JP2010227041A - Cell photoresponse control substrate, cell photoresponse control device, cell photoresponse detecting device, cell photoresponse control method and cell photoresponse detecting method - Google Patents

Cell photoresponse control substrate, cell photoresponse control device, cell photoresponse detecting device, cell photoresponse control method and cell photoresponse detecting method Download PDF

Info

Publication number
JP2010227041A
JP2010227041A JP2009079411A JP2009079411A JP2010227041A JP 2010227041 A JP2010227041 A JP 2010227041A JP 2009079411 A JP2009079411 A JP 2009079411A JP 2009079411 A JP2009079411 A JP 2009079411A JP 2010227041 A JP2010227041 A JP 2010227041A
Authority
JP
Japan
Prior art keywords
cell
light
substrate
transmission path
light transmission
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009079411A
Other languages
Japanese (ja)
Other versions
JP5253263B2 (en
Inventor
Tsuneo Urisu
恒雄 宇理須
Hidetaka Uno
秀隆 宇野
Toshifumi Asano
豪文 浅野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Natural Sciences
Original Assignee
National Institute of Natural Sciences
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Natural Sciences filed Critical National Institute of Natural Sciences
Priority to JP2009079411A priority Critical patent/JP5253263B2/en
Publication of JP2010227041A publication Critical patent/JP2010227041A/en
Application granted granted Critical
Publication of JP5253263B2 publication Critical patent/JP5253263B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a cell photoresponse control substrate having high time resolution and spacial resolution and capable of being miniaturized-highly integrated, a cell photoresponse control device using the substrate, a cell photoresponse control detecting device and the like. <P>SOLUTION: There are provided a photoresponse detecting method of cells, and the like, which method comprises, in a photoresponse detecting device, setting a photosensitive cell at an optically open part of a substrate, irradiating light from the open part side for a light source to the photosensitive cell, and detecting the signal generated by the photosensitive cell. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、細胞光応答制御用基板、細胞光応答制御装置、細胞光応答検出装置、細胞光応答制御方法及び細胞光応答検出方法に関する。   The present invention relates to a cell light response control substrate, a cell light response control device, a cell light response detection device, a cell light response control method, and a cell light response detection method.

さらに詳しくは、本発明は高い時間分解能及び空間分解能を可能とし、装置の小型化を可能とし、高集積化を可能とし、長時間・繰り返しの細胞の光応答を制御・検出可能な、細胞光応答制御用基板、細胞光応答制御装置、細胞光応答検出装置、細胞光応答制御方法及び細胞光応答検出方法に関する。   More specifically, the present invention enables high temporal resolution and spatial resolution, enables downsizing of the apparatus, enables high integration, and controls and detects long-time / repetitive cellular photoresponse. The present invention relates to a response control substrate, a cell light response control device, a cell light response detection device, a cell light response control method, and a cell light response detection method.

細胞が、細胞内や細胞相互においてシグナルの伝達をしていることが明らかとなっており、そのシグナルとしては、ホルモンや電気刺激を例示することができる。   It has been clarified that cells transmit signals within cells and between cells, and examples of such signals include hormones and electrical stimulation.

神経細胞のシグナル伝達においては、電気シグナルである活動電位や神経伝達物質がシグナルとなる。そして、神経細胞の活動電位を外部から制御できることは神経細胞のネットワークの研究に極めて有用である。   In signal transmission of nerve cells, action potentials and neurotransmitters that are electrical signals are signals. The ability to control the action potential of a nerve cell from the outside is extremely useful for studying a network of nerve cells.

従来、神経細胞の外部制御方法としては、例えば神経細胞に電極を挿入し電気信号で励起する方法(下記特許文献1)や光を上部から照射する方法(下記特許文献2)が知られている。しかし、高集積化可能ならびに高い時間および高い空間分解能をもった神経細胞活動電位の外部制御方法は存在しなかった。その他、光感受性を有する細胞について、高い時間分解能及び空間分解能を有し、小型化・高集積化が可能な細胞の光応答の制御・検出方法及び装置は存在しなかった。   Conventionally, as an external control method of a nerve cell, for example, a method of inserting an electrode into a nerve cell and exciting it with an electrical signal (Patent Document 1 below) and a method of irradiating light from above (Patent Document 2) are known. . However, there has been no external control method for neuronal action potential that can be highly integrated and has high time and high spatial resolution. In addition, for cells having photosensitivity, there has been no method and apparatus for controlling and detecting the photoresponse of cells that have high temporal resolution and spatial resolution and can be miniaturized and highly integrated.

特開2004−206830公報 特許文献1の方法は、神経細胞に対して電極を差し込むものであって、時間分解能および空間分解能に問題があった。JP, 2004-206830, A The method of patent documents 1 inserts an electrode to a nerve cell, and had a problem in time resolution and spatial resolution.

特開2006−217866公報 特許文献2の方法は、正立型落射蛍光顕微鏡を使用しているため、基板の上に乗せた細胞の側から光を照射することになる。このとき、細胞に照射する光を収束させるために複数のレンズが必要となり、装置が大型化してしまう問題があった。また、細胞を長時間維持するためには細胞を生理食塩水等の細胞維持溶液に浸す必要がある。この場合、光源から細胞に光が届くまでには、レンズ、細胞維持溶液を保持するケースの上面、細胞維持溶液を通過しなければならない。ゆえに、長時間・繰り返しの細胞応答を測定するには更なる装置の大型化が必要となり、高集積化に問題があった。JP, 2006-217866, A Since the method of patent documents 2 uses an upright epi-illumination fluorescence microscope, light is irradiated from the side of a cell put on a substrate. At this time, a plurality of lenses are required to converge the light applied to the cells, and there is a problem that the apparatus becomes large. In order to maintain the cells for a long time, it is necessary to immerse the cells in a cell maintenance solution such as physiological saline. In this case, in order for light to reach the cells from the light source, the lens, the upper surface of the case holding the cell maintenance solution, and the cell maintenance solution must pass through. Therefore, in order to measure long-time and repeated cell responses, it is necessary to further increase the size of the apparatus, and there is a problem in high integration.

本発明の課題の第一は、光感受性を有する細胞制御・光応答の検出に用いる、時間分解能と空間分解能が高く且つ小型化・高集積化が可能な細胞光応答制御用基板を提供することである。   A first object of the present invention is to provide a cell photoresponse control substrate that has high time resolution and spatial resolution and can be miniaturized and highly integrated, which is used for cell control and photoresponse detection having photosensitivity. It is.

本発明の課題の第二は、該基板を用いて、時間分解能と空間分解能が高く且つ小型化・高集積化が可能な細胞光応答制御装置、細胞光応答検出装置を提供することである。   A second object of the present invention is to provide a cell light response control device and a cell light response detection device that have high time resolution and spatial resolution and can be miniaturized and highly integrated using the substrate.

本発明の課題の第三は、該基板、該装置を用いた細胞光応答制御方法、細胞光応答検出方法を提供することである。   A third object of the present invention is to provide a cell light response control method and a cell light response detection method using the substrate, the apparatus.

(第一発明)
上記課題を解決するための本願第一発明の構成は、光不透過性の材料からなる単層構造の基板に透孔である光透過路を設け、又は前記透孔に光透過性の材料を充填してなる光透過路を設けた細胞光応答制御用基板である。
(First invention)
The structure of the first invention of the present application for solving the above-described problems is that a light transmission path that is a through hole is provided in a single layer structure substrate made of a light impermeable material, or a light transmissive material is provided in the through hole. It is a cell light response control substrate provided with a light transmission path filled.

以上の第一発明において、光透過性の材料を「透孔に充填し」とは、透孔に対して隙間なく(気密に)充填することをいう。この点は以下の発明においても同様である。   In the first invention described above, “filling through holes” with a light-transmitting material means filling with no gaps (airtight) into the through holes. This also applies to the following inventions.

(第二発明)
上記課題を解決するための本願第二発明の構成は、互いに接合された以下の第一層光透過路を有する基板第一層と、第二層光透過路を有する基板第二層とを少なくとも備える複層構造を有し、前記第一層光透過路と第二層光透過路とによって単一の光透過路を構成している細胞光応答制御用基板である。
(Second invention)
The structure of the second invention of the present application for solving the above-described problem is that at least a substrate first layer having the following first layer light transmission path bonded to each other, and a substrate second layer having a second layer light transmission path, at least: The cell light response control substrate has a multilayer structure and includes a single light transmission path formed by the first layer light transmission path and the second layer light transmission path.

(1)光透過性の材料からなり、下記の第二層光透過路に相当する部分が第一層光透過路として規定される基板第一層。   (1) A substrate first layer made of a light-transmitting material and having a portion corresponding to the following second-layer light transmission path defined as a first-layer light transmission path.

(2)光不透過性の材料からなる基板に透孔である第二層光透過路を設け、又は前記透孔に光透過性の材料を充填してなる第二層光透過路を設けた基板第二層。   (2) A second layer light transmission path which is a through hole is provided on a substrate made of a light impermeable material, or a second layer light transmission path which is formed by filling the through hole with a light transmissive material. Substrate second layer.

以上の第二発明において、「第二層光透過路に相当する部分」とは、第二層光透過路の延長部にあたる部分をいう。この点は以下の発明においても同様である。又、第二発明の基板の第一層、第二層に関して、以下の発明で「表面」というときは、第一層あるいは第二層における相互の接合面ではない方の面をいう。   In the second invention described above, the “part corresponding to the second layer light transmission path” refers to a part corresponding to an extension of the second layer light transmission path. This also applies to the following inventions. Moreover, regarding the first layer and the second layer of the substrate of the second invention, the “surface” in the following invention refers to the surface that is not the mutual bonding surface in the first layer or the second layer.

(第三発明)
上記課題を解決するための本願第三発明の構成は、前記第一発明又は第二発明に係る基板が以下のいずれかの構成を備える、細胞光応答制御用基板である。
(Third invention)
The configuration of the third invention of the present application for solving the above problem is a cell light response control substrate, wherein the substrate according to the first invention or the second invention comprises any one of the following configurations.

(1)前記第一発明に記載した単層構造の基板が、その光透過路における第一の表面側の開口部あるいはその周縁部に細胞外マトリックス形成物質を備えている。   (1) The substrate having a single-layer structure described in the first invention includes an extracellular matrix-forming substance at the opening on the first surface side or the peripheral edge thereof in the light transmission path.

(2)前記第二発明に記載した複層構造の基板が、その第一の表面側である第一層光透過路の表面側の開口部あるいはその周縁部に細胞外マトリックス形成物質を備えている。   (2) The multi-layer structure substrate described in the second invention comprises an extracellular matrix forming substance at the opening on the surface side of the first layer light transmission path, which is the first surface side, or at the peripheral edge thereof. Yes.

以上の第三発明において、光透過路の「開口部」とは、透孔である光透過路における物理的な開口部、あるいは、透孔に光透過性の材料を充填してなる光透過路における光学的な開口部をいう。   In the above third invention, the “opening” of the light transmission path is a physical opening in the light transmission path which is a through hole, or a light transmission path formed by filling a light transmitting material into the through hole. The optical aperture in

(第四発明)
上記課題を解決するための本願第四発明の構成は、前記第三発明の(1)に規定する細胞光応答制御用基板が、その光透過路における前記第一の表面側とは反対側の第二の表面側の端部近傍部分が拡径されており、又は、前記第三発明の(2)に規定する細胞光応答制御用基板が、その第二の表面側である第二層光透過路の表面側の端部近傍部分が拡径されている、細胞光応答制御用基板である。
(Fourth invention)
The structure of the fourth invention of the present application for solving the above problem is that the cell light response control substrate defined in (1) of the third invention is on the side opposite to the first surface side in the light transmission path. The second layer light in which the portion near the end on the second surface side is enlarged, or the cell light response control substrate defined in (2) of the third invention is the second surface side This is a cell light response control substrate in which a portion near the end portion on the surface side of the transmission path is enlarged.

(第五発明)
上記課題を解決するための本願第五発明の構成は、前記第一発明〜第四発明のいずれかに係る細胞光応答制御用基板が、それぞれ第一発明に規定する光透過路あるいは第二発明に規定する光透過路を複数有する細胞光応答制御用基板である。
(Fifth invention)
The structure of the fifth invention of the present application for solving the above-described problems is that the cell light response control substrate according to any one of the first invention to the fourth invention is a light transmission path or a second invention respectively defined in the first invention. A cell light response control substrate having a plurality of light transmission paths defined in the above.

(第六発明)
上記課題を解決するための本願第六発明の構成は、第一発明〜第五発明のいずれかに記載した細胞光応制御用基板と、これらの細胞光応制御用基板における光透過路の第二の表面側に位置する光源と、を備えた細胞光応答制御装置である。
(Sixth invention)
The structure of the sixth invention of the present application for solving the above problems is the cell photoresponsive control substrate according to any one of the first invention to the fifth invention, and the light transmission path of the cell photoresponsive control substrate. And a light source located on the second surface side.

(第七発明)
上記課題を解決するための本願第七発明の構成は、前記第六発明に係る細胞光応答制御装置において、光透過路の第一の表面側に溶液を導入できる液溜部を設けた細胞光応答制御装置である。
(Seventh invention)
The structure of the seventh invention of the present application for solving the above problems is the cell light response control device according to the sixth invention, wherein the cell light is provided with a liquid reservoir capable of introducing a solution on the first surface side of the light transmission path. It is a response control device.

(第八発明)
上記課題を解決するための本願第八発明の構成は、第六発明又は第七発明に記載した細胞光応答制御装置を用い、その光透過路の第一の表面側の開口部に光感受性を有する細胞を位置させ、その光透過路の第二の表面側から該光感受性を有する細胞に光を照射する細胞光応答制御方法である。
(Eighth invention)
The structure of the eighth invention of the present application for solving the above-described problems uses the cell light response control device described in the sixth invention or the seventh invention, and provides light sensitivity to the opening on the first surface side of the light transmission path. A cell light response control method of locating cells having light and irradiating the light sensitive cells with light from the second surface side of the light transmission path.

なお、以上の第八発明に関して、光感受性を有する細胞は公知であって、その調製方法は、例えば前記の特許文献2等に記載されている。   In addition, regarding the above 8th invention, the cell which has photosensitivity is well-known, The preparation method is described in the said patent document 2 etc., for example.

(第九発明)
上記課題を解決するための本願第九発明の構成は、前記第八発明に係る細胞光応答制御方法において、前記光感受性を有する細胞にシグナル伝達機能を有する細胞を連結することにより、細胞ネットワークが設けられている細胞光応答制御方法である。
(Ninth Invention)
The configuration of the ninth invention of the present application for solving the above problem is that, in the cell light response control method according to the eighth invention, a cell network is connected by connecting a cell having a signal transmission function to the cell having photosensitivity. This is a cell light response control method provided.

(第十発明)
上記課題を解決するための本願第十発明の構成は、第六発明又は第七発明に記載した細胞光応答制御装置に対して、更に、細胞に接し又は細胞の近傍に位置する細胞光応答検出器を備えてなる細胞光応答検出装置である。
(Tenth invention)
The configuration of the tenth invention of the present application for solving the above-described problem is that the cell photoresponse detection device located in contact with or in the vicinity of the cell is further provided for the cell photoresponse control device described in the sixth invention or the seventh invention. It is a cell light response detection apparatus provided with a vessel.

(第十一発明)
上記課題を解決するための本願第十一発明の構成は、第十発明に記載した細胞光応答検出装置を用い、その光透過路の第一の表面側の開口部に光感受性を有する細胞を位置させ、その光透過路の第二の表面側から該光感受性を有する細胞に光を照射する細胞光応答検出方法である。
(Eleventh invention)
The structure of the eleventh invention of the present application for solving the above-described problems is the use of the cell photoresponse detection device described in the tenth invention, wherein a cell having photosensitivity is provided at the opening on the first surface side of the light transmission path. It is a cell photoresponse detection method of locating and irradiating light having sensitivity to a cell from the second surface side of the light transmission path.

(第十二発明)
上記課題を解決するための本願第十二発明の構成は、前記第十一発明に係る細胞光応答検出方法において、光感受性を有する細胞にシグナル伝達機能を有する細胞を連結することにより、細胞ネットワークが設けられている細胞光応答検出方法である。
(Twelfth invention)
The structure of the twelfth aspect of the present invention for solving the above problem is that, in the cell photoresponse detection method according to the eleventh aspect of the present invention, a cell having a signal transduction function is connected to a cell having photosensitivity. Is a cell photoresponse detection method.

本発明に係る細胞光応答制御用基板は光透過路以外の部位では光を通さない。そして、この光透過路の第一の表面側における開口部(物理的な開口部あるいは光学的な開口部)に光感受性を有する細胞を位置させることで、その光感受性を有する細胞を光によって刺激することができる。上記の開口部を、光の照射対象となる細胞体程度の大きさとすれば、ターゲットとする細胞のみを独立して刺激することができる。更に、開口部を細胞体よりも小さくすれば高い空間分解能を実現できる。光源の光照射を任意の手段により短時間のパルス照射とすることで、高い時間分解能を実現できる。   The cell light response control substrate according to the present invention does not transmit light at portions other than the light transmission path. Then, light sensitive cells are positioned at the opening (physical opening or optical opening) on the first surface side of the light transmission path, and the light sensitive cells are stimulated by light. can do. If the opening is made as large as a cell body to be irradiated with light, only target cells can be stimulated independently. Furthermore, if the opening is made smaller than the cell body, high spatial resolution can be realized. A high temporal resolution can be realized by making light irradiation of the light source a short pulse irradiation by an arbitrary means.

また、本発明の細胞光応答制御用基板は、細胞の固定と照射光の調節の両作用を果たす。前記した特許文献2に記載の光照射方法では、光源から細胞に光が届くまでに、レンズ、細胞維持溶液を保持するケースの上面、細胞維持溶液を通過しなければならないが、本発明によれば細胞光応答制御用基板が照射光を調節するので、レンズを介さずに光源から細胞に光が届く。ゆえに細胞の光応答を扱う装置の小型化が可能とり、高集積化も可能となる。   In addition, the cell light response control substrate of the present invention fulfills both functions of fixing cells and adjusting irradiation light. In the light irradiation method described in Patent Document 2 described above, the lens, the upper surface of the case for holding the cell maintenance solution, and the cell maintenance solution must pass through before the light reaches the cells from the light source. For example, since the cell light response control substrate adjusts the irradiation light, light reaches the cell from the light source without passing through the lens. Therefore, it is possible to reduce the size of the device that handles the light response of cells, and to achieve high integration.

第二発明に係る細胞光応答制御用基板において、第一層の光透過路の形状(ひいては基板の第一の表面側における光透過路開口部の形状)は、第二層の光透過路によって規定される。即ち、第一層における「第二層の光透過路の延長部にあたる部分」が第一層の光透過路となる。   In the cell light response control substrate according to the second invention, the shape of the light transmission path of the first layer (and thus the shape of the light transmission path opening on the first surface side of the substrate) depends on the light transmission path of the second layer. It is prescribed. That is, the “part corresponding to the extension of the light transmission path of the second layer” in the first layer becomes the light transmission path of the first layer.

第二発明に係る細胞光応答制御用基板は、光透過性の材料からなり透孔を有しない第一層と、光不透過性の材料からなり透孔を有する第二層を接合した複層構造である。そのため、光透過路を確保しつつ、基板の一方の表面から他方の表面への液漏れを起こさず、一方の表面側の細胞を覆うように細胞維持溶液を滴下しても、他方の表面側へ液漏れしない。   The cell light response control substrate according to the second invention is a multilayer in which a first layer made of a light-transmitting material and having no through-hole is joined to a second layer made of a light-impermeable material and having a through-hole. It is a structure. Therefore, even if the cell maintenance solution is dropped so as to cover the cells on the one surface side without causing liquid leakage from one surface of the substrate to the other surface while securing the light transmission path, the other surface side No liquid leaks.

第三発明に係る細胞光応答制御用基板によれば、光の照射対象となる細胞体は、細胞外マトリックス形成物質の作用によって第一の表面側の光透過路の開口部に自律的に誘導され定着する。従って、細胞の所定位置への定着のために熟練した操作を要しないし、吸引等の手段を用いたり、光透過路の開口部上に細胞固定用の突起などを設ける必要がない。その結果、光感受性を有する細胞を弱らせたり、その寿命を短くさせたりするようなストレスが負荷されない。ゆえに、細胞の光応答による制御・検出を行うに十分な時間にわたって、細胞の良好な生理状態を維持できるので、信頼性ある制御・検出結果を得ることができる。   According to the cell light response control substrate according to the third invention, the cell body to be irradiated with light is autonomously guided to the opening of the light transmission path on the first surface side by the action of the extracellular matrix forming substance. And fix. Therefore, a skilled operation is not required for fixing the cells at a predetermined position, and it is not necessary to use means such as suction or to provide a cell fixing protrusion on the opening of the light transmission path. As a result, stress that weakens the photosensitive cell or shortens its life is not loaded. Therefore, since the favorable physiological state of the cell can be maintained for a time sufficient for performing control / detection by the light response of the cell, a reliable control / detection result can be obtained.

細胞とほぼ同じ大きさの細胞外マトリックス形成物質を設けると、光の照射対象となる単一の細胞体がすばやく基板上に密着し、高い電気的シール抵抗を容易に達成できる。これにより電気シグナルの検出においてバックグラウンドノイズが低減される。   When an extracellular matrix-forming substance having a size almost the same as that of a cell is provided, a single cell body to be irradiated with light can be brought into close contact with the substrate quickly, and high electrical seal resistance can be easily achieved. This reduces background noise in the detection of electrical signals.

第四発明によれば、第二層光透過路の拡径形状(第一層側へ向かっては縮径する形状)により、細胞への照射光をより小さく絞って調節することができる。また、第二層光透過路の拡径部に照射用の光源を組み込むこともできる。これにより、細胞の光応答を扱う装置のさらなる小型化、高集積化が可能となる。   According to the fourth aspect of the present invention, the light irradiated to the cells can be adjusted by reducing the diameter by the diameter-enlarging shape of the second-layer light transmission path (the shape that reduces the diameter toward the first-layer side). Moreover, the light source for irradiation can also be incorporated in the diameter-expanded part of the second layer light transmission path. As a result, it is possible to further reduce the size and increase the integration of the device that handles the photoresponse of cells.

第五発明によれば、複数の光応答制御系・光応答検出系を単一の細胞光応答制御用基板上に設けることができるので、細胞の光応答を扱う装置の一層の小型化、高集積化が可能となる。さらに、単一の細胞光応答制御用基板上で、同種あるいは異種のそれぞれ独立した複数の光応答制御系・光応答検出系を同時に操作することができる。   According to the fifth invention, since a plurality of photoresponse control systems and photoresponse detection systems can be provided on a single cell photoresponse control substrate, the apparatus for handling the photoresponse of cells can be further reduced in size and heightened. Integration is possible. Furthermore, a plurality of independent optical response control systems and optical response detection systems of the same type or different types can be operated simultaneously on a single cell photoresponse control substrate.

第六発明〜第九発明によれば、好ましい細胞光応答制御装置及び細胞光応答制御方法が提供される。又、第十発明〜第十二発明によれば、好ましい細胞光応答検出装置及び細胞光応答検出方法が提供される。   According to the sixth invention to the ninth invention, preferred cell light response control devices and cell light response control methods are provided. In addition, according to the tenth to twelfth inventions, preferred cell photoresponse detection devices and cell photoresponse detection methods are provided.

これらの内、細胞光応答制御装置や細胞光応答検出装置に第七発明のような液溜部を設けると、基板の第一の表面側に溶液を導入することができる。導入される溶液が生理食塩水等の細胞維持用溶液であれば制御・検出・測定対象となる細胞の良好な生理状態を、光応答による制御・検出・測定に十分な時間にわたって維持することができる。導入される溶液が、細胞に対し、光照射以外の刺激を与える化合物等の溶液であれば、該化合物などが光応答に与える影響を制御、検出、測定する装置が提供される。   Among these, when the cell light response control device or the cell light response detection device is provided with the liquid reservoir as in the seventh invention, the solution can be introduced to the first surface side of the substrate. If the introduced solution is a cell maintenance solution such as physiological saline, the physiological state of the cells to be controlled, detected, and measured can be maintained for a sufficient time for control, detection, and measurement by optical response. it can. If the introduced solution is a solution of a compound or the like that gives a stimulus other than light irradiation to cells, an apparatus for controlling, detecting and measuring the influence of the compound or the like on the light response is provided.

更に、第九発明や第十二発明によれば、ネットワークにおけるシグナル伝達の制御が可能となる。光照射により刺激された光感受性細胞からのシグナル伝達を制御することができる。   Furthermore, according to the ninth and twelfth inventions, signal transmission in the network can be controlled. Signal transmission from photosensitive cells stimulated by light irradiation can be controlled.

特に基板が複数の光透過路を有する場合には、各光透過路の開口部に位置する複数の光感受性細胞によるネットワーク(例えば神経細胞のネットワーク)を形成することができ、かつ、それぞれの光感受性細胞はそれぞれの光源により独立して制御されうる。よって、複数の細胞を同時に光照射することによるシグナル伝達系の制御が可能である。また、時間差を利用して光照射をすることによりシグナル伝達系を制御することも可能である。   In particular, when the substrate has a plurality of light transmission paths, a network of a plurality of photosensitive cells (for example, a network of nerve cells) located at the opening of each light transmission path can be formed, and each light Sensitive cells can be controlled independently by each light source. Therefore, the signal transmission system can be controlled by simultaneously irradiating a plurality of cells with light. It is also possible to control the signal transmission system by irradiating light using a time difference.

時間差を利用して光照射をすることにより、当該時間差がネットワークに及ぼす影響についても検出又は測定可が能である。これらのパターンを組み合わせて、優先されるシグナルの検出又は測定が可能となる。また、シグナル同士の干渉や増幅効果についても検出又は測定可能となる。これにより、光照射のタイミングにより、様々なパターンのネットワーク伝達の検出又は測定が可能となる。   By irradiating light using the time difference, it is possible to detect or measure the influence of the time difference on the network. These patterns can be combined to detect or measure a preferred signal. Moreover, it becomes possible to detect or measure the interference between signals and the amplification effect. This makes it possible to detect or measure various patterns of network transmission depending on the timing of light irradiation.

これらの制御を組み合わせて、伝えたいシグナルを選択することが可能となる。その結果、伝えたいターゲットにシグナルを伝えることが可能となる。これにより、光照射のタイミングにより、様々な制御パターンを実現することが可能である。検出器が測定器であれば、伝達されるシグナルの測定ができる。また、ネットワークの上流から下流に向けて複数の検出器又は測定器を設けた場合、伝達されるシグナルの消滅、減少や増幅を検出又は測定できる。   By combining these controls, it is possible to select a signal to be transmitted. As a result, the signal can be transmitted to the target to be transmitted. Thereby, various control patterns can be realized depending on the timing of light irradiation. If the detector is a measuring device, the transmitted signal can be measured. Further, when a plurality of detectors or measuring devices are provided from the upstream side to the downstream side of the network, it is possible to detect or measure the disappearance, reduction or amplification of the transmitted signal.

更に、液溜部を設けて、細胞に対し光照射以外の刺激を与える化合物等の溶液を導入すると、シグナル伝達細胞や、光感受性を有する細胞等の特定のターゲットに絞って光照射以外の刺激を与えることができる。そのことにより、光以外の刺激がネットワークに与える影響を調べることができる。換言すれば、ネットワークに対してある影響を与える刺激をスクリーニングすることができる。   In addition, when a solution reservoir is provided and a solution such as a compound that gives a stimulus other than light irradiation to a cell is introduced, the stimulus other than light irradiation is focused on a specific target such as a signal transducing cell or a light-sensitive cell. Can be given. As a result, the influence of stimuli other than light on the network can be examined. In other words, it is possible to screen for stimuli that have some influence on the network.

細胞光応答制御用基板を示す。The substrate for cell light response control is shown. 積層構造を有する細胞光応答制御用基板を示す。1 shows a cell light response control substrate having a laminated structure. 細胞外マトリックス形成物質を備える細胞光応答制御用基板を示す。1 shows a cell light response control substrate comprising an extracellular matrix-forming substance. 光透過路における基板の第二の表面側の開口部が拡径された細胞光応答制御用基板を示す。The cell light response control board | substrate with which the opening part of the 2nd surface side of the board | substrate in a light transmission path was expanded is shown. 細胞光応答制御装置を示す。The cell light response control apparatus is shown. 複数の光透過路を有する細胞光応答制御用基板を示し、図6Aはその断面図、図6Bはその基板を第一の表面側から見た図を示す。FIG. 6A is a sectional view of the cell light response control substrate having a plurality of light transmission paths, and FIG. 6B is a view of the substrate as viewed from the first surface side. 液溜部を備えた細胞光応答制御装置を示す。The cell light response control apparatus provided with the liquid reservoir part is shown. 単一の光透過路の第一の表面側の開口部に複数の細胞体を位置させた状態を示す。A state in which a plurality of cell bodies are positioned in the opening on the first surface side of a single light transmission path is shown. 細胞の光応答検出の実施例を示す。The Example of the photoresponse detection of a cell is shown. 細胞ネットワークからの出力を示す。The output from the cell network is shown. 格子状のパターンに印刷した細胞外マトリックス形成物質と神経細胞体を示す。An extracellular matrix-forming substance and a neuronal cell body printed in a lattice pattern are shown.

以下に本発明の実施形態を図面に基づいて説明する。本発明の技術的範囲はこれらの実施形態によって限定されない。   Embodiments of the present invention will be described below with reference to the drawings. The technical scope of the present invention is not limited by these embodiments.

第一発明に係る単層構造の細胞光応答制御用基板の一実施形態を図1に示す。   One embodiment of a single layer structure cell light response control substrate according to the first invention is shown in FIG.

基板P1は光不透過性の材料からなり、透孔である光透過路1aを備えている。この透孔には、光透過性の材料が充填されていても良い。従って、基板P1は光透過路1a以外の部位では光を透過しない。基板P1を構成する光不透過性の材料の種類は限定されないが、例えばシリコン基板、着色ガラス板、着色プラスチック板、セラミックス板等を例示できる。透孔である光透過路1aの形成手段も限定されないが、電子ビーム露光とプラズマエッチングの組み合わせ、収束イオンビーム加工、レーザー加工、光露光とプラズマエッチング等の既知の各種の加工技術を適用できる。光感受性を有する細胞の光刺激のために、この光透過路1aが利用される。   The substrate P1 is made of a light-impermeable material and includes a light transmission path 1a that is a through hole. This through hole may be filled with a light transmissive material. Accordingly, the substrate P1 does not transmit light at portions other than the light transmission path 1a. Although the kind of the light-impermeable material which comprises the board | substrate P1 is not limited, For example, a silicon substrate, a colored glass board, a colored plastic board, a ceramic board etc. can be illustrated. The means for forming the light transmission path 1a which is a through hole is not limited, but various known processing techniques such as a combination of electron beam exposure and plasma etching, focused ion beam processing, laser processing, light exposure and plasma etching, and the like can be applied. The light transmission path 1a is used for light stimulation of cells having photosensitivity.

第二発明に係る複層構造の細胞光応答制御用基板の一実施形態を図2に示す。基板P2は、互いに接合された基板第一層2と基板第二層3とを備える。基板第一層2は光透過性の材料からなり、その構成材料としては、それぞれ透明な、ガラス、プラスチック、酸化シリコン、窒化シリコン、サファイア板等を例示することができる。基板第二層3は光不透過性の材料からなり、その構成材料としてはシリコン基板、着色ガラス板、着色プラスチック板、セラミックス板等を例示することができる。   One embodiment of a substrate for cell light response control having a multilayer structure according to the second invention is shown in FIG. The substrate P2 includes a substrate first layer 2 and a substrate second layer 3 bonded to each other. The substrate first layer 2 is made of a light-transmitting material, and examples of the constituent material thereof include transparent glass, plastic, silicon oxide, silicon nitride, and sapphire plate. The substrate second layer 3 is made of a light-impermeable material, and examples of the constituent material thereof include a silicon substrate, a colored glass plate, a colored plastic plate, and a ceramic plate.

基板P2としては、上記の構成の他にも、基板第二層3としてのシリコン層及び基板第一層2としての酸化シリコン層に加え、基板第一層2の表面側に更に、光を透過する程度の非常に薄い厚みを持つシリコン層を有するSOI基板も例示することができる。   In addition to the above configuration, the substrate P2 transmits light further to the surface side of the substrate first layer 2 in addition to the silicon layer as the substrate second layer 3 and the silicon oxide layer as the substrate first layer 2. An SOI substrate having a silicon layer with such a very thin thickness can also be exemplified.

基板P2は、基板第二層3における第二層光透過路1cと、基板第一層2における第一層光透過路1dからなる光透過路1bを備えている。第二層光透過路1cは基板第二層3に設けた透孔であるが、この透孔には光透過性の材料が充填されていても良い。第一層光透過路1dは、図2において破線で輪郭を示す部分であるが、具体的には透孔等を設けず、上記の第二層光透過路1cの延長部に相当する部分として観念される光学的な光透過路である。   The substrate P2 includes a light transmission path 1b including a second layer light transmission path 1c in the substrate second layer 3 and a first layer light transmission path 1d in the substrate first layer 2. The second layer light transmission path 1c is a through hole provided in the substrate second layer 3, but this through hole may be filled with a light transmissive material. The first-layer light transmission path 1d is a part indicated by a broken line in FIG. 2, but specifically, as a part corresponding to an extension of the second-layer light transmission path 1c without providing a through hole or the like. It is an optical light transmission path that is conceived.

図3には、複層構造の基板P2において、その光透過路1bにおける第一の表面側4の開口部5及びその周縁部に細胞外マトリックス形成物質6を備えている場合を示す。なお、前記した基板P1において、その光透過路1aが透孔である場合には、その開口部5の周縁に細胞外マトリックス形成物質6を設ければよい。   FIG. 3 shows a case where the substrate P2 having a multilayer structure is provided with the extracellular matrix-forming substance 6 at the opening 5 on the first surface side 4 and the peripheral edge thereof in the light transmission path 1b. In the above-described substrate P1, when the light transmission path 1a is a through hole, an extracellular matrix forming substance 6 may be provided on the periphery of the opening 5.

細胞外マトリックス形成物質6としては、ポリリジン、コラーゲン(I型、II型、IV型)、フィブロネクチン、ラミニン、プロテオグリカン(バーシカン、デコリンなど)、プロテオグリカン(アグリカン)、ヒアルロン酸、リンクタンパク質、ラミニン、エンタクチン、コンドロイチン硫酸プロテオグリカン、テネイシン、プロテオグリカン(コンドロイチン硫酸プロテオグリカン、ヘパラン硫酸プロテオグリカン(パールカンなど)、ケラタン硫酸プロテオグリカン、デルマタン硫酸プロテオグリカン)、ヒアルロン酸(グリコサミノグリカンの一種)、テネイシン、エンタクチン、エラスチン、フィブリリン等が例示される。   Examples of the extracellular matrix-forming substance 6 include polylysine, collagen (type I, type II, type IV), fibronectin, laminin, proteoglycan (versican, decorin, etc.), proteoglycan (aggrecan), hyaluronic acid, link protein, laminin, enteractin, Chondroitin sulfate proteoglycan, tenascin, proteoglycan (chondroitin sulfate proteoglycan, heparan sulfate proteoglycan (such as perlecan), keratan sulfate proteoglycan, dermatan sulfate proteoglycan), hyaluronic acid (a type of glycosaminoglycan), tenascin, enteractin, elastin, etc. Is done.

細胞外マトリックス形成物質6は光透過を阻害しない程度の厚さに設けられる。又、細胞外マトリックス形成物質6の設定範囲は、細胞のサイズと同程度あるいは大差のない程度とすることが好ましく、より具体的には定着する細胞の面積の75%以上150%以下の面積であることが好ましい。通常は、10〜30μmサイズの円形または矩形のパターン状に細胞外マトリックス形成物質6を設けるのが好ましい。又、細胞定着時に自然に取る形に予め合わせた形状パターンで細胞外マトリックス形成物質6設定すると、細胞に対するストレスをより低減できて好ましい。細胞外マトリックス形成物質6が、ほぼ細胞体の大きさ程度に設定されると、単一の細胞体を素早く正確に開口部5に位置させることができる。   The extracellular matrix-forming substance 6 is provided in a thickness that does not inhibit light transmission. Further, the setting range of the extracellular matrix-forming substance 6 is preferably set to the same level or not so different from the cell size, and more specifically, the area is 75% or more and 150% or less of the area of the cells to be fixed. Preferably there is. Usually, it is preferable to provide the extracellular matrix forming substance 6 in a circular or rectangular pattern with a size of 10 to 30 μm. In addition, it is preferable to set the extracellular matrix-forming substance 6 in a shape pattern that is preliminarily matched to the shape that is naturally taken at the time of cell colonization because stress on the cells can be further reduced. When the extracellular matrix-forming substance 6 is set to approximately the size of a cell body, a single cell body can be positioned in the opening 5 quickly and accurately.

基板P2の第一の表面側4において、開口部5ではない部位にも細胞外マトリックス形成物質6を設けると、この部位にはシグナル伝達細胞を位置させて、細胞ネットワークを形成しうる基板とすることも可能となる。この場合、例えば、格子状、らせん状等の形状に細胞外マトリックス形成物質6を設けることができる。   When the extracellular matrix-forming substance 6 is provided in a portion that is not the opening 5 on the first surface side 4 of the substrate P2, a signal transducing cell is located in this portion to form a substrate that can form a cell network. It is also possible. In this case, for example, the extracellular matrix forming substance 6 can be provided in a lattice shape, a spiral shape, or the like.

細胞外マトリックス形成物質6は、例えば、燐酸でバッファーされた生理的食塩水に溶かして基板の上に直接塗布し、乾燥させることで基板上に設けることができる。又、好ましくは、ソフトマター(Soft Matter)2007,3,168−177に記載のマイクロコンタクトプリンティング法を利用して印刷法を利用して細胞外マトリックス形成物質を所望の形、量で基板上に配置することができる。この方法は、上記した各種の基板で適用可能である。   The extracellular matrix-forming substance 6 can be provided on the substrate by, for example, dissolving it in a physiological saline buffered with phosphoric acid, applying it directly on the substrate, and drying it. Preferably, the extracellular matrix-forming substance is applied onto the substrate in a desired shape and amount using a printing method using the micro contact printing method described in Soft Matter 2007, 3, 168-177. Can be arranged. This method can be applied to the various substrates described above.

図4には、基板P2の光透過路1bにおける第一の表面側4とは反対側の第二の表面側の開口部8が第一の表面側の開口部5より大きい場合を示す。   FIG. 4 shows a case where the opening 8 on the second surface side opposite to the first surface side 4 in the light transmission path 1b of the substrate P2 is larger than the opening 5 on the first surface side.

図4においては、光透過路1bのうち基板第二層3の部分は透孔であって、かつ第二の表面側に向かって次第に拡径する形状である。この場合、基板第二層3の第二層光透過路1cにおける基板第一層2との境界部7の形状が、基板第一層2における第一層光透過路1dの形状を規定し、ひいては第一の表面側の開口部5の形状を規定している。   In FIG. 4, the portion of the substrate second layer 3 in the light transmission path 1 b is a through hole and has a shape that gradually increases in diameter toward the second surface side. In this case, the shape of the boundary portion 7 between the second layer light transmission path 1c of the substrate second layer 3 and the substrate first layer 2 defines the shape of the first layer light transmission path 1d in the substrate first layer 2, As a result, the shape of the opening 5 on the first surface side is defined.

このような次第に拡径する角錐形状あるいは円錐形状(深さ方向に徐々に孔が小さくなる形状)の孔の形成方法としては、基板第二層3がシリコン基板の場合、ダイアモンドドリルで一定の深さの垂直孔を開けた後、所要部をTMAHエッチングで除去することにより加工できる。TMAHエッチングに代えて、XeF2ガスによるエッチングも同様の加工が可能である。いずれも毎分0.1ミクロン程度あるいはそれ以上の速度のエッチングが可能である。シリコン基板以外の基板を用いた時でも、公知の各種の方法により透孔を設けることができる。例えば、ドリルを用いる方法や、通常の電子ビーム露光も利用でき、更に露光リソグラフィによりパターン形成した後にプラズマエッチングにより透孔を形成してもよい。 As a method of forming such a pyramid-shaped or conical-shaped hole that gradually expands in diameter (a shape in which the hole gradually decreases in the depth direction), when the substrate second layer 3 is a silicon substrate, a diamond drill has a constant depth. After the vertical hole is formed, the required part can be processed by removing it with TMAH etching. In place of TMAH etching, etching using XeF 2 gas can be performed in the same manner. In either case, etching can be performed at a rate of about 0.1 microns or more per minute. Even when a substrate other than the silicon substrate is used, the through holes can be provided by various known methods. For example, a method using a drill or normal electron beam exposure can be used, and further, through-holes may be formed by plasma etching after pattern formation by exposure lithography.

次第に拡径する形状の透孔を形成した場合、透孔に光源を組み込むことで、細胞の光応答を扱う装置を小型化、高集積化できる。   When a through-hole having a gradually expanding diameter is formed, a device that handles the light response of cells can be miniaturized and highly integrated by incorporating a light source into the through-hole.

基板P1あるいは基板P2に上記のような光透過路を複数設けることもできる。一の光透過路に対して一の細胞を定着させ、それぞれの細胞を独立して制御する場合は、それぞれの光透過路の相互間0.1mm程度又はそれ以上の距離を設けることが好ましい。又、光透過路同士を連絡するように細胞外マトリックス形成物質6を設けると、光感受性細胞同士のネットワークを形成しうる基板となる。   A plurality of light transmission paths as described above may be provided on the substrate P1 or the substrate P2. When one cell is fixed with respect to one light transmission path and each cell is controlled independently, it is preferable to provide a distance of about 0.1 mm or more between each light transmission path. Further, when the extracellular matrix forming substance 6 is provided so as to connect the light transmission paths, a substrate capable of forming a network of photosensitive cells is obtained.

図5に、細胞光応答制御装置の具体的な一実施形態を示す。基板P2の第二の表面側の開口部8側に光源9が設けてある。なお、図においてはレンズや光ファイバーは図示していないが、これらは、光源の種類に応じて必要であったり不必要であったりするので,これらも含めて一括して光源と称する。光源9から照射される照射光10(実線の矢印により示す)が光透過路1bを透過し、細胞外マトリックス形成物質6によって定着された細胞体11に照射される。細胞体11の光受容体12は照射光10によって光応答を起こす。   FIG. 5 shows a specific embodiment of the cell light response control apparatus. A light source 9 is provided on the opening 8 side on the second surface side of the substrate P2. Although the lens and the optical fiber are not shown in the drawing, they are necessary or unnecessary depending on the type of the light source, and are collectively referred to as a light source. Irradiation light 10 (indicated by solid arrows) emitted from the light source 9 passes through the light transmission path 1b and is irradiated to the cell body 11 fixed by the extracellular matrix forming substance 6. The photoreceptor 12 of the cell body 11 causes a light response by the irradiation light 10.

このとき、細胞体11や光受容体12によって適切な光波長等が異なるため、細胞体11や光受容体12の特性に応じて種々の光を適宜選択して用いることができる。例えば、青色光受容体を有する細胞体に光を照射する場合は、照射光10は青色光とすることが望ましい。光源については、たとえば光ファイバー出力端を光源としてこれを第二層光透過路1cに埋め込む構成もとることができる。また、レンズ付きの発光ダイオードを光源として第二層光透過路1cに埋め込むことも可能である。   At this time, since an appropriate light wavelength or the like differs depending on the cell body 11 or the photoreceptor 12, various kinds of light can be appropriately selected and used according to the characteristics of the cell body 11 or the photoreceptor 12. For example, when the cell body having a blue light receptor is irradiated with light, the irradiation light 10 is preferably blue light. As for the light source, for example, an optical fiber output end as a light source can be embedded in the second layer light transmission path 1c. It is also possible to embed a light emitting diode with a lens in the second layer light transmission path 1c as a light source.

図示の細胞体11は、光刺激により何らかの応答を示す光応答性の細胞体である。応答の種類は種々考えられ、遺伝子発現、電気シグナルの伝達、あるいはシグナル伝達物質の分泌等が例示される。細胞体11としては、動物細胞、植物細胞、微生物細胞等、種々の細胞体が考えられる。植物細胞や微生物細胞においては、葉緑体等の有色体を有する細胞、光の照射により日長を測定する細胞、光照射によりシグナルを発生する細胞等が好ましい。神経系や神経細胞ネットワークを制御の対象とする場合は、遺伝子導入により光感受性が賦与された神経細胞が好ましい。   The illustrated cell body 11 is a light-responsive cell body that shows some response by light stimulation. There are various types of responses, such as gene expression, electrical signal transmission, or signal transduction substance secretion. As the cell body 11, various cell bodies such as animal cells, plant cells, and microbial cells can be considered. Among plant cells and microbial cells, cells having colored bodies such as chloroplasts, cells that measure day length by light irradiation, cells that generate signals by light irradiation, and the like are preferable. When a nervous system or a nerve cell network is to be controlled, a nerve cell to which photosensitivity is imparted by gene transfer is preferable.

図5に示す細胞光応答制御装置に対して、更に光応答検出器を備えさせると光応答検出装置とすることができる。光応答検出器が光応答測定器であれば、光応答測定装置となる。光応答の検出器は特に限定されない。細胞体11が光感受性を賦与された神経細胞である場合は、MOSトランジスターを利用したMOSダイオードを例示できる。また、MOSダイオードは基板P2(あるいは基板P1)の第一の表面側に設けることができる。シグナル伝達の中間や終点など、必要な箇所に検出器や測定器を設けてもよい。   When the cell light response control device shown in FIG. 5 is further provided with a light response detector, the light response detection device can be obtained. If the optical response detector is an optical response measuring device, it becomes an optical response measuring device. The optical response detector is not particularly limited. When the cell body 11 is a nerve cell imparted with photosensitivity, a MOS diode using a MOS transistor can be exemplified. The MOS diode can be provided on the first surface side of the substrate P2 (or the substrate P1). You may provide a detector and a measuring device in required places, such as the middle and end point of signal transmission.

図6(A)に示すように、基板P2が複数の光透過路1bを有する場合、上記の光応答制御装置、光応答検出装置は、複数の光源又は複数の光応答検出器、光応答の測定器を有していても良い。なお、図6(B)においては、開口部5を示し、細胞外マトリックス形成物質6の図示を省略しているが、複数の開口部5同士を、細胞外マトリックス形成物質6によって例えば格子状に連結すれば、細胞ネットワークの形成が可能となる。   As shown in FIG. 6A, when the substrate P2 has a plurality of light transmission paths 1b, the light response control device and the light response detection device include a plurality of light sources or a plurality of light response detectors, You may have a measuring device. In FIG. 6B, the opening 5 is shown and the extracellular matrix forming material 6 is not shown, but the plurality of openings 5 are formed in, for example, a lattice by the extracellular matrix forming material 6. If connected, a cell network can be formed.

上記光応答制御装置、光応答検出装置、光応答検出装置は、複数の光源又は複数の光応答検出器、光応答の測定器を有していても良い。これらの数は、装置の目的によって異なってくる。複数の光応答の制御や光応答の検出を一の装置でそれぞれ独立に行いたい場合には、制御系又は検出系の数だけ光源と検出器が必要となる。細胞体11からのシグナル伝達を制御又は検出する場合は、そのスタートや中間の光刺激入力部となるべき光透過路に対応した光源を設ければよい。また、シグナル伝達の中間や終点など、必要な箇所に検出器や測定器を設ければよい。   The optical response control device, the optical response detection device, and the optical response detection device may include a plurality of light sources, a plurality of optical response detectors, and an optical response measuring device. These numbers will vary depending on the purpose of the device. When it is desired to control a plurality of light responses and detect light responses independently with one apparatus, light sources and detectors are required as many as the number of control systems or detection systems. When signal transmission from the cell body 11 is controlled or detected, a light source corresponding to the light transmission path to be used as the start or intermediate light stimulus input unit may be provided. In addition, a detector or a measuring device may be provided at a necessary location such as an intermediate or end point of signal transmission.

図7に、液溜部を備えた細胞光応答制御装置の具体的な一実施形態を示す。即ち、基板における光透過路の第一の表面側の開口部の周囲にハウジングである液溜部仕切り壁13を備えることによって、液溜部14を形成することができる。該液溜部14には細胞の制御等の目的に合わせて種々の溶液を導入することができる。導入される溶液が生理食塩水等の細胞維持用溶液であれば、制御・検出対象となる細胞の良好な生理状態を、光応答による制御・検出・測定を行うに十分な時間にわたって維持することができる。導入される溶液が、細胞に対し、光照射以外の刺激を与える化合物等の溶液であれば、該化合物などが光応答に与える影響を制御、検出、測定する装置が提供される。   FIG. 7 shows a specific embodiment of a cell light response control device provided with a liquid reservoir. That is, the liquid reservoir 14 can be formed by providing the liquid reservoir partition wall 13 as a housing around the opening on the first surface side of the light transmission path in the substrate. Various solutions can be introduced into the liquid reservoir 14 in accordance with purposes such as cell control. If the solution to be introduced is a cell maintenance solution such as physiological saline, the good physiological state of the cells to be controlled / detected should be maintained for a sufficient time to perform control / detection / measurement by optical response. Can do. If the introduced solution is a solution of a compound or the like that gives a stimulus other than light irradiation to cells, an apparatus for controlling, detecting and measuring the influence of the compound or the like on the light response is provided.

図8には、基板の第一の表面側の開口部5に複数の細胞体11を位置させた状態を示す。図8において、図示の便宜上、細胞外マトリックス形成物質6を省略しており、基板の第二の表面側に設けられる光源も図示していない。   FIG. 8 shows a state in which a plurality of cell bodies 11 are positioned in the opening 5 on the first surface side of the substrate. In FIG. 8, for the convenience of illustration, the extracellular matrix forming substance 6 is omitted, and the light source provided on the second surface side of the substrate is not shown.

図8の場合、開口部5は細胞体11よりも大きい。細胞外マトリックス形成物質6を利用して複数の細胞体11を単一の開口部5に位置させると、一度の光照射で複数の細胞体を同時に刺激することができる。そして、同時に開始されたそれぞれのシグナル伝達を制御することが可能である。   In the case of FIG. 8, the opening 5 is larger than the cell body 11. When the plurality of cell bodies 11 are positioned in the single opening 5 using the extracellular matrix forming substance 6, the plurality of cell bodies can be stimulated simultaneously by one light irradiation. And it is possible to control each signal transmission started simultaneously.

以下に、本発明の実施例を説明する。   Examples of the present invention will be described below.

(実施例1:光感受性神経細胞)
光感受性神経細胞は、前記の特許文献2の記載に基づいて作成したものであり、神経細胞PC12に光感受性イオンチャンネルであるチャンネルロドプシン2(ChR2)を発現させたものである。
(Example 1: Photosensitive nerve cell)
The photosensitive neuron is prepared based on the description in Patent Document 2 described above, and is obtained by expressing channel rhodopsin 2 (ChR2), which is a photosensitive ion channel, in the neuron PC12.

即ち、PC12細胞にchop-2-Venusコンストラクトを遺伝子導入し、タンパク分子を発現させた。チャンネルロドプシン2タンパク質を発現している細胞をVenusの蛍光により同定した。共焦点顕微鏡で観察するとチャンネルロドプシン2タンパク質は、PC12細胞の表面に限局して分布しており細胞膜選択的に発現していた。   That is, a chop-2-Venus construct was introduced into PC12 cells to express protein molecules. Cells expressing channelrhodopsin 2 protein were identified by Venus fluorescence. When observed with a confocal microscope, channelrhodopsin 2 protein was localized on the surface of PC12 cells and was selectively expressed in the cell membrane.

PC12細胞はニューログロースファクター(NGF)を添加すると神経細胞に分化することが知られている。本実施例では,NGF添加する前に、その培養液(DMEM(Dulbeco's Modified Eagles
Medium + 10% Horse serum + 5% FBS + 1% steptomycin-penicillin solution) に、チャンネルロドプシン2の遺伝子を導入したレンチウイルスを添加し24時間培養後洗浄し培養液を交換後さらに継代培養を繰り返すことにより,ほぼ均一にChR2を発現したPC12とした。NGFを添加しさらに2-3日培養して、ChR2を発現した神経細胞とした。
It is known that PC12 cells are differentiated into nerve cells when neurogrose factor (NGF) is added. In this example, before adding NGF, the culture solution (DMEM (Dulbeco's Modified Eagles
Medium + 10% Horse serum + 5% FBS + 1% steptomycin-penicillin solution) Thus, PC12 expressing ChR2 almost uniformly was obtained. NGF was added and further cultured for 2-3 days to obtain ChR2 expressing neurons.

(実施例2:基板及び装置)
図9は、基板として、基板第二層である第2シリコン層20、基板第一層である酸化シリコン層21及び第1シリコン層22からなるSOI基板23を用いた細胞光応答検出装置の断面図を示す。
(Example 2: Substrate and apparatus)
FIG. 9 is a cross-sectional view of a cell light response detection apparatus using an SOI substrate 23 composed of a second silicon layer 20 as a second substrate, a silicon oxide layer 21 as a first layer, and a first silicon layer 22 as a substrate. The figure is shown.

SOI基板23の光透過路1bは、第2シリコン層20に設けた第二層光透過路1c(第二の表面側に向かって次第に拡径する形状の透孔)と、酸化シリコン層21におけるその相当部分である第一層光透過路1dからなる。SOI基板23には複数の光開口部5を設けている。   The light transmission path 1 b of the SOI substrate 23 includes a second layer light transmission path 1 c provided in the second silicon layer 20 (a through hole having a shape that gradually increases in diameter toward the second surface side) and a silicon oxide layer 21. It consists of the first layer light transmission path 1d which is a corresponding part. The SOI substrate 23 is provided with a plurality of light openings 5.

複数の光開口部5に20〜30μmの径の円形となるように細胞外マトリックス形成物質6を設けると共に、これらの相互間も細胞外マトリックス形成物質6を用いて図11のように格子状パターンに連結した。細胞外マトリックス形成物質6としてはラミニンあるいはコラーゲンIを用い、上記のパターンの形成には、細胞外マトリックス形成物質6を印刷して設けるマイクロコンタクトプリンティング法を利用した。   An extracellular matrix forming material 6 is provided in a plurality of light openings 5 so as to have a circular shape with a diameter of 20 to 30 μm, and a lattice pattern is formed between them using the extracellular matrix forming material 6 as shown in FIG. Connected. Laminin or collagen I was used as the extracellular matrix-forming substance 6, and the microcontact printing method in which the extracellular matrix-forming substance 6 was provided by printing was used to form the above pattern.

図示は省略するが、SOI基板23の第一の表面側に図7に示したような液溜部14を設けて、ChR2を発現したPC12細胞19を含む培養液を導入し、NGFを添加し4日間培養を行なった。PC12細胞19は培養液中を移動していき、細胞外マトリックス形成物質6に定着した。神経細胞であるPC12細胞19は、細胞外マトリックス形成物質6のパターンに沿って、図11のように格子状パターンの交点に定着し、格子の線上に軸索がくるように成長した。   Although not shown, a liquid reservoir 14 as shown in FIG. 7 is provided on the first surface side of the SOI substrate 23, a culture solution containing PC12 cells 19 expressing ChR2 is introduced, and NGF is added. Culture was performed for 4 days. PC12 cells 19 migrated in the culture medium and settled on extracellular matrix-forming substance 6. The PC12 cells 19 which are neurons grew along the pattern of the extracellular matrix-forming substance 6 at the intersections of the lattice pattern as shown in FIG. 11 so that the axon came on the lattice line.

細胞外マトリックス形成物質6であるラミニンあるいはコラーゲンIには予め蛍光色素FITCを標識しておいたので、蛍光顕微鏡により、細胞外マトリックスの印刷パターンを観察することができた。   Since the fluorescent dye FITC was previously labeled on the extracellular matrix-forming substance 6 laminin or collagen I, the printed pattern of the extracellular matrix could be observed with a fluorescence microscope.

(実施例3:細胞体への光照射、光応答の検出)
図9に図示したように、波長475 nmのレーザーダイオード(LD)の光源24でPC12細胞19を照射したところ、図10に示すような出力電流を観測することができた。
(Example 3: Light irradiation to cell body, detection of light response)
As shown in FIG. 9, when the PC12 cell 19 was irradiated with a light source 24 of a laser diode (LD) having a wavelength of 475 nm, an output current as shown in FIG. 10 could be observed.

本実施例の電流観測においては、第一層光透過路1d部に直径1ミクロンほどの孔をあけ、かつ其の部分の細胞膜にナイスタチンを投与して微細な孔をあけ細胞内と基板下部とが同電位となるようにし、基板の上下に電極を配置した、いわゆるホールセルモードとしてチャンネル電流を測定した。   In the current observation of this example, a hole having a diameter of about 1 micron is made in the first layer light transmission path 1d, and nystatin is administered to the cell membrane in that part to make a fine hole, and the inside of the cell and the lower part of the substrate. Were measured at the same potential, and the channel current was measured in a so-called whole cell mode in which electrodes were arranged above and below the substrate.

図10において、電流が下に下がっているところが光照射時を示す。この場合、照射光の強度は3.3mWであり、照射光の照射領域での光束の径は約30μmであって細胞のサイズとほぼ同じ大きさであり、一つの細胞のみを励起することが可能であった。又、図9において図示は省略したが、SOI基板23の第一の表面側には液溜部を設け、該液溜部には細胞維持用溶液として生理食塩水を導入した。   In FIG. 10, the place where the current is lowered indicates the time of light irradiation. In this case, the intensity of the irradiation light is 3.3 mW, the diameter of the light flux in the irradiation area of the irradiation light is about 30 μm, which is almost the same as the cell size, and it is possible to excite only one cell. Met. Although not shown in FIG. 9, a liquid reservoir is provided on the first surface side of the SOI substrate 23, and physiological saline is introduced into the liquid reservoir as a cell maintenance solution.

神経細胞の活動電位を発生させるに必要な光強度の閾値は、光感受性タンパク質の発現量によるが、以下の文献によれば、通常は0.5 W/cm2程度である。 The threshold value of the light intensity necessary for generating the action potential of the nerve cell depends on the expression level of the photosensitive protein, but is usually about 0.5 W / cm 2 according to the following literature.

文献:T. Ishizuka et al, "Kinetic evaluation of
photosensitivity in genetically engineered neurons expressing green algae
light-gated channels" Neuroscience Research, 54 (2006) 85-94)。
Literature: T. Ishizuka et al, "Kinetic evaluation of
photosensitivity in genetically engineered neurons expressing green algae
light-gated channels "Neuroscience Research, 54 (2006) 85-94).

図9の場合では、出力6mW、発信波長475 nmのレーザー光をレンズにより30μmに集光しており、SOI基板23の第一の表面側の酸化シリコン(図示省略)、第1シリコン層22、酸化シリコン層21をそれぞれ、1 μm、1 μm、3 μmとすると、細胞に照射される光の強度は700W/cm2となり、活動電位を発生させるに十分すぎる強度が実現される。レーザー光の場合は、このように光強度に余裕が有るので,光ファイバーの出力端を光透過路の開口部に近づける構成でも十分に活動電位を発生させることが可能である。光透過路の開口部の径は10〜200ミクロンの範囲で自由に採ることができるので、高い集積度で神経細胞を配置しそれぞれ独立に又は同時に光励起できる。又、以下の文献にて報告されるように、ChR2を発現した神経細胞は光刺激により活動電位を発生し、軸索方向にこの電気信号を伝達する。 In the case of FIG. 9, a laser beam having an output of 6 mW and a transmission wavelength of 475 nm is condensed to 30 μm by a lens, and silicon oxide (not shown) on the first surface side of the SOI substrate 23, the first silicon layer 22, When the silicon oxide layer 21 is 1 μm, 1 μm, and 3 μm, respectively, the intensity of light irradiated to the cell is 700 W / cm 2 , and an intensity sufficient to generate an action potential is realized. In the case of laser light, since there is a margin of light intensity in this way, it is possible to generate an action potential sufficiently even when the output end of the optical fiber is brought close to the opening of the light transmission path. Since the diameter of the opening of the light transmission path can be freely selected within a range of 10 to 200 microns, nerve cells can be arranged with a high degree of integration and can be photoexcited independently or simultaneously. Moreover, as reported in the following literature, neurons expressing ChR2 generate action potentials by light stimulation and transmit this electrical signal in the axon direction.

文献:Georg Nagel et al, "Channelrhodopsin-2, a
directly light-gated cation-selective membrane channel", Proceedings of
the National Academy of Sciences of the United States of America, 100 (2003)
13940-13945)。
Literature: Georg Nagel et al, "Channelrhodopsin-2, a
directly light-gated cation-selective membrane channel ", Proceedings of
the National Academy of Sciences of the United States of America, 100 (2003)
13940-13945).

そして、この活動電位については、以下の文献に示すようなMOSトランジスターで検出する方法も可能である。   The action potential can be detected by a MOS transistor as shown in the following document.

文献:Peter Fromherz, Physica E, "Semiconductor
chips with ion channels, nerve cells and brain", 16 (2003) 24-34,など)。活動電位を検出したい細胞の部位をMOSトランジスターのゲート部に設置することにより、電位変化を高感度に検出することができる。
Literature: Peter Fromherz, Physica E, "Semiconductor
chips with ion channels, nerve cells and brain ", 16 (2003) 24-34, etc.) The potential change is detected with high sensitivity by placing the cell part where the action potential is to be detected at the gate of the MOS transistor. be able to.

本実施例は、このような活動電位を発信する発信素子として利用することができる。従来の技術では、このような発信は、電気刺激あるいは、上記論文にあるように顕微鏡観察しながら細胞の上方から光を照射する構成であったため,素子の集積度を高めることが困難であった。このような本実施例の素子は、神経細胞ネットワークそのものの機能解析の他、アルツハイマーなどの神経変性疾患の原因解明や薬品開発に有用である。   The present embodiment can be used as a transmitting element that transmits such an action potential. In the prior art, such transmission is configured to irradiate light from above the cells while observing with a microscope or as described in the above paper, so it was difficult to increase the degree of integration of the elements. . Such an element of the present embodiment is useful for elucidating the cause of neurodegenerative diseases such as Alzheimer and for drug development, in addition to functional analysis of the neural cell network itself.

本発明により、光感受性を有する細胞の制御・光応答の検出に用いる有利な光応答制御用基板が提供される。又、この基板を用いて、時間分解能と空間分解能が高く且つ小型化・高集積化が可能な細胞光応答制御装置、細胞光応答検出装置や、これらの基板、装置を用いた細胞光応答制御又は細胞光応答検出の方法が提供される。   According to the present invention, there is provided an advantageous photoresponse control substrate used for control of cells having photosensitivity and detection of photoresponse. In addition, cell photoresponse control device, cell photoresponse detection device, cell photoresponse control using these substrates and devices, which have high time resolution and spatial resolution and can be miniaturized and highly integrated using this substrate. Alternatively, a method for detecting cell light response is provided.

P1、P2 基板
1 光透過路
2 基板第一層
3 基板第二層
4 基板の第一の表面側
5 開口部
9、24 光源
11 細胞体
14 液溜部
15 シナプス
16、17、18 MOSトランジスター
23 SOI基板
P1, P2 Substrate 1 Light transmission path 2 Substrate first layer 3 Substrate second layer 4 First surface side of substrate 5 Opening 9, 24 Light source 11 Cell body 14 Liquid reservoir 15 Synapse 16, 17, 18 MOS transistor 23 SOI substrate

Claims (12)

光不透過性の材料からなる単層構造の基板に透孔である光透過路を設け、又は前記透孔に光透過性の材料を充填してなる光透過路を設けた細胞光応答制御用基板。 For cell light response control in which a light transmission path that is a through hole is provided on a substrate having a single layer structure made of a light impermeable material, or a light transmission path that is formed by filling the through hole with a light transmission material substrate. 互いに接合された以下の第一層光透過路を有する基板第一層と、第二層光透過路を有する基板第二層とを少なくとも備える複層構造を有し、前記第一層光透過路と第二層光透過路とによって単一の光透過路を構成している細胞光応答制御用基板。
(1)光透過性の材料からなり、下記の第二層光透過路に相当する部分が第一層光透過路として規定される基板第一層。
(2)光不透過性の材料からなる基板に透孔である第二層光透過路を設け、又は前記透孔に光透過性の材料を充填してなる第二層光透過路を設けた基板第二層。
The first layer light transmission path has a multilayer structure including at least a substrate first layer having the following first layer light transmission path bonded to each other and a substrate second layer having a second layer light transmission path. And a second layer light transmission path, a cell light response control substrate constituting a single light transmission path.
(1) A substrate first layer made of a light-transmitting material and having a portion corresponding to the following second-layer light transmission path defined as a first-layer light transmission path.
(2) A second layer light transmission path which is a through hole is provided on a substrate made of a light impermeable material, or a second layer light transmission path which is formed by filling the through hole with a light transmissive material. Substrate second layer.
前記基板が以下のいずれかの構成を備える請求項1又は請求項2に記載の細胞光応答制御用基板。
(1)請求項1に記載した単層構造の基板が、その光透過路における第一の表面側の開口部あるいはその周縁部に細胞外マトリックス形成物質を備えている。
(2)請求項2に記載した複層構造の基板が、その第一の表面側である第一層光透過路の表面側の開口部あるいはその周縁部に細胞外マトリックス形成物質を備えている。
The cell light response control substrate according to claim 1 or 2, wherein the substrate has any of the following configurations.
(1) The substrate having a single layer structure described in claim 1 is provided with an extracellular matrix forming substance at the opening on the first surface side in the light transmission path or at the peripheral edge thereof.
(2) The substrate having a multilayer structure according to claim 2 is provided with an extracellular matrix forming substance in the opening on the surface side of the first layer light transmission path, which is the first surface side, or in the peripheral portion thereof. .
前記(1)に規定する細胞光応答制御用基板が、その光透過路における前記第一の表面側とは反対側の第二の表面側の端部近傍部分が拡径されており、又は、前記(2)に規定する細胞光応答制御用基板が、その第二の表面側である第二層光透過路の表面側の端部近傍部分が拡径されている請求項3に記載の細胞光応答制御用基板。 The cell light response control substrate defined in (1) has an enlarged diameter in the vicinity of the end portion of the second surface side opposite to the first surface side in the light transmission path, or 4. The cell according to claim 3, wherein the cell light response control substrate defined in (2) has a diameter enlarged in the vicinity of the end portion on the surface side of the second layer light transmission path which is the second surface side. Optical response control board. 前記細胞光応答制御用基板が、それぞれ請求項1に規定する光透過路あるいは請求項2に規定する光透過路を複数有する請求項1〜請求項4のいずれかに記載の細胞光応答制御用基板。 The cell light response control substrate according to any one of claims 1 to 4, wherein each of the cell light response control substrates has a plurality of light transmission paths defined in claim 1 or a plurality of light transmission paths defined in claim 2. substrate. 請求項1〜請求項5のいずれかに記載した細胞光応制御用基板と、これらの細胞光応制御用基板における光透過路の第二の表面側に位置する光源と、を備えた細胞光応答制御装置。 Cell light comprising: the cell photoresponsive control substrate according to any one of claims 1 to 5; and a light source positioned on the second surface side of the light transmission path of the cell photoresponsive control substrate. Response control device. 前記細胞光応答制御装置において、光透過路の第一の表面側に溶液を導入できる液溜部を設けた請求項6に記載の細胞光応答制御装置。 The cell light response control device according to claim 6, wherein a liquid reservoir capable of introducing a solution is provided on the first surface side of the light transmission path in the cell light response control device. 請求項6又は請求項7に記載した細胞光応答制御装置を用い、その光透過路の第一の表面側の開口部に光感受性を有する細胞を位置させ、その光透過路の第二の表面側から該光感受性を有する細胞に光を照射する細胞光応答制御方法。 Using the cell light response control device according to claim 6 or 7, a cell having photosensitivity is positioned in the opening on the first surface side of the light transmission path, and the second surface of the light transmission path A cell photoresponse control method for irradiating a cell having photosensitivity from the side. 前記細胞光応答制御方法において、光感受性を有する細胞にシグナル伝達機能を有する細胞を連結することにより、細胞ネットワークが設けられている請求項8に記載の細胞光応答制御方法。 The cell light response control method according to claim 8, wherein in the cell light response control method, a cell network is provided by connecting a cell having a signal transmission function to a cell having photosensitivity. 請求項6又は請求項7に記載した細胞光応答制御装置に対して、更に、細胞に接し又は細胞の近傍に位置する細胞光応答検出器を備えてなる細胞光応答検出装置。 8. A cell photoresponse detection device according to claim 6 or 7, further comprising a cell photoresponse detector in contact with or in the vicinity of the cell. 請求項10に記載した細胞光応答検出装置を用い、その光透過路の第一の表面側の開口部に光感受性を有する細胞を位置させ、その光透過路の第二の表面側から該光感受性を有する細胞に光を照射する細胞光応答検出方法。 Using the cell light response detecting device according to claim 10, cells having photosensitivity are positioned in the opening on the first surface side of the light transmission path, and the light is transmitted from the second surface side of the light transmission path. A cell photoresponse detection method for irradiating sensitive cells with light. 前記細胞光応答検出方法において、光感受性を有する細胞にシグナル伝達機能を有する細胞を連結することにより、細胞ネットワークが設けられている請求項11に記載の細胞光応答検出方法。 12. The cell photoresponse detection method according to claim 11, wherein a cell network is provided by linking cells having a signal transmission function to cells having photosensitivity.
JP2009079411A 2009-03-27 2009-03-27 Cell photoresponse control substrate, cell photoresponse control device, cell photoresponse detection device, cell photoresponse control method, and cell photoresponse detection method Expired - Fee Related JP5253263B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009079411A JP5253263B2 (en) 2009-03-27 2009-03-27 Cell photoresponse control substrate, cell photoresponse control device, cell photoresponse detection device, cell photoresponse control method, and cell photoresponse detection method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009079411A JP5253263B2 (en) 2009-03-27 2009-03-27 Cell photoresponse control substrate, cell photoresponse control device, cell photoresponse detection device, cell photoresponse control method, and cell photoresponse detection method

Publications (2)

Publication Number Publication Date
JP2010227041A true JP2010227041A (en) 2010-10-14
JP5253263B2 JP5253263B2 (en) 2013-07-31

Family

ID=43043591

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009079411A Expired - Fee Related JP5253263B2 (en) 2009-03-27 2009-03-27 Cell photoresponse control substrate, cell photoresponse control device, cell photoresponse detection device, cell photoresponse control method, and cell photoresponse detection method

Country Status (1)

Country Link
JP (1) JP5253263B2 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002055653A1 (en) * 2001-01-09 2002-07-18 Matsushita Electric Industrial Co., Ltd. Device for measuring extracellular potential, method of measuring extracellular potential by using the same and apparatus for quickly screening drug provided therewith
JP2006217866A (en) * 2005-02-10 2006-08-24 Tohoku Univ Neurocyte to which photosensitivity is newly imparted
WO2007116978A1 (en) * 2006-04-06 2007-10-18 Inter-University Research Institute Corporation National Institutes Of Natural Sciences Planar substrate type patch-clamp device for measuring ion channel activity, substrate for fabricating patch-clamp device and method of producing the same
JP2009057363A (en) * 2008-03-31 2009-03-19 Sharp Corp Method for controlling cellular activity and equipment

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002055653A1 (en) * 2001-01-09 2002-07-18 Matsushita Electric Industrial Co., Ltd. Device for measuring extracellular potential, method of measuring extracellular potential by using the same and apparatus for quickly screening drug provided therewith
JP2006217866A (en) * 2005-02-10 2006-08-24 Tohoku Univ Neurocyte to which photosensitivity is newly imparted
WO2007116978A1 (en) * 2006-04-06 2007-10-18 Inter-University Research Institute Corporation National Institutes Of Natural Sciences Planar substrate type patch-clamp device for measuring ion channel activity, substrate for fabricating patch-clamp device and method of producing the same
JP2009057363A (en) * 2008-03-31 2009-03-19 Sharp Corp Method for controlling cellular activity and equipment

Also Published As

Publication number Publication date
JP5253263B2 (en) 2013-07-31

Similar Documents

Publication Publication Date Title
Homma et al. Wide-field and two-photon imaging of brain activity with voltage and calcium-sensitive dyes
Werley et al. Ultrawidefield microscope for high-speed fluorescence imaging and targeted optogenetic stimulation
Lugo et al. Remote switching of cellular activity and cell signaling using light in conjunction with quantum dots
Grossman et al. Multi-site optical excitation using ChR2 and micro-LED array
Entcheva et al. Fluorescence imaging of electrical activity in cardiac cells using an all-solid-state system
Díez‐García et al. Activation of cerebellar parallel fibers monitored in transgenic mice expressing a fluorescent Ca2+ indicator protein
Welkenhuysen et al. An integrated multi-electrode-optrode array for in vitro optogenetics
TWI558811B (en) A planar patch clamp device, an electrode portion for the device, and a cell ion channel current measurement method
US10997871B2 (en) Contractile function measuring devices, systems, and methods of use thereof
Lee et al. A MEMS ultrasound stimulation system for modulation of neural circuits with high spatial resolution in vitro
WO2012002515A1 (en) Particle fixing structure and particle analysis device
Fendler et al. Microscaffolds by Direct Laser Writing for Neurite Guidance Leading to Tailor‐Made Neuronal Networks
Yakushenko et al. On-chip optical stimulation and electrical recording from cells
Wu et al. A modified miniscope system for simultaneous electrophysiology and calcium imaging in vivo
JP2004081085A (en) Microchamber for neurocyte culture
JP5253263B2 (en) Cell photoresponse control substrate, cell photoresponse control device, cell photoresponse detection device, cell photoresponse control method, and cell photoresponse detection method
EP3853606B1 (en) Microfluidic device and methods for using said device
US11268906B2 (en) Microscope and method for observing biological specimen in living state
US7521255B2 (en) Method and device for controlling the positioning of a biological element on a support
Li et al. Improve the spatial resolution of fiber photometry by μLED linear array for fluorescence detection
Taal et al. Optogenetic stimulation probes with single-neuron resolution based on organic LEDs monolithically integrated on CMOS
Venkataramani et al. Semiconductor ultra-violet light-emitting diodes for flash photolysis
Kielar et al. Optogenetic Stimulation and Spatial Localization of Neurons Using a Multi-OLED Approach
Assad et al. Brain function: novel technologies driving novel understanding
Kaspar et al. Biohybrid Photonic Platform for Subcellular Stimulation and Readout of In Vitro Neurons

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120131

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121012

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121016

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121211

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130409

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130416

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160426

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees