JP2010224653A - Fluid analysis method, fluid analysis apparatus, and fluid analysis program - Google Patents
Fluid analysis method, fluid analysis apparatus, and fluid analysis program Download PDFInfo
- Publication number
- JP2010224653A JP2010224653A JP2009068504A JP2009068504A JP2010224653A JP 2010224653 A JP2010224653 A JP 2010224653A JP 2009068504 A JP2009068504 A JP 2009068504A JP 2009068504 A JP2009068504 A JP 2009068504A JP 2010224653 A JP2010224653 A JP 2010224653A
- Authority
- JP
- Japan
- Prior art keywords
- porous body
- fluid
- fluid analysis
- lattice
- virtual
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000004458 analytical method Methods 0.000 title claims abstract description 94
- 239000012530 fluid Substances 0.000 title claims abstract description 93
- 239000002245 particle Substances 0.000 claims abstract description 90
- 238000000034 method Methods 0.000 claims abstract description 80
- 238000013519 translation Methods 0.000 claims abstract description 30
- 238000005315 distribution function Methods 0.000 claims abstract description 22
- 238000004364 calculation method Methods 0.000 claims description 43
- 238000012545 processing Methods 0.000 claims description 16
- 238000002834 transmittance Methods 0.000 claims description 16
- 230000035699 permeability Effects 0.000 claims description 3
- 210000001124 body fluid Anatomy 0.000 claims 1
- 239000010839 body fluid Substances 0.000 claims 1
- 238000009826 distribution Methods 0.000 abstract description 36
- 230000005540 biological transmission Effects 0.000 abstract 1
- 230000014509 gene expression Effects 0.000 description 10
- 230000006870 function Effects 0.000 description 9
- 238000012790 confirmation Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000005094 computer simulation Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000009795 derivation Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 238000005206 flow analysis Methods 0.000 description 1
- 230000010365 information processing Effects 0.000 description 1
- 230000000149 penetrating effect Effects 0.000 description 1
- 239000012466 permeate Substances 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 238000004088 simulation Methods 0.000 description 1
Images
Landscapes
- Management, Administration, Business Operations System, And Electronic Commerce (AREA)
- Filtering Of Dispersed Particles In Gases (AREA)
Abstract
Description
本発明は、格子ボルツマン法を用いた流体解析方法、装置、プログラムに関する。 The present invention relates to a fluid analysis method, apparatus, and program using a lattice Boltzmann method.
流体解析の手法の一つとして格子ボルツマン法が知られている。格子ボルツマン法を用いた流体解析においては、まず、コンピュータ等の情報処理装置において格子によって区画された計算空間を作成する。次に、格子上を動き回る仮想的な粒子である仮想流体粒子を導入し、格子点における仮想流体粒子の分布(粒子の数)の変化を求めることにより流体解析を行う。 The lattice Boltzmann method is known as one of the fluid analysis methods. In fluid analysis using the lattice Boltzmann method, first, a calculation space partitioned by a lattice is created in an information processing apparatus such as a computer. Next, virtual fluid particles, which are virtual particles moving around on the lattice, are introduced, and fluid analysis is performed by obtaining a change in the distribution (number of particles) of the virtual fluid particles at the lattice points.
仮想流体粒子の分布の変化を求める上で、仮想流体粒子の挙動について並進過程(格子点から他の格子点に移動する過程)と衝突過程(仮想流体粒子同士が衝突する過程)の2つの過程を導入し、仮想流体粒子は並進過程と衝突過程を繰り返すと仮定する。更に、時間刻み(タイムステップ)δtを予め定め、並進過程において、時間刻みδtごとに仮想流体粒子は必ず格子点上に存在し、格子線の途中でとどまることはできないものと仮定する。また、衝突は瞬時に行われ、かつ格子点上でのみ起こるものと仮定する。 In determining the distribution of virtual fluid particles, there are two processes for the behavior of virtual fluid particles: a translation process (a process that moves from one lattice point to another) and a collision process (a process in which virtual fluid particles collide with each other). Suppose that the virtual fluid particle repeats the translation process and the collision process. Further, it is assumed that the time step (time step) δ t is determined in advance, and in the translation process, the virtual fluid particles always exist on the lattice points for each time step δ t and cannot stay in the middle of the lattice line. Also assume that the collision occurs instantaneously and occurs only on the grid points.
さらに、並進過程と衝突過程における仮想流体粒子の分布を示す離散速度分布関数をそれぞれ定める。この離散速度分布関数を用いて、ある格子点について、並進過程における仮想流体粒子の分布と衝突過程における仮想流体粒子の分布を時間刻みδtごとに算出する。この演算を定められた範囲の格子点(例えば全格子点)について行い、仮想流体粒子の分布の変化を算出することにより流体解析を行っている。 Furthermore, a discrete velocity distribution function indicating the distribution of virtual fluid particles in the translation process and the collision process is defined. Using this discrete velocity distribution function, for a certain lattice point is calculated for each distribution time increment [delta] t of the virtual fluid particles in the distribution and collision process virtual fluid particles in translation process. This calculation is performed for a predetermined range of lattice points (for example, all lattice points), and fluid analysis is performed by calculating a change in the distribution of virtual fluid particles.
この流体解析において、フィルタ等の多孔体を含む流路について流体解析を行う場合がある。この場合、図10に示すように計算空間上に多孔体1が配置される。従来技術においては、多孔体1と重なる格子点と多孔体1とは重ならない格子点とで衝突過程の離散速度分布関数を異ならせることにより、多孔体1を含む流路の流体解析を行っている。
In this fluid analysis, fluid analysis may be performed on a flow path including a porous body such as a filter. In this case, the
すなわち、多孔体1の内部にある流体の挙動はブリンクマン方程式に従うことが知られている。一方、多孔体1の外部の流体の挙動はナビエ=ストークス方程式に従うことが知られている。そこで、非特許文献1においては、多孔体1と重なっている格子点における衝突過程ではブリンクマン方程式に従うように離散速度分布関数のパラメータを定め、他方、多孔体1と重なっていない格子点についてはナビエ=ストークス方程式に従うように離散速度分布関数のパラメータを定めることにより流体解析を行っている。
That is, it is known that the behavior of the fluid inside the
格子点間隔を広く取った場合、多孔体1と重なる格子点が少なくなり、多孔体1の影響が正確に反映されない状態で解析が行われる可能性が生じる。例えば、図11に示す様に、多孔体1は流路を遮るように配置されているにも関わらず、流入側(図11では左側)から流出側(右側)に移動する間に多孔体1と重なる格子点を経由しない経路2、つまり、計算上は多孔体1に遮られない経路2が生ずる可能性がある。このような状態で解析を行うと、実際の流路との差が大きい解析結果が出力されることになる。一方、格子点間隔を狭く設定し、多孔体1と重なり合う格子点の数を多くすると、計算の負荷が大きくなるという別の問題が生ずる。
When the lattice point interval is wide, the number of lattice points overlapping the
そこで、本発明は、格子点間隔を広げても誤差の小さい解析結果を得ることのできる流体解析を行うことを目的とする。 Therefore, an object of the present invention is to perform a fluid analysis that can obtain an analysis result with a small error even if the lattice point interval is widened.
本発明は、計算処理空間に複数の格子点を設け、前記格子点における仮想流体粒子の挙動を求める格子ボルツマン法を用いて、多孔体が配置された流路の流体解析を行う流体解析方法であって、前記多孔体に隣接する前記格子点上において、前記格子ボルツマン法における並進過程時の離散速度分布関数として、前記仮想流体粒子が前記多孔体に反射される反射率または前記仮想流体粒子が前記多孔体を透過する透過率を含んだ関数を用いることにより流体解析を行うことを特徴とする。 The present invention provides a fluid analysis method in which a plurality of lattice points are provided in a calculation processing space, and a fluid analysis of a flow path in which a porous body is disposed is performed using a lattice Boltzmann method for obtaining the behavior of virtual fluid particles at the lattice points. And, on the lattice point adjacent to the porous body, as a discrete velocity distribution function during the translation process in the lattice Boltzmann method, the reflectance of the virtual fluid particle reflected by the porous body or the virtual fluid particle is Fluid analysis is performed by using a function including a transmittance that permeates the porous body.
また、本発明は、前記反射率または前記透過率を、前記多孔体の浸透係数を用いて算出することを特徴とする。 Further, the present invention is characterized in that the reflectance or the transmittance is calculated using a permeability coefficient of the porous body.
また、本発明は、κを前記浸透係数、dを前記多孔体の厚さ、δxを前記複数の格子点の間隔、Rを前記反射率(0<R<1)、1−Rを前記透過率、νを動粘性係数、csを前記仮想流体粒子の音速とした時に、以下の数式
に基づいて前記反射率または前記透過率を算出することを特徴とする。
In the present invention, κ is the permeation coefficient, d is the thickness of the porous body, δ x is the interval between the plurality of lattice points, R is the reflectance (0 <R <1), and 1-R is the When the transmittance, ν is the kinematic viscosity coefficient, and c s is the speed of sound of the virtual fluid particle,
The reflectance or the transmittance is calculated based on the above.
また、本発明は、請求項3記載の流体解析方法であって、前記多孔体はガスフィルタのフィルタ壁であり、前記ガスフィルタ中の排出ガス流路の流体解析を行うことを特徴とする。
The present invention is the fluid analysis method according to
さらに、本発明は、計算処理空間に複数の格子点を設け、前記格子点における仮想流体粒子の挙動を求める格子ボルツマン法を用いて、多孔体が配置された流路の流体解析を行う演算部を備えた流体解析装置であって、前記演算部は、前記多孔体に隣接する前記格子点上において、前記格子ボルツマン法における並進過程時の離散速度分布関数として、前記仮想流体粒子が前記多孔体に反射される反射率または前記仮想流体粒子が前記多孔体を透過する透過率を含んだ関数を用いて流体解析を行うことを特徴とする。 Furthermore, the present invention provides a calculation unit that provides a plurality of lattice points in a calculation processing space and performs fluid analysis of a flow path in which a porous body is disposed using a lattice Boltzmann method for obtaining the behavior of virtual fluid particles at the lattice points. The calculation unit is configured so that the virtual fluid particles are converted into the porous body as discrete velocity distribution functions during a translation process in the lattice Boltzmann method on the lattice points adjacent to the porous body. The fluid analysis is performed using a function including a reflectance reflected by the light source or a transmittance through which the virtual fluid particles pass through the porous body.
さらに、本発明は、計算処理空間に複数の格子点を設け、前記格子点における仮想流体粒子の挙動を求める格子ボルツマン法を用いて、多孔体が配置された流路の流体解析を行う流体解析装置に流体解析を実行させるプログラムであって、前記流体解析装置に、前記多孔体に隣接する前記格子点上において、前記格子ボルツマン法における並進過程時の離散速度分布関数として、前記仮想流体粒子が前記多孔体に反射される反射率と、前記仮想流体粒子が前記多孔体を透過する透過率とを含んだ関数を用いて流体解析を行わせることを特徴とする。 Furthermore, the present invention provides a fluid analysis in which a plurality of lattice points are provided in a calculation processing space, and a fluid analysis of a flow path in which a porous body is arranged is performed using a lattice Boltzmann method for obtaining the behavior of virtual fluid particles at the lattice points. A program for causing a device to perform fluid analysis, wherein the virtual fluid particle is transmitted to the fluid analysis device as a discrete velocity distribution function during a translation process in the lattice Boltzmann method on the lattice points adjacent to the porous body. The fluid analysis is performed using a function including a reflectance reflected by the porous body and a transmittance through which the virtual fluid particles pass through the porous body.
本発明によれば、多孔体に隣接する格子点で仮想流体粒子の挙動を算出する際、仮想流体粒子が多孔体に撥ね返される反射率または多孔体を透過する透過率を含んだ離散速度分布関数を用いる。これにより、格子点間隔を拡大した状態でも誤差の少ない流体解析結果を得ることが可能となる。 According to the present invention, when calculating the behavior of a virtual fluid particle at a lattice point adjacent to the porous body, a discrete velocity distribution including a reflectance at which the virtual fluid particle is repelled by the porous body or a transmittance through the porous body. Use a function. As a result, it is possible to obtain a fluid analysis result with less error even when the lattice point interval is enlarged.
本発明の実施の形態における流体解析装置の構成を図1に示す。流体解析装置は、図1に示すように、演算部3、入力部4、表示部5及び記憶部6を含んで構成される。
FIG. 1 shows the configuration of a fluid analysis apparatus according to an embodiment of the present invention. As shown in FIG. 1, the fluid analysis device includes a
演算部3は、いわゆるCPUであり、記憶部6に予め記憶させてある流体解析プログラムを実行することによって後述する流体解析処理を行う。入力部4は、キーボード等の入力手段を含んで構成され、流体解析処理の対象となる多孔体1の大きさ、配置及び特性、計算空間の格子点の設定、全格子点の仮想流体粒子分布(各仮想流体粒子の離散速度分布関数fi(x、0))、境界条件、演算時間の刻み、終了時刻等の入力をユーザから受け付ける。入力された情報は記憶部6に格納及び保持される。表示部5は、ディスプレイやプリンタ等の情報出力手段を含んで構成され、流体解析処理の対象となる計算空間、設定されたパラメータ、処理経過及び処理結果等の情報を表示出力する。記憶部6は、半導体メモリやハードディスク等の記憶手段を含んで構成され、流体解析プログラム、流体解析処理のために設定された情報、解析処理での演算結果等を格納及び保持する。記憶部6は、演算部3から適宜アクセス可能である。
The
次に、演算部3が行う流体解析処理について説明する。本発明では従来の格子ボルツマン法における多孔体1での流体粒子の挙動を求める演算過程の一部を新たな演算過程に代えて流体解析を行う。
Next, the fluid analysis process performed by the
格子ボルツマン法の説明にあたり、まず衝突過程から説明する。ここで、従来の衝突過程では、多孔体1と重なる格子点における流体の解析にはブリンクマン方程式を適用し、多孔体1と重ならない格子点における流体の解析にはナビエ=ストークス方程式を適用したが、後述するように本発明においては多孔体1に格子点を重ねなくても流体解析を行うことができ、ナビエ=ストークス方程式を適用するだけで解析が可能である。そのため、本実施形態においては図2に示すように格子点間隔を多孔体1の幅よりも大きく取って多孔体1と重なる格子点が無い様に多孔体1を配置している。以下に、多孔体1とは重ならない格子点に対してナビエ=ストークス方程式が適用される衝突過程について説明する。
In describing the lattice Boltzmann method, the collision process will be described first. Here, in the conventional collision process, the Brinkman equation is applied to the analysis of the fluid at the lattice point that overlaps the
時刻tにおいて、位置ベクトルxで示される格子点上に存在する仮想流体粒子のうち、格子点間の移動を表すベクトルである離散速度ベクトルがeiである仮想流体粒子の分布を表す離散速度分布関数gi(x,t)は、下記数式1によって表される。
At time t, of the virtual fluid particles present on the lattice points represented by the position vector x, the discrete velocity distribution represents the distribution of virtual fluid particle discrete velocity vector is a vector representing the movement between the lattice points is e i The function g i (x, t) is expressed by
ここで、右辺のfi(x、t)は衝突過程の前の並進過程における仮想流体粒子の分布を示している。また、離散速度ベクトルeiの接尾辞(サフィックス)iは、三次元の流体解析における粒子が移動可能な方向を示す。例えば、各格子点に静止及び14方向へ移動可能な場合には、下記数式2で示されるように、0から14までの値を採る。
Here, f i (x, t) on the right side indicates the distribution of virtual fluid particles in the translation process before the collision process. A suffix i of the discrete velocity vector e i indicates a direction in which particles can move in the three-dimensional fluid analysis. For example, when each grid point is stationary and movable in 14 directions, values from 0 to 14 are taken as shown in the following
また、τは単一時間緩和係数と呼ばれる無次元の係数であり、τδt[sec]は仮想流体粒子が平衡状態に達するまでの時間を表す。単一時間緩和係数τは0.5<τ<∞の範囲で任意の値を設定することができる。また、fi (eq)(x、t)はある空間領域において平衡状態に達したときの仮想流体粒子の分布関数である。つまり、数式1は仮想流体粒子が衝突するたびに仮想流体粒子の分布が平衡状態に向かうことを表している。
Further, τ is a dimensionless coefficient called a single time relaxation coefficient, and τδ t [sec] represents a time until the virtual fluid particle reaches an equilibrium state. The single time relaxation coefficient τ can be set to an arbitrary value in the range of 0.5 <τ <∞. F i (eq) (x, t) is a distribution function of virtual fluid particles when an equilibrium state is reached in a certain spatial region. That is,
ここで、fi (eq)(x、t)について説明する。前述したとおり、多孔体1と重なっていない格子点においては、仮想流体粒子の挙動はナビエ=ストークス方程式に従う。ナビエ=ストークス方程式に従うように種々のパラメータを定めると、fi (eq)(x、t)は下記数式3のようになる。
Here, f i (eq) (x, t) will be described. As described above, the behavior of the virtual fluid particle follows the Navier-Stokes equation at the lattice point that does not overlap the
ここで、wiは重み係数を表し、接尾辞iによって下記数式4のような値をとる。
Here, w i represents a weighting coefficient, and takes a value as shown in the following
また、pは圧力であり、uは流速ベクトルを表す。ここで、数式3について、重み係数wi、最小速さc、および離散速度ベクトルeiは予め与えられているから、fi(eq)(x、t)は圧力pと流速ベクトルuを求めることにより導出される。圧力pと流速ベクトルuはそれぞれ数式5、6のように求めることができる。
Moreover, p is a pressure and u represents a flow velocity vector. Here, since the weighting coefficient wi, the minimum speed c, and the discrete speed vector ei are given in advance in
つまり、圧力pおよび流速ベクトルuは、衝突過程の前の並進過程における仮想流体粒子の分布から導くことができる。そこで、並進過程における離散速度分布関数について、以下に説明する。 That is, the pressure p and the flow velocity vector u can be derived from the distribution of the virtual fluid particles in the translation process before the collision process. Therefore, the discrete velocity distribution function in the translation process will be described below.
本発明においては、並進過程において、多孔体1に隣接した格子点と多孔体1に隣接していない格子点とで離散速度分布関数の適用条件を変えている。これにより、仮想流体粒子が多孔体1に撥ね返され、または多孔体1を透過する過程を演算に反映させている。ここで、多孔体1に隣接する格子点とは、多孔体1と重なる格子線の両端にある格子点を指す。
In the present invention, in the translation process, the application conditions of the discrete velocity distribution function are changed between the lattice points adjacent to the
まず、多孔体1に隣接していない格子点について、並進過程における離散速度分布関数fi(x,t)について以下の数式7が適用される。
First, the following
ここで、右辺は並進過程の前の衝突過程における仮想流体粒子の分布を示している。 Here, the right side shows the distribution of the virtual fluid particles in the collision process before the translation process.
一方、多孔体1に隣接する格子点の並進過程における離散速度分布関数fi(x,t)は、離散速度ベクトルeiに応じて場合分けされる。この場合分けを図3を使って説明する。格子点xは多孔体1に隣接している。この場合において、xとx−e1との間、xとx−e2との間、xとx−e3との間の様に、格子点x−eiとxとの間に多孔体1が存在しないときには前述の数式7が適用される。一方、格子点xとx−e4との間のように、格子点x−eiとxとの間に多孔体1が存在するとき、下記の数式8が適用される。
On the other hand, the discrete velocity distribution function f i (x, t) in the translation process of the lattice points adjacent to the
ここで、右辺のgi(x,t)およびgi(x−ei,t)はともに並進過程の前の衝突過程における仮想流体粒子の分布を示している。また、f、gの接尾辞のうち、−iはiとは反対方向に進む仮想流体粒子を表す。また、Rは反射率(0<R<1)であり、仮想流体粒子が多孔体1に撥ね返される比率を示している。一方、(1−R)は透過率であり、仮流流体粒子が多孔体1を通過する比率を示している。
Here, both g i (x, t) and g i (x−e i , t) on the right side indicate the distribution of virtual fluid particles in the collision process before the translation process. Of the suffixes f and g, -i represents a virtual fluid particle traveling in the opposite direction to i. R is a reflectance (0 <R <1), and indicates a ratio at which the virtual fluid particles are repelled by the
ここで、数式8について、図4を用いて説明する。数式8の1番目の式において、右辺第1項は格子点xにいた仮想流体粒子のうち、隣の格子点に移動する際に多孔体1に撥ね返されて元の格子点xに戻った仮想流体粒子を表し、右辺第2項は多孔体1を挟んで格子点xの隣の格子点にいた仮想流体粒子のうち、多孔体1を通り抜けて格子点xに移動した仮想流体粒子を表している。
Here,
このように、本発明では多孔体1に隣接する格子点上の並進過程について、反射率または透過率を含んだ離散速度分布関数を用いることにより、多孔体1を含む流路の流体解析を正確に行うことができる。前述した図11を例に取ると、反射率または透過率を含んだ離散速度分布関数が適用される格子点を経由せずに流入側から流出側に移動できる経路は採り得ない。このように格子点間隔を広く取っても、流れを遮るように多孔体1が配置された流路の構造を正確に反映した状態で解析を行うことができる。
Thus, in the present invention, the fluid flow analysis including the
さらに、本発明では多孔体1に隣接する格子点に対して反射率または透過率を含んだ離散速度分布関数が適用されることから、仮想流体粒子が多孔体1に反射されまたは多孔体1を透過する過程を演算に含めるために格子点を多孔体1に重ねなくても流体解析を行うことができる。したがって、前述した図2のように多孔体1に重なる格子点が無い様に多孔体1を配置し、ナビエ=ストークス方程式のみを用いて流体解析を行うことができる。従来技術においてはナビエ=ストークス方程式に加えて多孔体1に重なる格子点についてブリンクマン方程式を用いていたが、本発明ではブリンクマン方程式を適用しなくても流体解析が行えるから従来技術に比べて解析手法が簡潔になる。なお、多孔体1の形状や多孔体1の配置の都合上、多孔体1と重なる格子点が存在する場合には、その格子点についてはブリンクマン方程式が適用される。
Furthermore, in the present invention, the discrete velocity distribution function including the reflectance or transmittance is applied to the lattice points adjacent to the
次に、数式8における反射率Rの導出について説明する。本発明者らは下記の数式9にもとづいて反射率Rを導出できることを見出した。このことにつき、以下に説明する。
Next, derivation of the reflectance R in
ここで、κは多孔体1の浸透係数、dは多孔体1の厚さ、νは動粘性係数(粘性係数μを密度ρで割ったもの)を表している。またcsは仮想流体粒子の音速を示し、非圧縮性流体においては定数として扱われ、例えば、2次元の正方格子で解析を行う場合、
である。
Here, κ represents the permeation coefficient of the
It is.
反射率Rの導出にあたり、図5aのように、流体の流れを遮るように無限長の多孔体1を直線状に格子点上に配置した流路を考える。次に、同じ流路について図5bのように多孔体1の位置を微少量ずらして多孔体1と重なる格子点を無くした流路を考える。
In deriving the reflectance R, as shown in FIG. 5a, consider a flow path in which an infinitely long
図5aの格子点における仮想流体粒子の離散分布速度関数fi(x、t)およびgi(x,t)は従来技術であるブリンクマン方程式により導くことができる。ここで、図5aと図5bは同じ流路を表しているから両図の同一地点における仮想流体粒子の分布は同一となることが理解される。そこで、ブリンクマン方程式を用いて図5aの多孔体1内の格子点7における仮想流体粒子の分布を算出し、算出された仮想流体粒子の分布は図5bにおいて図5aの格子点7に対応する格子点8における仮想流体粒子の分布とほぼ等しいと仮定し、算出された仮想流体粒子分布を数式8に代入することにより格子点8における反射率Rを算出する。
The discrete distribution velocity functions f i (x, t) and g i (x, t) of the virtual fluid particles at the lattice points in FIG. 5a can be derived from the Brinkman equation which is a conventional technique. Here, since FIG. 5a and FIG. 5b represent the same flow path, it is understood that the distribution of the virtual fluid particles at the same point in both figures is the same. Accordingly, the distribution of virtual fluid particles at the
一方、ブリンクマン方程式により求めた仮想流体粒子分布に基づいて、数式5により圧力pを求め、また数式6により速度uを算出する。このpと下記数式10にもとづいて△p〜を算出し、またuと下記数式11に基づいてu〜を算出して△p〜/u〜の値を求める。
On the other hand, based on the virtual fluid particle distribution obtained by the Brinkman equation, the pressure p is obtained by
この結果、仮想流体粒子分布がある値を取ったときの反射率Rと△p〜/u〜との組(R,△p〜/u〜)ができる。仮想流体粒子分布を種々変更して(R,△p〜/u〜)の組み合わせを複数得る。次に、図6に示すように△p〜/u〜とRとの関係をプロットしたグラフを作成する。このプロットに沿う関数をフィッティング等により求めると、下記の数式12を得る。
As a result, it is set between the reflectance R and △ p ~ / u ~ when taking a certain value virtual fluid particle distribution (R, △ p ~ / u ~). Various combinations of (R, Δp ~ / u ~ ) are obtained by variously changing the virtual fluid particle distribution. Next, as shown in FIG. 6, a graph in which the relationship between Δp ~ / u ~ and R is plotted is created. When a function along this plot is obtained by fitting or the like, the following
ここで、ブリンクマン方程式による流体解析においては、流体の挙動は下記数式13に示すダルシー則に従うことが知られている。
Here, in the fluid analysis based on the Brinkman equation, it is known that the behavior of the fluid follows the Darcy law expressed by the following
数式12と数式13から、数式9が得られる。数式9においてδx、cs、dは予め定められており、κも実験により求めることができる。さらにνは密度ρによって変化するが、非圧縮性流体においてはρは圧力pのみを変数とする関数により導出可能であり、数式5でpを算出することでνを導くことができる。これらの値を数式9に代入することにより反射率Rを導出することができる。Rが求められたことにより、数式8において並進過程における仮想流体粒子の分布を算出することができる。
From
以上のようにして、衝突過程における仮想流体粒子の分布と、並進過程における仮想流体粒子の分布を繰り返し算出し、各格子点における仮想流体粒子の分布の変化を求めることにより、流路の流体解析が行われる。 As described above, by repeatedly calculating the distribution of the virtual fluid particles in the collision process and the distribution of the virtual fluid particles in the translation process, and obtaining the change in the distribution of the virtual fluid particles at each lattice point, the fluid analysis of the flow path Is done.
以上、本発明に係る流体解析の手法について説明した。次に、流体解析処理の具体的な手順につき、図7のフローチャートを参照して説明する。演算部3は、記憶部6に記憶されている流体解析処理プログラムを実行することによって以下に示す処理を実行する。これによって、後述するように流体解析装置9は図8に示す各手段として機能する。なお、以下の処理は、演算時間刻み毎に計算空間に設定された全格子点に位置する全仮想流体粒子に対して行う。計算空間に存在する総ての粒子についての処理が終了すると次の演算時間刻みの演算へ移行する。
The fluid analysis method according to the present invention has been described above. Next, a specific procedure of the fluid analysis process will be described with reference to the flowchart of FIG. The
まず演算部3は記憶部6に記憶された多孔体1の形状、初期条件、境界条件等を取得する(S1)。ここで、初期条件は、t=0における全格子点の仮想流体粒子分布(各仮想流体粒子の離散速度分布関数fi(x、0))を含む。また、境界条件は、流路の壁において仮想流体粒子は壁を突き抜ける方向には移動しない等の条件を含む。
First, the
次に演算部3は前時刻tにおける仮想流体粒子分布fi(x,t)を数式5に代入して圧力pを得る。また、fi(x,t)を数式6に代入して速度uを得る(S2)。ここで得た圧力pと速度uを数式3に代入して平衡状態における仮想流体粒子分布fi (eq)(x,t)を得る(S3)。更にfi(x,t)とfi (eq)(x,t)とを数式1に代入することにより、現時刻tにおける衝突過程の仮想流体粒子分布gi(x,t)を得る(S4)。
Next, the
演算部3は衝突過程の演算に続き並進過程の演算を行う。まず演算部3は演算の対象となる格子点xと、隣接する格子点x−eiとの間に多孔体1が存在するか否かを確認する(S5)。多孔体1が存在しなければgi(x−ei,t)を数式7に代入することにより並進過程の仮想流体粒子分布fi(x,t+δt)を得る(S6)。
The
一方、演算の対象となる格子点xと隣接する格子点x−eiとの間に多孔体1が存在する場合は演算部3は数式9に基づいて反射率を算出する(S7)。この反射率とS4で算出したg−i(x,t)、gi(x−ei,t)を数式8に代入して並進過程の仮想流体粒子分布fi(x,t+δt)を得る(S8)。
On the other hand, if the
以上の衝突過程と並進過程の仮想流体粒子の分布の算出を、記憶部6に記憶された終了時刻まで行う。もしまだ終了時刻に達していない場合はS2に戻って演算を繰り返す(S9)。終了時刻に達したときは演算を終了し、表示部5に解析結果を出力する(S10)
The above calculation of the distribution of the virtual fluid particles in the collision process and the translation process is performed until the end time stored in the
以上説明した流体解析処理を実行する流体解析装置9の機能ブロック図を図8に示す。流体解析装置9は、S1を実行する入力データ取得手段10、S2からS4までを実行する衝突過程演算手段11、S5からS8までを実行する並進過程演算手段12、S9を実行する終了時刻確認手段13、S10を実行する解析結果出力手段14を含んで構成される。
FIG. 8 shows a functional block diagram of the fluid analysis device 9 that executes the fluid analysis processing described above. The fluid analysis device 9 includes an input
本発明による流体解析の結果を図9bに示す。図9aは入力部4から入力した多孔体1を含む流路、図9bはその流路について本発明によるシミュレーションを行った結果である。このように、本発明に係る流体解析においては流路の構造が正確に反映された状態で解析が行われることが理解される。
The result of the fluid analysis according to the present invention is shown in FIG. 9b. FIG. 9 a is a flow path including the
以上、演算部本発明にかかる流体解析について説明した。この流体解析は種々の多孔体や流体について行うことが可能である。たとえば、多孔体である排出ガスフィルタを含む流路において排出ガスの挙動を解析したり、当該ガスフィルタ内の排出ガスの挙動を解析することができる。 The fluid analysis according to the present invention has been described above. This fluid analysis can be performed on various porous bodies and fluids. For example, it is possible to analyze the behavior of exhaust gas in a flow path including a porous exhaust gas filter, or to analyze the behavior of exhaust gas in the gas filter.
1 多孔体、2 経路、3 演算部、4 入力部、5 表示部、6 記憶部、9 流体解析装置、10 入力データ取得手段、11 衝突過程演算手段、12 並進過程演算手段、13 終了時刻確認手段、14 解析結果出力手段。
DESCRIPTION OF
Claims (6)
前記多孔体に隣接する前記格子点上において、前記格子ボルツマン法における並進過程時の離散速度分布関数として、前記仮想流体粒子が前記多孔体に反射される反射率または前記仮想流体粒子が前記多孔体を透過する透過率を含んだ関数を用いることにより流体解析を行う、
ことを特徴とする流体解析方法。 A fluid analysis method in which a plurality of lattice points are provided in a calculation processing space, and a fluid analysis of a flow path in which a porous body is disposed is performed using a lattice Boltzmann method for obtaining the behavior of virtual fluid particles at the lattice points,
On the lattice points adjacent to the porous body, as a discrete velocity distribution function during the translation process in the lattice Boltzmann method, the reflectance at which the virtual fluid particles are reflected by the porous body or the virtual fluid particles are the porous body Fluid analysis is performed by using a function including the transmittance that passes through
A fluid analysis method characterized by the above.
に基づいて前記反射率または前記透過率を算出することを特徴とする流体解析方法。 3. The fluid analysis method according to claim 2, wherein κ is the permeation coefficient, d is the thickness of the porous body, δ x is an interval between the plurality of lattice points, and R is the reflectance (0 <R <1). , 1-R is the transmittance, ν is the kinematic viscosity coefficient, and c s is the sound velocity of the virtual fluid particle,
The fluid analysis method, wherein the reflectance or the transmittance is calculated based on
前記演算部は、前記多孔体に隣接する前記格子点上において、前記格子ボルツマン法における並進過程時の離散速度分布関数として、前記仮想流体粒子が前記多孔体に反射される反射率または前記仮想流体粒子が前記多孔体を透過する透過率を含んだ関数を用いて流体解析を行う、
ことを特徴とする流体解析装置。 A fluid analysis apparatus provided with a calculation unit that provides a plurality of lattice points in a calculation processing space and performs fluid analysis of a flow path in which a porous body is arranged, using a lattice Boltzmann method for obtaining the behavior of virtual fluid particles at the lattice points Because
The calculation unit is configured such that, on the lattice points adjacent to the porous body, the reflectance at which the virtual fluid particles are reflected by the porous body or the virtual fluid as a discrete velocity distribution function during the translation process in the lattice Boltzmann method Fluid analysis is performed using a function including the transmittance of particles through the porous body.
A fluid analysis apparatus characterized by that.
前記流体解析装置に、前記多孔体に隣接する前記格子点上において、前記格子ボルツマン法における並進過程時の離散速度分布関数として、前記仮想流体粒子が前記多孔体に反射される反射率と、前記仮想流体粒子が前記多孔体を透過する透過率とを含んだ関数を用いて流体解析を行わせる、
ことを特徴とするプログラム。 Using a lattice Boltzmann method to calculate the behavior of virtual fluid particles at the lattice points provided in the calculation processing space, perform fluid analysis on a fluid analysis device that performs fluid analysis of the flow path in which the porous body is placed A program to
On the lattice point adjacent to the porous body, the fluid analysis device has a reflectance at which the virtual fluid particles are reflected by the porous body as a discrete velocity distribution function during the translation process in the lattice Boltzmann method, and Fluid analysis is performed using a function including a permeability of the virtual fluid particles through the porous body,
A program characterized by that.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009068504A JP2010224653A (en) | 2009-03-19 | 2009-03-19 | Fluid analysis method, fluid analysis apparatus, and fluid analysis program |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009068504A JP2010224653A (en) | 2009-03-19 | 2009-03-19 | Fluid analysis method, fluid analysis apparatus, and fluid analysis program |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2010224653A true JP2010224653A (en) | 2010-10-07 |
Family
ID=43041804
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2009068504A Pending JP2010224653A (en) | 2009-03-19 | 2009-03-19 | Fluid analysis method, fluid analysis apparatus, and fluid analysis program |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2010224653A (en) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101192335B1 (en) | 2011-05-16 | 2012-10-26 | 한국과학기술연구원 | Method for simulating fluid flow and recording medium for performing the method |
JP2015064717A (en) * | 2013-09-25 | 2015-04-09 | パナソニック株式会社 | Multicomponent gas simulation method and simulation device |
JP2016159215A (en) * | 2015-02-27 | 2016-09-05 | 株式会社熊谷組 | Flow analysis method |
JP2017139158A (en) * | 2016-02-04 | 2017-08-10 | パナソニックIpマネジメント株式会社 | Fuel battery simulation method and fuel battery simulation device |
JP2019053752A (en) * | 2013-07-31 | 2019-04-04 | エクサ コーポレイション | Temperature coupling algorithm for hybrid thermal lattice boltzmann method |
CN111742207A (en) * | 2018-04-23 | 2020-10-02 | 日本碍子株式会社 | Method and device for determining valid or invalid flow path |
CN112191849A (en) * | 2020-10-10 | 2021-01-08 | 重庆邮电大学 | Gradient porous heat dissipation device design and material increase manufacturing method based on temperature distribution |
CN113221431A (en) * | 2021-05-14 | 2021-08-06 | 湖北理工学院 | Compression penetration test numerical simulation method based on particle discrete element and lattice Boltzmann |
-
2009
- 2009-03-19 JP JP2009068504A patent/JP2010224653A/en active Pending
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101192335B1 (en) | 2011-05-16 | 2012-10-26 | 한국과학기술연구원 | Method for simulating fluid flow and recording medium for performing the method |
JP2019053752A (en) * | 2013-07-31 | 2019-04-04 | エクサ コーポレイション | Temperature coupling algorithm for hybrid thermal lattice boltzmann method |
JP2015064717A (en) * | 2013-09-25 | 2015-04-09 | パナソニック株式会社 | Multicomponent gas simulation method and simulation device |
JP2016159215A (en) * | 2015-02-27 | 2016-09-05 | 株式会社熊谷組 | Flow analysis method |
JP2017139158A (en) * | 2016-02-04 | 2017-08-10 | パナソニックIpマネジメント株式会社 | Fuel battery simulation method and fuel battery simulation device |
CN111742207A (en) * | 2018-04-23 | 2020-10-02 | 日本碍子株式会社 | Method and device for determining valid or invalid flow path |
CN111742207B (en) * | 2018-04-23 | 2023-10-17 | 日本碍子株式会社 | Method and apparatus for determining valid or invalid flow paths |
CN112191849A (en) * | 2020-10-10 | 2021-01-08 | 重庆邮电大学 | Gradient porous heat dissipation device design and material increase manufacturing method based on temperature distribution |
CN113221431A (en) * | 2021-05-14 | 2021-08-06 | 湖北理工学院 | Compression penetration test numerical simulation method based on particle discrete element and lattice Boltzmann |
CN113221431B (en) * | 2021-05-14 | 2022-05-06 | 湖北理工学院 | Compression penetration test numerical simulation method based on particle discrete element and lattice Boltzmann |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2010224653A (en) | Fluid analysis method, fluid analysis apparatus, and fluid analysis program | |
Zong et al. | Modeling surfactant-laden droplet dynamics by lattice Boltzmann method | |
Westhoff et al. | Investigation of the relationship between morphology and permeability for open-cell foams using virtual materials testing | |
Das et al. | Immersed boundary method (IBM) based direct numerical simulation of open‐cell solid foams: Hydrodynamics | |
CN108763683B (en) | New WENO format construction method under trigonometric function framework | |
Kumar et al. | Micro-structural impact of different strut shapes and porosity on hydraulic properties of Kelvin-like metal foams | |
Khirevich et al. | Validation of pore-scale simulations of hydrodynamic dispersion in random sphere packings | |
Kumar et al. | State-of-the-art of pressure drop in open-cell porous foams: review of experiments and correlations | |
JP5958237B2 (en) | Thermal fluid simulation method and thermal fluid simulation apparatus | |
Myong et al. | A review and perspective on a convergence analysis of the direct simulation Monte Carlo and solution verification | |
DeVolder et al. | Uncertainty quantification for multiscale simulations | |
Xiao et al. | Radial basis function-differential quadrature-based physics-informed neural network for steady incompressible flows | |
EP2642285A1 (en) | Simulation of a chromatographic run | |
Holmes et al. | Novel pressure inlet and outlet boundary conditions for Smoothed Particle Hydrodynamics, applied to real problems in porous media flow | |
Chwalowski et al. | Numerical investigations of the benchmark supercritical wing in transonic flow | |
Badday et al. | Thermosolutal convection in a Brinkman–Darcy–Kelvin–Voigt fluid with a bidisperse porous medium | |
CN105095555A (en) | Non-divergence smoothing processing method and apparatus for velocity field | |
Miyauchi et al. | A numerical method for mass transfer by a thin moving membrane with selective permeabilities | |
Tang et al. | Combining Discrete Equations Method and Upwind Downwind-Controlled Splitting for non-reacting and reacting two-fluid computations: Two dimensional case | |
Zhang et al. | The dynamic behavior of a self-propelled droplet on a conical fiber: A lattice Boltzmann study | |
Makungu et al. | A generalized 1-dimensional particle transport method for convection diffusion reaction model | |
Torres-Ulloa et al. | Viscous froth model applied to the motion and topological transformations of two-dimensional bubbles in a channel: three-bubble case | |
Nagendra et al. | Flows through reconstructed porous media using immersed boundary methods | |
JP2006242893A (en) | Numerical analysis method for determining attainment extent of underground water stream, and numerical analysis program | |
KR101941921B1 (en) | Analysis system and analysis method of pollutant convection-diffusion tendency |