JP2010227810A - Depressurization apparatus for gas hydrate - Google Patents

Depressurization apparatus for gas hydrate Download PDF

Info

Publication number
JP2010227810A
JP2010227810A JP2009077785A JP2009077785A JP2010227810A JP 2010227810 A JP2010227810 A JP 2010227810A JP 2009077785 A JP2009077785 A JP 2009077785A JP 2009077785 A JP2009077785 A JP 2009077785A JP 2010227810 A JP2010227810 A JP 2010227810A
Authority
JP
Japan
Prior art keywords
gas hydrate
gas
pressure atmosphere
receiving chamber
sealing liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009077785A
Other languages
Japanese (ja)
Other versions
JP5256090B2 (en
Inventor
Masahiro Takahashi
正浩 高橋
Masato Ito
真人 伊藤
Kenichi Sano
健一 佐野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Engineering and Shipbuilding Co Ltd
Original Assignee
Mitsui Engineering and Shipbuilding Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Engineering and Shipbuilding Co Ltd filed Critical Mitsui Engineering and Shipbuilding Co Ltd
Priority to JP2009077785A priority Critical patent/JP5256090B2/en
Publication of JP2010227810A publication Critical patent/JP2010227810A/en
Application granted granted Critical
Publication of JP5256090B2 publication Critical patent/JP5256090B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Filling Or Discharging Of Gas Storage Vessels (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an apparatus depressurizing gas hydrates under high pressure to a low pressure, e.g. the atmospheric pressure. <P>SOLUTION: A charging inlet 3a for gas hydrates communicating with a high-pressure atmosphere P1 is formed at a position in the upper wall 3f of a cylindrical body 3, with the position equidistance-shifted from the center of the cylindrical body 3, and a discharging outlet 3b communicating with a low-pressure atmosphere P2 is formed at a position different from that of the charging inlet 3a in the lower wall 3g through the equal-distance shifting. In the cylindrical body 3, a rotary body 2 consisting of two or more gas hydrate receiving chambers 2a arranged concentrically according to the shifts of the charging inlet 3a and the discharging outlet 3b is pivoted. The rotary body 2 is driven by a driving source M arranged externally. The cylindrical body 3 has a sealed liquid supply tube 8 supplying a sealed liquid r into the receiving chambers 2a before gas hydrates are received into the receiving chambers 2a and a depressurization tube 9 making the inside of the receiving chambers 2a communicating with the low pressure atmosphere P2 after gas hydrates h are received into the receiving chambers 2a. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、高圧下におけるガスハイドレートを大気圧等の低圧にまで脱圧する装置に関する。   The present invention relates to an apparatus for depressurizing a gas hydrate under high pressure to a low pressure such as atmospheric pressure.

クリーンエネルギーとして注目されているガスハイドレートは、例えば、5〜5.5MPa、2〜4℃の条件下において、原料ガス(メタンガス、プロパンガス、或いはこれらの混合ガス)と原料水との水和反応により生成される。また、生成したガスハイドレートは、スラリー状となっているので、これを脱水・成形し、ペレットなどの形状に成形して製品化される。   Gas hydrates that are attracting attention as clean energy include, for example, hydration of raw material gas (methane gas, propane gas, or a mixed gas thereof) and raw water under conditions of 5 to 5.5 MPa and 2 to 4 ° C. Produced by reaction. Moreover, since the produced | generated gas hydrate is in the form of a slurry, it is dehydrated and molded, and formed into a shape such as a pellet to be commercialized.

ところで、前記ガスハイドレートは、大気圧下でマイナス20℃とすると自己保存効果と称される効果を発揮し、長期間にわたって保管できるという特性を有しており、また、生成圧力(5〜5.5MPa)の高圧下で保存・輸送した場合に、その高圧状態に維持するためのコストがかかる。   By the way, the gas hydrate exhibits the effect called a self-preserving effect when it is minus 20 ° C. under atmospheric pressure, and has a characteristic that it can be stored for a long period of time. When it is stored and transported under a high pressure of 0.5 MPa), it takes a cost to maintain the high pressure state.

係ることから、生成されたガスハイドレートを生成圧力などの高圧から大気圧等の低圧にまで脱圧する方法が提案されている。一例としては、ガスハイドレートを回転体に収容し、高圧雰囲気から低圧雰囲気に脱圧する脱圧装置が提案されている(例えば、特許文献1参照)。   Therefore, a method for depressurizing the generated gas hydrate from a high pressure such as a generation pressure to a low pressure such as atmospheric pressure has been proposed. As an example, a depressurization apparatus that accommodates gas hydrate in a rotating body and depressurizes from a high-pressure atmosphere to a low-pressure atmosphere has been proposed (see, for example, Patent Document 1).

特開2007−268406号公報JP 2007-268406 A

特許文献1記載の脱圧装置は、回転体の受入室に高圧雰囲気下のガスハイドレートが投入される収容工程と、受入室内の圧力を低圧雰囲気にまで脱圧する脱圧工程と、受入室からガスハイドレートを低圧雰囲気下に排出する排出工程と、受入室の内圧を高圧雰囲気にまで加圧する昇圧工程とからなる一連の工程が、前記回転体が360度回転して繰り返されるので、バッチ式でガスハイドレートを脱圧することとなり、大量処理には適していない。また、大量処理するには、回転体を大型化したり、複数系列で処理したりしなければならず、装置の大型化や系統の複雑化が必要であった。   The depressurization device described in Patent Document 1 includes an accommodating process in which a gas hydrate under a high-pressure atmosphere is introduced into a receiving chamber of a rotating body, a depressurizing process for depressurizing the pressure in the receiving chamber to a low-pressure atmosphere, and a receiving chamber. A series of steps consisting of a discharge step of discharging the gas hydrate under a low pressure atmosphere and a pressure increase step of pressurizing the internal pressure of the receiving chamber to a high pressure atmosphere are repeated by rotating the rotating body 360 degrees, so that the batch type Therefore, the gas hydrate is depressurized and is not suitable for mass processing. In addition, in order to perform a large amount of processing, it is necessary to increase the size of the rotating body or to process in a plurality of series, and it is necessary to increase the size of the apparatus and the complexity of the system.

本発明は、前述の従来技術の問題点に鑑みて、ガスハイドレートを高圧側から低圧側へ連続かつ大量に脱圧処理することのできる装置を提供することを目的とするものである。   An object of the present invention is to provide an apparatus capable of depressurizing gas hydrate continuously and in large quantities from a high pressure side to a low pressure side in view of the above-described problems of the prior art.

本発明に係るガスハイドレートの脱圧装置は上記目的を達成するため、下記の如く構成されている。
(1)円筒状本体3の上部壁3fに、この円筒状本体3の中心より等距離偏位させて高圧雰囲気P1に連通したガスハイドレートの投入口3aを、下部壁3gに前記円筒状本体3の中心より等距離偏位し、且つ前記投入口3aと異なる位置に低圧雰囲気P2に連通したガスハイドレートhの排出口3bをそれぞれ設け、前記円筒状本体3内に、複数のガスハイドレート受入室2aを、前記投入口3aおよび排出口3bの偏位に合わせて同心円状に配置した回転体2を軸支し、更に、前記回転体2は、前記円筒状本体3の外部に設けた駆
動源Mにより駆動されるように構成されており、前記円筒状本体3は、前記受入室2aにガスハイドレートが受け入れられる前に、その受入室2a内に封液rを供給する封液供給管8を、前記受入室2aにガスハイドレートhが受け入れられた後に、その受入室2a内と低圧雰囲気P2とを連通させる脱圧管9をそれぞれ設けていることを特徴としている。(2)前記回転体2は、少なくとも4個の受入室2aが同心円上に均等間隔で配置されていることを特徴としている。
In order to achieve the above object, the gas hydrate depressurization apparatus according to the present invention is configured as follows.
(1) A gas hydrate inlet 3a that is displaced from the center of the cylindrical body 3 by an equal distance from the center of the cylindrical body 3 and communicates with the high-pressure atmosphere P1 is formed on the upper wall 3f of the cylindrical body 3, and the cylindrical body is formed on the lower wall 3g. 3 is provided with a discharge port 3b for the gas hydrate h which is deviated by an equal distance from the center of the tube 3 and communicated with the low-pressure atmosphere P2 at a position different from the input port 3a, and a plurality of gas hydrates are provided in the cylindrical body 3. The receiving chamber 2a is pivotally supported by a rotating body 2 arranged concentrically in accordance with the displacement of the inlet 3a and outlet 3b, and the rotating body 2 is provided outside the cylindrical main body 3. The cylindrical main body 3 is configured to be driven by a drive source M, and the cylindrical body 3 supplies a sealing liquid r for supplying a sealing liquid r into the receiving chamber 2a before the gas hydrate is received in the receiving chamber 2a. Pipe 8 is connected to the receiving chamber 2a. After hydrate h is accepted, it is characterized in that is provided with a de-pressure pipe 9 which communicates with its receiving chamber 2a and the low pressure atmosphere P2, respectively. (2) The rotating body 2 is characterized in that at least four receiving chambers 2a are arranged on a concentric circle at equal intervals.

更に、本発明に係るガスハイドレートの脱圧方法は上記目的を達成するため、下記の如く構成されている。
(3)高圧雰囲気P1のガスハイドレートhを脱圧して低圧雰囲気P2に移送する脱圧方法であって、
ガスハイドレート受入室2に封液rを供給する封液充填工程B1と、この封液充填工程B1で封液rが充填された受入室2aにガスハイドレートhを投入するガスハイドレート供給工程B2と、この供給工程B2でガスハイドレートhが投入された受入室2aと前記低圧雰囲気P2とを連通させて脱圧する脱圧工程B3と、この脱圧工程B3により前記低圧雰囲気P2と略等圧となった受入室2aからガスハイドレートhと封液rとを排出する排出工程とを備えることを特徴としている。
(4)前記高圧雰囲気P1の圧力が5.0〜5.5MPaであり、前記低圧雰囲気P2の圧力が0.1〜0.4MPaであることを特徴としている。
(5)前記封液rが、前記ガスハイドレートhを構成する原料ガスと同質の液化ガス、液体プロパン、ヘキサン、ケロシン、もしくはシリコンオイルであることを特徴としている。
(6)前記ガスハイドレートhが圧縮成形された成形体であり、この成形体が球形や円柱形であり、更に、成形体の大きさが20〜100mmであることを特徴としている。
Further, the gas hydrate depressurization method according to the present invention is configured as follows in order to achieve the above object.
(3) A depressurization method of depressurizing and transferring the gas hydrate h in the high pressure atmosphere P1 to the low pressure atmosphere P2.
A sealing liquid filling step B1 for supplying the sealing liquid r to the gas hydrate receiving chamber 2, and a gas hydrate supplying step for introducing the gas hydrate h into the receiving chamber 2a filled with the sealing liquid r in the sealing liquid filling step B1. B2, a depressurization step B3 in which the receiving chamber 2a into which the gas hydrate h is introduced in the supply step B2 and the low pressure atmosphere P2 are communicated and depressurized, and the depressurization step B3 is substantially equal to the low pressure atmosphere P2. And a discharge step of discharging the gas hydrate h and the sealing liquid r from the receiving chamber 2a which has become a pressure.
(4) The pressure of the high-pressure atmosphere P1 is 5.0 to 5.5 MPa, and the pressure of the low-pressure atmosphere P2 is 0.1 to 0.4 MPa.
(5) The sealing liquid r is a liquefied gas, liquid propane, hexane, kerosene, or silicon oil that is the same as the raw material gas constituting the gas hydrate h.
(6) The gas hydrate h is a compression-molded molded body, the molded body is spherical or cylindrical, and the size of the molded body is 20 to 100 mm.

本発明のガスハイドレート脱圧装置は、高圧側からのガスハイドレートの受入れと、低圧側へのガスハイドレートの排出とを同時進行させることができるので、従来のバッチ処理式よりも処理速度が向上する。   Since the gas hydrate depressurization apparatus of the present invention can simultaneously accept the gas hydrate from the high pressure side and discharge the gas hydrate to the low pressure side, the processing speed is higher than the conventional batch processing type. Will improve.

本発明に係るガスハイドレート脱圧装置の概略構成図である。It is a schematic block diagram of the gas hydrate depressurization apparatus which concerns on this invention. 本発明に係るガスハイドレート脱圧装置の他の実施態様を示す図である。It is a figure which shows the other embodiment of the gas hydrate depressurization apparatus which concerns on this invention. 本発明に係るガスハイドレート脱圧装置における受入室の動作と圧力変化とを示す図である。It is a figure which shows the operation | movement of an acceptance chamber, and a pressure change in the gas hydrate depressurization apparatus which concerns on this invention. 本発明に係るガスハイドレート脱圧装置における回転体の動作を示す模式図である。It is a schematic diagram which shows operation | movement of the rotary body in the gas hydrate depressurization apparatus which concerns on this invention. 従来のガスハイドレート脱圧装置の概略構成図である。It is a schematic block diagram of the conventional gas hydrate depressurization apparatus.

以下、添付図面に基づき、本発明の実施形態を説明する。   Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings.

本発明に係るガスハイドレートhの脱圧装置1は、例えば、図1に示すように、高圧雰囲気P1(例えば、ガスハイドレートの生成圧力である5.0〜5.5MPa)、温度が2〜4℃において、圧縮成型器(ペレタイザー)23によって球形や円柱形などに圧縮成形された成形体h(ガスハイドレートペレットh)が一時貯留されるホッパー12を備えている。前記ホッパー12は、脱圧装置1の円筒状本体(ケーシング)3の上部壁3fに設けた投入口3aに連結されており、ホッパー12内のガスハイドレートペレットhが円筒状本体3内に軸支された回転体2の受入室2a内に投入される。前記回転体2は、その周囲に前記円筒状本体3の外部に設けた電動機Mに設けた歯車4aによって駆動される歯
車2dが形成されている。そして、円筒状本体3の下部壁3gに設けた排出口3bよりガスハイドレートペレットhが排出される。
For example, as shown in FIG. 1, the depressurization apparatus 1 for a gas hydrate h according to the present invention has a high-pressure atmosphere P1 (for example, 5.0 to 5.5 MPa, which is a generation pressure of gas hydrate), and a temperature of 2. At ˜4 ° C., a hopper 12 is provided in which a molded body h (gas hydrate pellet h) compression-molded into a spherical shape or a cylindrical shape by a compression molding machine (pelletizer) 23 is temporarily stored. The hopper 12 is connected to an inlet 3 a provided in the upper wall 3 f of the cylindrical main body (casing) 3 of the depressurizing device 1, and the gas hydrate pellet h in the hopper 12 is pivoted into the cylindrical main body 3. It is put into the receiving chamber 2a of the supported rotating body 2. The rotating body 2 is formed with a gear 2 d that is driven by a gear 4 a provided in an electric motor M provided outside the cylindrical body 3 around the rotating body 2. And the gas hydrate pellet h is discharged | emitted from the discharge port 3b provided in the lower wall 3g of the cylindrical main body 3. FIG.

更に、脱圧装置1は、図4に示すように、受入室2aに封液rを供給してこの受入室2aの内圧を高圧P1(例えば、5.0〜5.5MPa)にまで昇圧する昇圧工程B1と、受入室2aにガスハイドレートペレットhが投入される充填工程B2と、受入室2a内と低圧雰囲気P2とを連通させて脱圧させる脱圧工程B3と、脱圧された受入室2aよりガスハイドレートを排出する排出工程B4とが、それぞれの受入室2aにおいて同時になされるように構成されている。   Further, as shown in FIG. 4, the depressurization apparatus 1 supplies the sealing liquid r to the receiving chamber 2a to increase the internal pressure of the receiving chamber 2a to a high pressure P1 (for example, 5.0 to 5.5 MPa). Pressurization step B1, filling step B2 in which the gas hydrate pellet h is charged into the receiving chamber 2a, a depressurizing step B3 in which the inside of the receiving chamber 2a and the low-pressure atmosphere P2 are connected and depressurized, and the depressurized receiving The discharge process B4 for discharging the gas hydrate from the chamber 2a is performed at the same time in each receiving chamber 2a.

前記封液rは、貯留タンク21に所定量貯留されており、ガスハイドレートhが低圧雰囲気P2となったときに自己保存効果を発揮すると共に、封液rが低圧雰囲気P2で沸騰しない温度に冷凍機で冷却されている。本実施例においては、封液rとして液化プロパンガス(大気圧で沸点がマイナス42.1℃)を使用しており、マイナス50℃程度に冷却している。なお、液化プロパンガスの他には、前記ガスハイドレートhが自己保存効果を発揮するように冷却された液体プロパン、ヘキサン、ケロシン、もしくはシリコンオイルを使用することができる。これらも冷却媒体としての性能や取扱いのし易さの理由から、液化プロパンガスと同様にガスハイドレートhの封液として好ましい。   The sealing liquid r is stored in a predetermined amount in the storage tank 21 and exhibits a self-preserving effect when the gas hydrate h becomes the low pressure atmosphere P2, and at a temperature at which the sealing liquid r does not boil in the low pressure atmosphere P2. It is cooled by a refrigerator. In the present embodiment, liquefied propane gas (boiling point is minus 42.1 ° C. at atmospheric pressure) is used as the sealing liquid r, and it is cooled to about minus 50 ° C. In addition to liquefied propane gas, liquid propane, hexane, kerosene, or silicon oil cooled so that the gas hydrate h exhibits a self-preserving effect can be used. These are also preferable as a sealing liquid for the gas hydrate h, like the liquefied propane gas, because of the performance as a cooling medium and the ease of handling.

受入室2aの圧力変化について、昇圧工程B1、充填工程B2、脱圧工程B3、排出工程B4の順に説明すると次のようになる。   The pressure change in the receiving chamber 2a will be described as follows in the order of the pressure increasing process B1, the filling process B2, the depressurizing process B3, and the discharging process B4.

昇圧工程B1は、図4および図3中の符号イに示すように、ガスハイドレートhと封液rが排出されて圧力が低圧雰囲気P2となっている収容室2aに、符号ロに示すように封液rを供給して高圧雰囲気P1の圧力にまで昇圧される。また、ガスハイドレートhが封液rによってマイナス50℃程度に冷却される。   As shown by reference symbol (a) in FIGS. 4 and 3, the boosting step B1 is performed as shown by reference symbol (b) in the storage chamber 2a in which the gas hydrate h and the sealing liquid r are discharged and the pressure is low pressure atmosphere P2. The sealing liquid r is supplied to the pressure of the high pressure atmosphere P1. Further, the gas hydrate h is cooled to about minus 50 ° C. by the sealing liquid r.

次に、充填工程B2では、図4および図3中の符号ハに示すように、ガスハイドレートhの投入口3aと受入室2aとが連通し、ホッパー12内のガスハイドレートhが供給管5を介して受入室2aに投入される。ガスハイドレートhの比重が封液rである液化プロパンガスよりも大きいので、そのガスハイドレートhが封液r中を沈降して受入室2aに充填される。   Next, in the filling step B2, as shown by symbol C in FIGS. 4 and 3, the gas hydrate h inlet 3a communicates with the receiving chamber 2a, and the gas hydrate h in the hopper 12 is supplied to the supply pipe. 5 to the receiving chamber 2a. Since the specific gravity of the gas hydrate h is larger than that of the liquefied propane gas as the sealing liquid r, the gas hydrate h settles in the sealing liquid r and fills the receiving chamber 2a.

次いで、脱圧工程B3では、図4および図3中の符号ニに示すように、ガスハイドレートhが充填された受入室2a内と低圧雰囲気(本実施例においては固液分離器15)の圧力P2とを連通する脱圧管9によって、受入室2a内の圧力P1が脱圧され、低圧雰囲気の圧力P2となる。脱圧される際には、ガスハイドレートhに付着していたガスg(生成ガスなど)が放出される。   Next, in the depressurization step B3, as shown by reference numeral D in FIGS. 4 and 3, the inside of the receiving chamber 2a filled with the gas hydrate h and the low-pressure atmosphere (in this embodiment, the solid-liquid separator 15). The pressure P1 in the receiving chamber 2a is released by the decompression pipe 9 communicating with the pressure P2, and becomes the pressure P2 of the low pressure atmosphere. When the pressure is released, the gas g (product gas, etc.) adhering to the gas hydrate h is released.

そして、排出工程B4では、図4および図3中の符号ホに示すように、脱圧された受入室2aよりガスハイドレートhと封液rとを排出管6を介して固液分離器15内へ排出する。排出されたガスハイドレートhと封液rとは、パンチングメタルなどの固液分離手段15aによりそれぞれ分離され、封液rは液溜まり15bよりドレイン27を介して貯留タンク21へ戻され再利用され、ガスハイドレートhは取出し口15cから配管26を介して貯蔵ダンク18などへ移送される。   Then, in the discharge step B4, as shown by the symbol E in FIGS. 4 and 3, the gas hydrate h and the sealing liquid r are removed from the depressurized receiving chamber 2a through the discharge pipe 6 through the solid-liquid separator 15. Drain into. The discharged gas hydrate h and the sealing liquid r are separated by solid-liquid separation means 15a such as punching metal, and the sealing liquid r is returned from the liquid reservoir 15b to the storage tank 21 via the drain 27 and reused. The gas hydrate h is transferred from the outlet 15c to the storage dunk 18 and the like via the pipe 26.

このような一連の工程B1〜B4を繰り返し、高圧雰囲気の圧力P1にあるガスハイドレートhを低圧雰囲気の圧力P2にまで脱圧する処理が連続的に行われる。   Such a series of steps B1 to B4 is repeated, and the process of depressurizing the gas hydrate h at the pressure P1 of the high-pressure atmosphere to the pressure P2 of the low-pressure atmosphere is continuously performed.

本発明により、昇圧工程と充填工程と脱圧工程と排出工程とを同時進行させることがで
きるので、従来のバッチ処理式の脱圧装置より処理速度が向上する。
According to the present invention, the pressurization step, the filling step, the depressurization step, and the discharge step can proceed simultaneously, so that the processing speed is improved as compared with the conventional batch processing type depressurization apparatus.

なお、図2に示されるように、ガスハイドレートペレットhを供給室2a内に効率的に充填するために、シリンダ装置41によって強制的にガスハイドレートペレットhを押し込み機構41aで押し込むようにすることもできる。また、上記実施の形態では、説明の便宜上、回転体2を円柱形状として図示したが、球形状であっても構わない。また、回転体2を電動機等の駆動装置で直接駆動してもよい。   As shown in FIG. 2, in order to efficiently fill the gas hydrate pellets h into the supply chamber 2a, the cylinder device 41 forcibly pushes the gas hydrate pellets h with the pushing mechanism 41a. You can also. Moreover, in the said embodiment, although the rotary body 2 was illustrated in the shape of a cylinder for convenience of explanation, it may be a spherical shape. Moreover, you may drive the rotary body 2 directly with drive devices, such as an electric motor.

1 脱圧装置
2 回転体
2a 受入室(貫通孔)
3 ケーシング
3a 投入口
3b 排出口
3f 上部壁
3g 下部壁
4a 歯車
5 供給管
6 排出管
8 封液供給管
9 脱圧管
h ハイドレート(ペレット)
B1 昇圧工程
B2 充填工程
B3 脱圧工程
B4 排出工程
r 封液
g ガス
P1 高圧
P2 低圧
1 Depressurizing device 2 Rotating body 2a Receiving chamber (through hole)
3 casing 3a inlet 3b outlet 3f upper wall 3g lower wall 4a gear 5 supply pipe 6 discharge pipe 8 sealing liquid supply pipe 9 decompression pipe h hydrate (pellet)
B1 Pressure raising process B2 Filling process B3 Depressurization process B4 Discharge process r Sealing liquid g Gas P1 High pressure P2 Low pressure

Claims (6)

円筒状本体の上部壁に、この円筒状本体の中心より等距離偏位させて高圧雰囲気に連通したガスハイドレートの投入口を、下部壁に前記円筒状本体の中心より等距離偏位し、且つ前記投入口と異なる位置に低圧雰囲気に連通したガスハイドレートの排出口をそれぞれ設け、
前記円筒状本体内に、複数のガスハイドレート受入室を、前記投入口および排出口の偏位に合わせて同心円状に配置した回転体を軸支し、更に、前記回転体は、前記円筒状本体の外部に設けた駆動源により駆動されるように構成されており、
前記円筒状本体は、前記受入室にガスハイドレートが受け入れられる前に、その受入室内に封液を供給する封液供給管を、前記受入室にガスハイドレートが受け入れられた後に、その受入室と低圧雰囲気とを連通させる脱圧管をそれぞれ設けていることを特徴とするガスハイドレートの脱圧装置。
To the upper wall of the cylindrical main body, a gas hydrate inlet that is displaced equidistantly from the center of the cylindrical main body and communicated with the high-pressure atmosphere is deviated equidistantly from the center of the cylindrical main body to the lower wall, In addition, a gas hydrate discharge port communicating with the low-pressure atmosphere is provided at a position different from the input port,
A rotating body in which a plurality of gas hydrate receiving chambers are concentrically arranged in accordance with the displacement of the input port and the discharge port is pivotally supported in the cylindrical main body, and the rotating body has the cylindrical shape. It is configured to be driven by a drive source provided outside the main body,
The cylindrical main body has a sealing liquid supply pipe for supplying a sealing liquid into the receiving chamber before the gas hydrate is received in the receiving chamber, and a receiving chamber after the gas hydrate is received in the receiving chamber. A dehydrating device for gas hydrate, characterized in that a depressurizing pipe is provided for communicating between the gas and the low pressure atmosphere.
前記回転体は、少なくとも4個の受入室が同心円上に均等間隔で配置されていることを特徴とする請求項1記載のガスハイドレートの脱圧装置。   2. The gas hydrate depressurization apparatus according to claim 1, wherein at least four receiving chambers of the rotating body are arranged on a concentric circle at equal intervals. 高圧雰囲気のガスハイドレートを脱圧して低圧雰囲気に移送する脱圧方法であって、
ガスハイドレート受入室に封液を供給する封液充填工程と、この封液充填工程で封液が充填された受入室にガスハイドレートを投入するガスハイドレート供給工程と、この供給工程でガスハイドレートが投入された受入室と前記低圧雰囲気とを連通させて脱圧する脱圧工程と、この脱圧工程により前記低圧雰囲気と略等圧となった受入室からガスハイドレートと封液とを排出する排出工程とを備えることを特徴とするガスハイドレートの脱圧方法。
A depressurization method of depressurizing and transferring a gas hydrate in a high pressure atmosphere to a low pressure atmosphere,
A sealing liquid filling process for supplying a sealing liquid to the gas hydrate receiving chamber, a gas hydrate supplying process for supplying gas hydrate to the receiving chamber filled with the sealing liquid in the sealing liquid filling process, and a gas in this supplying process A depressurization step of depressurizing the receiving chamber into which the hydrate is introduced and the low-pressure atmosphere, and a gas hydrate and a sealing liquid from the receiving chamber that has become substantially equal in pressure to the low-pressure atmosphere by the depressurization step. A method for depressurizing a gas hydrate comprising a discharging step of discharging.
前記高圧雰囲気の圧力が5.0〜5.5MPaであり、前記低圧雰囲気の圧力が0.1〜0.4MPaであることを特徴とする請求項3記載のガスハイドレートの脱圧方法。   4. The method for depressurizing a gas hydrate according to claim 3, wherein the pressure of the high pressure atmosphere is 5.0 to 5.5 MPa, and the pressure of the low pressure atmosphere is 0.1 to 0.4 MPa. 前記封液が、前記ガスハイドレートを構成する原料ガスと同質の液化ガス、液体プロパン、ヘキサン、ケロシン、シリコンオイルの何れかであることを特徴とする請求項3記載のガスハイドレートの脱圧方法。   4. The gas hydrate depressurization according to claim 3, wherein the sealing liquid is one of a liquefied gas, liquid propane, hexane, kerosene, and silicon oil, which is the same as the raw material gas constituting the gas hydrate. Method. 前記ガスハイドレートが圧縮成形された成形体であり、この成形体が球形または円柱形であり、更に、成形体の大きさが20mm〜100mmであることを特徴とする請求項3記載のガスハイドレートの脱圧方法。   The gas hydrate according to claim 3, wherein the gas hydrate is a compression-molded molded body, the molded body is spherical or cylindrical, and the size of the molded body is 20 mm to 100 mm. Rate depressurization method.
JP2009077785A 2009-03-26 2009-03-26 Gas hydrate depressurizer Expired - Fee Related JP5256090B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009077785A JP5256090B2 (en) 2009-03-26 2009-03-26 Gas hydrate depressurizer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009077785A JP5256090B2 (en) 2009-03-26 2009-03-26 Gas hydrate depressurizer

Publications (2)

Publication Number Publication Date
JP2010227810A true JP2010227810A (en) 2010-10-14
JP5256090B2 JP5256090B2 (en) 2013-08-07

Family

ID=43044200

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009077785A Expired - Fee Related JP5256090B2 (en) 2009-03-26 2009-03-26 Gas hydrate depressurizer

Country Status (1)

Country Link
JP (1) JP5256090B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108019219B (en) * 2017-12-29 2023-12-15 中铁第四勘察设计院集团有限公司 Automatic operation system and method for comprehensive tunnel defect treatment

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004066067A (en) * 2002-08-05 2004-03-04 Ishikawajima Inspection & Instrumentation Co Method and apparatus for supplying solid powder to high pressure reactor
JP2007131686A (en) * 2005-11-09 2007-05-31 Chubu Electric Power Co Inc Method for delivering gas hydrate pellet and device for the same
WO2007116456A1 (en) * 2006-03-30 2007-10-18 Mitsui Engineering & Shipbuilding Co., Ltd. Process for producing gas hydrate pellet
JP2007268406A (en) * 2006-03-31 2007-10-18 Mitsui Eng & Shipbuild Co Ltd Depressurization device and apparatus for producing gas hydrate
WO2007122711A1 (en) * 2006-04-20 2007-11-01 Mitsui Engineering & Shipbuilding Co., Ltd. Pressure release device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004066067A (en) * 2002-08-05 2004-03-04 Ishikawajima Inspection & Instrumentation Co Method and apparatus for supplying solid powder to high pressure reactor
JP2007131686A (en) * 2005-11-09 2007-05-31 Chubu Electric Power Co Inc Method for delivering gas hydrate pellet and device for the same
WO2007116456A1 (en) * 2006-03-30 2007-10-18 Mitsui Engineering & Shipbuilding Co., Ltd. Process for producing gas hydrate pellet
JP2007268406A (en) * 2006-03-31 2007-10-18 Mitsui Eng & Shipbuild Co Ltd Depressurization device and apparatus for producing gas hydrate
WO2007122711A1 (en) * 2006-04-20 2007-11-01 Mitsui Engineering & Shipbuilding Co., Ltd. Pressure release device

Also Published As

Publication number Publication date
JP5256090B2 (en) 2013-08-07

Similar Documents

Publication Publication Date Title
JP5153414B2 (en) NGH pellet pressing and dehydration
JP5256090B2 (en) Gas hydrate depressurizer
JP5052386B2 (en) Gas hydrate manufacturing equipment
WO2012132980A1 (en) Method of molding gas hydrate pellet
KR101766402B1 (en) Apparatus for revaporizing gas hydrate pellets
JP2006095438A (en) Fluidized bed type reaction column for gas hydrate slurry
JP4817921B2 (en) Apparatus for separating thin plate portion of gas hydrate molded body
JP2007269952A (en) Method for producing gas hydrate
JP2007269874A (en) Method for transferring gas hydrate
JP4500567B2 (en) Gas hydrate manufacturing method and manufacturing apparatus
JP2010235717A (en) Depressurization device of gas hydrate
JP5284162B2 (en) Gas hydrate manufacturing apparatus and control method thereof
JP2010235893A (en) Depressurization device of gas hydrate
KR101655829B1 (en) Apparatus for Fabricating the Hydrate using a Controlled Atmosphere Gas and Method Fabricating the Hydrate
JP2006199539A (en) Method and apparatus for producing dry ice pellet
US20100089834A1 (en) Method of dewatering gas hydrate and apparatus therefor
JP5302065B2 (en) Gas hydrate pellet forming equipment
KR20170005062A (en) Device for Continuously Feeding Divided Solids to a Pressurised Process or for Continuously Extracting Divided Solids from Said Process
JP2010229294A (en) Depressurization apparatus of gas hydrate and method for the same
JP5528921B2 (en) Gas hydrate adhesion water separator
JP4817777B2 (en) Method and apparatus for transferring natural gas hydrate
JP4507534B2 (en) Method and apparatus for producing natural gas clathrate hydrate
CN203648948U (en) Ultrasonic bottle washing machine
JP2012000541A (en) Gas hydrate pellet molding apparatus and gas hydrate pellet
JP5284157B2 (en) Gas hydrate manufacturing apparatus and control method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110316

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121214

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130108

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130306

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130326

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130422

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160426

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees