JP2010227985A - Centrifugal casting method - Google Patents
Centrifugal casting method Download PDFInfo
- Publication number
- JP2010227985A JP2010227985A JP2009080151A JP2009080151A JP2010227985A JP 2010227985 A JP2010227985 A JP 2010227985A JP 2009080151 A JP2009080151 A JP 2009080151A JP 2009080151 A JP2009080151 A JP 2009080151A JP 2010227985 A JP2010227985 A JP 2010227985A
- Authority
- JP
- Japan
- Prior art keywords
- pouring pipe
- molten metal
- pouring
- cylindrical mold
- pouring tube
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Continuous Casting (AREA)
Abstract
Description
本発明は、注湯管(ラドル)を用いた遠心鋳造法に関する。 The present invention relates to a centrifugal casting method using a pouring pipe (ladle).
エンジンのボア内に配設されるシリンダスリーブなどの鋳造法として、遠心鋳造法が知られている。
この遠心鋳造法は高速で回転する円筒状金型内に注湯管を介して溶湯を注入し、遠心力によって溶湯を円筒状金型内面に押し付けて成形する鋳造法である。
Centrifugal casting is known as a casting method for a cylinder sleeve or the like disposed in an engine bore.
This centrifugal casting method is a casting method in which molten metal is injected into a cylindrical mold rotating at high speed via a pouring pipe, and the molten metal is pressed against the inner surface of the cylindrical mold by centrifugal force.
遠心鋳造法は円筒状金型を水平方向に配置するのが一般的である。そして、水平方向に配置した円筒状金型内に一端から溶湯を供給すると、Al合金などは凝固速度が速いため、他端まで溶湯が十分に届かないことが生じる。このため、注湯管として長尺のものを用い、円筒状金型内の奥まで注湯口が届くようにした先行技術として、特許文献1〜4が知られている。 In the centrifugal casting method, a cylindrical mold is generally arranged in the horizontal direction. When the molten metal is supplied from one end into the cylindrical mold arranged in the horizontal direction, the Al alloy or the like has a high solidification rate, so that the molten metal may not reach the other end sufficiently. For this reason, patent documents 1-4 are known as prior art which used the long thing as a pouring pipe, and the pouring spout reached the inner part in a cylindrical metal mold | die.
特許文献1,2には、長尺な注湯管の先端部と中間部に挟持板を取り付け、更にこれら挟持板間に注湯管が貫通する貫通支持板を設け、前記注湯管を囲むように挟持板および貫通支持板に4本の棒状ヒータを注湯管を囲むように貫通支持した構造が開示されている。 In Patent Documents 1 and 2, a clamping plate is attached to the tip and middle of a long pouring pipe, and a penetration support plate through which the pouring pipe passes is provided between the clamping plates, and surrounds the pouring pipe. In this way, a structure is disclosed in which four rod heaters are passed through and supported on the sandwiching plate and the through support plate so as to surround the pouring pipe.
特許文献3には、遠心鋳造法によって二層管を鋳造するにあたり、長尺な注湯管の型内挿入部の外周部にヒータを取り付けるとともに溶湯の内側表面温度を測定する温度計を注湯管に設けた構造が提案されている。 In Patent Document 3, when casting a two-layer pipe by a centrifugal casting method, a thermometer for measuring the inner surface temperature of the molten metal and attaching a heater to the outer peripheral portion of the insert portion of the long pouring pipe is poured. A structure provided in a pipe has been proposed.
特許文献4には注湯管(トラフ)を移動させずに金型を載せている台車を移動させることで、注湯管から注がれる溶湯の量を金型の長さ方向に沿って均一にするようにしている。 In Patent Document 4, the amount of molten metal poured from the pouring pipe is made uniform along the length direction of the mold by moving the carriage on which the mold is placed without moving the pouring pipe (trough). I try to make it.
上述した長尺の注湯管を用いることで、注湯口を円筒状金型内の奥まで差し込むことができるので、注湯管を円筒状金型の軸方向に移動させつつ注湯すれば、円筒状金型内で軸方向に沿って満遍なく注湯できる。 By using the long pouring pipe described above, the pouring port can be inserted into the cylindrical mold, so if the pouring pipe is poured while moving in the axial direction of the cylindrical mold, In the cylindrical mold, pouring can be made evenly along the axial direction.
しかしながら、長尺の注湯管は片持ち状態で支持され且つ溶湯は高温で重いため、先端が垂れてしまう。垂れの量が大きいと注湯管を円筒状金型内に挿入することができない。上述した特許文献1,2は注湯管の周囲を棒状ヒータで囲んでいるため、垂れの量は少ないが、全体の径が大きくなる不利がある。 However, since the long pouring pipe is supported in a cantilever state and the molten metal is heavy at a high temperature, the tip hangs down. If the amount of dripping is large, the pouring pipe cannot be inserted into the cylindrical mold. In Patent Documents 1 and 2 described above, since the periphery of the pouring pipe is surrounded by a rod-shaped heater, the amount of dripping is small, but there is a disadvantage that the overall diameter becomes large.
特許文献3,4に開示される注湯管は細く長いが、注湯管の垂れについては何ら考慮されていない。特に垂れ量は注湯管の予熱条件や注湯温度によって各ショット毎に変化するため、予め垂れ量を決めておき、その量を補正して注湯することができない。 The pouring pipes disclosed in Patent Documents 3 and 4 are thin and long, but no consideration is given to dripping of the pouring pipes. In particular, since the dripping amount changes for each shot depending on the preheating condition of the pouring pipe and the pouring temperature, it is not possible to determine the dripping amount in advance and correct the amount to pour hot water.
上記課題を解決すべく本発明に係る遠心鋳造法は、円筒状金型内に挿入して注湯を行う注湯管の垂れ量を測定し、この測定結果に基づいて注湯管の挿入角度を補正した後、注湯管を円筒状金型内に挿入して注湯管から溶湯を供給するようにした。
尚、円筒状金型内に注湯管を挿入するには、注湯管の挿入方向をほぼ水平状態に設置された円筒状金型の軸線に一致させる必要があるが、この一致させる時期は注湯管の垂れ量を測定する前後のいずれでもよい。ただし、測定する前に軸線に一致させておけば、測定後速やかに注湯管を挿入することができるので正確性が向上する。
In order to solve the above problems, the centrifugal casting method according to the present invention measures the amount of dripping of a pouring pipe inserted into a cylindrical mold and performs pouring, and the insertion angle of the pouring pipe is based on the measurement result. After the correction, the pouring pipe was inserted into the cylindrical mold and the molten metal was supplied from the pouring pipe.
In order to insert the pouring pipe into the cylindrical mold, it is necessary to make the insertion direction of the pouring pipe coincide with the axis of the cylindrical mold installed in a substantially horizontal state. Either before or after measuring the dripping amount of the pouring pipe. However, if it is made to correspond to an axis before measuring, since a pouring pipe can be inserted immediately after a measurement, accuracy will improve.
前記注湯管としては、先端に注湯口を設けたものでもよいが、長さ方向に沿って溶湯の流入・流出が可能なスリットが形成された注湯管とすることが、凝固速度が速いAl-Si系溶湯の場合に特に好ましい。即ち、この場合には前記スリットを上にした状態で円筒状金型内に挿入し、この後、注湯管を軸周りに回転させて前記スリットを下に向けることで注湯管内の溶湯を円筒状金型の長さ方向に沿って同時に供給することができる。その結果溶湯を急冷して微細なSi結晶を形成することが可能になり、耐磨耗性を大幅に向上することができる。 The pouring pipe may be provided with a pouring port at the tip, but a pouring pipe formed with a slit capable of inflow and outflow of molten metal along the length direction has a high solidification rate. It is particularly preferable in the case of Al—Si molten metal. That is, in this case, it is inserted into a cylindrical mold with the slit facing up, and then the molten metal in the pouring pipe is turned by rotating the pouring pipe around the axis and directing the slit downward. It can supply simultaneously along the length direction of a cylindrical metal mold | die. As a result, the molten metal can be rapidly cooled to form fine Si crystals, and the wear resistance can be greatly improved.
また、前記注湯管の垂れ量の測定手段としては、カメラ画像の解析も考えられるが、赤熱する物体を測定する場合、画像の輪郭が不鮮明になることがあるので、例えば、90°向きが異なる2つの帯状レーザ光を注湯管に照射することが好ましい。この場合、2つの帯状レーザ光は交差させてもよいし、前後方向に離してもよい。なお、測定に用いられるレーザ光としては測定対象物が赤熱しているので緑色レーザ光が適している。 Further, as a means for measuring the amount of dripping of the pouring pipe, an analysis of a camera image can be considered. However, when measuring an object that glows red, the contour of the image may become unclear. It is preferable to irradiate the pouring tube with two different belt-shaped laser beams. In this case, the two strip laser beams may be crossed or separated in the front-rear direction. As the laser beam used for measurement, a green laser beam is suitable because the measurement object is red-hot.
更に、前記2つの帯状レーザ光の発光装置としては、注湯管の長さ方向に沿って移動するフレームに取り付けることが考えられる。斯かる構成とすることで、注湯管の垂れ量だけでなく、注湯管の全体形状も測定することができる。 Further, it is conceivable that the two belt-like laser light emitting devices are attached to a frame that moves along the length direction of the pouring pipe. By setting it as such a structure, not only the dripping amount of a pouring pipe but the whole shape of a pouring pipe can be measured.
本発明によれば、注湯管を遠心鋳造用の金型内に挿入する直前に注湯管の垂れ量を測定するため、注湯管の予熱条件や注湯温度に拘らず、各ショット毎に正確に注湯管の垂れ量を知ることができる。 According to the present invention, since the amount of dripping of the pouring pipe is measured immediately before the pouring pipe is inserted into the mold for centrifugal casting, regardless of the preheating conditions and the pouring temperature of the pouring pipe, It is possible to know the amount of dripping pipe accurately.
そして、その測定結果に基づいて、注湯管の円筒状金型への挿入角度を補正するため、確実に注湯管を円筒状金型へ挿入することができる。 And since the insertion angle to the cylindrical metal mold | die of a pouring pipe | tube is correct | amended based on the measurement result, a pouring pipe | tube can be reliably inserted in a cylindrical metal mold | die.
尚、注湯管の長さ方向に溶湯の流入・流出を行うためのスリットを形成することで、遠心鋳造の円筒状金型内の全長方向に、同時に溶湯を供給することができ、鋳造品の全長に亘って凝固条件を同じにすることができる。その結果、高品質の鋳造品を得ることができる。 In addition, by forming a slit for inflow and outflow of the molten metal in the length direction of the pouring pipe, the molten metal can be supplied simultaneously in the entire length direction in the cylindrical mold of centrifugal casting. The solidification conditions can be the same over the entire length. As a result, a high-quality cast product can be obtained.
以下に本発明の実施の形態を添付図面に基づいて説明する。図1に示すように遠心鋳造装置は、円筒状金型10、注湯管20及び注湯管20を移動させるロボット30、注湯管20の垂れを測定する測定装置40を備える。尚、図1では注湯管20の垂れを分かりやすくするため誇張して描いている。 Embodiments of the present invention will be described below with reference to the accompanying drawings. As shown in FIG. 1, the centrifugal casting apparatus includes a cylindrical mold 10, a pouring pipe 20, a robot 30 that moves the pouring pipe 20, and a measuring device 40 that measures dripping of the pouring pipe 20. In FIG. 1, the dripping of the pouring pipe 20 is exaggerated for easy understanding.
円筒状金型10は軸を略水平状態として前後の対をなすローラ11…上に支持されている。ローラ11…は円筒状金型10の周方向に形成した溝12に嵌り込むことで回転中に円筒状金型10が軸方向に移動するのを阻止している。 The cylindrical mold 10 is supported on a pair of front and rear rollers 11 having a substantially horizontal shaft. The rollers 11 are fitted in grooves 12 formed in the circumferential direction of the cylindrical mold 10 to prevent the cylindrical mold 10 from moving in the axial direction during rotation.
また、4つのローラ11…のうち少なくとも1つがモータによって回転する駆動ローラで残りは被動ローラとされている。 Further, at least one of the four rollers 11 is a drive roller that is rotated by a motor, and the rest are driven rollers.
円筒状金型10は両端に端板13,13を取り付け、一方の端板に形成した開口を介して前記注湯管20が円筒状金型10内に挿抜可能とされている。また注湯管20には長さ方向に沿ってスリット21が形成され、このスリット21は注湯管20内に溶湯が流入・流出するためのもので、その長さは鋳造する製品の長さに略等しく設定している。 The cylindrical mold 10 has end plates 13 and 13 attached to both ends, and the pouring pipe 20 can be inserted into and removed from the cylindrical mold 10 through an opening formed in one end plate. In addition, a slit 21 is formed in the pouring pipe 20 along the length direction, and the slit 21 is for flowing in and out of the pouring pipe 20 and the length thereof is the length of the product to be cast. Is set approximately equal to.
ロボット30は多関節アーム31の先端にクランク32を有し、このクランク32の一端に前記注湯管20を片持ち状態で取り付けている。多関節アーム31は所定の範囲内で任意の位置および姿勢で注湯管20を支持することができ、クランク32は多関節アーム31の先端アームの軸廻りに回転可能とされている。 The robot 30 has a crank 32 at the tip of the articulated arm 31, and the pouring pipe 20 is attached to one end of the crank 32 in a cantilever state. The articulated arm 31 can support the pouring pipe 20 at an arbitrary position and posture within a predetermined range, and the crank 32 is rotatable around the axis of the tip arm of the articulated arm 31.
測定装置40は基台41にレール42を設け、このレール42に筒状金型10内に挿入される直前で待機状態にある注湯管20に沿って往復動するフレーム43を係合している。 The measuring device 40 is provided with a rail 42 on a base 41 and engages a frame 43 that reciprocates along the pouring pipe 20 in a standby state immediately before being inserted into the cylindrical mold 10 on the rail 42. Yes.
フレーム43は注湯管20を挟んで両側に柱部44,45が起立し、柱部44,45の上部には帯状の緑色レーザ光を発する発光素子46,47が取り付けられ、柱部44,45の下部には前記レーザ光を受光する受光素子48,49が取り付けられている。 In the frame 43, pillar portions 44 and 45 are erected on both sides of the pouring pipe 20, and light emitting elements 46 and 47 for emitting strip-shaped green laser light are attached to the upper portions of the pillar portions 44 and 45. Light receiving elements 48 and 49 for receiving the laser light are attached below 45.
発光素子46から発せられて受光素子48で受光される帯状レーザ光と、発光素子47から発せられて受光素子49で受光される帯状レーザ光とは注湯管20の軸線と直交する面内で90°で交差している。そして垂れが生じていないと仮定した場合の注湯管20の軸線が、図2に示すように、交差することによって形成される四角い検出領域の中心に一致するように設定する。 The band-shaped laser light emitted from the light-emitting element 46 and received by the light-receiving element 48 and the band-shaped laser light emitted from the light-emitting element 47 and received by the light-receiving element 49 are within a plane orthogonal to the axis of the pouring pipe 20. It intersects at 90 °. Then, the axis of the pouring pipe 20 when it is assumed that no dripping has occurred is set so as to coincide with the center of a square detection region formed by intersecting as shown in FIG.
一方、図3に示すように注湯管20が自重によって垂れていると、検出領域の中心と注湯管20の軸線とが離れ、注湯管20によって遮断される光量が少なくなり、受光素子48、49での受光量が増加する。この受光量の増加分をX方向成分とY方向成分に振り分けることで、注湯管20の軸線の位置を知ることができる。 On the other hand, when the pouring pipe 20 hangs down by its own weight as shown in FIG. 3, the center of the detection area is separated from the axis of the pouring pipe 20, and the amount of light blocked by the pouring pipe 20 is reduced. The amount of light received at 48 and 49 increases. By allocating the increase in the amount of received light to the X direction component and the Y direction component, the position of the axis of the pouring pipe 20 can be known.
更にフレーム43を注湯管20に沿って移動しつつ各測定位置での軸線の位置を知ることで自重で曲がっている注湯管20の全体形状を知ることができる。 Further, by knowing the position of the axis at each measurement position while moving the frame 43 along the pouring pipe 20, the overall shape of the pouring pipe 20 bent by its own weight can be known.
以上において、遠心鋳造を行うには、先ずロボット30を操作して、注湯管20を図示しない溶湯保持炉内に浸漬する。この溶湯保持炉内には例えばAl−Si系の溶湯が貯留されており、注湯管20を浸漬するとスリット21を介して溶湯が注湯管20内に充填される。尚、注湯管20内に充填する溶湯の量は注湯管20を傾斜させること或いは垂直状態とした際の溶湯内への浸漬深さで調整する。 In the above, in order to perform centrifugal casting, first, the robot 30 is operated to immerse the pouring pipe 20 in a molten metal holding furnace (not shown). For example, Al—Si-based molten metal is stored in the molten metal holding furnace, and when the molten metal pipe 20 is immersed, the molten metal is filled into the molten metal pipe 20 through the slit 21. In addition, the amount of the molten metal filled in the molten metal pipe 20 is adjusted by the immersion depth in the molten metal when the molten metal pipe 20 is inclined or in a vertical state.
注湯管20内に溶湯を充填したならば、溶湯保持炉からスリット21を上に向けた状態で注湯管20を取り出し、円筒状金型10の近傍まで移動し、注湯管20の挿入方向を円筒状金型10の軸線(回転中心)に一致させる。 If the molten metal is filled in the molten metal pipe 20, the molten metal pipe 20 is taken out from the molten metal holding furnace with the slit 21 facing upward, moved to the vicinity of the cylindrical mold 10, and the molten metal pipe 20 is inserted. The direction is made to coincide with the axis (rotation center) of the cylindrical mold 10.
この状態から前記した測定装置40を用いて、注湯管20の最大垂れ量若しくは全体形状を測定し、測定結果に合わせて、注湯管20の傾きを調整する。例えば、注湯管20の先端が垂れている場合は、多関節アーム31を操作して注湯管20の先端が若干上を向くようにし、この状態で軸線に沿って注湯管20を回転している円筒状金型10内に進入させる。 From this state, using the measuring device 40 described above, the maximum amount of dripping or the entire shape of the pouring pipe 20 is measured, and the inclination of the pouring pipe 20 is adjusted according to the measurement result. For example, when the tip of the pouring pipe 20 is drooping, the articulated arm 31 is operated so that the tip of the pouring pipe 20 faces slightly upward, and the pouring pipe 20 is rotated along the axis in this state. The cylindrical mold 10 is inserted.
円筒状金型10内に注湯管20が入った状態でスリット21は、図4に示すように上方を向いているため、溶湯は注湯管20内に保持されている。次いで、図5に示すように、注湯管20の円筒状金型10内での位置を変えないように注湯管20を軸廻りに回転させる。具体的には、注湯管20の軸を中心としてクランク32が回転するようにロボット30の多関節アーム31を移動させる。 Since the slit 21 faces upward as shown in FIG. 4 with the pouring pipe 20 in the cylindrical mold 10, the molten metal is held in the pouring pipe 20. Next, as shown in FIG. 5, the pouring pipe 20 is rotated around the axis so as not to change the position of the pouring pipe 20 in the cylindrical mold 10. Specifically, the articulated arm 31 of the robot 30 is moved so that the crank 32 rotates about the axis of the pouring pipe 20.
すると、円筒状金型10内で注湯管20のスリット21が上下反転し、注湯管20内に保持されていた溶湯はスリット21から円筒状金型10内に供給される。 Then, the slit 21 of the pouring pipe 20 is turned upside down in the cylindrical mold 10, and the molten metal held in the pouring pipe 20 is supplied from the slit 21 into the cylindrical mold 10.
スリット21の長さは鋳造する製品の長さと略等しく設定しているため、製品の全長分の溶湯が一気に円筒状金型10内に供給され、供給された溶湯は遠心力によって金型10の内周面に押し付けられ、凝固してシリンダスリーブなどの製品となる。 Since the length of the slit 21 is set to be substantially equal to the length of the product to be cast, the molten metal for the entire length of the product is supplied into the cylindrical mold 10 at once, and the supplied molten metal is fed into the mold 10 by centrifugal force. Pressed against the inner peripheral surface and solidified into a product such as a cylinder sleeve.
このように、製品の全長に沿って同時に溶湯が供給されることで、長さ方向に沿った各部における鋳造条件が同じになり、高品質の製品を鋳造することができる。 Thus, by supplying molten metal simultaneously along the full length of a product, the casting conditions in each part along the length direction become the same, and a high quality product can be cast.
溶湯が凝固した後は予め金型内面に塗型材が塗布されているため、容易に取り出すことができる。 After the molten metal has solidified, the coating material is applied to the inner surface of the mold in advance, so that it can be easily taken out.
尚、実施例としては測定装置40として、帯状レーザ光を交差させる装置を示したが、これに限定されるものではない。また、実施例としては注湯管20に形成する注湯口としてスリット21を示したが、先端に注湯口を設けたものでもよい。 In addition, although the apparatus which crosses a strip | belt-shaped laser beam was shown as the measuring apparatus 40 as an Example, it is not limited to this. Moreover, although the slit 21 was shown as a pouring port formed in the pouring pipe 20 as an Example, what provided the pouring port at the front-end | tip may be used.
本発明に係る注湯管を備えた遠心鋳造装置は、Al−Si系の材料からなるシリンダスリーブの鋳造などに適用することができる。 The centrifugal casting apparatus provided with the pouring pipe according to the present invention can be applied to casting of a cylinder sleeve made of an Al-Si material.
10…円筒状金型、11…ローラ、12…溝、13…端板、
20…注湯管、21…スリット、
30…ロボット、31…多関節アーム、32…クランク、
40…測定装置、41…基台、42…レール、43…フレーム、44,45…柱部、46,47…発光素子、48,49…受光素子。
10 ... Cylindrical mold, 11 ... Roller, 12 ... Groove, 13 ... End plate,
20 ... pour pipe, 21 ... slit,
30 ... Robot, 31 ... Articulated arm, 32 ... Crank,
DESCRIPTION OF SYMBOLS 40 ... Measuring apparatus, 41 ... Base, 42 ... Rail, 43 ... Frame, 44, 45 ... Column part, 46, 47 ... Light emitting element, 48, 49 ... Light receiving element.
Claims (3)
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009080151A JP2010227985A (en) | 2009-03-27 | 2009-03-27 | Centrifugal casting method |
PCT/JP2010/001458 WO2010109779A1 (en) | 2009-03-27 | 2010-03-03 | Molten metal pouring tube for centrifugal casting, molten metal ladle for centrifugal casting, centrifugal casting device, and centrifugal casting method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009080151A JP2010227985A (en) | 2009-03-27 | 2009-03-27 | Centrifugal casting method |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2010227985A true JP2010227985A (en) | 2010-10-14 |
Family
ID=43044353
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2009080151A Pending JP2010227985A (en) | 2009-03-27 | 2009-03-27 | Centrifugal casting method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2010227985A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113078080A (en) * | 2021-03-26 | 2021-07-06 | 金易芯半导体科技(嘉兴)有限公司 | Tin ball manufacturing equipment for wafer packaging chip and processing technology thereof |
-
2009
- 2009-03-27 JP JP2009080151A patent/JP2010227985A/en active Pending
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113078080A (en) * | 2021-03-26 | 2021-07-06 | 金易芯半导体科技(嘉兴)有限公司 | Tin ball manufacturing equipment for wafer packaging chip and processing technology thereof |
CN113078080B (en) * | 2021-03-26 | 2021-11-09 | 金易芯半导体科技(嘉兴)有限公司 | Tin ball manufacturing equipment for wafer packaging chip and processing technology thereof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN1077468C (en) | Metal casting | |
JP5886686B2 (en) | Automatic pouring device and pouring method for mold | |
JP4763871B2 (en) | Metal strip casting method and apparatus | |
JP2019069453A (en) | Ladle molten metal feeding device and ladle molten metal controlling method | |
JP2010227985A (en) | Centrifugal casting method | |
RU2533579C1 (en) | Electroslag furnace for production of hollow ingot | |
KR101219607B1 (en) | Apparatus and method for measuring level of mouldflux | |
EP1481749A1 (en) | Gravity casting apparatus with tilting die and method for gravity casting with tilting die | |
JP4650055B2 (en) | Method and apparatus for controlling hot water from a hot water furnace in the gravity casting method, and method for producing a mold for tire vulcanization manufactured by the hot water control method | |
JP2010227987A (en) | Centrifugal casting method | |
US3735798A (en) | Methods for casting hollow ingots | |
WO2018181075A1 (en) | Die casting machine | |
KR870000714B1 (en) | Horizontal continuous casting method | |
WO2010109779A1 (en) | Molten metal pouring tube for centrifugal casting, molten metal ladle for centrifugal casting, centrifugal casting device, and centrifugal casting method | |
JP2010227989A (en) | Molten metal ladle for centrifugal casting, and centrifugal casting method | |
JP2010227982A (en) | Molten metal pouring tube for centrifugal casting, centrifugal casting device, and centrifugal casting method | |
US11027333B2 (en) | Liquid-resistant direct-drive robotic ladler | |
KR101767184B1 (en) | Dispenser process improving auto system for centrifugal casting | |
KR101199952B1 (en) | Apparatus for measuring temperature of molten steel and method for measuring temperature of molten steel using it | |
CN105699151A (en) | Device and method for preparing static stretching sample of steel wire with section diameter being 2-10mm | |
KR102139648B1 (en) | Head box of for casting magnesium sheet | |
CN210059785U (en) | Mould pouring device | |
CN220356535U (en) | Thermocouple positioning auxiliary device for melt temperature measurement | |
JP5530708B2 (en) | Continuous casting equipment | |
RU2532537C1 (en) | Method for electroslag melting of steel so that hollow ingot is obtained |