JP2010227926A - Electrostatic atomization apparatus - Google Patents

Electrostatic atomization apparatus Download PDF

Info

Publication number
JP2010227926A
JP2010227926A JP2010037830A JP2010037830A JP2010227926A JP 2010227926 A JP2010227926 A JP 2010227926A JP 2010037830 A JP2010037830 A JP 2010037830A JP 2010037830 A JP2010037830 A JP 2010037830A JP 2010227926 A JP2010227926 A JP 2010227926A
Authority
JP
Japan
Prior art keywords
thermoelectric element
discharge electrode
heat
electrostatic
electrostatic atomizer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010037830A
Other languages
Japanese (ja)
Other versions
JP5342471B2 (en
Inventor
Kentaro Kobayashi
健太郎 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Panasonic Electric Works Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Electric Works Co Ltd filed Critical Panasonic Electric Works Co Ltd
Priority to JP2010037830A priority Critical patent/JP5342471B2/en
Publication of JP2010227926A publication Critical patent/JP2010227926A/en
Application granted granted Critical
Publication of JP5342471B2 publication Critical patent/JP5342471B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide an electrostatic atomization apparatus capable of holding sufficient cooling ability for generating dew condensation water on a discharge electrode and then achieving downsizing of the entire apparatus and energy saving. <P>SOLUTION: In the electrostatic atomization apparatus for generating charged particulate water by applying a voltage to the dew condensation water generated by cooling the discharge electrode 1, the heat absorption sides of a pair of thermoelectric element parts 2 provided in order to cool the discharge electrode 1 are electrically connected to each other via the discharge electrode 1. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、帯電微粒子水を発生させる静電霧化装置に関し、詳しくは、装置全体のコンパクト化や省エネルギー化を実現するための技術に関する。   The present invention relates to an electrostatic atomizer that generates charged fine particle water, and more particularly to a technique for realizing downsizing and energy saving of the entire apparatus.

帯電微粒子水を発生させることのできる静電霧化装置として、放電電極を冷却して生成した結露水に電圧を印加することによって帯電微粒子水を生成するものが知られている(特許文献1参照)。この静電霧化装置は図17に示すようなもので、多数の熱電素子23を両側から回路板50で挟み込むことによって熱交換ブロック60を構成している。回路板50は、絶縁基板51の片面に回路パターン52を形成したものであって、一方の回路板50の回路パターン52によって熱電素子23の放熱側の端部同士を電気接続させ、他方の回路板50の回路パターン52によって熱電素子23の吸熱側の端部同士を電気接続させている。   As an electrostatic atomizer capable of generating charged fine particle water, one that generates charged fine particle water by applying a voltage to condensed water generated by cooling a discharge electrode is known (see Patent Document 1). ). This electrostatic atomizer is as shown in FIG. 17, and a heat exchange block 60 is configured by sandwiching a large number of thermoelectric elements 23 from both sides with a circuit board 50. The circuit board 50 has a circuit pattern 52 formed on one side of an insulating substrate 51. The circuit pattern 52 of one circuit board 50 electrically connects the ends on the heat radiation side of the thermoelectric element 23 to each other. The end portions on the heat absorption side of the thermoelectric element 23 are electrically connected by the circuit pattern 52 of the plate 50.

そして、上記熱交換ブロック60の吸熱側の回路板50に熱伝導性の冷却板70を接続させ、この冷却板70上に放電電極1を接続させている。また、上記熱交換ブロック60の放熱側の回路板50に放熱部材71を接続させている。   A heat conductive cooling plate 70 is connected to the circuit board 50 on the heat absorption side of the heat exchange block 60, and the discharge electrode 1 is connected to the cooling plate 70. Further, a heat radiation member 71 is connected to the circuit board 50 on the heat radiation side of the heat exchange block 60.

上記構成の静電霧化装置においては、熱電素子23の吸熱側が回路パターン52、絶縁基板51、冷却板70を経て、放電電極1を冷却させる。冷却によって放電電極1の表面には結露水が生成される。放電電極1には高圧リード線80を接続させており、該高圧リード線80を介して放電電極1表面の結露水に高電圧を印加することで、静電霧化現象によって帯電微粒子水を生成させる。   In the electrostatic atomizer having the above configuration, the heat absorption side of the thermoelectric element 23 cools the discharge electrode 1 through the circuit pattern 52, the insulating substrate 51, and the cooling plate 70. Condensed water is generated on the surface of the discharge electrode 1 by cooling. A high-voltage lead wire 80 is connected to the discharge electrode 1, and a high voltage is applied to the condensed water on the surface of the discharge electrode 1 through the high-voltage lead wire 80, thereby generating charged fine particle water by an electrostatic atomization phenomenon. Let

しかし、熱電素子23と放電電極1の間には多数の界面(熱電素子23と回路パターン52の界面、回路パターン52と絶縁基板51の界面、絶縁基板51と冷却板70の界面、冷却板70と放電電極1の界面)が存在し、この多数の界面が、放電電極1の冷却効率を低下させる要因となっていた。そのため、結露水生成のための十分な冷却能力を確保するには熱電素子23を多数配置する必要があり、装置全体の大型化を招くとともに、省エネルギー化にも限界があるという問題があった。   However, there are many interfaces between the thermoelectric element 23 and the discharge electrode 1 (the interface between the thermoelectric element 23 and the circuit pattern 52, the interface between the circuit pattern 52 and the insulating substrate 51, the interface between the insulating substrate 51 and the cooling plate 70, the cooling plate 70). The interface between the discharge electrode 1 and the discharge electrode 1 is a factor that reduces the cooling efficiency of the discharge electrode 1. Therefore, in order to ensure sufficient cooling capacity for the generation of condensed water, it is necessary to arrange a large number of thermoelectric elements 23, leading to an increase in the size of the entire device and a problem in that there is a limit to energy saving.

特開2006−000826号公報JP 2006000826 A

本発明は上記問題点に鑑みて発明したものであって、放電電極に結露水を生成するための十分な冷却能力を保持したうえで、装置全体の小型化や省エネルギー化を実現することができる静電霧化装置を提供することを、課題とする。   The present invention has been invented in view of the above problems, and it is possible to achieve downsizing and energy saving of the entire apparatus while maintaining sufficient cooling capacity for generating condensed water on the discharge electrode. It is an object to provide an electrostatic atomizer.

上記課題を解決するために本発明を、放電電極1を冷却して生成した結露水に電圧を印加することで帯電微粒子水を生成する静電霧化装置において、放電電極1を冷却するために備えた一対(P型とN型)の熱電素子部2の吸熱側同士を、該放電電極1を介して電気接続させたものとする。   In order to solve the above-mentioned problems, the present invention provides an electrostatic atomizer that generates charged fine particle water by applying a voltage to condensed water generated by cooling the discharge electrode 1, in order to cool the discharge electrode 1. It is assumed that the heat absorption sides of a pair (P type and N type) of thermoelectric element units 2 provided are electrically connected via the discharge electrode 1.

このように、冷却対象である放電電極1を介して、該放電電極1を冷却するための一対の熱電素子部2間の通電を行うようにしたことで、熱電素子部2と放電電極1との間に多数の界面が介在することがなくなり、放電電極1の冷却効率が向上する。そのため、熱電素子部2を構成するために多数の熱電素子23を配置する必要がなくなり、装置全体の小型化や、省エネルギー化が実現される。   As described above, the energization between the pair of thermoelectric element portions 2 for cooling the discharge electrode 1 is performed via the discharge electrode 1 to be cooled, so that the thermoelectric element portion 2 and the discharge electrode 1 Many interfaces are not interposed between them, and the cooling efficiency of the discharge electrode 1 is improved. Therefore, it is not necessary to arrange a large number of thermoelectric elements 23 in order to configure the thermoelectric element section 2, and the entire apparatus can be reduced in size and energy can be saved.

本発明の静電霧化装置においては、上記熱電素子部2の放熱側に、導電性材料から成る放熱用通電部材14を接続させ、該放熱用通電部材14を介して熱電素子部2に通電を行うことが好ましい。このように、放熱用通電部材14によって放熱と通電をともに行う構成とすることで、装置全体をさらに小型化することができる。   In the electrostatic atomizer of the present invention, a heat dissipation energization member 14 made of a conductive material is connected to the heat dissipation side of the thermoelectric element portion 2, and the thermoelectric element portion 2 is energized via the heat dissipation energization member 14. It is preferable to carry out. In this way, the entire apparatus can be further reduced in size by adopting a configuration in which both heat dissipation and energization are performed by the heat dissipation energization member 14.

上記放熱用通電部材14は、熱電素子部2の通電方向を長手方向とする部材であることが好ましい。このようにすることで、上記放熱用通電部材14を通じて、冷却対象である放電電極1から極力離れた側にまで、熱電素子部2から放出される熱を伝達することができる。したがって、放電電極1の冷却能力を向上させることができる。しかも、放熱用通電部材14自体はコンパクトに配置可能である。また、放熱用通電部材14、熱電素子部2、放電電極1と一連に続く導電体が全体に細長い棒状に形成され、その先端に放電電極1が位置することとなる。したがって、先端の放電電極1における電界集中が安定し、ひいては帯電微粒子水を安定生成することが可能となる。   The heat dissipation energizing member 14 is preferably a member whose longitudinal direction is the energizing direction of the thermoelectric element portion 2. By doing in this way, the heat | fever discharge | released from the thermoelectric element part 2 can be transmitted to the side far away from the discharge electrode 1 which is a cooling object as much as possible through the said heat dissipation energization member 14. FIG. Therefore, the cooling capacity of the discharge electrode 1 can be improved. Moreover, the heat dissipation energizing member 14 itself can be arranged in a compact manner. In addition, the heat-dissipating energizing member 14, the thermoelectric element portion 2, the discharge electrode 1, and a series of conductors are formed in a slender bar shape as a whole, and the discharge electrode 1 is positioned at the tip thereof. Therefore, electric field concentration in the discharge electrode 1 at the tip is stabilized, and as a result, charged fine particle water can be stably generated.

さらに、上記放熱用通電部材14は、熱電素子部2との接合箇所から離れるほど大径となるように形成した部材であることが好ましい。このようにすることで、放熱用通電部材14、熱電素子部2、放電電極1と一連に続く導電体全体の外形が、放電電極1の位置する先端側を細くした形となる。そのため、先端の放電電極1における電界集中がさらに安定する。加えて、放熱用通電部材14の大径側において放熱面積を増大させ、放熱効率を向上させることにもなる。   Furthermore, the heat dissipation energizing member 14 is preferably a member formed to have a larger diameter as the distance from the junction with the thermoelectric element portion 2 increases. By doing in this way, the external shape of the heat conduction energizing member 14, the thermoelectric element portion 2, the discharge electrode 1 and the entire conductor following the series becomes a shape in which the tip side where the discharge electrode 1 is located is made narrower. Therefore, the electric field concentration in the discharge electrode 1 at the tip is further stabilized. In addition, the heat dissipation area is increased on the large-diameter side of the heat dissipation energizing member 14 to improve the heat dissipation efficiency.

また、熱電素子部2が放電電極1に接合する接合箇所と、熱電素子部2が放熱用通電部材14に接合する接合箇所とを、防水性を有する封止部25によって封止してあることも好ましい。このようにすることで、熱電素子部2の各接合箇所で腐食が生じることを防止し、長寿命化を図ることができる。また、封止部25によって熱電素子部2を補強することもできる。   Further, the joint portion where the thermoelectric element portion 2 is joined to the discharge electrode 1 and the joint portion where the thermoelectric element portion 2 is joined to the heat radiation energizing member 14 are sealed by a sealing portion 25 having waterproofness. Is also preferable. By doing in this way, it can prevent that corrosion arises in each joining location of the thermoelectric element part 2, and can achieve lifetime improvement. Further, the thermoelectric element portion 2 can be reinforced by the sealing portion 25.

上記封止部25は、熱電素子部2が放電電極1に接合する接合箇所と、熱電素子部2が放熱用通電部材14に接合する接合箇所とを、別々に封止するように分離して形成したものであることが好ましい。このようにすることで、熱電素子部2の放熱側と吸熱側の間で、封止部25を通じて熱が移動することを防止し、冷却能力を確保することができる。   The sealing portion 25 is separated so that the joint portion where the thermoelectric element portion 2 is joined to the discharge electrode 1 and the joint portion where the thermoelectric element portion 2 is joined to the heat dissipation energizing member 14 are sealed separately. It is preferable that it is formed. By doing in this way, it can prevent that a heat | fever moves through the sealing part 25 between the thermal radiation side and the heat absorption side of the thermoelectric element part 2, and can ensure a cooling capability.

また、上記封止部25は、放電電極1側から熱電素子部2を介して放熱用通電部材14側に至るまでの範囲を被覆するように形成したコーティング層28であることも好ましい。このようにすることで、コーティング層28によって熱電素子部2の強度を確保することができる。また、コーティング層28は薄く形成できるので、該コーティング層28を通じての熱移動を抑制し、冷却能力を確保することができる。   The sealing portion 25 is preferably a coating layer 28 formed so as to cover a range from the discharge electrode 1 side to the heat dissipation energization member 14 side via the thermoelectric element portion 2. By doing so, the strength of the thermoelectric element portion 2 can be ensured by the coating layer 28. In addition, since the coating layer 28 can be formed thin, heat transfer through the coating layer 28 can be suppressed, and cooling capacity can be ensured.

ところで、本発明の静電霧化装置においては、上記放電電極1と対向する位置に対向電極11を備えていることが好ましい。このようにすることで、放電電極1での静電霧化現象を安定させ、該放電電極1から帯電微粒子水を安定生成することができる。   By the way, in the electrostatic atomizer of this invention, it is preferable to provide the counter electrode 11 in the position facing the said discharge electrode 1. FIG. By doing so, the electrostatic atomization phenomenon in the discharge electrode 1 can be stabilized, and the charged fine particle water can be stably generated from the discharge electrode 1.

このとき、上記対向電極11を支持する筐体10を備え、該筐体10内に上記放電電極1を収容するこが好ましい。このようにすることで、放電特性に敏感な影響を与える両電極1,11間の位置関係を安定させることができる。加えて、放電電極1での静電霧化現象を、筐体10内で生じさせることができる。したがって、外部環境が及ぼす影響を抑制したうえで、帯電微粒子水を安定生成することができる。   At this time, it is preferable that a housing 10 for supporting the counter electrode 11 is provided and the discharge electrode 1 is accommodated in the housing 10. By doing so, it is possible to stabilize the positional relationship between the electrodes 1 and 11 that have a sensitive influence on the discharge characteristics. In addition, an electrostatic atomization phenomenon at the discharge electrode 1 can be generated in the housing 10. Therefore, the charged fine particle water can be stably generated while suppressing the influence of the external environment.

上記筐体10は、熱伝導性の固着体を介して、放熱用通電部材14を所定位置に固定するものであることが好ましい。このようにすることで、放熱用通電部材14から固着体を通じて筐体10側にも放熱を行い、全体の放熱効率を向上させることができる。   The casing 10 preferably fixes the heat-dissipating current-carrying member 14 at a predetermined position via a thermally conductive fixing body. By doing in this way, heat can also be radiated from the heat radiating energizing member 14 to the housing 10 through the fixed body, and the overall heat radiation efficiency can be improved.

また、上記筐体10は、放熱用通電部材14を挿通するための貫通孔17を、周囲よりも厚みを大きくした肉厚部分30に形成したものであることが好ましい。このようにすることで、放熱用通電部材14の姿勢を安定させるとともに、接触面積の増加によって放熱用通電部材14から筐体10への放熱量を増大させることができる。   Moreover, it is preferable that the said housing | casing 10 forms the through-hole 17 for inserting the heat radiating electricity supply member 14 in the thick part 30 made thicker than the circumference | surroundings. By doing so, it is possible to stabilize the posture of the heat dissipation energizing member 14 and to increase the amount of heat released from the heat dissipation energizing member 14 to the housing 10 by increasing the contact area.

また、上記筐体10は、放熱用通電部材14を囲む部分に、外気導入用の通風窓31を有するものであることが好ましい。このようにすることで、自然対流や強制対流によって通風窓31から筐体10内に外気を導入し、放熱用通電部材14の放熱効率を向上させることができる。   Moreover, it is preferable that the said housing | casing 10 has the ventilation window 31 for external air introduction | transduction in the part surrounding the heat dissipation energization member 14. FIG. By doing in this way, external air can be introduce | transduced in the housing | casing 10 from the ventilation window 31 by natural convection or a forced convection, and the thermal radiation efficiency of the heat radiating current supply member 14 can be improved.

また、上記筐体10は、放電電極1が収容される静電霧化空間33と放熱用通電部材14が収容される放熱空間34とに内部空間を仕切る仕切り壁32を有するものであることが好ましい。このようにすることで、放熱空間34で暖められた空気が静電霧化空間33に流れることを防止し、冷却効率を向上させることができる。   Further, the housing 10 has a partition wall 32 that partitions an internal space into an electrostatic atomization space 33 in which the discharge electrode 1 is accommodated and a heat radiation space 34 in which the heat radiation energization member 14 is accommodated. preferable. By doing in this way, it can prevent that the air warmed in the thermal radiation space 34 flows into the electrostatic atomization space 33, and can improve cooling efficiency.

請求項1に係る発明は、放電電極に結露水を生成するための十分な冷却能力を保持したうえで、装置全体を小型化および省エネルギー化することができるという効果を奏する。   The invention according to claim 1 has an effect that the entire apparatus can be reduced in size and energy can be saved while maintaining sufficient cooling capacity for generating condensed water on the discharge electrode.

また請求項2に係る発明は、請求項1に係る発明の効果に加えて、一部材によって放熱と通電を行うコンパクトな構造によって、放熱効率を向上させるという効果を奏する。   In addition to the effect of the invention according to claim 1, the invention according to claim 2 has the effect of improving the heat dissipation efficiency by a compact structure that performs heat dissipation and energization by one member.

また請求項3に係る発明は、請求項2に係る発明の効果に加えて、放電電極の冷却能力を向上させるとともに、該放電電極での電界集中を安定させることができ、しかも装置全体をコンパクトに形成できるという効果を奏する。   In addition to the effect of the invention according to claim 2, the invention according to claim 3 can improve the cooling capacity of the discharge electrode, stabilize the electric field concentration at the discharge electrode, and make the entire apparatus compact. There is an effect that it can be formed.

また請求項4に係る発明は、請求項3に係る発明の効果に加えて、放電電極の冷却能力をさらに向上させるとともに、該放電電極への電界集中をさらに安定させるという効果を奏する。   In addition to the effect of the invention according to claim 3, the invention according to claim 4 has the effect of further improving the cooling capacity of the discharge electrode and further stabilizing the electric field concentration on the discharge electrode.

また請求項5に係る発明は、請求項2〜4のいずれか一項に係る発明の効果に加えて、熱電素子部の接合箇所での腐食を防止するとともに該熱電素子部の補強を行い、装置の長寿命化を図るという効果を奏する。   In addition to the effect of the invention according to any one of claims 2 to 4, the invention according to claim 5 prevents corrosion at the joint portion of the thermoelectric element part and reinforces the thermoelectric element part, There is an effect of extending the life of the apparatus.

また請求項6に係る発明は、請求項5に係る発明の効果に加えて、封止部を通じての熱移動を防止して冷却能力を確保するという効果を奏する。   In addition to the effect of the invention according to claim 5, the invention according to claim 6 has the effect of preventing the heat transfer through the sealing portion and ensuring the cooling capacity.

また請求項7に係る発明は、請求項5に係る発明の効果に加えて、熱電素子部の強度を確保することができ、しかも、冷却能力は確保するという効果を奏する。   In addition to the effect of the invention according to claim 5, the invention according to claim 7 has the effect of ensuring the strength of the thermoelectric element portion and ensuring the cooling capacity.

また請求項8に係る発明は、請求項1〜7のいずれか一項に係る発明の効果に加えて、放電電極から帯電微粒子水を安定生成するという効果を奏する。   In addition to the effect of the invention according to any one of claims 1 to 7, the invention according to claim 8 has an effect of stably generating charged fine particle water from the discharge electrode.

また請求項9に係る発明は、請求項8に係る発明の効果に加えて、帯電微粒子水をさらに安定生成するという効果を奏する。   In addition to the effect of the invention according to claim 8, the invention according to claim 9 has an effect of further stably generating charged fine particle water.

また請求項10に係る発明は、請求項9に係る発明の効果に加えて、放熱用通電部材から筐体側への放熱を効率的に行い、全体の放熱効率を向上させるという効果を奏する。   In addition to the effect of the invention according to claim 9, the invention according to claim 10 has the effect of efficiently radiating heat from the heat-dissipating energizing member to the housing side and improving the overall heat radiation efficiency.

また請求項11に係る発明は、請求項9又は10に係る発明の効果に加えて、放熱用通電部材の姿勢を安定させるとともに、放熱用通電部材から筐体への放熱量を増大させ、全体の放熱効率を向上させるという効果を奏する。   In addition to the effect of the invention according to claim 9 or 10, the invention according to claim 11 stabilizes the posture of the heat-dissipating current-carrying member and increases the heat radiation amount from the heat-radiating current-carrying member to the housing. There is an effect of improving the heat radiation efficiency.

また請求項12に係る発明は、請求項9〜11のいずれか一項に係る発明の効果に加えて、筐体内に外気を導入し、放熱用通電部材の放熱効率を向上させるという効果を奏する。   In addition to the effect of the invention according to any one of claims 9 to 11, the invention according to claim 12 has the effect of introducing outside air into the housing and improving the heat dissipation efficiency of the heat dissipation energizing member. .

また請求項13に係る発明は、請求項9〜12のいずれか一項に係る発明の効果に加えて、放熱空間側の暖められた空気が静電霧化空間側に流れることを防止し、冷却効率を向上させるという効果を奏する。   In addition to the effect of the invention according to any one of claims 9 to 12, the invention according to claim 13 prevents warmed air on the heat dissipation space side from flowing to the electrostatic atomization space side, There is an effect of improving the cooling efficiency.

本発明の実施形態における第1例の静電霧化装置の基本構成を示す説明図である。It is explanatory drawing which shows the basic composition of the electrostatic atomizer of the 1st example in embodiment of this invention. 本発明の実施形態における第2例の静電霧化装置の基本構成を示す説明図である。It is explanatory drawing which shows the basic composition of the electrostatic atomizer of the 2nd example in embodiment of this invention. 本発明の実施形態における第3例の静電霧化装置の基本構成を示す説明図である。It is explanatory drawing which shows the basic composition of the electrostatic atomizer of the 3rd example in embodiment of this invention. 本発明の実施形態における第4例の静電霧化装置の基本構成を示す説明図である。It is explanatory drawing which shows the basic composition of the electrostatic atomizer of the 4th example in embodiment of this invention. 本発明の実施形態における第5例の静電霧化装置の基本構成を示す説明図である。It is explanatory drawing which shows the basic composition of the electrostatic atomizer of the 5th example in embodiment of this invention. 本発明の実施形態における第6例の静電霧化装置の基本構成を示す説明図である。It is explanatory drawing which shows the basic composition of the electrostatic atomizer of the 6th example in embodiment of this invention. (a)〜(e)は、放電電極の変形例を示す説明図である。(A)-(e) is explanatory drawing which shows the modification of a discharge electrode. (a)〜(f)は、放熱用通電部材の変形例を示す説明図である。(A)-(f) is explanatory drawing which shows the modification of the electricity supply member for thermal radiation. (a)、(b)は、放熱用通電部材の他の種変形例を示す説明図である。(A), (b) is explanatory drawing which shows the other seed | species modification of the electricity supply member for thermal radiation. (a)〜(d)は、封止部を設けた場合の変形例を示す説明図である。(A)-(d) is explanatory drawing which shows the modification at the time of providing a sealing part. (a)、(b)は、筐体に肉厚部分を設けた変形例を示す説明図である。(A), (b) is explanatory drawing which shows the modification which provided the thick part in the housing | casing. (a)、(b)は、筐体に通風窓を設けた変形例を示す説明図である。(A), (b) is explanatory drawing which shows the modification which provided the ventilation window in the housing | casing. 筐体内に静電霧化ブロックを二つ配置した変形例を示す説明図である。It is explanatory drawing which shows the modification which has arrange | positioned two electrostatic atomization blocks in a housing | casing. (a)〜(c)は、熱電筐体内に静電霧化ブロックを二つ配置した他の変形例を示す説明図である。(A)-(c) is explanatory drawing which shows the other modification which has arrange | positioned two electrostatic atomization blocks in the thermoelectric housing | casing. (a)〜(c)は、熱電素子部を二つの熱電素子で構成した変形例を示す説明図である。(A)-(c) is explanatory drawing which shows the modification which comprised the thermoelectric element part with the two thermoelectric elements. (a)〜(c)は、熱電素子部を二つの熱電素子で構成した他の変形例を示す説明図である。(A)-(c) is explanatory drawing which shows the other modification which comprised the thermoelectric element part with the two thermoelectric elements. 従来の静電霧化装置を示す説明図である。It is explanatory drawing which shows the conventional electrostatic atomizer.

本発明を添付図面に示す実施形態に基づいて説明する。図1〜図6には、本発明の実施形態における第1例〜第6例の静電霧化装置の基本構成をそれぞれ示している。図7〜図14には、静電霧化装置を構成する各部材の変形例をそれぞれ示している。   The present invention will be described based on embodiments shown in the accompanying drawings. 1 to 6 show basic configurations of electrostatic atomizers of first to sixth examples in the embodiment of the present invention, respectively. In FIGS. 7-14, the modification of each member which comprises an electrostatic atomizer is each shown.

以下においては、第1例〜第6例の静電霧化装置の基本構成についてまず詳述する。   In the following, the basic configuration of the electrostatic atomizers of the first to sixth examples will be described in detail.

図1に示すように、第1例の静電霧化装置は、熱電素子23から成る熱電素子部2をP型とN型で一対備え、両熱電素子部2の吸熱側に、放電電極1を機械的に且つ電気的に直接接合させたものである。熱電素子23としては、BiTe系のペルチェ素子を用いる。ここでは、一つのP型の熱電素子23によってP型の熱電素子部2を形成し、同じく一つのN型の熱電素子23によってN型の熱電素子部2を形成している。   As shown in FIG. 1, the electrostatic atomizer of the first example includes a pair of P-type and N-type thermoelectric element portions 2 each including a thermoelectric element 23, and the discharge electrode 1 is disposed on the heat absorption side of both thermoelectric element portions 2. Are mechanically and electrically directly joined. As the thermoelectric element 23, a BiTe Peltier element is used. Here, the P-type thermoelectric element portion 2 is formed by one P-type thermoelectric element 23, and the N-type thermoelectric element portion 2 is similarly formed by one N-type thermoelectric element 23.

なお、複数のP型の熱電素子23によってP型の熱電素子部2を形成し、複数のN型の熱電素子23によってN型の熱電素子部2を形成してもよい(図15に基づいて後述する変形例を参照)。   The P-type thermoelectric element portion 2 may be formed by a plurality of P-type thermoelectric elements 23, and the N-type thermoelectric element portion 2 may be formed by a plurality of N-type thermoelectric elements 23 (based on FIG. 15). (Refer to a modification described later).

放電電極1は、平板状の基台部1aの中央部分から放電部1bを突設した形状であり、真鍮、アルミニウム、銅、タングステン、チタン等の金属から成る。熱電素子部2は、放電電極1の基台部1aにその端部を半田接合させてある。放電電極1の材質は金属に限定されず、電気伝導性の高い材質であれば、導電性の樹脂、カーボン等の他の材質を用いてもよい。また、熱電素子部2との半田接合を良好に行うため、放電電極1の表面にニッケルめっきを施してあってもよいし、耐食性を向上させるために金や白金のめっきを施してあってもよい。   The discharge electrode 1 has a shape in which a discharge portion 1b protrudes from a central portion of a flat base portion 1a, and is made of a metal such as brass, aluminum, copper, tungsten, or titanium. The end portion of the thermoelectric element portion 2 is soldered to the base portion 1 a of the discharge electrode 1. The material of the discharge electrode 1 is not limited to metal, and other materials such as conductive resin and carbon may be used as long as the material has high electrical conductivity. Further, the surface of the discharge electrode 1 may be plated with nickel in order to achieve good solder bonding with the thermoelectric element portion 2, or may be plated with gold or platinum in order to improve corrosion resistance. Good.

P型とN型で対を成す各熱電素子部2の放熱側の端部は、絶縁板3の片面側に形成してある端子4にそれぞれ接合させている。該絶縁板3のもう片面側には、フィン状の放熱部材5を接合させている。   The end portions on the heat radiation side of the thermoelectric element portions 2 that form a pair of P type and N type are respectively joined to terminals 4 formed on one side of the insulating plate 3. A fin-like heat radiating member 5 is joined to the other side of the insulating plate 3.

両端子4にはそれぞれリード線9の一端側を接合させており、該リード線9の他端側同士を、通電路6によって電気接続させている。通電路6には、回路全体に高電圧を印加するための高電圧印加部7を接続させている。また、通電路6中には、両熱電素子部2間にオフセット電圧を印加するためのオフセット電圧印加部として、直流電源8を介在させている。リード線9は、放熱性の観点から、できるだけ太いものや表面積の大きなものを用いることが好ましい。   One end side of the lead wire 9 is joined to each of the terminals 4, and the other end side of the lead wire 9 is electrically connected by the energizing path 6. A high voltage application unit 7 for applying a high voltage to the entire circuit is connected to the current path 6. In addition, a direct current power source 8 is interposed in the energization path 6 as an offset voltage application unit for applying an offset voltage between the two thermoelectric element units 2. The lead wire 9 is preferably as thick as possible or as large as possible in terms of heat dissipation.

上記構成から成る第1例の静電霧化装置において、一対の熱電素子部2の吸熱側同士は放電電極1を介して電気接続される。また、一対の熱電素子部2の放熱側同士は、端子4、リード線9、通電路6を介して電気接続される。   In the electrostatic atomizer of the first example configured as described above, the heat absorption sides of the pair of thermoelectric element portions 2 are electrically connected via the discharge electrode 1. Further, the heat radiation sides of the pair of thermoelectric element portions 2 are electrically connected via the terminal 4, the lead wire 9, and the energization path 6.

帯電微粒子水を発生させるには、高電圧印加部7によって回路全体にマイナスの高電圧を印加するとともに、直流電源8によって両熱電素子部2間に電流を流す。両熱電素子部2間においては、N型からP型にむけて電流が流れ、放電電極1と接合される側の吸熱により該放電電極1を冷却して結露水を生成する。各熱電素子部2の絶縁板3と接合される側の熱は、放熱部材5を介して放熱される。そして、高電圧印加部7により放電電極1に印加した高電圧が、放電電極1表面の結露水に静電霧化現象を生じさせ、ナノメータサイズの粒径の帯電微粒子水を大量に生成する。   In order to generate charged fine particle water, a high negative voltage is applied to the entire circuit by the high voltage application unit 7 and a current is passed between the thermoelectric element units 2 by the DC power source 8. A current flows from the N-type to the P-type between the two thermoelectric element portions 2, and the discharge electrode 1 is cooled by heat absorption on the side joined to the discharge electrode 1 to generate dew condensation water. The heat on the side of each thermoelectric element portion 2 joined to the insulating plate 3 is radiated through the heat radiating member 5. Then, the high voltage applied to the discharge electrode 1 by the high voltage application unit 7 causes an electrostatic atomization phenomenon in the condensed water on the surface of the discharge electrode 1 and generates a large amount of charged fine particle water having a nanometer size particle diameter.

第1例の静電霧化装置においては、放電電極1を冷却するために備えた一対の熱電素子部2の吸熱側同士を、該放電電極1を介して電気接続させてある。つまり、熱電素子部2と放電電極1とは、図17に示す回路板50や冷却板70等の部材を介在させることなく、直接的に接合させた構造である。したがって、熱電素子部2を一対のみ配置したコンパクト且つ省エネルギーな構造であっても、高い冷却効率で放電電極1を冷却し、結露水を生成することができる。   In the electrostatic atomizer of the first example, the heat absorption sides of the pair of thermoelectric element portions 2 provided for cooling the discharge electrode 1 are electrically connected via the discharge electrode 1. That is, the thermoelectric element portion 2 and the discharge electrode 1 have a structure in which they are directly joined without interposing members such as the circuit board 50 and the cooling plate 70 shown in FIG. Therefore, even with a compact and energy-saving structure in which only one pair of thermoelectric element portions 2 are arranged, the discharge electrode 1 can be cooled with high cooling efficiency and condensed water can be generated.

また、放電電極1と熱電素子部2との間には絶縁体が介在しないので、水が付着してもマイグレーションが生じることは防止される。ここでのマイグレーションとは、電流、電圧の存在下で、絶縁体の水の吸着に伴って金属材料が絶縁体の内部あるいは表面上を移動する現象のことである。   In addition, since an insulator is not interposed between the discharge electrode 1 and the thermoelectric element portion 2, migration is prevented from occurring even if water adheres. Migration here refers to a phenomenon in which a metal material moves inside or on the surface of an insulator as water is adsorbed in the presence of current and voltage.

次に、図2に基づいて第2例の静電霧化装置を説明する。なお、第1例と同様の構成については図中に同一符号を付して詳しい説明を省略し、第2例特有の構成についてのみ以下に詳述する。   Next, the electrostatic atomizer of the second example will be described based on FIG. In addition, about the structure similar to a 1st example, the same code | symbol is attached | subjected in a figure, detailed description is abbreviate | omitted, and only the structure peculiar to a 2nd example is explained in full detail below.

第2例の静電霧化装置においては、放熱部材5に筒状の筐体10を接合させて備えている。筐体10は、絶縁性材料を用いて形成したものであり、その内部空間に放電電極1を収容するとともに、該放電電極1と対向する位置に対向電極11を支持している。対向電極11は、中央に放出孔12を貫通形成したリング状のものであり、接地させて設けている。   In the electrostatic atomizer of the second example, a cylindrical housing 10 is joined to the heat radiating member 5. The casing 10 is formed using an insulating material, and accommodates the discharge electrode 1 in the internal space and supports the counter electrode 11 at a position facing the discharge electrode 1. The counter electrode 11 has a ring shape with a discharge hole 12 formed in the center, and is provided to be grounded.

筐体10の絶縁性材料としては、PBT、PPS、ポリカーボネート、液晶ポリマー、ABS等の樹脂が好適に用いられる。放熱部材5の放熱性を向上させたい場合には、筐体10の樹脂中に熱伝導性フィラーを混入させることも好ましい。なお、筐体10の材質として、SUS、アルミニウム、アルミニウム合金、銅、銅合金等の金属を用いてもよい。この場合、筐体10と対向電極11との間には、絶縁材料(図示せず)を介在させて備える。   As the insulating material of the housing 10, a resin such as PBT, PPS, polycarbonate, liquid crystal polymer, ABS or the like is preferably used. In order to improve the heat dissipation of the heat radiating member 5, it is also preferable to mix a thermally conductive filler in the resin of the housing 10. In addition, as a material of the housing | casing 10, you may use metals, such as SUS, aluminum, an aluminum alloy, copper, and a copper alloy. In this case, an insulating material (not shown) is interposed between the housing 10 and the counter electrode 11.

対向電極11の材質としては、SUS、銅、白金等の金属や、導電性の樹脂が好適に用いられる。また、導電性材料を用いて樹脂表面に電極をパターニングすることで、対向電極11を形成してもよいし、対向電極11の耐食性を向上させるために、金、白金等の耐食性が高い材料をコーティングさせてもよい。   As the material of the counter electrode 11, a metal such as SUS, copper, or platinum, or a conductive resin is preferably used. Alternatively, the counter electrode 11 may be formed by patterning an electrode on the resin surface using a conductive material, or a material having high corrosion resistance such as gold or platinum may be used to improve the corrosion resistance of the counter electrode 11. It may be coated.

図示の対向電極11は、平板の中央に放出孔12を開口させた形状であるが、静電霧化現象を安定的に発生させることのできる形状であれば、他の形状であってもよい。例えば、放電電極1を囲むドーム型に対向電極11を形成した場合には、放電電極1に対して電界をさらに集中させやすくなる。   The illustrated counter electrode 11 has a shape in which a discharge hole 12 is opened at the center of a flat plate, but may have another shape as long as it can stably generate an electrostatic atomization phenomenon. . For example, when the counter electrode 11 is formed in a dome shape surrounding the discharge electrode 1, the electric field is more easily concentrated on the discharge electrode 1.

筐体10と対向電極11との接合は、ネジや接着剤を用いることが好適である。筐体10の材質が樹脂である場合には、筐体10と対向電極11との接合をヒートシールにより行ってもよい。   It is preferable to use a screw or an adhesive for joining the housing 10 and the counter electrode 11. When the material of the housing 10 is resin, the housing 10 and the counter electrode 11 may be joined by heat sealing.

上記構成から成る第2例の静電霧化装置においては、筐体10を介して、放電電極1に対する一定の位置関係で対向電極11を配置してあることで、外部環境に影響されることなく、放電電極1において静電霧化現象を安定的に発生させることができる。また、放熱部材5側での放熱が筐体10を介しても行われるので、放電電極1の冷却効率も向上する。   In the electrostatic atomizer of the second example having the above-described configuration, the counter electrode 11 is arranged in a fixed positional relationship with respect to the discharge electrode 1 via the housing 10, so that it is affected by the external environment. In addition, the electrostatic atomization phenomenon can be stably generated in the discharge electrode 1. Moreover, since the heat radiation on the heat radiating member 5 side is also performed through the housing 10, the cooling efficiency of the discharge electrode 1 is also improved.

次に、図3に基づいて第3例の静電霧化装置を説明する。なお、第1例や第2例と同様の構成については図中に同一符号を付して詳しい説明を省略し、第3例特有の構成についてのみ以下に詳述する。   Next, the electrostatic atomizer of the third example will be described based on FIG. In addition, about the structure similar to a 1st example and a 2nd example, the same code | symbol is attached | subjected in a figure, detailed description is abbreviate | omitted, and only the structure peculiar to a 3rd example is explained in full detail below.

第3例の静電霧化装置においては、筐体10が支持する対向電極11を第2例のように接地させるのではなく、該対向電極11側に高電圧印加部7を接続させ、プラスの高電圧を印加するように設けている。そして、一対の熱電素子部2に通電を行う回路側を接地させて設け、回路中に設けた直流電源8によって、N型の熱電素子部2からP型の熱電素子部2にむけて電流を流すようにしている。   In the electrostatic atomizer of the third example, the counter electrode 11 supported by the housing 10 is not grounded as in the second example, but the high voltage applying unit 7 is connected to the counter electrode 11 side, and the plus The high voltage is applied. The pair of thermoelectric element units 2 is provided with the circuit side to be energized grounded, and current is supplied from the N-type thermoelectric element unit 2 to the P-type thermoelectric element unit 2 by a DC power supply 8 provided in the circuit. I try to make it flow.

一対の熱電素子部2間に電流が流れることで放電電極1は冷却されて表面に結露水を生成し、この結露水に対して、対向電極11との間で高電圧が印加される。これにより、放電電極1表面の結露水には静電霧化現象が生じ、ナノメータサイズの粒径の帯電微粒子水が大量に生成される。   When a current flows between the pair of thermoelectric element portions 2, the discharge electrode 1 is cooled to generate condensed water on the surface, and a high voltage is applied between the counter electrode 11 and the condensed water. As a result, electrostatic atomization occurs in the condensed water on the surface of the discharge electrode 1, and a large amount of charged fine particle water having a particle size of nanometer size is generated.

次に、図4に基づいて第4例の静電霧化装置を説明する。なお、第1例と同様の構成については図中に同一符号を付して詳しい説明を省略し、第4例特有の構成についてのみ以下に詳述する。   Next, the electrostatic atomizer of the fourth example will be described based on FIG. In addition, about the structure similar to a 1st example, the same code | symbol is attached | subjected in a figure, detailed description is abbreviate | omitted, and only the structure peculiar to a 4th example is explained in full detail below.

第4例の静電霧化装置においては、一対の熱電素子部2のそれぞれの放熱側に、導電性および熱伝導性の材料(真鍮、アルミニウム、銅等)から成る放熱用通電部材14を接続させている。放熱用通電部材14は、熱電素子部2の通電方向(図中の上下方向)を長手方向とした長尺の部材であって、熱電素子部2を成す熱電素子23に対して一対一で接続させている。   In the electrostatic atomizer of the fourth example, a heat radiating energizing member 14 made of a conductive and heat conductive material (brass, aluminum, copper, etc.) is connected to the heat radiating side of each of the pair of thermoelectric element portions 2. I am letting. The heat dissipating energizing member 14 is a long member whose longitudinal direction is the energizing direction (vertical direction in the drawing) of the thermoelectric element portion 2, and is connected to the thermoelectric element 23 constituting the thermoelectric element portion 1 on a one-to-one basis. I am letting.

図示例では、放熱用通電部材14は棒状部材となっているが、熱電素子部2の通電方向を長手方向とするものであれば、板状、スパイラル状、蛇腹(コルゲート)状等の他の形状であってもよい。また、放熱用通電部材14を棒状部材とする場合において、その断面形状は多様なものが適用可能であり、丸棒状、角棒状等の形態が好適に用いられる。   In the illustrated example, the heat-dissipating energizing member 14 is a rod-shaped member. However, as long as the energizing direction of the thermoelectric element portion 2 is the longitudinal direction, other shapes such as a plate shape, a spiral shape, and a corrugated shape are used. It may be a shape. Further, when the heat dissipating energizing member 14 is a rod-shaped member, various cross-sectional shapes are applicable, and a round bar shape, a square bar shape, or the like is preferably used.

棒状の放熱用通電部材14は、熱電素子部2との接合箇所から離れるほど大径となるように形成してある。図示例では、熱電素子部2に接合される側の小径部14aと、リード線9に接合される側の大径部14bとの間に、小径部14aから大径部14bにむけて徐々に径を広げるテーパ部14cを設けることで、放熱用通電部材14を形成している。   The rod-shaped heat-dissipating energizing member 14 is formed so as to have a larger diameter as the distance from the junction with the thermoelectric element portion 2 increases. In the illustrated example, the small diameter portion 14a gradually joined from the small diameter portion 14a to the large diameter portion 14b between the small diameter portion 14a on the side joined to the thermoelectric element portion 2 and the large diameter portion 14b on the side joined to the lead wire 9. By providing the taper part 14c which expands the diameter, the heat radiating energizing member 14 is formed.

隣接する一対の放熱用通電部材14間には、両者の絶縁性を確保する保持部材15を配している。保持部材15は、放熱用通電部材14を挿通させるための貫通孔16を一対有するものであり、絶縁性材料から成る。両貫通孔16は、所定距離を隔てたうえで並行に形成してある。   A holding member 15 is provided between a pair of adjacent heat-dissipating energizing members 14 to ensure insulation between them. The holding member 15 has a pair of through holes 16 through which the heat-dissipating current-carrying member 14 is inserted, and is made of an insulating material. Both through-holes 16 are formed in parallel with a predetermined distance therebetween.

放熱用通電部材14は、その大径部14bを貫通孔16内に挿通した状態で、保持部材15に固定される。上記固定は、放熱用通電部材14の貫通孔16内への圧入固定であってもよいし、放熱用通電部材14を接着剤(図示せず)により貫通孔16内に固定するものであってもよい。固定用の接着剤として熱伝導性フィラーを混入させたものを用いた場合には、放熱用通電部材14の放熱性を向上させることができる。つまり、上記接着剤のような熱伝導性の固着体を介して放熱用通電部材14を保持部材15に固定することで、放熱用通電部材14の放熱性、ひいては熱電素子部2による放電電極1の冷却性を向上させることができる。   The heat dissipating energizing member 14 is fixed to the holding member 15 in a state where the large diameter portion 14 b is inserted into the through hole 16. The fixing may be press-fitting and fixing the heat-dissipating energizing member 14 into the through-hole 16 or fixing the heat-dissipating energizing member 14 in the through-hole 16 with an adhesive (not shown). Also good. In the case where an adhesive mixed with a heat conductive filler is used as the fixing adhesive, the heat dissipation of the heat dissipation energizing member 14 can be improved. That is, by fixing the heat-dissipating current-carrying member 14 to the holding member 15 via a thermally conductive fixing body such as the adhesive, the heat-dissipating property of the heat-dissipating current-carrying member 14 and thus the discharge electrode 1 by the thermoelectric element unit 2 The cooling property can be improved.

保持部材15の絶縁性材料としては、PBT、PPS、ポリカーボネート、液晶ポリマー、ABS等の樹脂が好適に用いられる。放熱用通電部材14の放熱性をさらに向上させたい場合には、保持部材15の樹脂中に熱伝導性フィラーを混入させることも好ましい。なお、保持部材15の材質として、SUS、アルミニウム、アルミニウム合金、銅、銅合金等の金属を用いてもよい。この場合、保持部材15と放熱用通電部材14との間には、絶縁材料(図示せず)を介在させて備える。   As the insulating material of the holding member 15, a resin such as PBT, PPS, polycarbonate, liquid crystal polymer, or ABS is preferably used. In order to further improve the heat dissipation of the heat dissipation energization member 14, it is also preferable to mix a heat conductive filler in the resin of the holding member 15. In addition, as a material of the holding member 15, a metal such as SUS, aluminum, an aluminum alloy, copper, or a copper alloy may be used. In this case, an insulating material (not shown) is interposed between the holding member 15 and the heat dissipation energizing member 14.

放熱用通電部材14の端部にはリード線9の一端側を接合させており、該リード線9の他端側同士を、通電路6によって電気接続させている。上記通電路6に、高電圧印加部7や直流電源8を接続させて回路を形成している点は、第1例と同様である。   One end side of the lead wire 9 is joined to the end portion of the heat dissipation energizing member 14, and the other end side of the lead wire 9 is electrically connected by the energizing path 6. The point that the circuit is formed by connecting the high-voltage applying unit 7 and the DC power source 8 to the energizing path 6 is the same as in the first example.

上記構成から成る第4例の静電霧化装置において、一対の熱電素子部2の吸熱側同士は放電電極1を介して電気接続される。また、一対の熱電素子部2の放熱側同士は、放熱用通電部材14、リード線9、通電路6を介して電気接続される。   In the electrostatic atomizer of the fourth example configured as described above, the heat absorption sides of the pair of thermoelectric element portions 2 are electrically connected via the discharge electrode 1. Further, the heat dissipation sides of the pair of thermoelectric element portions 2 are electrically connected via the heat dissipation energizing member 14, the lead wire 9, and the energizing path 6.

帯電微粒子水を発生させるには、高電圧印加部7によって回路全体にマイナスの高電圧を印加するとともに、直流電源8によって両熱電素子部2間に電流を流す。両熱電素子部2の吸熱によって放電電極1は冷却されて結露水を生成する。両熱電素子部2の放熱側は、棒状の放熱用通電部材14を通じて効率的に放熱される。そして、高電圧印加部7により印加した高電圧が、放電電極1表面の結露水に静電霧化現象を生じさせ、ナノメータサイズの粒径の帯電微粒子水を大量に生成する。   In order to generate charged fine particle water, a high negative voltage is applied to the entire circuit by the high voltage application unit 7 and a current is passed between the thermoelectric element units 2 by the DC power source 8. The discharge electrode 1 is cooled by the heat absorption of the two thermoelectric element portions 2 to generate condensed water. The heat radiation side of both thermoelectric element portions 2 is efficiently radiated through the bar-shaped heat radiation energizing member 14. Then, the high voltage applied by the high voltage application unit 7 causes an electrostatic atomization phenomenon in the condensed water on the surface of the discharge electrode 1, and generates a large amount of charged fine particle water having a particle size of nanometer size.

第4例の静電霧化装置においては、放電電極1を冷却するために備えた一対の熱電素子部2の吸熱側同士を、該放電電極1を介して電気接続させてある。加えて、各熱電素子部2の放熱側に、導電性材料から成る棒状の放熱用通電部材14を接続させ、該放熱用通電部材14を介して熱電素子部2への通電を行うようになっている。したがって、一対の熱電素子部2と一対の放熱用通電部材14を電気的且つ機械的に接合させたコンパクト且つ省エネルギーな構造によって、高い冷却効率で放電電極1を冷却し、結露水を生成することができる。   In the electrostatic atomizer of the fourth example, the heat absorption sides of the pair of thermoelectric element portions 2 provided for cooling the discharge electrode 1 are electrically connected via the discharge electrode 1. In addition, a rod-shaped heat radiation energization member 14 made of a conductive material is connected to the heat radiation side of each thermoelectric element portion 2, and the thermoelectric element portion 2 is energized via the heat radiation current energization member 14. ing. Therefore, the discharge electrode 1 is cooled with high cooling efficiency and condensed water is generated by a compact and energy-saving structure in which the pair of thermoelectric element portions 2 and the pair of heat-dissipating current-carrying members 14 are electrically and mechanically joined. Can do.

また、第4例の静電霧化装置においては、棒状の放熱用通電部材14、熱電素子部2、放電電極1と一連に続く導電体が全体に細長い棒状に形成され、その先端に放電電極1が位置することとなる。したがって、先端の放電電極1における電界集中が安定し、ひいては帯電微粒子水の生成が安定する。   Further, in the electrostatic atomizer of the fourth example, the rod-shaped heat radiation energizing member 14, the thermoelectric element portion 2, the discharge electrode 1 and a series of conductors are formed in a slender rod shape as a whole, and the discharge electrode is formed at the tip thereof. 1 will be located. Therefore, electric field concentration in the discharge electrode 1 at the tip is stabilized, and as a result, generation of charged fine particle water is stabilized.

次に、図5に基づいて第5例の静電霧化装置を説明する。なお、第1例や第4例と同様の構成については図中に同一符号を付して詳しい説明を省略し、第5例特有の構成についてのみ以下に詳述する。   Next, an electrostatic atomizer of a fifth example will be described based on FIG. In addition, about the structure similar to a 1st example and a 4th example, the same code | symbol is attached | subjected in a figure, detailed description is abbreviate | omitted, and only the structure peculiar to a 5th example is explained in full detail below.

第5例の静電霧化装置においては、一対の放熱用通電部材14に筒状の筐体10を接合させて備えている。有底筒状の筐体10は、その底壁部10aに、放熱用通電部材14を挿通させるための貫通孔17を一対形成したものであり、絶縁性材料から成る。両貫通孔17は、隣接する放熱用通電部材14同士の絶縁性を確保するため、所定距離を隔てて並行に形成してある。   In the electrostatic atomizer of the fifth example, a cylindrical casing 10 is joined to a pair of heat dissipation energizing members 14. The bottomed cylindrical casing 10 is formed by forming a pair of through holes 17 in the bottom wall portion 10a for inserting the heat-dissipating energizing member 14, and is made of an insulating material. Both through-holes 17 are formed in parallel at a predetermined distance in order to ensure insulation between adjacent heat-dissipating current-carrying members 14.

放熱用通電部材14は、その大径部14bを貫通孔17内に挿通した状態で、筐体10に固定される。上記固定は、放熱用通電部材14の貫通孔17内への圧入固定であってもよいし、放熱用通電部材14を接着剤により貫通孔17内に固定するものであってもよい。固定用の接着剤として熱伝導性フィラーを混入させたものを用いた場合には、放熱用通電部材14の放熱性を向上させることができる。つまり、上記接着剤のような熱伝導性の固着体を介して放熱用通電部材14を筐体10に固定することで、放熱用通電部材14の放熱性、ひいては熱電素子部2による放電電極1の冷却性を向上させることができる。   The heat dissipating energizing member 14 is fixed to the housing 10 in a state where the large diameter portion 14 b is inserted into the through hole 17. The fixing may be press-fitting and fixing the heat-dissipating energizing member 14 into the through-hole 17, or the heat-dissipating energizing member 14 may be fixed in the through-hole 17 with an adhesive. In the case where an adhesive mixed with a heat conductive filler is used as the fixing adhesive, the heat dissipation of the heat dissipation energizing member 14 can be improved. That is, by fixing the heat dissipating current-carrying member 14 to the housing 10 via a thermally conductive fixing body such as the above-mentioned adhesive, the heat dissipation of the heat-dissipating current-carrying member 14, and thus the discharge electrode 1 by the thermoelectric element unit 2. The cooling property can be improved.

筐体10は、絶縁性材料を用いて形成したものであり、その内部空間に放電電極1を収容するとともに、該放電電極1と対向する位置に対向電極11を支持している。対向電極11は、中央に放出孔12を貫通形成したリング状のものであり、接地させて設けている。   The casing 10 is formed using an insulating material, and accommodates the discharge electrode 1 in the internal space and supports the counter electrode 11 at a position facing the discharge electrode 1. The counter electrode 11 has a ring shape with a discharge hole 12 formed in the center, and is provided to be grounded.

筐体10の材質としては、第2例で示したものと同様のものを用いればよい。また、対向電極11の材質や形状、筐体10と対向電極11との接合手段についても、第2例と同様のものが好適に用いられる。   As the material of the housing 10, the same material as that shown in the second example may be used. In addition, the material and shape of the counter electrode 11 and the joining means between the housing 10 and the counter electrode 11 are preferably used as in the second example.

上記構成から成る第5例の静電霧化装置においては、筐体10を介して、放電電極1に対する一定の位置関係で対向電極11を配置してある。そのため、放電電極1において、外部環境に影響されることなく安定的に静電霧化現象を発生させることができる。また、棒状の放熱用通電部材14を通じての放熱が筐体10を介しても行われるので、放電電極1の冷却効率も向上する。   In the electrostatic atomizer of the fifth example having the above-described configuration, the counter electrode 11 is arranged with a fixed positional relationship with respect to the discharge electrode 1 through the housing 10. Therefore, the electrostatic atomization phenomenon can be stably generated in the discharge electrode 1 without being affected by the external environment. Moreover, since the heat radiation through the bar-shaped heat radiation energizing member 14 is also performed through the housing 10, the cooling efficiency of the discharge electrode 1 is also improved.

次に、図6に基づいて第6例の静電霧化装置を説明する。なお、第4例や第5例と同様の構成については図中に同一符号を付して詳しい説明を省略し、第6例特有の構成についてのみ以下に詳述する。   Next, an electrostatic atomizer of a sixth example will be described based on FIG. In addition, about the structure similar to a 4th example and a 5th example, the same code | symbol is attached | subjected in a figure, detailed description is abbreviate | omitted, and only the structure peculiar to a 6th example is explained in full detail below.

第6例の静電霧化装置においては、筐体10が支持する対向電極11を第5例のように接地させるのではなく、該対向電極11側に高電圧印加部7を接続させて設け、プラスの高電圧を印加するようになっている。また、一対の熱電素子部2に通電を行う回路側を接地させて設け、回路中に設けた直流電源8によって、N型の熱電素子部2からP型の熱電素子部2にむけて電流を流すようになっている。   In the electrostatic atomizer of the sixth example, the counter electrode 11 supported by the casing 10 is not grounded as in the fifth example, but the high voltage applying unit 7 is connected to the counter electrode 11 side. A positive high voltage is applied. In addition, the circuit side for energizing the pair of thermoelectric element portions 2 is grounded, and a current is supplied from the N-type thermoelectric element portion 2 to the P-type thermoelectric element portion 2 by a DC power supply 8 provided in the circuit. It is supposed to flow.

一対の熱電素子部2間に電流が流れることで放電電極1は冷却されて表面に結露水を生成し、この結露水に対して、対向電極11との間で高電圧が印加される。これにより、放電電極1表面の結露水には静電霧化現象が生じ、ナノメータサイズの粒径の帯電微粒子水を大量に生成させる。   When a current flows between the pair of thermoelectric element portions 2, the discharge electrode 1 is cooled to generate condensed water on the surface, and a high voltage is applied between the counter electrode 11 and the condensed water. Thereby, an electrostatic atomization phenomenon arises in the dew condensation water on the surface of the discharge electrode 1, and a large amount of charged fine particle water having a particle size of nanometer size is generated.

以上、第1例〜第6例の静電霧化装置の基本構成について述べた。以下においては、本発明の静電霧化装置を構成する各部材の変形例について詳述する。   The basic configuration of the electrostatic atomizers of the first to sixth examples has been described above. Below, the modification of each member which comprises the electrostatic atomizer of this invention is explained in full detail.

図7には、放電電極1の各種変形例を示している。第1例〜第6例の静電霧化装置においては、放電部1bの先端を球状に膨らませているが、図7(a)のように膨らむことのない球状に放電部1bの先端を設けてあってもよいし、図7(b)のように先鋭形状に放電部1bの先端を設けてあってもよい。平板状の基台部1aの角部分は、電界集中を避けるために凸曲面状に形成してあることが好ましい。   FIG. 7 shows various modifications of the discharge electrode 1. In the electrostatic atomizers of the first to sixth examples, the tip of the discharge part 1b is inflated in a spherical shape, but the tip of the discharge part 1b is provided in a spherical shape that does not swell as shown in FIG. Alternatively, the tip of the discharge part 1b may be provided in a sharp shape as shown in FIG. The corner portion of the flat base portion 1a is preferably formed in a convex curved shape in order to avoid electric field concentration.

また、第1例〜第6例の静電霧化装置においては、基台部1aと放電部1bを一体に成形していたが、図7(c)〜図7(e)のように基台部1aと放電部1bを別体で構成してもよい。基台部1aと放電部1bとで材質を相違させる場合には、基台部1a側に導電性の材質を用い、放電部1b側に熱伝導性の材質を用いる。基台部1aの材質としては、金属や、導電性材料を被覆した絶縁体を用いることができる。基台部1aに熱電素子部2を半田接合させる場合には、半田接合可能なニッケル、銅、金で基台部1aを形成するか、或いは他の材質の表面にこれらを被覆して基台部1aを形成することが好ましい。放電部1bの材質としては、金属やカーボン等の導電性材料を用いてもよいし、セラミック等の絶縁材料を用いてもよい。   Moreover, in the electrostatic atomizers of the first to sixth examples, the base portion 1a and the discharge portion 1b are integrally formed. However, as shown in FIG. 7C to FIG. You may comprise the base part 1a and the discharge part 1b by a different body. When different materials are used for the base part 1a and the discharge part 1b, a conductive material is used for the base part 1a and a heat conductive material is used for the discharge part 1b. As a material of the base part 1a, a metal or an insulator coated with a conductive material can be used. When the thermoelectric element portion 2 is soldered to the base portion 1a, the base portion 1a is formed of nickel, copper, or gold that can be soldered, or the surface of the base material 1 is covered with another base material 1a. It is preferable to form the part 1a. As the material of the discharge part 1b, a conductive material such as metal or carbon may be used, or an insulating material such as ceramic may be used.

図7(c)は、基台部1aと放電部1bを接着剤又は半田で接合させたものである。上記接着剤としてはエポキシ、ウレタン、アクリル系等のものが用いられるが、熱伝導性フィラーを混入させて熱伝導性を向上させたものであることや、導電性フィラーを混入させて導電性を向上させたものであることも好ましい。   FIG. 7C shows the base part 1a and the discharge part 1b joined together with an adhesive or solder. Epoxy, urethane, acrylic, or the like is used as the adhesive, but it can be improved by adding a heat conductive filler or by adding a conductive filler. It is also preferable that it is improved.

図7(d)は、基台部1aと放電部1bを溶接で接合させたものである。溶接を行う場合には、基台部1aと放電部1bを共に溶接可能な金属とする。品質的に安定した接合を行うには、基台部1aと放電部1bを同一材料で形成することが好ましい。図7(e)は、基台部1aの中央部に凹所18を設けておき、放電部1bの基端面に設けた凸体19を該凹所18に圧入させることで、基台部1aと放電部1bを接合させたものである。   FIG.7 (d) joins the base part 1a and the discharge part 1b by welding. When welding is performed, the base part 1a and the discharge part 1b are both weldable metals. In order to perform quality stable joining, it is preferable to form the base part 1a and the discharge part 1b with the same material. In FIG. 7E, a recess 18 is provided in the central portion of the base portion 1a, and a convex body 19 provided on the base end surface of the discharge portion 1b is press-fitted into the recess 18 so that the base portion 1a. And the discharge part 1b are joined.

図8と図9には、棒状を成す放熱用通電部材14の各種変形例を示している。第4例〜第6例の静電霧化装置においては、放熱用通電部材14の断面形状を特に限定していないが、放熱用通電部材14の長手方向と直交する面での断面形状については、図8(a)、(b)に示すような円形状であってもよいし、矩形状等の他の形状であってもよい。図8(c)、(d)に示す例では、一対の放熱用通電部材14の断面形状を共に半円形状とし、一対の放熱用通電部材14を並設したときに全体として、円柱を長手方向に沿って半割りにした形状となるように設けている。   8 and 9 show various modifications of the heat-dissipating current-carrying member 14 having a rod shape. In the electrostatic atomizers of the fourth to sixth examples, the cross-sectional shape of the heat dissipating energizing member 14 is not particularly limited, but the cross-sectional shape in the plane orthogonal to the longitudinal direction of the heat dissipating energizing member 14 is 8A and 8B may be circular, or other shapes such as a rectangular shape may be used. In the example shown in FIGS. 8C and 8D, the cross-sectional shape of the pair of heat-dissipating energizing members 14 is both semicircular, and the cylinder is elongated as a whole when the pair of heat-dissipating energizing members 14 are arranged side by side. It is provided so as to have a half-divided shape along the direction.

また、図8(a)〜(d)の放熱用通電部材14では小径部14aと大径部14bとの間をテーパ状に連続させているが、階段状に連続させてもよいし、図8(e)、(f)に示すように径を一定に設けてもよい。   8A to 8D, the small-diameter portion 14a and the large-diameter portion 14b are continuous in a tapered shape in the heat-dissipating current-carrying member 14; As shown in 8 (e) and (f), the diameter may be fixed.

また、放熱用通電部材14を複数部材の組み合わせにより構成してもよい。図9(a)に示す変形例では、熱伝導性の絶縁部材20と導電性部材21とを組み合わせて棒状の放熱用通電部材14を形成している。図9(b)に示す変形例では、放熱用通電部材14内に、強度保持のための剛性部材22を埋設してある。   Moreover, you may comprise the electricity supply member 14 for thermal radiation by the combination of several members. In the modification shown in FIG. 9A, the heat conductive insulating member 20 and the conductive member 21 are combined to form the rod-shaped heat radiation energizing member 14. In the modification shown in FIG. 9B, a rigid member 22 for maintaining strength is embedded in the heat dissipation energizing member 14.

図10には、第4例〜第6例の静電霧化装置において、熱電素子部2の周囲に防水用の封止部25を設けた場合の変形例を示している。上記封止部25は、少なくとも、各熱電素子部2が放電電極1に対して接合する接合箇所と、各熱電素子部2が放熱用通電部材14に接合する接合箇所とを封止するものであればよい。   FIG. 10 shows a modification in the case where the waterproof sealing portion 25 is provided around the thermoelectric element portion 2 in the electrostatic atomizers of the fourth to sixth examples. The sealing portion 25 seals at least a joint portion where each thermoelectric element portion 2 is joined to the discharge electrode 1 and a joint portion where each thermoelectric element portion 2 is joined to the heat radiation energizing member 14. I just need it.

図10(a)、(b)に示す例では、封止部25として、エポキシ、ウレタン、アクリル系等の接着剤26を用いている。接着剤26としては、1液熱硬化タイプ、2液性タイプ、UV硬化タイプ、嫌気性タイプ等の適宜のものが利用可能である。また、熱電素子部2やその接合箇所に過度の応力が働かないように、ガラス転移温度が低い接着剤26を利用することが好ましい。   In the example shown in FIGS. 10A and 10B, an epoxy, urethane, acrylic adhesive, or the like 26 is used as the sealing portion 25. As the adhesive 26, a suitable one such as a one-component thermosetting type, a two-component type, a UV curing type, or an anaerobic type can be used. In addition, it is preferable to use an adhesive 26 having a low glass transition temperature so that excessive stress does not act on the thermoelectric element portion 2 and its joint portion.

図10(a)の例では、耐水性および絶縁性を有する接着剤26によって一対の熱電素子部2の周囲を全て埋めてある。つまり、接着剤26によって、各熱電素子部2の放電電極1との接合箇所と、各熱電素子部2の外周面と、両熱電素子部2間の隙間と、各熱電素子部2の放熱用通電部材14との接合箇所とを、全て封止してある。上記接着剤26によって、接合部分の腐食を防止して長寿命化を図るとともに、比較的強度の弱い熱電素子部2を保護することができる。   In the example of FIG. 10A, the surroundings of the pair of thermoelectric element portions 2 are all filled with an adhesive 26 having water resistance and insulation. That is, the adhesive 26 is used to dissipate heat from each thermoelectric element portion 2, the joint between each thermoelectric element portion 2 and the discharge electrode 1, the outer peripheral surface of each thermoelectric element portion 2, the gap between both thermoelectric element portions 2, and the like. All the joints with the current-carrying member 14 are sealed. The adhesive 26 can prevent corrosion of the joint portion and extend the life, and can protect the thermoelectric element portion 2 having relatively low strength.

図10(b)の例では、耐水性および絶縁性を有する接着剤26によって、各熱電素子部2の放電電極1との接合箇所と、各熱電素子部2の放熱用通電部材14との接合箇所だけを、別々に封止してある。つまり、各熱電素子部2の放電電極1との接合箇所を封止する封止部25と、各熱電素子部2の放熱用通電部材14との接合箇所を封止する封止部25とを、分離して別々に形成している。この場合には、封止部25を介しての熱移動を防止し、冷却能力を確保することができる。   In the example of FIG. 10B, the bonding portion between each thermoelectric element portion 2 and the discharge electrode 1 and the heat dissipation energizing member 14 of each thermoelectric element portion 2 are bonded by an adhesive 26 having water resistance and insulation. Only the points are sealed separately. That is, a sealing portion 25 that seals a joint portion between each thermoelectric element portion 2 and the discharge electrode 1, and a sealing portion 25 that seals a joint portion between each thermoelectric element portion 2 and the heat radiation energizing member 14. , Separated and formed separately. In this case, heat transfer through the sealing part 25 can be prevented, and cooling capacity can be ensured.

図10(c)に示す例では、封止部25として、放電電極1の基台部1aから熱電素子部2を介して放熱用通電部材14の先端部に至るまでの範囲を、耐水性および絶縁性を有する樹脂製の枠体27により囲んで封止してある。枠体27の樹脂としては、PBT、PPS、ポリカーボネート、液晶ポリマー等が利用可能であり、耐加水分解性のものであることが好ましい。   In the example shown in FIG. 10C, the range from the base portion 1a of the discharge electrode 1 to the distal end portion of the heat dissipation energizing member 14 via the thermoelectric element portion 2 is used as the sealing portion 25. It is enclosed and sealed by a resin frame 27 having insulating properties. As the resin of the frame body 27, PBT, PPS, polycarbonate, liquid crystal polymer, or the like can be used, and is preferably resistant to hydrolysis.

図10(d)に示す例では、封止部25として、耐水性および絶縁性を有するコーティング層28を設けている。上記コーティング層28は、放電電極1の基台部1a側から熱電素子部2を介して放熱用通電部材14の先端部に至るまでの範囲を、全て被覆するように形成したものである。上記コーティング層28によって、接合部分の腐食を防止して長寿命化を図るとともに、比較的強度の弱い熱電素子部2を保護することができる。   In the example shown in FIG. 10D, a coating layer 28 having water resistance and insulation is provided as the sealing portion 25. The coating layer 28 is formed so as to cover the entire range from the base part 1a side of the discharge electrode 1 to the distal end part of the heat dissipation energizing member 14 via the thermoelectric element part 2. The coating layer 28 can prevent corrosion of the joint portion and extend the life, and can protect the thermoelectric element portion 2 having relatively low strength.

コーティング層28は、10〜100μm程度の厚みに設け、熱移動を極力抑制することで冷却能力を確保している。コーティング層28の材質としては、フッ素、エポキシ樹脂、ポリイミド、ポリオレフィン、アクリル、ウレタン、ポリビニル系のものが利用可能である。   The coating layer 28 is provided with a thickness of about 10 to 100 μm, and the cooling capacity is secured by suppressing heat transfer as much as possible. As the material of the coating layer 28, fluorine, epoxy resin, polyimide, polyolefin, acrylic, urethane, and polyvinyl-based materials can be used.

図11には、第5例、第6例の静電霧化装置の筐体10において、放熱用通電部材14を挿通するための貫通孔17を、周囲よりも厚みを大きくした肉厚部分30に設けた変形例を示している。図11(a)に示す例では、有底筒状を成す筐体10の底壁部10aに、段差構造を介して肉厚部分30を形成している。図11(b)に示す例では、有底筒状を成す筐体10の底壁部10aに、厚みを漸次増大させるテーパ構造を介して肉厚部分30を形成している。   In FIG. 11, in the case 10 of the electrostatic atomizer of the fifth example and the sixth example, a thick portion 30 in which the through-hole 17 for inserting the heat dissipation energizing member 14 is made thicker than the surroundings. The modification provided in is shown. In the example shown in FIG. 11A, a thick portion 30 is formed on the bottom wall portion 10a of the casing 10 having a bottomed cylindrical shape through a step structure. In the example shown in FIG. 11B, the thick portion 30 is formed on the bottom wall portion 10a of the casing 10 having a bottomed cylindrical shape via a taper structure that gradually increases the thickness.

両貫通孔17を、筐体10において他よりも厚みを大きくした肉厚部分30に設けることで、放熱用通電部材14の姿勢の安定性を向上させるとともに、接触面積の増加によって放熱用通電部材14から筐体10への熱伝達を向上させ、ひいては放電電極1の冷却効率を向上させることができる。   By providing both through-holes 17 in the thick portion 30 of the casing 10 that is thicker than the others, the posture of the heat-dissipating current-carrying member 14 is improved and the heat-dissipating current-carrying member is increased by increasing the contact area. The heat transfer from 14 to the housing 10 can be improved, and consequently the cooling efficiency of the discharge electrode 1 can be improved.

図12には、第5例や第6例の静電霧化装置の筐体10に、外気導入用の通風窓31を形成した変形例を示している。通風窓31は、有底筒状を成す筐体10の周壁部10bに複数開口させたものであり、通風窓31を通じて筐体10内に外気が流入するようになっている。   FIG. 12 shows a modification in which a ventilation window 31 for introducing outside air is formed in the casing 10 of the electrostatic atomizer of the fifth example and the sixth example. The ventilation window 31 is formed by opening a plurality of openings in the peripheral wall portion 10 b of the casing 10 having a bottomed cylindrical shape, and external air flows into the casing 10 through the ventilation window 31.

図12(a)に示す例では、筐体10の通風窓31を、放熱用通電部材14をその径方向外側から囲む部分に形成している。高電圧印加によって放電電極1で帯電微粒子水を生成し、外部にむけて放出させる際には、放電電極1から離れる方向(図中の上方向)にむけて筐体10内でイオン風が発生する。このイオン風により生じる自然対流によって、通風窓31を通じて筐体10内に外気が導入され、放熱用通電部材14の表面近傍を通過して該放熱用通電部材14の放熱効率を向上させる(図中矢印参照)。   In the example shown in FIG. 12A, the ventilation window 31 of the housing 10 is formed in a portion surrounding the heat radiating energizing member 14 from the outside in the radial direction. When charged fine particle water is generated at the discharge electrode 1 by applying a high voltage and released toward the outside, an ion wind is generated in the housing 10 in a direction away from the discharge electrode 1 (upward in the figure). To do. Due to the natural convection generated by the ion wind, outside air is introduced into the housing 10 through the ventilation window 31 and passes near the surface of the heat-dissipating energizing member 14 to improve the heat dissipation efficiency of the heat-dissipating energizing member 14 (in the drawing). See arrow).

図12(b)に示す例では、筐体10内に、該筐体10の内部空間を二分割する仕切り壁32を設けている。仕切り壁32は、筐体10の周壁部10bから内側に延設されるものであり、該仕切り壁32を介して、筐体10の内部空間は静電霧化空間33と放熱空間34とに仕切られる。これにより、放熱空間34で暖められた空気が静電霧化空間33側に流入することが防止されている。   In the example shown in FIG. 12B, a partition wall 32 that divides the internal space of the housing 10 into two is provided in the housing 10. The partition wall 32 extends inward from the peripheral wall portion 10 b of the housing 10, and the internal space of the housing 10 is divided into an electrostatic atomization space 33 and a heat dissipation space 34 through the partition wall 32. Partitioned. Thereby, the air heated in the heat radiation space 34 is prevented from flowing into the electrostatic atomization space 33 side.

静電霧化空間33は、放電電極1とこれを冷却するための一対の熱電素子部2が収容される側の空間である。放熱空間34は、一対の放熱用通電部材14が収容される側の空間である。外気導入用の通風窓31は、静電霧化空間33側に開口する通風窓31aと、放熱空間34側に開口する通風窓31bとで、別々に備えている。   The electrostatic atomization space 33 is a space on the side where the discharge electrode 1 and a pair of thermoelectric element portions 2 for cooling the discharge electrode 1 are accommodated. The heat radiation space 34 is a space on the side where the pair of heat radiation energization members 14 are accommodated. The ventilation window 31 for introducing outside air is provided separately with a ventilation window 31a that opens to the electrostatic atomization space 33 side and a ventilation window 31b that opens to the heat dissipation space 34 side.

したがって、高電圧印加によって放電電極1で帯電微粒子水を生成し、外部にむけて放出させる際には、放電電極1から離れる方向に向けて静電霧化空間33内でイオン風が発生し、このイオン風により生じる自然対流によって、通風窓31aを通じて静電霧化空間33内に外気が導入される。つまり、通風窓31aを通じて外気を導入しながらイオン風を勢いよく発生させ、該イオン風に乗せて帯電微粒子水を外部に放出することができる。   Therefore, when charged fine particle water is generated at the discharge electrode 1 by applying a high voltage and released toward the outside, an ion wind is generated in the electrostatic atomization space 33 in a direction away from the discharge electrode 1, By the natural convection generated by the ion wind, outside air is introduced into the electrostatic atomization space 33 through the ventilation window 31a. That is, it is possible to generate ionic wind vigorously while introducing outside air through the ventilation window 31a, and discharge the charged fine particle water to the outside on the ionic wind.

また、放熱空間34内においては、自然対流や強制対流によって通風窓31bを通じて外気が導入され、放熱用通電部材14の表面近傍を通過して該放熱用通電部材14の放熱効率を向上させる。図12(b)の例では、筐体10外にファン等の送風装置35を配置し、送風装置35からの強制風によって外気を放熱空間34内に送り込んでいる。送り込まれた外気は、反対側の通風窓31bを通じて外部に吐出される。   Further, in the heat radiation space 34, outside air is introduced through the ventilation window 31b by natural convection or forced convection, and passes near the surface of the heat radiation energization member 14 to improve the heat radiation efficiency of the heat radiation current energization member 14. In the example of FIG. 12B, a blower 35 such as a fan is disposed outside the housing 10, and outside air is sent into the heat radiation space 34 by forced air from the blower 35. The sent outside air is discharged to the outside through the opposite ventilation window 31b.

図13、図14は、第5例や第6例の静電霧化装置において、単一の筐体10内に、放電電極1を複数配置した変形例を示している。各放電電極1は、これを冷却するための一対の熱電素子部2と、各熱電素子部2に連結される一対の放熱用通電部材14とを組み合わせて一つの静電霧化ブロック40を構成している。つまり、図13、図14に示す変形例は、筐体10内に複数の静電霧化ブロック40を配置した変形例である。なお、図14(b)は(a)のA−A線断面図、(c)は(a)のB−B線断面図である。   FIGS. 13 and 14 show modifications in which a plurality of discharge electrodes 1 are arranged in a single housing 10 in the electrostatic atomizers of the fifth and sixth examples. Each discharge electrode 1 constitutes one electrostatic atomization block 40 by combining a pair of thermoelectric element portions 2 for cooling the discharge electrodes 1 and a pair of heat radiation current-carrying members 14 connected to each thermoelectric element portion 2. is doing. That is, the modification shown in FIGS. 13 and 14 is a modification in which a plurality of electrostatic atomization blocks 40 are arranged in the housing 10. 14B is a cross-sectional view taken along line AA in FIG. 14A, and FIG. 14C is a cross-sectional view taken along line BB in FIG.

図13に示す例では、筐体10内に、2つの静電霧化ブロック40を並設してある。筐体10の底壁部10aには貫通孔17を二対形成しており、各対の貫通孔17に、各静電霧化ブロック40の一対の放熱用通電部材14をそれぞれ貫通固定させている。図13の例では、隣接する静電霧化ブロック40の放熱用通電部材14同士を直列接続させているが、並列接続させてもよい。また、複数の放電電極1用の対向電極11として単一のものを配置しているが、放電電極1ごとに別の対向電極11を配置してあってもよい。図13の例によれば、帯電微粒子水の発生量を増大させることができる。   In the example shown in FIG. 13, two electrostatic atomization blocks 40 are arranged in parallel in the housing 10. Two pairs of through-holes 17 are formed in the bottom wall portion 10 a of the housing 10, and a pair of heat-dissipating current-carrying members 14 of each electrostatic atomization block 40 are fixed to each pair of through-holes 17. Yes. In the example of FIG. 13, the heat dissipating current-carrying members 14 of the adjacent electrostatic atomization blocks 40 are connected in series, but may be connected in parallel. Moreover, although the single counter electrode 11 for the plurality of discharge electrodes 1 is disposed, another counter electrode 11 may be disposed for each discharge electrode 1. According to the example of FIG. 13, the generation amount of charged fine particle water can be increased.

図14に示す例は、隣接する一対の放電電極1の形状を、一つの放電電極1を半割りにした形状にして近接配置した例である。図14に示す例の他の構成については、図13に示す例と同様である。図14に示す変形例によれば、対を成す放電電極1が一つの放電電極1のように働き、短時間で結露水を生成して静電霧化を開始することができる。   The example shown in FIG. 14 is an example in which the shape of a pair of adjacent discharge electrodes 1 is arranged close to each other by dividing one discharge electrode 1 in half. Other configurations of the example shown in FIG. 14 are the same as those of the example shown in FIG. According to the modification shown in FIG. 14, the paired discharge electrodes 1 work like a single discharge electrode 1, and can generate condensed water and start electrostatic atomization in a short time.

図15、図16は、複数の熱電素子23によって一つの熱電素子部2を形成した変形例である。つまり、複数のP型の熱電素子23によってP型の熱電素子部2を形成し、複数のN型の熱電素子23によってN型の熱電素子部2を形成している。   FIGS. 15 and 16 are modifications in which one thermoelectric element portion 2 is formed by a plurality of thermoelectric elements 23. That is, the P-type thermoelectric element portion 2 is formed by a plurality of P-type thermoelectric elements 23, and the N-type thermoelectric element portion 2 is formed by a plurality of N-type thermoelectric elements 23.

図15に示す例は、第1〜第3例の静電霧化装置において、二つのP型の熱電素子23によってP型の熱電素子部2を形成し、同じく二つのN型の熱電素子23によってN型の熱電素子部2を形成した例である。二つのP型の熱電素子23の放熱側は、負極側の端子4に接合させる。また、二つのN型の熱電素子23の放熱側は、正極側の端子4に接合させる。両端子4にはそれぞれリード線9の一端側を接合させ、該リード線9の他端側同士を電気接続させて回路を形成する。   In the example shown in FIG. 15, in the electrostatic atomizers of the first to third examples, the P-type thermoelectric element portion 2 is formed by two P-type thermoelectric elements 23, and two N-type thermoelectric elements 23 are also formed. This is an example in which an N-type thermoelectric element portion 2 is formed. The heat dissipation side of the two P-type thermoelectric elements 23 is joined to the terminal 4 on the negative electrode side. Further, the heat radiation side of the two N-type thermoelectric elements 23 is joined to the terminal 4 on the positive electrode side. Both terminals 4 are joined to one end side of the lead wire 9 and the other end side of the lead wire 9 is electrically connected to form a circuit.

図15に示す例では、N型からP型に電流を流すことによって、N型の二つの熱電素子23の放電電極1に接合される側と、P型の二つの熱電素子23の放電電極1に接合される側とが、共に吸熱によって放電電極1を冷却する。そのため、一つの熱電素子23で熱電素子部2を形成する場合に比べて、冷却効率が向上したものになる。   In the example shown in FIG. 15, by passing a current from the N type to the P type, the side joined to the discharge electrode 1 of the two N type thermoelectric elements 23 and the discharge electrode 1 of the two P type thermoelectric elements 23. The discharge electrode 1 is cooled by the endotherm together with the side bonded to the electrode. Therefore, compared with the case where the thermoelectric element part 2 is formed with one thermoelectric element 23, the cooling efficiency is improved.

図16に示す例は、第4〜第6例の静電霧化装置において、二つのP型の熱電素子23によってP型の熱電素子部2を形成し、同じく二つのN型の熱電素子23によってN型の熱電素子部2を形成した例である。P型およびN型の熱電素子23の放熱側は、いずれも棒状の放熱用通電部材14に接続させている。   In the example shown in FIG. 16, in the electrostatic atomizers of the fourth to sixth examples, the P-type thermoelectric element portion 2 is formed by two P-type thermoelectric elements 23, and two N-type thermoelectric elements 23 are also formed. This is an example in which an N-type thermoelectric element portion 2 is formed. The heat radiation sides of the P-type and N-type thermoelectric elements 23 are both connected to a rod-shaped heat radiation energizing member 14.

P型とN型の両側の放熱用通電部材14の端部にはともにリード線9の一端側を接合させ、該リード線9の他端側同士を電気接続させて回路を形成する。リード線9を介してN型からP型に電流を流すことによって、図15の例と同様に、N型の二つの熱電素子23とP型の二つの熱電素子23が共に放電電極1を冷却する。   One end side of the lead wire 9 is joined to both ends of the heat dissipation energizing member 14 on both sides of the P type and the N type, and the other end side of the lead wire 9 is electrically connected to form a circuit. By passing a current from the N type to the P type through the lead wire 9, the two N type thermoelectric elements 23 and the two P type thermoelectric elements 23 together cool the discharge electrode 1, as in the example of FIG. To do.

以上、本発明の静電霧化装置を構成する各部材の変形例について、図7〜図16に基づいて詳述した。各変形例の構成は、第1例〜第6例の静電霧化装置のいずれにおいても適用可能である。また、各変形例の構成を適宜組み合わせて適用することも可能である。   In the above, the modification of each member which comprises the electrostatic atomizer of this invention was explained in full detail based on FIGS. The configuration of each modification can be applied to any of the electrostatic atomizers of the first to sixth examples. Moreover, it is also possible to apply combinations of the configurations of the modified examples as appropriate.

1 放電電極
2 熱電素子部
10 筐体
11 対向電極
14 放熱用通電部材
17 貫通孔
20 絶縁部材
25 封止部
28 コーティング層
30 肉厚部分
31 通風窓
32 仕切り壁
33 静電霧化空間
34 放熱空間
DESCRIPTION OF SYMBOLS 1 Discharge electrode 2 Thermoelectric element part 10 Housing | casing 11 Counter electrode 14 Current supply member 17 for heat dissipation 17 Through-hole 20 Insulating member 25 Sealing part 28 Coating layer 30 Thick part 31 Ventilation window 32 Partition wall 33 Electrostatic atomization space 34 Heat dissipation space

Claims (13)

放電電極を冷却して生成した結露水に電圧を印加することで帯電微粒子水を生成する静電霧化装置において、放電電極を冷却するために備えた一対の熱電素子部の吸熱側同士を、該放電電極を介して電気接続させたことを特徴とする静電霧化装置。   In the electrostatic atomization device that generates charged fine particle water by applying a voltage to the dew condensation water generated by cooling the discharge electrode, the heat absorption sides of the pair of thermoelectric element units provided for cooling the discharge electrode, An electrostatic atomizer characterized in that it is electrically connected via the discharge electrode. 上記熱電素子部の放熱側に、導電性材料から成る放熱用通電部材を接続させ、該放熱用通電部材を介して熱電素子部に通電を行うことを特徴とする請求項1に記載の静電霧化装置。   2. The electrostatic device according to claim 1, wherein a heat dissipation energizing member made of a conductive material is connected to the heat dissipation side of the thermoelectric element portion, and the thermoelectric element portion is energized through the heat dissipation energizing member. Atomization device. 上記放熱用通電部材は、熱電素子部の通電方向を長手方向とする部材であることを特徴とする請求項2に記載の静電霧化装置。   The electrostatic atomizer according to claim 2, wherein the heat-dissipating energizing member is a member whose longitudinal direction is the energizing direction of the thermoelectric element portion. 上記放熱用通電部材は、熱電素子部との接合箇所から離れるほど大径となるように形成した部材であることを特徴とする請求項3に記載の静電霧化装置。   The electrostatic atomizer according to claim 3, wherein the heat-dissipating energizing member is a member formed to have a larger diameter as the distance from the joining portion with the thermoelectric element portion increases. 熱電素子部が放電電極に接合する接合箇所と、熱電素子部が放熱用通電部材に接合する接合箇所とを、防水性を有する封止部によって封止してあることを特徴とする請求項2〜4のいずれか一項に記載の静電霧化装置。   3. The joint portion where the thermoelectric element portion is joined to the discharge electrode and the joint portion where the thermoelectric element portion is joined to the heat radiation energizing member are sealed by a waterproof sealing portion. The electrostatic atomizer as described in any one of -4. 上記封止部は、熱電素子部が放電電極に接合する接合箇所と、熱電素子部が放熱用通電部材に接合する接合箇所とを、別々に封止するように分離して形成したものであることを特徴とする請求項5に記載の静電霧化装置。   The sealing part is formed by separating the joining part where the thermoelectric element part is joined to the discharge electrode and the joining part where the thermoelectric element part is joined to the heat radiation energizing member so as to be sealed separately. The electrostatic atomizer of Claim 5 characterized by the above-mentioned. 上記封止部は、放電電極側から熱電素子部を介して放熱用通電部材側に至るまでの範囲を被覆するように形成したコーティング層であることを特徴とする請求項5に記載の静電霧化装置。   The electrostatic seal according to claim 5, wherein the sealing portion is a coating layer formed so as to cover a range from the discharge electrode side to the heat radiation energizing member side through the thermoelectric element portion. Atomization device. 上記放電電極と対向する位置に対向電極を備えていることを特徴とする請求項1〜7のいずれか一項に記載の静電霧化装置。   The electrostatic atomizer according to claim 1, further comprising a counter electrode at a position facing the discharge electrode. 上記対向電極を支持する筐体を備え、該筐体内に上記放電電極を収容することを特徴とする請求項8に記載の静電霧化装置。   The electrostatic atomizer according to claim 8, further comprising a housing that supports the counter electrode, wherein the discharge electrode is accommodated in the housing. 上記筐体は、熱伝導性の固着体を介して、放熱用通電部材を所定位置に固定するものであることを特徴とする請求項9に記載の静電霧化装置。   The electrostatic atomizer according to claim 9, wherein the casing fixes the heat-dissipating current-carrying member at a predetermined position via a thermally conductive fixing body. 上記筐体は、放熱用通電部材を挿通するための貫通孔を、周囲よりも厚みを大きくした肉厚部分に形成したものであることを特徴とする請求項9又は10に記載の静電霧化装置。   The electrostatic mist according to claim 9 or 10, wherein the casing is formed with a through-hole for inserting a heat-dissipating energizing member in a thick portion having a thickness larger than that of the surrounding area. Device. 上記筐体は、放熱用通電部材を囲む部分に、外気導入用の通風窓を有するものであることを特徴とする請求項9〜11のいずれか一項に記載の静電霧化装置。   The electrostatic atomizer according to any one of claims 9 to 11, wherein the casing has a ventilation window for introducing outside air at a portion surrounding the heat-dissipating energizing member. 上記筐体は、放電電極が収容される静電霧化空間と放熱用通電部材が収容される放熱空間とに内部空間を仕切る仕切り壁を有するものであることを特徴とする請求項9〜12に記載の静電霧化装置。
The said housing | casing has a partition wall which partitions internal space into the electrostatic atomization space in which a discharge electrode is accommodated, and the thermal radiation space in which the heat radiating electricity supply member is accommodated. The electrostatic atomizer described in 1.
JP2010037830A 2010-02-23 2010-02-23 Electrostatic atomizer Active JP5342471B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010037830A JP5342471B2 (en) 2010-02-23 2010-02-23 Electrostatic atomizer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010037830A JP5342471B2 (en) 2010-02-23 2010-02-23 Electrostatic atomizer

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2009077663 Division 2009-03-26 2009-03-26

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2013104944A Division JP5555357B2 (en) 2013-05-17 2013-05-17 Electrostatic atomizer

Publications (2)

Publication Number Publication Date
JP2010227926A true JP2010227926A (en) 2010-10-14
JP5342471B2 JP5342471B2 (en) 2013-11-13

Family

ID=43044308

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010037830A Active JP5342471B2 (en) 2010-02-23 2010-02-23 Electrostatic atomizer

Country Status (1)

Country Link
JP (1) JP5342471B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012043169A1 (en) * 2010-09-27 2012-04-05 パナソニック株式会社 Discharge electrode, method for manufacturing discharge electrode, ion generating apparatus, and electrostatic atomizing apparatus
WO2013105355A1 (en) * 2012-01-11 2013-07-18 パナソニック株式会社 Electrostatic atomizer
WO2013105356A1 (en) 2012-01-11 2013-07-18 パナソニック株式会社 Electrostatic atomizer

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5555357B2 (en) * 2013-05-17 2014-07-23 パナソニック株式会社 Electrostatic atomizer

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006000826A (en) * 2004-06-21 2006-01-05 Matsushita Electric Works Ltd Electrostatic atomizer
JP2006179843A (en) * 2004-05-31 2006-07-06 Denso Corp Thermoelectric conversion device and manufacturing method thereof
JP2008132473A (en) * 2006-10-26 2008-06-12 Matsushita Electric Works Ltd Electrostatic atomizer
JP2008155144A (en) * 2006-12-25 2008-07-10 Matsushita Electric Works Ltd Electrostatic atomizing device
JP2008238061A (en) * 2007-03-27 2008-10-09 Matsushita Electric Works Ltd Electrostatic atomizer

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006179843A (en) * 2004-05-31 2006-07-06 Denso Corp Thermoelectric conversion device and manufacturing method thereof
JP2006000826A (en) * 2004-06-21 2006-01-05 Matsushita Electric Works Ltd Electrostatic atomizer
JP2008132473A (en) * 2006-10-26 2008-06-12 Matsushita Electric Works Ltd Electrostatic atomizer
JP2008155144A (en) * 2006-12-25 2008-07-10 Matsushita Electric Works Ltd Electrostatic atomizing device
JP2008238061A (en) * 2007-03-27 2008-10-09 Matsushita Electric Works Ltd Electrostatic atomizer

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012043169A1 (en) * 2010-09-27 2012-04-05 パナソニック株式会社 Discharge electrode, method for manufacturing discharge electrode, ion generating apparatus, and electrostatic atomizing apparatus
JP2012066215A (en) * 2010-09-27 2012-04-05 Panasonic Corp Discharge electrode, method for manufacturing discharge electrode, ion generating apparatus, and electrostatic atomizing apparatus
WO2013105355A1 (en) * 2012-01-11 2013-07-18 パナソニック株式会社 Electrostatic atomizer
WO2013105356A1 (en) 2012-01-11 2013-07-18 パナソニック株式会社 Electrostatic atomizer
JP2013141645A (en) * 2012-01-11 2013-07-22 Panasonic Corp Electrostatic atomizer

Also Published As

Publication number Publication date
JP5342471B2 (en) 2013-11-13

Similar Documents

Publication Publication Date Title
JP5632634B2 (en) Electrostatic atomizer and method of manufacturing the same
CA2706099C (en) Apparatus for housing a light assembly
JP5405296B2 (en) Low temperature plasma generator
JP2021036527A (en) Efficiency improved light device in which led is directly mounted on heat sink
JP2002232009A (en) Light emitting diode array, and light source device
JP5556613B2 (en) Semiconductor device
JP5342471B2 (en) Electrostatic atomizer
JP5555357B2 (en) Electrostatic atomizer
US9114412B2 (en) Electrostatic atomization device
JP5369021B2 (en) Electrostatic atomizer
CN1937902A (en) Cooling structure of heating element
JP5369022B2 (en) Electrostatic atomizer
JP4779778B2 (en) Electrostatic atomizer
JP2011152502A (en) Electrostatic atomizer
WO2013105356A1 (en) Electrostatic atomizer
JP2011152499A (en) Electrostatic atomizer
JP5520764B2 (en) Electrostatic atomizer
JP5480516B2 (en) Electrostatic atomizer
JP5395704B2 (en) Electrostatic atomizer, manufacturing method thereof, and Peltier unit
JP2012071227A (en) Electrostatic atomizer
JP2009238553A (en) Light source device
JP2007275802A (en) Electrostatic atomization device and assembling method thereof
JP2008311253A (en) Film capacitor and film capacitor unit
JP2012071274A (en) Electrostatic atomizer
WO2013105355A1 (en) Electrostatic atomizer

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20100630

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20120113

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120824

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120828

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121029

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130219

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130517

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20130524

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130716

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130809

R150 Certificate of patent or registration of utility model

Ref document number: 5342471

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150