆動部を構成するステータの上面図と垂直断面図である。It is the top view and vertical sectional view of the stator which comprise the drive part in the 1st Example of this invention. 本発明の第一の実施例における、水中検査装置を操作するコントローラの構成を示す図である。It is a figure which shows the structure of the controller which operates the underwater inspection apparatus in the 1st Example of this invention. 本発明の第一の実施例における、制御装置内の機能ブロック図である。It is a functional block diagram in a control device in the 1st example of the present invention. 本発明の第一の実施例における、処理全体の流れ図である。It is a flowchart of the whole process in the 1st Example of this invention. 本発明の第一の実施例における、水中検査装置の動作イメージを示す図である。It is a figure which shows the operation | movement image of the underwater inspection apparatus in the 1st Example of this invention.

〔実施例〕
本発明の好適な第一の実施例である、原子炉内検査装置について、図1から図8を用いて説明する。本実施例は、原子炉内の目視検査装置に屈曲機構を備えることで、任意の位置および姿勢へ移動し、検査を行うものである。なお、本実施例では、適用対象を原子炉内の目視検査装置としているが、その他の部位や装置にも同様の装置構成で対応可能である。
〔Example〕
An in-reactor inspection apparatus, which is a preferred first embodiment of the present invention, will be described with reference to FIGS. In the present embodiment, the visual inspection apparatus in the nuclear reactor is provided with a bending mechanism, thereby moving to an arbitrary position and posture and performing an inspection. In this embodiment, the application target is a visual inspection apparatus in the nuclear reactor, but other parts and apparatuses can be applied with the same apparatus configuration.

図1を用いて、本実施例の検査実施形態を説明する。原子炉1内には、シュラウド2,上部格子板3,炉心支持板4,シュラウドサポート5、等の構造物があり、PLR配管6をはじめとする配管が接続されている。また、原子炉1の上部には、作業スペースであるオペレーションフロア7があり、同じく上方には燃料交換装置8がある。原子炉内の目視検査を行う場合、水中検査装置9を投入し、検査員14は、燃料交換装置8上から表示装置12で水中検査装置9に搭載したカメラ(図2の16)で撮影した映像を確認しながら、コントローラ13により操作を行う。ここで、表示装置12およびコントローラ13は、制御装置11と接続され、水中検査装置9は、ケーブル10を介して、制御装置11と接続されている。   The inspection embodiment of the present embodiment will be described with reference to FIG. In the nuclear reactor 1, there are structures such as a shroud 2, an upper grid plate 3, a core support plate 4, and a shroud support 5, and pipes such as a PLR pipe 6 are connected. In addition, an operation floor 7 that is a work space is provided in the upper part of the nuclear reactor 1, and a fuel changer 8 is also provided in the upper part. When performing a visual inspection inside the nuclear reactor, the underwater inspection device 9 was inserted, and the inspector 14 photographed with the camera (16 in FIG. 2) mounted on the underwater inspection device 9 with the display device 12 from above the fuel changer 8. The controller 13 is operated while confirming the video. Here, the display device 12 and the controller 13 are connected to the control device 11, and the underwater inspection device 9 is connected to the control device 11 via the cable 10.

図2を用いて、本実施例における水中検査装置9の詳細構成を説明する。水中検査装置9には、駆動部15a〜15cとして球面超音波モータを備えており、その先端部には目視検査用カメラ16を備えている。また、ケーブル10と駆動部15a間,駆動部15aと駆動部15b間,駆動部15bと駆動部15c間,駆動部15cと目視検査用カメラ16間は、軽量の円筒形剛性棒17で接続する。そして、目視検査用カメラ16と駆動部15a〜15cの電源および制御信号は、信号伝送部18,ケーブル10を介して制御装置11から供給され、逆に映像信号および駆動部15a〜15cの状態信号は、制御装置11へ伝送される。なお、水中検査装置9全体は、図中に示すように外側を弾性カバー19で覆い、水中での利用も可能としている。   The detailed configuration of the underwater inspection apparatus 9 in the present embodiment will be described with reference to FIG. The underwater inspection device 9 includes spherical ultrasonic motors as the drive units 15a to 15c, and a visual inspection camera 16 at the tip. Further, a lightweight cylindrical rigid rod 17 is connected between the cable 10 and the drive unit 15a, between the drive unit 15a and the drive unit 15b, between the drive unit 15b and the drive unit 15c, and between the drive unit 15c and the visual inspection camera 16. . The power and control signals for the visual inspection camera 16 and the drive units 15a to 15c are supplied from the control device 11 via the signal transmission unit 18 and the cable 10, and conversely, the video signals and the status signals of the drive units 15a to 15c. Is transmitted to the control device 11. The underwater inspection device 9 as a whole is covered with an elastic cover 19 as shown in the drawing so that it can be used underwater.

図3および図4を用いて、図2に示した駆動部15a〜15cの詳細構成を説明する。図3は、駆動部15a〜15cに用いる球面超音波モータの上面図、図4は、球面超音波モータを構成する円形ステータ20a,20bの水平断面図と垂直断面図である。駆動部15a〜15cは、同様の構造をしており、図3に示すように、球体ロータ21の周囲に120゜毎に円形ステータ20a,20bを配置し、各円形ステータ20a,20bはステータ固定ステージ22に固定された構成となっている。   The detailed configuration of the drive units 15a to 15c shown in FIG. 2 will be described with reference to FIGS. FIG. 3 is a top view of a spherical ultrasonic motor used for the drive units 15a to 15c, and FIG. 4 is a horizontal sectional view and a vertical sectional view of circular stators 20a and 20b constituting the spherical ultrasonic motor. The drive units 15a to 15c have the same structure, and as shown in FIG. 3, circular stators 20a and 20b are arranged around the spherical rotor 21 every 120 °, and the circular stators 20a and 20b are fixed to the stator. The configuration is fixed to the stage 22.

次に、円形ステータ20a,20bの詳細構造を説明する。図4に示すように、周方向に複数のスリットが入った円環状リングの下面に圧電素子(図示せず)を接着した圧電素子付き弾性リング23と、電磁石支持棒24と電磁石固定片25で動作方向を限定した電磁石26を備えている。なお、圧電素子付き弾性リング23は、球体ロータ21に密着するように、傾斜をつけた形状とする(図4右図)。圧電素子付き弾性リング23の圧電素子に、所定の電圧を印加することにより発生する圧電素子の伸縮が、弾性リングに伝わり周方向の進行波が発生する。この進行波が、円形ステータ20a,20bと密着している球体ロータ21の回転運動を可能とする。本実施例では、球体ロータ21の静止時に、電磁石26に通電し磁化することで球体ロータ21との間に引力を発生し、互いに密着させることで、保持トルクを増加させる。逆に、電源を遮断することで、保持トルクを弱め、円滑に回転させる。   Next, the detailed structure of the circular stators 20a and 20b will be described. As shown in FIG. 4, an elastic ring 23 with a piezoelectric element in which a piezoelectric element (not shown) is bonded to the lower surface of an annular ring having a plurality of slits in the circumferential direction, an electromagnet support rod 24 and an electromagnet fixing piece 25. An electromagnet 26 having a limited operation direction is provided. In addition, the elastic ring 23 with a piezoelectric element is made into the shape which gave the inclination so that it may contact | adhere to the spherical rotor 21 (FIG. 4 right figure). Expansion and contraction of the piezoelectric element generated by applying a predetermined voltage to the piezoelectric element of the elastic ring 23 with the piezoelectric element is transmitted to the elastic ring, and a traveling wave in the circumferential direction is generated. This traveling wave enables the rotational motion of the spherical rotor 21 that is in close contact with the circular stators 20a and 20b. In this embodiment, when the spherical rotor 21 is stationary, the electromagnet 26 is energized and magnetized to generate an attractive force with the spherical rotor 21 and to bring it into close contact with each other, thereby increasing the holding torque. Conversely, by shutting off the power supply, the holding torque is weakened and the motor rotates smoothly.

図5を用いて、本実施例における水中検査装置9を検査員14が操作する際に用いるコントローラ13の詳細構成を説明する。操作台29に円筒形のグリップ28を固定し、グリップ28の垂直方向の中心部に、グリップ28に加わる3軸方向の力と3軸周りのトルクを検知する力・トルク検出器27を内蔵する。そして、力・トルク検出器27の信号は、ケーブルを介して制御装置11へ伝送される。   A detailed configuration of the controller 13 used when the inspector 14 operates the underwater inspection apparatus 9 in the present embodiment will be described with reference to FIG. A cylindrical grip 28 is fixed to the operation console 29, and a force / torque detector 27 for detecting the force in the three axial directions applied to the grip 28 and the torque around the three axes is built in the center of the grip 28 in the vertical direction. . The signal of the force / torque detector 27 is transmitted to the control device 11 via a cable.

図6を用いて、制御装置11内の機能構成を説明する。力・トルク検出器27の出力信号は、力・トルク算出手段30において、アナログ信号からデジタル信号へ変換され、力とトルクデータに変換する。そして、駆動部選択手段31と屈曲角度算出手段32において、力・トルク算出手段30で算出した力とトルクの大きさと向きから、水中検査装置9に備えた駆動部15a〜15cのうち、駆動部分とその屈曲角度を決定する。さらに、制御量算出手段33において、駆動部15a〜15cのそれぞれのステータに設置した電磁石26へ印加する電圧値と、駆動部15a〜15cの回転量を算出する。なお、目視検査用カメラ16の映像信号は、画像取得手段34で電子データへ変換し、表示装置12へ供給する。   The functional configuration in the control device 11 will be described with reference to FIG. The output signal of the force / torque detector 27 is converted from an analog signal to a digital signal in the force / torque calculation means 30 and converted into force / torque data. And in the drive part selection means 31 and the bending angle calculation means 32, from the magnitude | size and direction of the force and torque which were calculated by the force and torque calculation means 30, drive part among the drive parts 15a-15c with which the underwater inspection apparatus 9 was equipped. And its bending angle. Further, the control amount calculation means 33 calculates the voltage value applied to the electromagnet 26 installed in each stator of the drive units 15a to 15c and the rotation amount of the drive units 15a to 15c. The video signal of the visual inspection camera 16 is converted into electronic data by the image acquisition means 34 and supplied to the display device 12.

図7および図8を用いて、本実施例の処理の詳細を説明する。図7は、処理全体の流れである。原子炉内検査を開始後(ステップ35)、水中検査装置9の操作に入る(ステップ36)。操作開始後、まず、力・トルク検出器27で検知した力・トルク信号を取り込む(ステップ37)。そして、ステップ38の力・トルク算出処理において、力・トルク信号から基準電圧を減算する処理を行い、力・トルクへ変換する。本実施例では、力・トルク検出器27として歪みゲージ式のものを用いる。一般に、歪みゲージ式の力・トルクセンサは、基準電圧と称する一定の電圧値からの増減値が、センサにかかる歪み量に比例する性質を持っており、センサ固有のスペックとして示されている一定値の歪み−力・トルク変換係数を乗じることで、力・トルクを求めることができる。ここで、基準電圧は、通常、力・トルクセンサ固有のスペックとして一定値が示されているが、本実施例では、力・トルク信号を入力しない場合の電圧値を予め計測し、それを平均化したものを基準電圧とする。   Details of the processing of the present embodiment will be described with reference to FIGS. 7 and 8. FIG. 7 is a flow of the entire process. After starting the in-reactor inspection (step 35), the operation of the underwater inspection apparatus 9 is started (step 36). After the operation is started, first, the force / torque signal detected by the force / torque detector 27 is captured (step 37). Then, in the force / torque calculation process in step 38, a process of subtracting the reference voltage from the force / torque signal is performed to convert it into force / torque. In the present embodiment, a strain gauge type force / torque detector 27 is used. In general, a strain gauge type force / torque sensor has a property that an increase / decrease value from a constant voltage value called a reference voltage is proportional to the amount of strain applied to the sensor. The force / torque can be obtained by multiplying the value distortion-force / torque conversion coefficient. Here, the reference voltage is normally shown as a constant value as a specification specific to the force / torque sensor, but in this embodiment, the voltage value when no force / torque signal is input is measured in advance and averaged. The reference voltage is used.

次に、ステップ39の駆動部選択処理において、水中検査装置9に備えた駆動部15a〜15cのうち、駆動部分を決定する。図8に、コントローラ13へ操作入力(+X方向)をした際の水中検査装置9の駆動部15a〜15cの選択方法および動作イメージを示す。ケース1のように、力・トルク検出器27よりの上部に力およびトルクが入力された場合、駆動部15a〜15c全てを、その大きさに基づき同一方向へ屈曲させる。一方、ケース2のように、力・トルク検出器27付近、すなわちグリップ28の中心部に力およびトルクが入力された場合、駆動部15bのみを、その大きさと方向に基づき屈曲させ、駆動部15aと15cは逆方向へ屈曲させる。このように、操作入力する点のグリップ28内での位置により、屈曲形状を変化させることで、任意の屈曲動作を生成でき、複雑構造物中でも目的とする場所へアクセスすることが可能となる。なお、力・トルク検出器27の上部と中心部のどちらに入力されたかの判定は、力データとトルクデータを用いる。すなわち、図8のケース1に示すように、Y軸周りのトルクTyがX軸方向の力Fxより大きい場合は上部、図8のケース2に示すように、X軸方向の力FxがY軸周りのトルクTyより大きい場合は中心部と判断する。ここで、図8には+X方向の屈曲動作をさせた場合の例であるが、Yの正負方向についても同様である。Z軸方向については、本実施例の装置では駆動部15a〜15cが屈曲動作のみ可能であるため、操作の対象としない。   Next, in the drive part selection process of step 39, a drive part is determined among the drive parts 15a-15c with which the underwater inspection apparatus 9 was equipped. FIG. 8 shows a selection method and an operation image of the drive units 15a to 15c of the underwater inspection apparatus 9 when an operation input (+ X direction) is made to the controller 13. When force and torque are input to the upper part of the force / torque detector 27 as in the case 1, all of the drive units 15a to 15c are bent in the same direction based on the magnitude. On the other hand, when force and torque are input to the vicinity of the force / torque detector 27, that is, the center portion of the grip 28 as in the case 2, only the driving unit 15b is bent based on the size and direction, and the driving unit 15a is bent. And 15c are bent in the opposite direction. In this way, by changing the bending shape depending on the position in the grip 28 where the operation is input, an arbitrary bending motion can be generated, and the target location can be accessed even in a complex structure. Note that force data and torque data are used to determine whether the force / torque detector 27 is input to the upper part or the central part. That is, as shown in case 1 in FIG. 8, when the torque Ty around the Y axis is larger than the force Fx in the X axis direction, the upper part is shown, and as shown in case 2 in FIG. If it is larger than the surrounding torque Ty, it is determined as the center portion. Here, FIG. 8 shows an example of a bending operation in the + X direction, but the same applies to the positive and negative directions of Y. Regarding the Z-axis direction, in the apparatus of the present embodiment, the drive units 15a to 15c can only be bent, and thus are not subject to operation.

さらに、ステップ40の屈曲角度算出処理では、駆動部15a〜15cの回転量を算出する。屈曲角度θは、力およびトルクに比例して増減させる。なお、比例式の係数は、使用する力・トルク検出器27の検出上限値と駆動部15a〜15cに用いる球面超音波モータの最大回転速度から求め、これに駆動時間Δtを乗じたものを屈曲角度θとする。   Furthermore, in the bending angle calculation process of step 40, the rotation amount of the drive units 15a to 15c is calculated. The bending angle θ is increased or decreased in proportion to the force and torque. The coefficient of the proportional expression is obtained from the detection upper limit value of the force / torque detector 27 to be used and the maximum rotational speed of the spherical ultrasonic motor used for the drive units 15a to 15c, and is multiplied by the drive time Δt. The angle is θ.

最後に、ステップ41の制御量算出処理では、駆動部15a〜15cのそれぞれのステータに設置した電磁石26の磁化する方向の選択と、駆動部15a〜15cの屈曲角度の電圧値への変換を行う。まず、電磁石26の磁化する方向については、屈曲角度の制御量がゼロの場合は、駆動部が静止していると判断し、電圧を印加して磁化し、球体ロータ21と電磁石26の間に引力を発生させ、それ以外の場合は、電圧を印加しない。次に、駆動部15a〜15cの屈曲角度θの電圧値Vへの変換は、予め導出した印加電圧Vと屈曲角度θの関係式から算出する。   Finally, in the control amount calculation process in step 41, selection of the magnetization direction of the electromagnet 26 installed in each stator of the drive units 15a to 15c and conversion of the bending angles of the drive units 15a to 15c into voltage values are performed. . First, regarding the direction in which the electromagnet 26 is magnetized, if the control amount of the bending angle is zero, it is determined that the drive unit is stationary, and is magnetized by applying a voltage between the spherical rotor 21 and the electromagnet 26. Attracting force is generated, otherwise no voltage is applied. Next, the conversion of the bending angle θ of the driving units 15a to 15c into the voltage value V is calculated from a relational expression between the applied voltage V and the bending angle θ derived in advance.

なお、検査終了の信号が入力された場合には、水中検査装置9の制御量をゼロとし、処理を終了する(ステップ42)。   If an inspection end signal is input, the control amount of the underwater inspection apparatus 9 is set to zero, and the process ends (step 42).

以上説明した第一の実施例の構成によれば、水中検査装置9は、屈曲動作する駆動部を複数備え、機構形状を任意に変化させることで、原子炉内の狭隘部や複雑構造物内へアクセス可能となる。さらに、駆動部に保持力のある電磁石を備え、保持トルクを増大することで、重量のある検査装置でも任意の位置および姿勢へ移動し、作業を実施することが可能となる。つまり、狭隘部や複雑形状部において、重量のある作業装置を任意の位置および姿勢へ移動するための屈曲機構を提供することができる。   According to the configuration of the first embodiment described above, the underwater inspection apparatus 9 includes a plurality of drive units that perform bending operations, and arbitrarily changes the shape of the mechanism, so that the inside of the narrow portion or complex structure in the nuclear reactor can be changed. Can be accessed. Furthermore, by providing the drive unit with an electromagnet having a holding force and increasing the holding torque, even a heavy inspection apparatus can be moved to an arbitrary position and posture, and work can be performed. That is, it is possible to provide a bending mechanism for moving a heavy working device to an arbitrary position and posture in a narrow portion or a complicated shape portion.

なお、第一の実施例に記載した構成は、炉内目視検査を対象としたものであるが、先端部に搭載する装置を変更することで、その他、炉内構造物に発生する欠陥の長さおよび深さを測定するための渦電流センサや超音波センサによる探傷検査装置,炉内構造物の研磨,切断,溶接等を行う作業装置にも適用可能である。   Note that the configuration described in the first embodiment is intended for visual inspection in the furnace, but by changing the device mounted on the tip, the length of other defects occurring in the furnace structure The present invention is also applicable to flaw detection equipment using eddy current sensors and ultrasonic sensors for measuring depth and depth, and work equipment that performs polishing, cutting, welding, etc. of furnace structures.

また、本発明は、原子炉内の補修・検査等に用いる装置のみでなく、水中および気中で使用する各種作業装置に広く適用できるものであり、特に、狭隘部や複雑構造物内の作業装置に対し、アクセス性の向上を図ることが可能である。   In addition, the present invention can be widely applied not only to equipment used for repair and inspection in a nuclear reactor, but also to various kinds of working equipment used in water and in the air, particularly in narrow spaces and complex structures. It is possible to improve accessibility to the apparatus.

1 原子炉
2 シュラウド
3 上部格子板
4 炉心支持板
5 シュラウドサポート
6 PLR配管
7 オペレーションフロア
8 燃料交換装置
9 水中検査装置
10 ケーブル
11 制御装置
12 表示装置
13 コントローラ
14 検査員
15a〜15c 駆動部
16 目視検査用カメラ
17 円筒形剛性棒
18 信号伝送部
19 弾性カバー
20 円形ステータ
21 球体ロータ
22 ステータ固定ステージ
23 圧電素子付き弾性リング
24 電磁石支持棒
25 電磁石固定片
26 電磁石
27 力・トルク検出器
28 グリップ
29 操作台
1 reactor 2 shroud 3 upper lattice plate 4 core support plate 5 shroud support 6 PLR piping 7 operation floor 8 fuel change device 9 underwater inspection device 10 cable 11 control device 12 display device 13 controller 14 inspectors 15a to 15c driving unit 16 visual inspection Inspection camera 17 Cylindrical rigid rod 18 Signal transmission unit 19 Elastic cover 20 Circular stator 21 Spherical rotor 22 Stator fixing stage 23 Elastic ring with piezoelectric element 24 Electromagnet support bar 25 Electromagnet fixing piece 26 Electromagnet 27 Force / torque detector 28 Grip 29 Operation table

Claims (6)

球体および剛体と、それらを接続する駆動部と、該駆動部を制御する制御装置と、該制御装置に対し、操作員の指令を入力する入力手段を備え、該駆動部は、該球体と該剛体間の位置関係を保持、もしくは開放させることを特徴とする屈曲機構。   A sphere and a rigid body, a drive unit that connects them, a control device that controls the drive unit, and an input unit that inputs an operator command to the control device, the drive unit including the sphere and the rigid body A bending mechanism characterized by maintaining or releasing a positional relationship between rigid bodies. 請求項1に記載の屈曲機構において、
前記駆動部は、超音波を発生させる少なくとも1つの弾性円環であり、前記球体の中心を該弾性円環の中心軸が通るように配置され、該弾性円環の中心軸上に電磁石を備え、該球体静止時に保持トルクを増加させるために該球体と該電磁石間に引力を発生させることを特徴とする屈曲機構。
The bending mechanism according to claim 1,
The drive unit is at least one elastic ring that generates ultrasonic waves, and is arranged such that a central axis of the elastic ring passes through the center of the sphere, and an electromagnet is provided on the central axis of the elastic ring. A bending mechanism characterized by generating an attractive force between the sphere and the electromagnet in order to increase a holding torque when the sphere is stationary.
請求項1もしくは請求項2に記載の屈曲機構において、
該入力手段は、円筒形グリップの垂直方向の中心部に、3軸方向の力と3軸周りのトルクを検知する力・トルク検出器を備え、その出力信号を基に、該入力手段に加わる力・トルクを算出する力・トルク算出手段と、算出した力とトルクから該屈曲機構の該駆動部のうち動作させる駆動部を選択する駆動部選択手段と、前記駆動部の屈曲角制御量を算出する屈曲角制御量算出手段を備えたことを特徴とする屈曲機構。
In the bending mechanism according to claim 1 or 2,
The input means is provided with a force / torque detector for detecting a force in three axial directions and a torque around the three axes at the center of the cylindrical grip in the vertical direction, and is applied to the input means based on the output signal. A force / torque calculating means for calculating force / torque, a driving part selecting means for selecting a driving part to be operated among the driving parts of the bending mechanism from the calculated force and torque, and a bending angle control amount of the driving part. A bending mechanism comprising a bending angle control amount calculating means for calculating.
請求項1乃至請求項3の何れかに記載の屈曲機構において、
機構先端部に目視検査装置,探傷検査装置,補修および保全装置のうち少なくとも一つを備えたことを特徴とする屈曲機構。
The bending mechanism according to any one of claims 1 to 3,
A bending mechanism characterized in that at least one of a visual inspection device, a flaw detection inspection device, a repair and a maintenance device is provided at the tip of the mechanism.
2つの剛体と該剛体間を接続する駆動部と、該駆動部を制御する制御装置と、該制御装置に対し操作員の指令を入力する入力手段を備えた屈曲機構の制御装置であって、該制御装置は、該剛体間の位置関係を保持、もしくは開放させることを特徴とする屈曲機構の制御装置。   A control device for a bending mechanism comprising two rigid bodies, a drive unit for connecting the rigid bodies, a control device for controlling the drive unit, and an input means for inputting an operator command to the control device, The control device for a bending mechanism, wherein the control device maintains or releases a positional relationship between the rigid bodies. 2つの剛体と該剛体間を接続する駆動部と、該駆動部を制御する制御装置と、該制御装置に対し操作員の指令を入力する入力手段を備えた屈曲機構の制御方法であって、該制御装置は、該剛体間の位置関係を保持、もしくは開放させることを特徴とする屈曲機構の制御方法。   A control method of a bending mechanism comprising two rigid bodies, a drive unit that connects the rigid bodies, a control device that controls the drive unit, and an input unit that inputs an operator command to the control device, A control method of a bending mechanism, wherein the control device maintains or releases a positional relationship between the rigid bodies.
JP2009078011A 2009-03-27 2009-03-27 Bending mechanism and control device and control method therefor Pending JP2010228046A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009078011A JP2010228046A (en) 2009-03-27 2009-03-27 Bending mechanism and control device and control method therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009078011A JP2010228046A (en) 2009-03-27 2009-03-27 Bending mechanism and control device and control method therefor

Publications (1)

Publication Number Publication Date
JP2010228046A true JP2010228046A (en) 2010-10-14

Family

ID=43044405

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009078011A Pending JP2010228046A (en) 2009-03-27 2009-03-27 Bending mechanism and control device and control method therefor

Country Status (1)

Country Link
JP (1) JP2010228046A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013121814A (en) * 2011-12-09 2013-06-20 Hyundai Motor Co Ltd Switch module built in steering wheel

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013121814A (en) * 2011-12-09 2013-06-20 Hyundai Motor Co Ltd Switch module built in steering wheel

Similar Documents

Publication Publication Date Title
US11781698B2 (en) Modular robotic crawler with hybrid locomotion for inspection of small diameter pipe
Dallej et al. Modeling and vision-based control of large-dimension cable-driven parallel robots using a multiple-camera setup
CN109580775B (en) System and method for inspecting parts using dual multi-axis robotic devices
JP7192292B2 (en) Robot and robot anomaly detection method
JP2017056521A (en) Robot, control device and robot system
CN108145699B (en) Six-degree-of-freedom parallel robot arm driven by tubular linear motor and control method thereof
JP2007315815A (en) Three-dimensional displacement measuring system
Silva Rico et al. Development of an actuation system based on water jet propulsion for a slim long-reach robot
JPH0218947A (en) Holder and compensation system of non-repeated error
Choi et al. Feeder pipe inspection robot using an inch-worm mechanism with pneumatic actuators
Ye et al. A novel ring-beam piezoelectric actuator for small-size and high-precision manipulator
Hoshina et al. Development of spherical ultrasonic motor as a camera actuator for pipe inspection robot
Mitsuishi et al. Development of tele-operated micro-handling/machining system based on information transformation
JP4690291B2 (en) Underwater inspection device and underwater inspection method
Choi et al. The design and analysis of a feeder pipe inspection robot with an automatic pipe tracking system
JP2011182485A (en) Manipulator
JP2010228046A (en) Bending mechanism and control device and control method therefor
JP5521506B2 (en) robot
JP4672619B2 (en) Surface contamination inspection system and inspection method thereof
JP2012051043A (en) Robot system or robot control device
JP7267688B2 (en) Robot system, robot arm control method, article manufacturing method, driving device, and driving device control method
Boonyaprapasorn et al. A prototype of inspection robot for water wall tubes in boiler
Nambi et al. Toward intuitive teleoperation of micro/nano-manipulators with piezoelectric stick-slip actuators
JP2014050935A (en) Robot control device, robot, and robot system
JP2007085814A (en) Inspection device and its installation system