JP2010224552A - Optical scanning device and image forming apparatus using the same - Google Patents

Optical scanning device and image forming apparatus using the same Download PDF

Info

Publication number
JP2010224552A
JP2010224552A JP2010105349A JP2010105349A JP2010224552A JP 2010224552 A JP2010224552 A JP 2010224552A JP 2010105349 A JP2010105349 A JP 2010105349A JP 2010105349 A JP2010105349 A JP 2010105349A JP 2010224552 A JP2010224552 A JP 2010224552A
Authority
JP
Japan
Prior art keywords
light
light shielding
optical
sub
scanning
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010105349A
Other languages
Japanese (ja)
Other versions
JP4975138B2 (en
Inventor
Yuichi Tomioka
雄一 富岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2010105349A priority Critical patent/JP4975138B2/en
Publication of JP2010224552A publication Critical patent/JP2010224552A/en
Application granted granted Critical
Publication of JP4975138B2 publication Critical patent/JP4975138B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide an optical scanning device by which ghost light can be removed more reliably or sufficiently reduced, and to provide an image forming apparatus using the optical scanner. <P>SOLUTION: The optical scanning device includes: an imaging optical system which deflects and scans a luminous flux emitted from a light source means on a deflecting surface of a deflecting means and images upon a surface to be scanned. In a sub scanning cross section, the luminous flux incident on the deflecting surface of the deflecting means is made incident on the deflecting surface from a diagonal direction with respect to the optical axis of the imaging optical system, a light-shielding member is disposed in an optical path between the deflecting surface and the surface to be scanned to shield the ghost light, the configuration of the light-shielding member and the shape of the light-shielding member in the sub-scanning direction are appropriately designed. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は光走査装置及びそれを用いた画像形成装置に関し、電子写真プロセスを有するレーザービームプリンタやデジタル複写機やマルチファンクションプリンタ(多機能プリンタ)の画像形成装置に好適なものである。   The present invention relates to an optical scanning device and an image forming apparatus using the same, and is suitable for an image forming apparatus such as a laser beam printer, a digital copying machine, or a multi-function printer (multi-function printer) having an electrophotographic process.

従来よりレーザービームプリンター(LBP)やデジタル複写機の走査光学系においては画像信号に応じて光源手段から光変調され出射した光束を、回転多面鏡(ポリゴンミラー)より成る光偏向器により周期的に偏向させている。そして偏向された光束をfθ特性を有する結像光学系によって感光性の記録媒体(感光ドラム)面上にスポット状に集束させ、その面上を光走査して画像記録を行っている。   Conventionally, in a scanning optical system of a laser beam printer (LBP) or a digital copying machine, a light beam modulated and emitted from a light source means according to an image signal is periodically emitted by an optical deflector composed of a rotating polygon mirror (polygon mirror). It is deflected. The deflected light beam is focused in a spot shape on the surface of a photosensitive recording medium (photosensitive drum) by an imaging optical system having fθ characteristics, and image recording is performed by optically scanning the surface.

近年、レーザービームプリンタやデジタル複写機やマルチファンクションプリンタの画像形成装置では、高画質化が望まれている。画像を劣化させる一つの原因として画像形成に不要なゴースト光(反射光)が挙げられる。   In recent years, high image quality is desired in image forming apparatuses such as laser beam printers, digital copying machines, and multifunction printers. One cause of image deterioration is ghost light (reflected light) unnecessary for image formation.

従来より、このゴースト光を除去する光走査装置が種々と提案されている(特許文献1参照)。   Conventionally, various optical scanning devices for removing the ghost light have been proposed (see Patent Document 1).

特許文献1は被走査面で反射されたゴースト光が回転多面鏡(ポリゴンミラー)へ再入射し、再び偏向反射されて被走査面に入射するのを防ぐために結像光学系内に遮光部材としての遮光板を設けている。   In Patent Document 1, a ghost light reflected on a scanned surface is re-incident on a rotating polygon mirror (polygon mirror), and is deflected and reflected again to prevent incident on the scanned surface. The shading plate is provided.

この遮光板は画像を形成するための有効光束(実光束)は遮光せずに、ゴースト光のみを遮光するために、有効光束の通過する副走査方向の高さに対して、副走査方向に特定量離れた位置に配置されている。   This light shielding plate does not shield the effective light beam (actual light beam) for forming an image, but shields only the ghost light, so that the effective light beam passes in the sub scanning direction with respect to the height in the sub scanning direction. It is located at a specific distance away.

また特許文献1に開示されている遮光板の形状は、一般的な直線状(平板状)、または曲線状よりなっている。   Moreover, the shape of the light-shielding plate disclosed in Patent Document 1 is a general linear shape (flat plate shape) or a curved shape.

尚、本明細書において、「ゴースト光」とは光偏向器の偏向面で反射し、結像光学系の面や他の面で反射せず、該結像光学系を通過し、被走査面上に入射する光束以外の光であって、かつ被走査面の有効走査領域に入射する光束を言う。   In this specification, “ghost light” is reflected by the deflecting surface of the optical deflector, is not reflected by the surface of the imaging optical system or other surfaces, passes through the imaging optical system, and is scanned. A light beam that is light other than the light beam incident thereon and that enters the effective scanning area of the surface to be scanned.

尚、後述する本発明の実施例1の図1に示すような複数の光走査装置があるときは、一方の光走査装置における光束が結像光学系の面や他の面で反射して、他方の光走査装置に入射して他方の光走査装置の被走査面に入射する光束も含まれる。   Incidentally, when there are a plurality of optical scanning devices as shown in FIG. 1 of Example 1 of the present invention described later, the light flux in one optical scanning device is reflected by the surface of the imaging optical system or the other surface, Also included is a light beam that enters the other optical scanning device and enters the scanned surface of the other optical scanning device.

また「有効光束」とは偏向手段の偏向面で反射し、結像光学系の面で反射せず、透過し、被走査面の有効走査領域に入射する光束を言う。   The “effective light beam” refers to a light beam that is reflected by the deflecting surface of the deflecting unit, is not reflected by the surface of the imaging optical system, is transmitted, and enters the effective scanning area of the surface to be scanned.

特開2000-193903号公報JP 2000-193903 A

特許文献1では、ゴースト光がより有効光束に近い位置を通過するような光学系の場合、ゴースト光を十分に遮光することができない。以下にその理由を述べる。   In Patent Document 1, in the case of an optical system in which ghost light passes through a position closer to an effective light beam, the ghost light cannot be sufficiently shielded. The reason is described below.

特許文献1では、装置全体をコンパクト化するために、副走査断面内において偏向手段の偏向面に入射する光束を、該偏向面の法線に対して斜め方向から入射(斜入射)させている。このため、平板形状である遮光板上を通過時の有効光束の走査軌跡は湾曲形状となる。   In Patent Document 1, in order to make the entire apparatus compact, a light beam incident on the deflecting surface of the deflecting means is incident in an oblique direction (obliquely incident) with respect to the normal line of the deflecting surface in the sub-scan section. . For this reason, the scanning locus of the effective light beam when passing over the flat plate-shaped light shielding plate has a curved shape.

図11A、Bは、各々結像光学系の光軸方向から見たときの遮光板上での画像形成に使用する有効光束の通過領域(走査軌跡)(実線)、ゴースト光の通過領域(点線)、遮光板の副走査方向の端部形状を表したグラフ(説明図)である。図11Aは有効光束の通過領域の下側(図面上、下側)に遮光板91を配置したときの説明図、図11Bは有効光束の通過領域の上側(図面上、上側)に遮光板91を配置したときの説明図である。   FIGS. 11A and 11B show the effective light beam passage area (scanning locus) (solid line) and ghost light passage area (dotted line) used for image formation on the light shielding plate when viewed from the optical axis direction of the imaging optical system. ), A graph (explanatory diagram) showing the shape of the end portion of the light shielding plate in the sub-scanning direction. FIG. 11A is an explanatory diagram when the light shielding plate 91 is disposed below (in the drawing, on the lower side) of the effective light flux passing region, and FIG. 11B is a light shielding plate 91 on the upper side (in the drawing, on the upper side) of the effective light flux. It is explanatory drawing when arrange | positioning.

図11A、Bに示すように走査軌跡が湾曲している有効光束(通過領域)に対してゴースト光が近接した位置(あるいは有効光束の通過領域の一部)を通過する場合、特許文献1では以下に示す問題点がある。   As shown in FIGS. 11A and 11B, when the ghost light passes through a position close to the effective light beam (passing region) whose scanning locus is curved (or a part of the passing region of the effective light beam), Patent Document 1 There are the following problems.

(1)副走査方向の端部が直線状の遮光板91では、該遮光板91の副走査方向の高さをどのように変えても、主走査方向の端部で有効光束を遮光してしまう、
(2)主走査方向の中央部でゴースト光を遮光することができない。
(1) With the light shielding plate 91 whose end in the sub-scanning direction is linear, no matter how the height of the light shielding plate 91 in the sub-scanning direction is changed, the effective light beam is shielded at the end in the main scanning direction. End up
(2) Ghost light cannot be shielded at the center in the main scanning direction.

つまり特許文献1のように副走査方向の端部が直線状の遮光板91では、有効走査領域(印字領域)の全領域において、有効光束をケラずに、かつゴースト光を十分に遮光することができないという問題点がある。   That is, in the light shielding plate 91 whose end in the sub-scanning direction is linear as in Patent Document 1, the ghost light is sufficiently shielded in the entire effective scanning area (printing area) without vignetting. There is a problem that can not be.

また遮光板91上を通過時の有効光束の湾曲形状は、副走査断面内における偏向面への斜入射角度、結像光学系内での遮光板91の配置位置、遮光板91よりも偏向手段側に配置された結像光学素子の面形状によって変化する。しかしながら特許文献1では、遮光板91の副走査断面内の形状をどのような曲線にするか言及していない。   The curved shape of the effective light beam when passing over the light shielding plate 91 is such that the oblique incident angle to the deflection surface in the sub-scanning section, the position of the light shielding plate 91 in the imaging optical system, and the deflection means more than the light shielding plate 91. It changes depending on the surface shape of the imaging optical element arranged on the side. However, Patent Document 1 does not mention what kind of curve the shape of the light shielding plate 91 in the sub-scan section is.

よって、特許文献1から有効走査領域の全領域において有効光束をケラずに、かつゴースト光を十分に遮光することができる遮光板の形状を得ることはできない。つまり、特許文献1ではゴースト光がより有効光束に近接する位置を通過する光学系で実施する場合、ゴースト光を十分に遮光することができないという問題点がある。   Therefore, from Patent Document 1, it is not possible to obtain a shape of the light shielding plate that can sufficiently shield the ghost light without vignetting the effective light beam in the entire effective scanning region. That is, Patent Document 1 has a problem that when ghost light is implemented by an optical system that passes through a position closer to the effective light beam, the ghost light cannot be sufficiently shielded.

本発明はゴースト光をより確実に除去する、または十分に低減することのできる光走査装置及びそれを用いた画像形成装置の提供を目的とする。   SUMMARY OF THE INVENTION An object of the present invention is to provide an optical scanning device capable of more reliably removing or sufficiently reducing ghost light and an image forming apparatus using the same.

請求項1の発明の光走査装置は、光源手段と、前記光源手段から出射された光束を偏向手段の偏向面に導光する入射光学系と、前記偏向手段の偏向面で偏向走査された光束を被走査面上に結像させる結像光学系と、を有する光走査装置であって、
副走査断面内において、前記偏向手段の偏向面に入射する光束は、前記結像光学系の光軸に対して斜め方向から前記偏向面に入射されており、
前記偏向面と前記被走査面との間の光路中にゴースト光を遮光する遮光部材を配置しており、かつ、
前記遮光部材の副走査方向の端部は、主走査方向の位置に応じて、副走査方向の高さが変化する湾曲形状で形成されており、かつ、
前記湾曲形状は、前記結像光学系の光軸との交点を中心としたとき、主走査方向において軸外に向うに従い、前記偏向手段の偏向面に入射する光束の軸上偏向点を含む前記偏向手段の回転軸に垂直な平面と前記遮光部材の副走査方向の端部との間隔が大きくなる方向に湾曲しており、かつ、
前記遮光部材は、前記遮光部材の副走査方向の端部のうち上側の副走査方向の端部を備えた上側遮光部材と、前記遮光部材の副走査方向の端部のうち下側の副走査方向の端部を備えた下側遮光部材から構成され、
前記上側遮光部材及び前記下側遮光部材は、前記光走査装置を保持する光学箱に一体成型されており、
前記上側遮光部材及び前記下側遮光部材は、前記結像光学系の光軸方向に対する位置をずらして配置されていることを特徴としている。
The optical scanning device according to claim 1 is a light source unit, an incident optical system that guides a light beam emitted from the light source unit to a deflecting surface of the deflecting unit, and a light beam deflected and scanned by the deflecting surface of the deflecting unit. An optical scanning device having an imaging optical system that forms an image on a surface to be scanned,
In the sub-scan section, the light beam incident on the deflection surface of the deflection unit is incident on the deflection surface from an oblique direction with respect to the optical axis of the imaging optical system,
A light shielding member for shielding ghost light is disposed in an optical path between the deflection surface and the scanned surface; and
The end of the light shielding member in the sub-scanning direction is formed in a curved shape whose height in the sub-scanning direction changes according to the position in the main scanning direction, and
The curved shape includes an on-axis deflection point of a light beam incident on a deflecting surface of the deflecting unit as it goes off-axis in the main scanning direction when the intersection with the optical axis of the imaging optical system is the center. Curved in the direction in which the distance between the plane perpendicular to the rotation axis of the deflecting means and the end of the light shielding member in the sub-scanning direction is increased, and
The light-shielding member includes an upper light-shielding member having an upper end in the sub-scanning direction among end portions in the sub-scanning direction of the light-shielding member, and a lower sub-scanning among ends in the sub-scanning direction of the light-shielding member. Composed of a lower light-shielding member with an end in the direction,
The upper light shielding member and the lower light shielding member are integrally molded in an optical box that holds the optical scanning device,
The upper light-shielding member and the lower light-shielding member are arranged with their positions relative to the optical axis direction of the imaging optical system being shifted.

請求項2の発明の画像形成装置は、請求項1に記載の光走査装置と、前記被走査面に配置された感光体と、前記光走査装置で走査された光ビームによって前記感光体の上に形成された静電潜像をトナー像として現像する現像器と、現像されたトナー像を被転写材に転写する転写器と、転写されたトナー像を被転写材に定着させる定着器とを有することを特徴としている。   According to a second aspect of the present invention, there is provided an image forming apparatus comprising: the optical scanning device according to the first aspect; a photosensitive member disposed on the surface to be scanned; and a light beam scanned by the optical scanning device. A developing device that develops the electrostatic latent image formed on the toner image as a toner image, a transfer device that transfers the developed toner image to a transfer material, and a fixing device that fixes the transferred toner image to the transfer material. It is characterized by having.

本発明によればゴースト光をより確実に除去する、または十分に低減することのできる、高精細で高画質の画像を形成することができる小型の光走査装置及びそれを用いた画像形成装置を達成することができる。   According to the present invention, there is provided a small optical scanning apparatus capable of forming a high-definition and high-quality image capable of more reliably removing or sufficiently reducing ghost light, and an image forming apparatus using the same. Can be achieved.

本発明の実施例1の主走査断面図Main scanning sectional view of Embodiment 1 of the present invention 本発明の実施例1の副走査断面図Sub-scan sectional view of Embodiment 1 of the present invention 図2Bの一部分の拡大図An enlarged view of a portion of FIG. 2B 本発明の実施例1の入射光学系の副走査断面図FIG. 2 is a sub-scan sectional view of the incident optical system according to the first embodiment of the present invention. 本発明の実施例1のゴースト光の説明図Explanatory drawing of the ghost light of Example 1 of this invention 本発明の実施例1の上側遮光板上の有効光束通過領域ゴースト光の通過領域を示した説明図Explanatory drawing which showed the passage area of the effective light beam passage area ghost light on the upper side light shielding plate of Example 1 of this invention 本発明の実施例1の下側遮光板上の有効光束通過領域ゴースト光の通過領域を示した説明図Explanatory drawing which showed the passage area of the effective light beam passage area ghost light on the lower side light-shielding plate of Example 1 of this invention 本発明の実施例1の上側遮光板上の形状を示した説明図Explanatory drawing which showed the shape on the upper side light shielding plate of Example 1 of this invention 本発明の実施例1の上側遮光板上の形状を示した説明図Explanatory drawing which showed the shape on the upper side light shielding plate of Example 1 of this invention 本発明の実施例1の遮光板上の有効光束の走査軌跡を表す説明図Explanatory drawing showing the scanning locus | trajectory of the effective light beam on the light-shielding plate of Example 1 of this invention. 本発明の実施例2の主走査断面図Main scanning sectional view of Embodiment 2 of the present invention 本発明の実施例2の副走査断面図Sub-scan sectional view of Embodiment 2 of the present invention 本発明の実施例2の遮光板上の有効光束通過領域、ゴースト光の通過領域を示した説明図Explanatory drawing which showed the effective light beam passage area on the light-shielding plate of Example 2 of this invention, and the passage area of ghost light 従来の上側遮光板上の有効光束通過領域ゴースト光の通過領域を示した説明図Explanatory diagram showing the effective light beam passing region ghost light passing region on the conventional upper light shielding plate 従来の下側遮光板上の有効光束通過領域ゴースト光の通過領域を示した説明図Explanatory drawing showing the effective light beam passage region ghost light passage region on the conventional lower light shielding plate 本発明の実施例の画像形成装置の要部概略図1 is a schematic view of a main part of an image forming apparatus according to an embodiment of the invention. 本発明の実施例のカラー画像形成装置の要部概略図1 is a schematic view of a main part of a color image forming apparatus according to an embodiment of the present invention.

以下、図面を用いて本発明の実施例を説明する。   Embodiments of the present invention will be described below with reference to the drawings.

[実施例1]
図1は本発明の実施例1の主走査方向の要部断面図(主走査断面図)、図2Aは本発明の実施例1の副走査方向の要部断面図(副走査断面図)、図2Bは図2Aの一部分の拡大説明図である。
[Example 1]
FIG. 1 is a sectional view (main scanning sectional view) of a main part in the main scanning direction of Embodiment 1 of the present invention, and FIG. FIG. 2B is an enlarged explanatory view of a part of FIG. 2A.

尚、以下の説明において、主走査方向(Y方向)とは偏向手段の回転軸及び結像光学系の光軸(X方向)に垂直な方向(偏向手段で光束が偏向反射(偏向走査)される方向)である。副走査方向(Z方向)とは偏向手段の回転軸と平行な方向である。主走査断面とは結像光学系の光軸と主走査方向とを含む平面である。副走査断面とは結像光学系の光軸を含み主走査断面に垂直な断面である。   In the following description, the main scanning direction (Y direction) is a direction perpendicular to the rotation axis of the deflecting unit and the optical axis (X direction) of the imaging optical system (the light beam is deflected and reflected (deflected and scanned) by the deflecting unit). Direction). The sub-scanning direction (Z direction) is a direction parallel to the rotation axis of the deflecting unit. The main scanning section is a plane including the optical axis of the imaging optical system and the main scanning direction. The sub-scan section is a section that includes the optical axis of the imaging optical system and is perpendicular to the main scan section.

本実施例の画像形成装置は偏向手段としての光偏向器(ポリゴンミラー)5を挟み対向配置された結像光学系15a,15bを複数有し、各々の結像光学系15a,15bへ2本の光束を入射させて1つの光偏向器5により同時に4本の光束を偏向反射する。そして4本の光束を各々に対応した被走査面としての感光ドラム面8a,8b,8c,8dに導光し、該感光ドラム面8a,8b,8c,8d上を光走査するタンデム型の画像形成装置である。   The image forming apparatus of this embodiment has a plurality of image forming optical systems 15a and 15b arranged opposite to each other with an optical deflector (polygon mirror) 5 serving as a deflecting unit interposed therebetween, and two image forming optical systems 15a and 15b are provided. The four light beams are simultaneously deflected and reflected by one optical deflector 5. Then, the four light beams are guided to the photosensitive drum surfaces 8a, 8b, 8c, and 8d as the scanning surfaces corresponding to the four light beams, and the tandem type image is scanned on the photosensitive drum surfaces 8a, 8b, 8c, and 8d. Forming device.

図中、S1,S2は各々第1、第2の光走査装置(以下、「ステーション」または「走査光学系」とも称す。)である。本実施例の画像形成装置は光走査装置を複数有している。   In the figure, S1 and S2 are first and second optical scanning devices (hereinafter also referred to as “station” or “scanning optical system”). The image forming apparatus of this embodiment has a plurality of optical scanning devices.

以下、第1、第2の光走査装置S1,S2の各部材については第1の光走査装置S1を中心に述べる。そして第2の光走査装置S2の各部材のうち第1の光走査装置S1と同じ部材については括弧を付して示す。   Hereinafter, each member of the first and second optical scanning devices S1 and S2 will be described focusing on the first optical scanning device S1. Of the members of the second optical scanning device S2, the same members as those of the first optical scanning device S1 are shown in parentheses.

第1(第2)の光走査装置S1(S2)は、各々光源手段1a,1c(1b,1d)からの光束を規制する開口絞り2a,2c(2b,2d)有している。さらに開口絞り2a,2c(2b,2d)で規制された光束を平行光束に変換するコリメータレンズ3a,3c(3b,3d)を有している。尚、光源手段1a,1cは1つの光源ユニットを形成している。   The first (second) optical scanning device S1 (S2) has aperture stops 2a and 2c (2b and 2d) for regulating light beams from the light source means 1a and 1c (1b and 1d), respectively. Further, collimator lenses 3a and 3c (3b and 3d) for converting the light beams restricted by the aperture stops 2a and 2c (2b and 2d) into parallel light beams are provided. The light source means 1a and 1c form one light source unit.

さらに主走査方向に長い線像として結像させるシリンドリカルレンズ4と、偏向手段としての光偏向器5とを有している。さらに光偏向器5で偏向反射された光束を被走査面としての感光ドラム面8a,8c(8b,8d)にスポットに形成する結像光学系15a(15b)を有している。   Furthermore, it has a cylindrical lens 4 that forms an image as a long line image in the main scanning direction, and an optical deflector 5 as a deflecting means. Further, it has an imaging optical system 15a (15b) for forming a light beam deflected and reflected by the optical deflector 5 in spots on the photosensitive drum surfaces 8a and 8c (8b and 8d) as scanning surfaces.

本実施例においては第1、第2の光走査装置S1,S2が共通の光偏向器5を併用している。また第1、第2の光走査装置S1,S2は、光偏向器5の回転軸を含み副走査方向に平行な平面(XZ面)に対して対称に配置され、互いに異なる偏向面で偏向反射された光束を用いている。   In the present embodiment, the first and second optical scanning devices S1 and S2 use a common optical deflector 5 together. The first and second optical scanning devices S1 and S2 are arranged symmetrically with respect to a plane (XZ plane) including the rotation axis of the optical deflector 5 and parallel to the sub-scanning direction, and deflected and reflected by different deflection surfaces. Is used.

上記第1、第2の光走査装置S1,S2において、光源手段1a,1c・1b,1dは各々半導体レーザより成っている。開口絞り2a,2c・2b,2dは各々通過した光束のビーム形状を成形している。コリメータレンズ3a,3c・3b,3dは光源手段1a,1c・1b,1dから出射された光束を平行光束(もしくは発散光束もしくは収束光束)に変換している。シリンドリカルレンズ4は副走査方向(副走査断面内)のみに特定の屈折力(パワー)を有している。   In the first and second optical scanning devices S1 and S2, the light source means 1a, 1c, 1b, and 1d are each composed of a semiconductor laser. Each of the aperture stops 2a, 2c, 2b, and 2d shapes the beam shape of the light beam that has passed therethrough. The collimator lenses 3a, 3c, 3b, and 3d convert the light beams emitted from the light source means 1a, 1c, 1b, and 1d into parallel light beams (or divergent light beams or convergent light beams). The cylindrical lens 4 has a specific refractive power only in the sub-scanning direction (within the sub-scanning section).

尚、光源手段1a,1c(1b,1d)、開口絞り2a,2c(2b,2d)、コリメータレンズ3a,3c(3b,3d)、シリンドリカルレンズ4の各要素は入射光学系LA(LB)の一要素を構成している。   The light source means 1a, 1c (1b, 1d), aperture stops 2a, 2c (2b, 2d), collimator lenses 3a, 3c (3b, 3d), and the cylindrical lens 4 are elements of the incident optical system LA (LB). It constitutes one element.

光偏向器5は、偏向面数が4面より成る回転多面鏡(ポリゴンミラー)より成り、モーターの駆動手段(不図示)により図中矢印A方向に一定速度で回転している。本実施例においては上記の如く第1、第2の光走査装置S1,S2がこの光偏向器5を併用しており、かつ第1、第2の光走査装置S1,S2は、該光偏向器5の異なった偏向面5a,5bで偏向反射した光束を用いている。   The optical deflector 5 is composed of a rotating polygon mirror (polygon mirror) having four deflection surfaces, and is rotated at a constant speed in the direction of arrow A in the figure by a motor driving means (not shown). In the present embodiment, as described above, the first and second optical scanning devices S1 and S2 use the optical deflector 5 in combination, and the first and second optical scanning devices S1 and S2 have the optical deflection. A light beam deflected and reflected by different deflecting surfaces 5a and 5b of the vessel 5 is used.

15a(15b)は集光機能とfθ特性とを有する結像光学系(fθレンズ系)であり、主走査及び副走査断面内で正の屈折力(パワー)を有する第1、第2の結像レンズ(光学素子)6a,7a(6b,7b)より成っている。結像光学系15a(15b)は光偏向器5により偏向反射された2本の光束を対応する被走査面8a,8c(8b,8d)上にスポット状に結像させている。また結像光学系15a(15b)は副走査断面内において光偏向器5の偏向面5a(5b)と被走査面(被走査面上)8a,8c(8b,8d)との間を共役関係にすることにより、面倒れ補償を行っている。   Reference numeral 15a (15b) denotes an imaging optical system (fθ lens system) having a condensing function and an fθ characteristic, and the first and second connections having positive refractive power (power) in the main scanning and sub-scanning sections. It consists of image lenses (optical elements) 6a, 7a (6b, 7b). The imaging optical system 15a (15b) images the two light beams deflected and reflected by the optical deflector 5 onto the corresponding scanned surfaces 8a and 8c (8b and 8d) in a spot shape. The imaging optical system 15a (15b) has a conjugate relationship between the deflecting surface 5a (5b) of the optical deflector 5 and the scanned surfaces (on the scanned surface) 8a, 8c (8b, 8d) in the sub-scan section. By doing so, compensation for face down is performed.

本実施例における第1の結像レンズ6a(6b)は光偏向器5と後述する遮光板(上側及び下側の遮光板)との間の光路中に配置されており、主走査方向にのみ屈折力(パワー)を有し、副走査方向の屈折力は0(ノンパワー)である。   The first imaging lens 6a (6b) in this embodiment is disposed in the optical path between the optical deflector 5 and a light shielding plate (upper and lower light shielding plates) described later, and is only in the main scanning direction. It has a refractive power (power), and the refractive power in the sub-scanning direction is 0 (non-power).

ここで屈折力が0であることは、実質的に0であれば良く、結像光学系15a(15b)の主走査方向での屈折力の1/50以下であれば良い。   Here, the refractive power being 0 may be substantially 0, and may be 1/50 or less of the refractive power in the main scanning direction of the imaging optical system 15a (15b).

10aU(10bU)は遮光部材としての遮光板であり、結像光学系内を通過する有効光束の副走査方向の上側、つまり副走査断面内において偏向面5aの偏向点を含む法線を挟んで反感光ドラム側に設けられている。かつ遮光板10aU(10bU)は軸上偏向点Oから距離LU[mm]離れた位置に主走査断面に垂直、かつ主走査方向と平行となるように配置されており、結像光学系15a(15b)内で発生するゴースト光を遮光している。以下、この遮光板10aU(10bU)を上側の遮光板(上側遮光板)とも称す。   10aU (10bU) is a light-shielding plate as a light-shielding member, and sandwiches a normal line including the deflection point of the deflection surface 5a in the sub-scanning direction above the effective light beam passing through the imaging optical system, that is, in the sub-scanning section. It is provided on the side opposite to the photosensitive drum. The light shielding plate 10aU (10bU) is arranged at a position away from the axial deflection point O by a distance LU [mm] so as to be perpendicular to the main scanning section and parallel to the main scanning direction, and the imaging optical system 15a ( The ghost light generated in 15b) is shielded. Hereinafter, the light shielding plate 10aU (10bU) is also referred to as an upper light shielding plate (upper light shielding plate).

10aL(10bL)は遮光部材としての遮光板であり、結像光学系内を通過する有効光束の副走査方向の下側、つまり副走査断面内において偏向面5aの偏向点を含む法線を挟んで感光ドラム側に設けられている。かつ遮光板10aL(10bL)は軸上偏向点Oから距離LL[mm]離れた位置に主走査断面に垂直、かつ主走査方向と平行となるように配置されており、結像光学系15a(15b)内で発生するゴースト光を遮光している。以下、この遮光板10aL(10bL)を下側の遮光板(下側遮光板)とも称す。   10aL (10bL) is a light shielding plate as a light shielding member, and sandwiches a normal line including the deflection point of the deflection surface 5a in the lower side of the effective light beam passing through the imaging optical system, that is, in the sub scanning section. And provided on the photosensitive drum side. The light shielding plate 10aL (10bL) is disposed at a position away from the on-axis deflection point O by a distance LL [mm] so as to be perpendicular to the main scanning section and parallel to the main scanning direction. The ghost light generated in 15b) is shielded. Hereinafter, the light shielding plate 10aL (10bL) is also referred to as a lower light shielding plate (lower light shielding plate).

上側、下側の遮光板10aU,10aL(10bU,10bL)は、各々被走査面8a,8c(8b,8d)上の有効走査領域の全域において、光偏向器5からの偏向反射される有効光束を遮光しないような形状より成っている。   The upper and lower light shielding plates 10aU, 10aL (10bU, 10bL) are effective light beams deflected and reflected from the optical deflector 5 over the entire effective scanning area on the scanned surfaces 8a, 8c (8b, 8d), respectively. It is made of a shape that does not block light.

本実施例においては上側、下側の遮光板10aU,10aL(10bU,10bL)の副走査方向の端部を、各々主走査方向の位置に応じて、副走査方向の高さが変化する湾曲形状で形成している。ここで主走査方向に対して結像光学系15a(15b)の光軸との交点を中心とする。このとき湾曲形状は、中心から周辺部に行くに連れて(軸外に向うに従い)次のとおりである。軸上偏向点Oを含む光偏向器5の回転軸に垂直な平面(XY平面)と、遮光板(上側、下側の遮光板10aU,10aL(10bU,10bL))の副走査方向の端部との間隔が大きくなる方向に湾曲している。   In the present embodiment, the end portions in the sub-scanning direction of the upper and lower light shielding plates 10aU and 10aL (10bU and 10bL) have curved shapes in which the height in the sub-scanning direction changes according to the position in the main scanning direction. It is formed with. Here, the intersection with the optical axis of the imaging optical system 15a (15b) is the center with respect to the main scanning direction. At this time, the curved shape is as follows from the center to the periphery (as it goes off-axis). A plane (XY plane) perpendicular to the rotation axis of the optical deflector 5 including the on-axis deflection point O, and end portions in the sub-scanning direction of the light shielding plates (upper and lower light shielding plates 10aU, 10aL (10bU, 10bL)). Is curved in the direction in which the interval between

また上側、下側の遮光板10aU、10aL(10bU、10bL)は各々主走査方向において、平面形状(直線形状)より成っている。   The upper and lower light shielding plates 10aU, 10aL (10bU, 10bL) each have a planar shape (linear shape) in the main scanning direction.

20a,21a,22a(20b,21b,22b)は各々光線分離手段としての反射ミラーであり、結像光学系15a(15b)を通過した光束を対応する感光ドラム面8a,8c(8b,8d)側へ折り返している。   Reference numerals 20a, 21a, and 22a (20b, 21b, and 22b) are reflection mirrors as light beam separation means, and corresponding photosensitive drum surfaces 8a and 8c (8b and 8d) are light beams that have passed through the imaging optical system 15a (15b). Folded to the side.

本実施例においては、まず第1の光走査装置S1において、画像情報に応じて光源手段1a、1cから光変調され出射した2本の光束が開口絞り2a、2cを通過(一部遮光される)する。そして開口絞り2a、2cを通過した2本の光束はコリメータレンズ3a、3cにより平行光束に変換され、シリンドリカルレンズ4に入射する。シリンドリカルレンズ4に入射した光束のうち主走査断面内においてはそのままの状態で出射する。また副走査断面内においては収束して光偏向器5の偏向面5aに対し互いに異なる角度をもって入射(斜入射)し、線像(主走査方向に長手の線像)として結像する。   In the present embodiment, first, in the first optical scanning device S1, two light beams emitted after being light-modulated from the light source means 1a and 1c in accordance with image information pass through the aperture stops 2a and 2c (partially shielded from light). ) Then, the two light beams that have passed through the aperture stops 2 a and 2 c are converted into parallel light beams by the collimator lenses 3 a and 3 c and are incident on the cylindrical lens 4. Out of the light beam incident on the cylindrical lens 4, the light beam is emitted as it is in the main scanning section. In the sub-scanning section, the light beams converge and enter (obliquely incident) at different angles with respect to the deflecting surface 5a of the optical deflector 5 to form a line image (a line image that is long in the main scanning direction).

そして光偏向器5の偏向面5aで偏向反射された2本の光束は結像光学系15aにより対応する反射ミラー20a,21a,22aを介して感光ドラム面8a、8c上にスポット状に結像される。そして光偏向器5を矢印A方向に回転させることによって、感光ドラム面8a、8c上を矢印B方向(主走査方向)に等速度で光走査している。これにより記録媒体である感光ドラム面8a、8c上に画像記録を行っている。   The two light beams deflected and reflected by the deflecting surface 5a of the optical deflector 5 are spot-formed on the photosensitive drum surfaces 8a and 8c via the corresponding reflecting mirrors 20a, 21a and 22a by the imaging optical system 15a. Is done. Then, by rotating the optical deflector 5 in the direction of arrow A, optical scanning is performed on the photosensitive drum surfaces 8a and 8c in the direction of arrow B (main scanning direction) at a constant speed. Thus, image recording is performed on the photosensitive drum surfaces 8a and 8c which are recording media.

第2の光走査装置S2においては、光源手段1b、1dから出射した2本の光束が第1の光走査装置S1の入射方向と同一方向から光偏向器5の偏向面5bに対し互いに異なる角度をもって入射(斜入射)する。そして偏向面5bで偏向反射された2本の光束が結像光学系15bにより対応する反射ミラー20b,21b,22bを介して感光ドラム面8b、8d上にスポット状に結像され、光走査される。   In the second optical scanning device S2, the two light beams emitted from the light source means 1b and 1d are at different angles with respect to the deflecting surface 5b of the optical deflector 5 from the same direction as the incident direction of the first optical scanning device S1. Is incident (oblique incidence). The two light beams deflected and reflected by the deflecting surface 5b are imaged in spots on the photosensitive drum surfaces 8b and 8d via the corresponding reflecting mirrors 20b, 21b and 22b by the imaging optical system 15b, and optically scanned. The

このように本実施例では4つの感光ドラム面8a,8b,8c,8d上に各々1本ずつの走査線を形成し、画像記録を行っている。   As described above, in this embodiment, one scanning line is formed on each of the four photosensitive drum surfaces 8a, 8b, 8c, and 8d to perform image recording.

図3は図1に示した第1の光走査装置S1の入射光学系LAの副走査断面図である。図3において図1に示した要素と同一要素には同符番を付している。尚、第2の光走査装置S2の入射光学系LBの構成及び光学的作用は第1の光走査装置S1の入射光学系LAと同一である。   FIG. 3 is a sub-scan sectional view of the incident optical system LA of the first optical scanning device S1 shown in FIG. In FIG. 3, the same elements as those shown in FIG. The configuration and optical action of the incident optical system LB of the second optical scanning device S2 are the same as those of the incident optical system LA of the first optical scanning device S1.

図3に示すように入射光学系LA(LB)は、図面上、上下に2つ配置されており、副走査断面内において、偏向面5a(5b)に該入射光学系LA(LB)からの光束をそれぞれ法線5cに対し上方向斜め、下方向斜めから入射(斜入射)させている。偏向面5a(5b)に斜入射した2本の光束は光偏向器5によってそれぞれ図面上、上方向、下方向にコニカルスキャンされる。そして上方向に反射された光束(上側斜入射光束)と下方向に反射された光束(下側斜入射光束)は同一の第1の結像レンズ6a(6b)の上側、下側を通過して、各々対応する反射ミラー20a,21a,22a(20b,21b,22b)によって反射される。そして反射された2本の光束は2つの異なる感光ドラム面8a,8c(8b,8d)上にそれぞれ結像スポットとして走査される。   As shown in FIG. 3, two incident optical systems LA (LB) are arranged on the upper and lower sides in the drawing, and in the sub-scan section, the deflecting surface 5a (5b) is projected from the incident optical system LA (LB). Light beams are incident (obliquely incident) on the normal 5c from obliquely upward and obliquely downward. The two light beams obliquely incident on the deflecting surface 5a (5b) are conically scanned by the optical deflector 5 in the upward, downward and downward directions, respectively. Then, the light beam reflected upward (upper oblique incident light beam) and the light beam reflected downward (lower oblique incident light beam) pass through the upper and lower sides of the same first imaging lens 6a (6b). Are reflected by the corresponding reflecting mirrors 20a, 21a, 22a (20b, 21b, 22b). Then, the two reflected light beams are scanned as imaging spots on two different photosensitive drum surfaces 8a and 8c (8b and 8d), respectively.

このように本実施例においては第1、第2の光走査装置S1、S2の入射光学系LA、LBを斜入射光学系、及び第1、第2の光走査装置S1、S2を対向配置することで光学部品を共有化し、装置全体をコンパクトにしている。   As described above, in this embodiment, the incident optical systems LA and LB of the first and second optical scanning devices S1 and S2 are arranged obliquely, and the first and second optical scanning devices S1 and S2 are opposed to each other. As a result, the optical parts are shared, and the entire apparatus is made compact.

しかしながら、このような対向配置した第1、第2の光走査装置S1、S2を用いた画像形成装置においては、第1、第2の光走査装置S1、S2内で発生したゴースト光が被走査面8a,8c,8b,8d上に入射してしまう。この結果、画像を劣化させてしまうという問題点がある。   However, in such an image forming apparatus using the first and second optical scanning devices S1 and S2 arranged to face each other, ghost light generated in the first and second optical scanning devices S1 and S2 is scanned. The light is incident on the surfaces 8a, 8c, 8b, and 8d. As a result, there is a problem that the image is deteriorated.

図4(A),(B),(C)は各々光走査装置内で発生するゴースト光の一例を表す説明図である。図4(A),(B),(C)において図2Bに示した要素と同一要素には同符番を付している。   4A, 4B, and 4C are explanatory diagrams showing examples of ghost light generated in the optical scanning device. 4 (A), (B), and (C), the same elements as those shown in FIG. 2B are denoted by the same reference numerals.

図4(A),(B),(C)は各々対向配置した第1、第2の光走査装置S1、S2の主要部分を表した副走査断面図であり、対面反射ゴーストと呼ばれるゴースト光の発生原理を示している。   FIGS. 4A, 4B, and 4C are sub-scan sectional views showing the main parts of the first and second optical scanning devices S1 and S2 arranged to face each other, and ghost light called a face-to-face reflection ghost is shown. The generation principle is shown.

つまり図4(A)においては光偏向器5により偏向反射された光束が、第1の結像レンズ6bを通過する際、光束の一部が該第1の結像レンズ6bを通過せずに第一面(入射面)6b1で反射されている。図4(B)においては光偏向器5により偏向反射された光束が、第1の結像レンズ6aを通過する際、光束の一部が第2面(出射面)6a2で反射されている。図4(C)においては光偏向器5の偏向面5aに入射する光束の一部が該偏向面5aで反射されている。   That is, in FIG. 4A, when the light beam deflected and reflected by the optical deflector 5 passes through the first imaging lens 6b, a part of the light beam does not pass through the first imaging lens 6b. Reflected by the first surface (incident surface) 6b1. In FIG. 4B, when the light beam deflected and reflected by the optical deflector 5 passes through the first imaging lens 6a, a part of the light beam is reflected by the second surface (outgoing surface) 6a2. In FIG. 4C, a part of the light beam incident on the deflecting surface 5a of the optical deflector 5 is reflected by the deflecting surface 5a.

この各面で反射された光束は対面反射ゴースト光と呼ばれており、第2の光走査装置S2からのゴースト光は光偏向器5に対して対向配置された右側の第1の光走査装置S1の光路内に入射される。この対面反射ゴースト光が被走査面8a,8cに到達してしまうと、形成された画像にスジや色むらが生じるという問題点がある。   The luminous flux reflected by each surface is called a face-to-face reflected ghost light, and the ghost light from the second optical scanning device S2 is the first optical scanning device on the right side that is disposed to face the optical deflector 5. Incident into the optical path of S1. If this face-to-face reflected ghost light reaches the scanned surfaces 8a and 8c, there is a problem that streaks and color unevenness occur in the formed image.

そこで本実施例においては結像光学系15a(15b)中に、この対面反射ゴーストを遮光するための上側、下側の遮光板10aU,10aL(10bU,10bL)を設けている。上側の遮光板(上側遮光部材)10aU(10bU)は光偏向器5の図面上、上側を抜けてくる対面反射ゴースト光を遮光し、下側の遮光板(下側遮光部材)10aL(10bL)は光偏向器5の図面上、下側を抜けてくる対面反射ゴーストを遮光している。   Therefore, in this embodiment, the upper and lower light shielding plates 10aU and 10aL (10bU and 10bL) are provided in the imaging optical system 15a (15b) to shield the facing reflection ghost. The upper light shielding plate (upper light shielding member) 10aU (10bU) shields the reflected ghost light passing through the upper side in the drawing of the optical deflector 5, and the lower light shielding plate (lower light shielding member) 10aL (10bL). Shields the reflection ghost that passes through the lower side of the optical deflector 5 in the drawing.

ここで、上側、下側の遮光板10aU,10aL(10bU,10bL)の形状について図5A、Bを用いて説明する。   Here, the shapes of the upper and lower light shielding plates 10aU and 10aL (10bU and 10bL) will be described with reference to FIGS.

図5A、Bは各々本実施例において結像光学系の光軸方向から見たときの遮光板上での画像形成に使用する有効光束の通過領域(走査軌跡)(実線)と、ゴースト光の通過領域(点線)と、本実施例の遮光板の副走査方向の端部形状を表したグラフ(説明図)である。   FIGS. 5A and 5B show the effective light beam passage area (scanning locus) (solid line) used for image formation on the light shielding plate when viewed from the optical axis direction of the imaging optical system in this embodiment, and the ghost light. It is a graph (descriptive drawing) showing the passage region (dotted line) and the end shape of the light shielding plate of the present embodiment in the sub-scanning direction.

図5Aは有効光束の副走査方向の上側に上側の遮光板10aU(10bU)を配置したときの説明図、図5Bは有効光束の副走査方向の下側に下側の遮光板10aL(10bL)を配置したときの説明図である。   FIG. 5A is an explanatory diagram when the upper light shielding plate 10aU (10bU) is disposed on the upper side of the effective light beam in the sub-scanning direction, and FIG. 5B is a lower light shielding plate 10aL (10bL) on the lower side of the effective light beam in the sub-scanning direction. It is explanatory drawing when arrange | positioning.

図5A、Bにおいてグラフ中の横軸は、遮光板上の主走査方向の位置Y(mm)であり、主走査方向と一致しており、Y=0が結像光学系15a(15b)の光軸と遮光板との交点である。本実施例においては、軸上偏向点Oは結像光学系15a(15b)の光軸の延長線上にあるため、グラフ中のY=0の位置と一致する。またグラフ中の縦軸は、副走査方向の高さZ(mm)であり、軸上偏向点Oを含み光偏向器5の回転軸に垂直な平面(XY面)からの副走査方向の高さを表している。   5A and 5B, the horizontal axis in the graph is the position Y (mm) in the main scanning direction on the light shielding plate, which coincides with the main scanning direction, and Y = 0 is the imaging optical system 15a (15b). This is the intersection of the optical axis and the light shielding plate. In this embodiment, since the on-axis deflection point O is on the extension line of the optical axis of the imaging optical system 15a (15b), it coincides with the position of Y = 0 in the graph. The vertical axis in the graph is the height Z (mm) in the sub-scanning direction, and the height in the sub-scanning direction from the plane (XY plane) including the on-axis deflection point O and perpendicular to the rotation axis of the optical deflector 5. It represents.

図5A、Bから分かるようにゴースト光の通過領域と有効光束の通過領域(走査軌跡)は非常に近接している。さらに本実施例は斜入射光学系であるため、有効光束はコニカルスキャンしており、有効光束の走査軌跡は主走査方向において結像光学系15a(15b)の光軸から周辺へいくに連れて高くなるように湾曲している。   As can be seen from FIGS. 5A and 5B, the ghost light passage area and the effective light flux passage area (scanning trajectory) are very close to each other. Further, since the present embodiment is an oblique incidence optical system, the effective light beam is conical scanned, and the scanning locus of the effective light beam moves from the optical axis of the imaging optical system 15a (15b) to the periphery in the main scanning direction. Curved to be higher.

このように有効光束の走査軌跡が湾曲している場合は、副走査方向の端部が直線形状である従来の遮光板91では、十分にゴースト光を遮光することができなかった。以下に前述した図11A、Bを用いてそれを説明する。尚、図11A、Bは各々本実施例との比較の為に、従来の遮光板91を本実施例に用いた場合をも示している。   As described above, when the scanning locus of the effective light beam is curved, the ghost light cannot be sufficiently shielded by the conventional light shielding plate 91 whose end portion in the sub-scanning direction is linear. This will be described below with reference to FIGS. 11A and 11B described above. 11A and 11B also show a case where a conventional light shielding plate 91 is used in this embodiment for comparison with this embodiment.

従来の遮光板91は副走査方向の端部が直線形状の平板であったため、図11A、Bに示すように、遮光板91の端部は主走査方向に延びる直線となる。   Since the conventional light shielding plate 91 is a flat plate having an end in the sub-scanning direction, as shown in FIGS. 11A and 11B, the end of the light shielding plate 91 is a straight line extending in the main scanning direction.

このとき遮光板91で有効光束をケラないようにするためには、有効光束が通過する最も高い位置、つまり主走査方向の周辺部での有効光束の通過領域に合わせて遮光板91の端部の高さを設定しなければならなかった。そのため主走査方向の中心位置では必要以上に遮光板91の端部が図面上、上方に配置され、ゴースト光を十分に遮光でできなかった。   At this time, in order to prevent the effective light beam from being vignetted by the light shielding plate 91, the end portion of the light shielding plate 91 is aligned with the highest position through which the effective light beam passes, that is, the effective light beam passing region in the peripheral portion in the main scanning direction. Had to set the height of. For this reason, at the center position in the main scanning direction, the end portion of the light shielding plate 91 is disposed above the drawing more than necessary, and the ghost light cannot be sufficiently shielded.

そこで本実施例は有効光束の走査軌跡に沿わせて、上側、下側の遮光板10aU、10aL(10bU、10bL)の端部形状を湾曲させている。   Therefore, in this embodiment, the end portions of the upper and lower light shielding plates 10aU and 10aL (10bU and 10bL) are curved along the scanning locus of the effective light beam.

つまり本実施例においては図5A、Bから分かるように上側、下側の遮光板10aU、10aL(10bU、10bL)の端部形状を各々主走査方向の中央から周辺に向かうに連れて副走査方向の高さZが高くなる方向に湾曲させている。   That is, in this embodiment, as can be seen from FIGS. 5A and 5B, the end shapes of the upper and lower light shielding plates 10aU and 10aL (10bU and 10bL) are each changed from the center to the periphery in the main scanning direction. Is curved in the direction in which the height Z increases.

図6Aは上側の遮光板10aU(10bU)の形状を示す説明図、図6Bは下側の遮光板10aL(10bL)の形状を示す説明図である。   6A is an explanatory diagram showing the shape of the upper light shielding plate 10aU (10bU), and FIG. 6B is an explanatory diagram showing the shape of the lower light shielding plate 10aL (10bL).

本実施例においては、遮光板(上側、下側の遮光板10aU、10aL(10bU、10bL))上の任意の主走査方向の位置をY[mm](結像光学系の光軸と遮光板との交点をY=0とする)とする。さらに任意の主走査方向の位置Yでの、軸上偏向点Oを含む光偏向器5の回転軸に垂直な平面(XY平面)と、遮光板(上側、下側の遮光板10aU、10aL(10bU、10bL))の副走査方向の端部との間隔をh(Y)[mm]とする。さらに主走査方向の位置Y=0での間隔をh(0)[mm]とする。   In this embodiment, the position in the main scanning direction on the light shielding plate (upper and lower light shielding plates 10aU, 10aL (10bU, 10bL)) is Y [mm] (the optical axis of the imaging optical system and the light shielding plate). And Y = 0). Further, at any position Y in the main scanning direction, a plane (XY plane) perpendicular to the rotation axis of the optical deflector 5 including the on-axis deflection point O and light shielding plates (upper and lower light shielding plates 10aU, 10aL ( 10bU, 10bL)) is defined as h (Y) [mm]. Further, the interval at the position Y = 0 in the main scanning direction is h (0) [mm].

さらに、間隔h(0)に対する間隔h(Y)の差分を遮光板(上側、下側の遮光板10aU、10aL(10bU、10bL))の湾曲量Δh(Y)と定義する。さらに副走査方向における光軸の斜め入射角度をα[rad](光偏向器5の回転軸に垂直な平面と偏向面に入射する光線とのなす角度)とする。さらに平面内(XZ面内)において軸上偏向点Oからの遮光板(上側、下側の遮光板10aU、10aL(10bU、10bL))までの距離をL(図2BにおいてLUまたはLLに相当)[mm]とする。そのとき遮光板(上側、下側の遮光板10aU、10aL(10bU、10bL))の湾曲量Δh(Y)は、有効走査領域の全域で   Further, the difference of the interval h (Y) with respect to the interval h (0) is defined as the amount of curvature Δh (Y) of the light shielding plates (upper and lower light shielding plates 10aU, 10aL (10bU, 10bL)). Further, an oblique incident angle of the optical axis in the sub-scanning direction is α [rad] (an angle formed between a plane perpendicular to the rotation axis of the optical deflector 5 and a light beam incident on the deflecting surface). Further, the distance from the on-axis deflection point O to the light shielding plates (upper and lower light shielding plates 10aU, 10aL (10bU, 10bL)) in the plane (in the XZ plane) is L (corresponding to LU or LL in FIG. 2B). [mm]. At that time, the amount of curvature Δh (Y) of the light shielding plates (upper and lower light shielding plates 10aU, 10aL (10bU, 10bL)) is the entire effective scanning region.


なる条件式を満足するように設定されている。 Is set to satisfy the following conditional expression.

上記条件式(1)において遮光板(上側、下側の遮光板10aU、10aL(10bU、10bL))の湾曲量Δh(Y)を有効走査領域の全域で条件式(1)を満たすように設定することにより有効光束をケラずに、かつ十分にゴースト光を遮光することができる。   In the above conditional expression (1), the curve amount Δh (Y) of the light shielding plates (upper and lower light shielding plates 10aU, 10aL (10bU, 10bL)) is set so as to satisfy the conditional expression (1) over the entire effective scanning region. Thus, the ghost light can be sufficiently shielded without vignetting the effective light beam.

以下に条件式(1)を満たせば、有効光束をケラずに、かつ十分にゴースト光を遮光できる理由を説明する。   The reason why the ghost light can be sufficiently shielded without vignetting the effective light beam if the conditional expression (1) is satisfied is described below.

副走査方向における光軸の斜め入射角度を上記の如くα[rad]、主走査断面内において走査光束と結像光学系15a(15b)の光軸とのなす角度を任意の走査角度θ[rad]、軸上偏向点(θ=0のときの偏向点)を点Oとする。さらに任意の走査角度θのときの偏向点の軸上偏向点Oからのずれ量をΔX[mm]とする。   The oblique incident angle of the optical axis in the sub-scanning direction is α [rad] as described above, and the angle between the scanning light beam and the optical axis of the imaging optical system 15a (15b) in the main scanning section is an arbitrary scanning angle θ [rad]. ], The on-axis deflection point (deflection point when θ = 0) is defined as point O. Further, a deviation amount of the deflection point from the on-axis deflection point O at an arbitrary scanning angle θ is ΔX [mm].

この画像形成装置において、軸上偏向点OからL(LUまたはLL)[mm]離れた位置に遮光板(上側、下側の遮光板10aU、10aL(10bU、10bL))を主走査断面に垂直、かつ主走査方向と平行となるように配置する。ここで、軸上偏向点Oと遮光板(上側、下側の遮光板10aU、10aL(10bU、10bL))との間に何も光学素子が配置されていないとする。   In this image forming apparatus, light shielding plates (upper and lower light shielding plates 10aU, 10aL (10bU, 10bL)) are perpendicular to the main scanning section at a position separated from the on-axis deflection point O by L (LU or LL) [mm]. And arranged so as to be parallel to the main scanning direction. Here, it is assumed that no optical element is disposed between the on-axis deflection point O and the light shielding plates (upper and lower light shielding plates 10aU, 10aL (10bU, 10bL)).

任意の走査角度θのとき、偏向走査された光束が偏向点から遮光板(上側、下側の遮光板10aU、10aL(10bU、10bL))に到達するまでの主走査断面内での距離L’は、以下のようにθの関数で表せる。   At an arbitrary scanning angle θ, the distance L ′ in the main scanning section until the light beam deflected and scanned reaches the light shielding plate (upper and lower light shielding plates 10aU, 10aL (10bU, 10bL)) from the deflection point. Can be expressed as a function of θ as follows.

L’(θ)=L/cos(θ)+ΔX・・・・・・・(3)
ここで、偏向手段に回転多面京(ポリゴンミラー)を使ったときΔX≠0となるが、L/cos(θ)に対してずれ量ΔXは十分小さいので、式(3)は以下のような近似式に置き換えられる。
L ′ (θ) = L / cos (θ) + ΔX (3)
Here, ΔX ≠ 0 when a rotating polygonal mirror (polygon mirror) is used as the deflecting means, but since the deviation amount ΔX is sufficiently small with respect to L / cos (θ), equation (3) is expressed as follows: It is replaced with an approximate expression.

L’(θ)≒L/cos(θ)・・・・・・・(4)
さらに、走査角度θのとき、光束が遮光板(上側、下側の遮光板10aU、10aL(10bU、10bL))に到達する副走査方向の高さH(軸上偏向点Oをゼロとする)は、
H(θ)=L’(θ)×tan(α)・・・・・・・(5)
と表せ、式(5)に式(4)を代入すると、
H(θ)≒L/cos(θ)×tan(α)・・・・・・・(6)
と表せる。
L '(θ) ≒ L / cos (θ) ... (4)
Further, at the scanning angle θ, the height H in the sub-scanning direction where the light beam reaches the light shielding plates (upper and lower light shielding plates 10aU, 10aL (10bU, 10bL)) (the axial deflection point O is set to zero). Is
H (θ) = L ′ (θ) × tan (α) (5)
And substituting equation (4) into equation (5),
H (θ) ≒ L / cos (θ) x tan (α) (6)
It can be expressed.

ここで、走査角度θのときに光束が遮光板(上側、下側の遮光板10aU、10aL(10bU、10bL))に到達する主走査方向の位置をY[mm]、走査角度θ=0のときに該遮光板に到達する主走査方向の位置をY=0[mm]とすると、
Y=L×tan(θ)・・・・・・・(7)
となり、変換すると
θ=ATAN(Y/L)・・・・・・・(8)
となる。
Here, the position in the main scanning direction where the light beam reaches the light shielding plates (upper and lower light shielding plates 10aU, 10aL (10bU, 10bL)) at the scanning angle θ is Y [mm], and the scanning angle θ = 0. When the position in the main scanning direction reaching the light shielding plate is Y = 0 [mm]
Y = L x tan (θ) ... (7)
When converted, θ = ATAN (Y / L) (8)
It becomes.

ここで、式(8)を式(6)に代入して   Here, substituting equation (8) into equation (6)

式(9)で表される光束の上側の遮光板上での走査軌跡Rを図7に示す。図7はコニカルスキャンされている光束が上側の遮光板に到達するときの、有効光束の上側の遮光板上での走査軌跡Rを表している。   FIG. 7 shows the scanning locus R on the light shielding plate on the upper side of the light beam represented by the equation (9). FIG. 7 shows a scanning trajectory R on the upper light shielding plate of the effective light beam when the light beam subjected to conical scanning reaches the upper light shielding plate.

図7よりコニカルスキャンされた光束の上側の遮光板10aU(10bU)上での走査軌跡Rは、主走査方向に対して結像光学系の光軸から周辺にいくに連れ、軸上偏向点を含む光偏向器の回転軸に垂直な平面(XY面)から遠ざかる方向に湾曲している。   As shown in FIG. 7, the scanning locus R on the light shielding plate 10aU (10bU) on the upper side of the light beam subjected to the conical scanning has an axial deflection point as it moves from the optical axis of the imaging optical system to the periphery in the main scanning direction. It is curved in a direction away from a plane (XY plane) perpendicular to the rotation axis of the included optical deflector.

ここで図7に示しているように遮光板上の任意の主走査方向Yでの光束の走査軌跡Rの湾曲量ΔH(Y)を、Y=0のときに光束が該遮光板に到達する副走査方向の高さH(0)に対する任意の走査角度θのときの副走査方向の高さH(Y)と定義する。そうすると湾曲量ΔH(Y)は以下のように表せる。   Here, as shown in FIG. 7, when the curvature amount ΔH (Y) of the scanning locus R of the light beam in an arbitrary main scanning direction Y on the light shielding plate is Y = 0, the light beam reaches the light shielding plate. It is defined as the height H (Y) in the sub-scanning direction at an arbitrary scanning angle θ with respect to the height H (0) in the sub-scanning direction. Then, the bending amount ΔH (Y) can be expressed as follows.

以上のように、軸上偏向点Oと遮光板(上側、下側の遮光板10aU、10aL(10bU、10bL))との間の光路中に何も光学素子がなければ、該遮光板上での有効光束の走査軌跡Rは式(12)の近似式で求められる。また軸上偏向点と遮光板(上側、下側の遮光板10aU、10aL(10bU、10bL))との間にレンズやミラーなどの光学素子が配置されていても、それら光学素子の有する副走査方向にパワーが小さければ、湾曲量ΔH(Y)への影響は十分小さい。そのため近似式(12)が成り立つ。   As described above, if there is no optical element in the optical path between the on-axis deflection point O and the light shielding plate (upper and lower light shielding plates 10aU, 10aL (10bU, 10bL)), The effective light beam scanning trajectory R is obtained by an approximate expression of Expression (12). Even if optical elements such as lenses and mirrors are arranged between the axial deflection point and the light shielding plates (upper and lower light shielding plates 10aU, 10aL (10bU, 10bL)), the sub-scanning of these optical elements is provided. If the power is small in the direction, the influence on the bending amount ΔH (Y) is sufficiently small. Therefore, the approximate expression (12) holds.

本実施例においては、遮光板(上側、下側の遮光板10aU、10aL(10bU、10bL))と光偏向器5との間の光路中に第1の結像レンズ6a(6b)が設けられている。しかし、第1の結像レンズ6a(6b)は上記の如く主走査方向にのみパワーを有し、副走査方向にノンパワーであるため、光束が第1の結像レンズ6a(6b)を通過する前後で副走査方向の角度が殆ど変化しない。よって本実施例においても遮光板(上側、下側の遮光板10aU、10aL(10bU、10bL))上での有効光束の湾曲量は、式(12)で近似される。   In this embodiment, the first imaging lens 6a (6b) is provided in the optical path between the light shielding plates (upper and lower light shielding plates 10aU, 10aL (10bU, 10bL)) and the optical deflector 5. ing. However, since the first imaging lens 6a (6b) has power only in the main scanning direction and is non-powered in the sub-scanning direction as described above, the light beam passes through the first imaging lens 6a (6b). The angle in the sub-scanning direction hardly changes before and after. Therefore, also in the present embodiment, the bending amount of the effective light beam on the light shielding plates (upper and lower light shielding plates 10aU, 10aL (10bU, 10bL)) is approximated by Expression (12).

本実施例においては、有効光束を遮光せず、かつゴースト光を十分に遮光するために遮光板(上側、下側の遮光板10aU、10aL(10bU、10bL))の副走査方向の端部形状を有効光束の走査軌跡に沿わせるように設定している。   In the present embodiment, the shape of the end portion in the sub-scanning direction of the light shielding plates (upper and lower light shielding plates 10aU, 10aL (10bU, 10bL)) in order to sufficiently shield the ghost light without shielding the effective light beam. Is set to follow the scanning locus of the effective luminous flux.

具体的には遮光板(上側、下側の遮光板10aU、10aL(10bU、10bL))の端部形状の湾曲量Δh(Y)を、以下の条件式(13)を満たすように設定している。これにより、遮光板(上側、下側の遮光板10aU、10aL(10bU、10bL))の湾曲量を、近似式(12)で求められる有効光束の湾曲量に対して±50%の範囲に収めている。   Specifically, the amount of curvature Δh (Y) of the end shape of the light shielding plate (upper and lower light shielding plates 10aU, 10aL (10bU, 10bL)) is set so as to satisfy the following conditional expression (13). Yes. As a result, the amount of bending of the light shielding plates (upper and lower light shielding plates 10aU, 10aL (10bU, 10bL)) is kept within a range of ± 50% with respect to the amount of effective luminous flux obtained by the approximate expression (12). ing.

つまり本実施例では湾曲量Δh(Y)と湾曲量ΔH(Y)との比率が、下記の条件式(13)を満足するように設定している。
0.5≦Δh(Y)/ΔH(Y)≦1.5 ・・・・・・・(13)
ここで、式(13)に式(12)を代入すると、以下の条件式(1)が得られる。
That is, in this embodiment, the ratio of the bending amount Δh (Y) and the bending amount ΔH (Y) is set so as to satisfy the following conditional expression (13).
0.5 ≦ Δh (Y) / ΔH (Y) ≦ 1.5 (13)
Here, the following conditional expression (1) is obtained by substituting the expression (12) into the expression (13).

さらにより好適には、遮光板(上側、下側の遮光板10aU、10aL(10bU、10bL))の端部形状の湾曲量Δh(Y)を、近似式(12)で求められる有効光束の湾曲量に対して±20%の範囲に収めるのが良い。つまり、下記の条件式(14)を満たすように遮光板(上側、下側の遮光板10aU、10aL(10bU、10bL))の形状を設定すればよい。   More preferably, the bending amount Δh (Y) of the end shape of the light shielding plate (upper and lower light shielding plates 10aU, 10aL (10bU, 10bL)) is the curvature of the effective luminous flux obtained by the approximate expression (12). It is better to be within a range of ± 20% with respect to the amount. That is, the shape of the light shielding plates (upper and lower light shielding plates 10aU, 10aL (10bU, 10bL)) may be set so as to satisfy the following conditional expression (14).

本実施例の上側の遮光板10aU(10bU)においては、α=3deg、軸上偏向点Oから上側の遮光板10aU(10bU)までの距離LU=31mmである。また有効走査領域において、有効光束は上側の遮光板10aU(10bU)上の主走査方向Y=−21mm〜+21mmの領域を通過し、有効走査領域の全域において、条件式(1)を満たす。ここでY=19mmのとき、
ΔH(Y)=0.34[mm]、Δh(Y)=0.44[mm]、Δh(Y)/ΔH(Y)=1.3
となり、これは条件式(1)を満たす。
In the upper light shielding plate 10aU (10bU) of this embodiment, α = 3 deg, and the distance LU from the on-axis deflection point O to the upper light shielding plate 10aU (10bU) is 31 mm. In the effective scanning region, the effective light beam passes through the region in the main scanning direction Y = −21 mm to +21 mm on the upper light shielding plate 10aU (10bU), and satisfies the conditional expression (1) in the entire effective scanning region. Where Y = 19mm
ΔH (Y) = 0.34 [mm], Δh (Y) = 0.44 [mm], Δh (Y) / ΔH (Y) = 1.3
This satisfies the conditional expression (1).

また本実施例の下側の遮光板10aL(10bL)においては、α=3deg、軸上偏向点Oから下側の遮光板10aL(10bL)までの距離LL=26mmである。また有効走査領域において、有効光束は下側の遮光板10aL(10bL)上の主走査方向Y=−19mm〜+19mmの領域を通過し、有効走査領域の全域において、条件式(1)を満たす。ここでY=19 mmのとき、
ΔH(Y)=0.33[mm]、Δh(Y)=0.39[mm]、Δh(Y)/ΔH(Y)=1.2
となり、これは条件式(1)を満たす。
In the lower light shielding plate 10aL (10bL) of this embodiment, α = 3 deg, and the distance LL from the on-axis deflection point O to the lower light shielding plate 10aL (10bL) is 26 mm. In the effective scanning region, the effective light beam passes through the region in the main scanning direction Y = −19 mm to +19 mm on the lower light shielding plate 10aL (10bL), and satisfies the conditional expression (1) in the entire effective scanning region. Where Y = 19 mm
ΔH (Y) = 0.33 [mm], Δh (Y) = 0.39 [mm], Δh (Y) / ΔH (Y) = 1.2
This satisfies the conditional expression (1).

本実施例においては遮光板(上側、下側の遮光板10aU、10aL(10bU、10bL))の端部形状を簡易にし、該遮光板の成型難易度を下げるために、該遮光板の副走査方向の端部形状を円弧(円弧形状)に設定している。   In this embodiment, in order to simplify the shape of the end portions of the light shielding plates (upper and lower light shielding plates 10aU, 10aL (10bU, 10bL)) and to reduce the difficulty in forming the light shielding plates, the sub-scanning of the light shielding plates is performed. The end shape in the direction is set to an arc (arc shape).

上側の遮光板10aU(10bU)は、半径500mmの円弧形状で構成しており、走査方向に対して光軸から離れるに連れて、副走査方向の高さが高くなるよう設定している。   The upper light shielding plate 10aU (10bU) has an arc shape with a radius of 500 mm, and is set so that the height in the sub-scanning direction increases as the distance from the optical axis increases with respect to the scanning direction.

下側の遮光板10aL(10bL)は、半径460mmの円弧形状で構成しており、走査方向に対して光軸から離れるに連れて、副走査方向の高さが低くなるよう設定している。   The lower light-shielding plate 10aL (10bL) has an arc shape with a radius of 460 mm, and is set such that the height in the sub-scanning direction decreases as the distance from the optical axis increases with respect to the scanning direction.

本実施例においては、有効走査領域の全域で、遮光板(上側、下側の遮光板10aU、10aL(10bU、10bL))の副走査方向の端部と有効光束との空間分離間隔は、全域で0.3mm以上確保している。また光学部品の取り付け公差などにより有効光束の通過位置がずれた場合でも、遮光板(上側、下側の遮光板10aU、10aL(10bU、10bL))が有効光束をケラないように設定している。   In this embodiment, the spatial separation interval between the effective light beam and the end portion in the sub-scanning direction of the light shielding plates (upper and lower light shielding plates 10aU, 10aL (10bU, 10bL)) is the entire effective scanning region. Is 0.3 mm or more. Further, even when the effective light beam passing position is shifted due to the mounting tolerance of the optical components, the light shielding plates (upper and lower light shielding plates 10aU, 10aL (10bU, 10bL)) are set so that the effective light flux is not vignetted. .

前記図4(A),(B),(C)から分かるように、斜入射光学系においては、光偏向器5に対して図面上、右側に走査される有効光束と対面反射ゴーストとの副走査方向の間隔は、光偏向器5に最も近い側で最も大きくなる傾向がある。また光偏向器5から離れるに連れて間隔が狭くなる傾向がある。このため画像形成に用いる有効光束をケラず、かつ確実にゴースト光のみを遮光するには遮光板(上側、下側の遮光板10aU、10aL(10bU、10bL))をできるだけ光偏向器5側に配置するのが望ましい。   As can be seen from FIGS. 4A, 4B, and 4C, in the oblique incidence optical system, the effective light beam scanned on the right side of the optical deflector 5 and the counter-reflection ghost are sub-scanned. The interval in the scanning direction tends to become the largest on the side closest to the optical deflector 5. Further, the distance tends to become narrower as the distance from the optical deflector 5 increases. For this reason, the light shielding plates (upper and lower light shielding plates 10aU, 10aL (10bU, 10bL)) are placed as close to the optical deflector 5 as possible in order to reliably shield only ghost light without vignetting the effective light beam used for image formation. It is desirable to arrange.

一方、遮光板(上側、下側の遮光板10aU、10aL(10bU、10bL))が光偏向器5に近すぎると騒音が大きくなるなどの問題がある。   On the other hand, if the light shielding plates (upper and lower light shielding plates 10aU, 10aL (10bU, 10bL)) are too close to the optical deflector 5, there is a problem that noise increases.

そこで本実施例においては、遮光板(上側、下側の遮光板10aU、10aL(10bU、10bL))を第1の結像レンズ6a(6b)と第2の結像レンズ7a(7b)の間で、かつ配置可能な最も第1の結像レンズ6a(6b)に近い位置に配置している。これにより上記の相反する二つの条件を両立させている。   Therefore, in this embodiment, the light shielding plates (upper and lower light shielding plates 10aU, 10aL (10bU, 10bL)) are provided between the first imaging lens 6a (6b) and the second imaging lens 7a (7b). And is disposed at a position closest to the first imaging lens 6a (6b) that can be disposed. As a result, the above two conflicting conditions are satisfied.

但し、上側の遮光板10aU(10bU)または下側の遮光板10aL(10bL)またはその両方の遮光板とも光偏向器5と第1の結像レンズ6a(6b)との間の光路中に配置しても、条件式(1)を満たしていれば、本発明の効果が十分得られる。   However, the upper light shielding plate 10aU (10bU), the lower light shielding plate 10aL (10bL), or both light shielding plates are arranged in the optical path between the optical deflector 5 and the first imaging lens 6a (6b). Even so, if the conditional expression (1) is satisfied, the effects of the present invention can be sufficiently obtained.

また本実施例においてはコンパクト化を図るために光走査装置を保持する光学箱と遮光板(上側、下側の遮光板10aU、10aL(10bU、10bL))とを一体成型(モールド成型)にして構成している。   In this embodiment, the optical box for holding the optical scanning device and the light shielding plates (upper and lower light shielding plates 10aU, 10aL (10bU, 10bL)) are integrally formed (molded) for compactness. It is composed.

この際、容易に型抜きできるようにするために遮光板(上側、下側の遮光板10aU、10aL(10bU、10bL))は結像光学系15a(15b)の光軸方向に対する位置を3mmずらして配置されている。   At this time, the light shielding plates (upper and lower light shielding plates 10aU, 10aL (10bU, 10bL)) shift the position of the imaging optical system 15a (15b) with respect to the optical axis direction by 3 mm so that the mold can be easily removed. Are arranged.

尚、本実施例では、光学箱と遮光板(上側、下側の遮光板10aU、10aL(10bU、10bL))を一体成型したが、これに限らず、それぞれ別部材で構成しても良い。   In the present embodiment, the optical box and the light shielding plates (upper and lower light shielding plates 10aU, 10aL (10bU, 10bL)) are integrally formed.

また本実施例では上側の遮光板10aU(10bU)と下側の遮光板10aL(10bL)を別部材で構成したが、これに限らず、一体成型で構成しても良い。   In the present embodiment, the upper light shielding plate 10aU (10bU) and the lower light shielding plate 10aL (10bL) are configured as separate members. However, the present invention is not limited to this, and may be configured by integral molding.

また本実施例においては下側の遮光板10aL(10bL)を上側の遮光板10aU(10bU)よりも光偏向器5側に配置したが、これに限らず、上側の遮光板10aU(10bU)を下側の遮光板10aL(10bL)よりも光偏向器5側に配置しても良い。   In this embodiment, the lower light-shielding plate 10aL (10bL) is arranged closer to the light deflector 5 than the upper light-shielding plate 10aU (10bU). However, the upper light-shielding plate 10aU (10bU) is not limited to this. You may arrange | position to the optical deflector 5 side rather than the lower light-shielding plate 10aL (10bL).

また本実施例では結像光学系15a(15b)を2枚のレンズで構成したが、3枚以上のレンズで構成しても良い。また本実施例では第1の結像レンズ6a(6b)を一枚で構成したが、2枚以上のレンズで構成しても良い。   In this embodiment, the imaging optical system 15a (15b) is composed of two lenses, but it may be composed of three or more lenses. In the present embodiment, the first imaging lens 6a (6b) is constituted by one lens, but may be constituted by two or more lenses.

本実施例においては第1の結像レンズ6a(6b)をその副走査方向の屈折力がノンパワー(第1面の副走査方向の曲率半径R=-1000mm、第2面の副走査方向の曲率半径R=-1000mm)、主走査方向の形状が非円弧のトーリックレンズで構成している。これにより第1の結像レンズ6a(6b)の通過後の有効光束の走査軌跡を複雑にせず、かつfθ性能を満足させている。   In this embodiment, the refractive power of the first imaging lens 6a (6b) in the sub-scanning direction is non-power (the curvature radius R of the first surface in the sub-scanning direction R = -1000 mm, the second surface in the sub-scanning direction). It is composed of a toric lens with a radius of curvature R = -1000 mm and a non-arc shape in the main scanning direction. As a result, the scanning locus of the effective light beam after passing through the first imaging lens 6a (6b) is not complicated, and the fθ performance is satisfied.

また本実施例においては、よりコンパクト化を目的として、第1、第2の光走査装置S1、S2を対向配置させたが、これに限らず、対向配置させていない画像形成装置に本実施例の遮光板を用いても良い。このような画像形成装置であっても、レンズの内面反射ゴーストや、光偏向器の再反射ゴーストなど、種々のゴースト光を良好に遮光することが可能であり、本発明の効果が十分に得られる。   In the present embodiment, the first and second optical scanning devices S1 and S2 are disposed to face each other for the purpose of more compactness. However, the present embodiment is not limited to this, and the present embodiment is not limited to this. Alternatively, a light shielding plate may be used. Even in such an image forming apparatus, it is possible to satisfactorily shield various ghost lights such as a lens internal reflection ghost and a light deflector rereflection ghost, and the effects of the present invention can be sufficiently obtained. It is done.

また本実施例では遮光板(上側、下側の遮光板10aU、10aL(10bU、10bL))の形状を簡易にするために主走査断面内における形状を直線とした。しかし、これに限らず、条件式(1)さえ満たしていれば、主走査断面内における遮光板(上側、下側の遮光板10aU、10aL(10bU、10bL))の形状を曲線にしても、十分に本発明の効果が得られる。   In this embodiment, in order to simplify the shape of the light shielding plates (upper and lower light shielding plates 10aU, 10aL (10bU, 10bL)), the shape in the main scanning section is a straight line. However, not limited to this, as long as conditional expression (1) is satisfied, the shape of the light shielding plates (upper and lower light shielding plates 10aU, 10aL (10bU, 10bL)) in the main scanning section may be curved. The effect of the present invention can be sufficiently obtained.

また本実施例では遮光板(上側、下側の遮光板10aU、10aL(10bU、10bL))の形状を簡易にし、成型難易度を下げるために主走査断面内において直線形状で構成した。しかし、これに限らず、主走査断面内において湾曲形状としても有効光束の走査軌跡に沿わせるように副走査方向の端部形状を湾曲させていれば、本発明の効果が十分得られる。   In this embodiment, the light shielding plates (upper and lower light shielding plates 10aU, 10aL (10bU, 10bL)) are formed in a straight line shape in the main scanning section in order to simplify the shape and reduce the difficulty of molding. However, the present invention is not limited thereto, and the effect of the present invention can be sufficiently obtained if the end shape in the sub-scanning direction is curved so as to follow the scanning locus of the effective light beam even in the main scanning section.

また本実施例では結像光学系15a(15b)の光軸と軸上偏向点Oとが一致するように設定した。しかし、これに限らず、光学特性の左右非対称性を補正するために、結像光学系15a(15b)の光軸を軸上偏向点Oに対して、主走査方向に数mmずらして配置しても良い。たとえば1mmから5mmずらしても良い。   In the present embodiment, the optical axis of the imaging optical system 15a (15b) is set to coincide with the on-axis deflection point O. However, the present invention is not limited to this, and the optical axis of the imaging optical system 15a (15b) is shifted by several mm in the main scanning direction with respect to the axial deflection point O in order to correct the left-right asymmetry of the optical characteristics. May be. For example, it may be shifted from 1 mm to 5 mm.

そのときも遮光板(上側、下側の遮光板10aU、10aL(10bU、10bL))上を通過する光束の主走査方向の幅に対して、結像光学系15a(15b)の光軸の主走査方向のシフト量は十分小さい。そのため、条件式(1)を満たすように遮光板(上側、下側の遮光板10aU、10aL(10bU、10bL))を設定すれば、問題無いレベルにまで該遮光板の端部形状を有効光束の走査軌跡に沿わせることが可能であり、十分に本発明の効果が得られる。   Even at this time, the main axis of the optical axis of the imaging optical system 15a (15b) is larger than the width in the main scanning direction of the light beam passing over the light shielding plates (upper and lower light shielding plates 10aU, 10aL (10bU, 10bL)). The shift amount in the scanning direction is sufficiently small. Therefore, if the light shielding plates (upper and lower light shielding plates 10aU, 10aL (10bU, 10bL)) are set so as to satisfy the conditional expression (1), the shape of the end portion of the light shielding plate is reduced to an effective light flux to a level where there is no problem. It is possible to follow the scanning trajectory, and the effect of the present invention can be sufficiently obtained.

次に実施例1における光走査装置の構成を表1に示す。また実施例1における入射光学系の構成(R(曲率半径)、D(レンズ間隔及びレンズ厚)、N(材料の屈折率))を表2に示す。また実施例1におけるシリンドリカルレンズの非球面形状を表3に示す。   Next, Table 1 shows the configuration of the optical scanning device according to the first embodiment. Table 2 shows the configuration of the incident optical system (R (curvature radius), D (lens spacing and lens thickness), N (refractive index of material)) in Example 1. Table 3 shows the aspheric shape of the cylindrical lens in Example 1.

尚、表1,2,3の数値例は第1の光走査装置S1を示しており、第2の光走査装置S2の数値例も同一である。   The numerical examples in Tables 1, 2, and 3 show the first optical scanning device S1, and the numerical examples of the second optical scanning device S2 are the same.


[実施例2]
図8は本発明の実施例2の主走査方向の要部断面図(主走査断面図)、図9は本発明の実施例2の副走査方向の要部断面図(副走査断面図)である。図8、図9において図1、図2Aに示した要素と同一要素には同符番を付している。
[Example 2]
FIG. 8 is a sectional view (main scanning sectional view) of the main part in the main scanning direction according to the second embodiment of the present invention, and FIG. is there. 8 and 9, the same elements as those shown in FIGS. 1 and 2A are denoted by the same reference numerals.

本実施例において前述の実施例1と異なる点は遮光板11の配置及び形状を異ならせて構成したことである。その他の構成及び光学的作用は実施例1と同様であり、これにより同様な効果を得ている。   The difference between the present embodiment and the first embodiment is that the arrangement and shape of the light shielding plate 11 are different. Other configurations and optical functions are the same as those in the first embodiment, and the same effects are obtained.

つまり、図中、11は遮光部材としての遮光板であり、上側の遮光板11Uと下側の遮光板11Lとを一体成型にして構成しており、結像光学系15a(15b)内で発生するゴースト光を遮光している。   That is, in the figure, 11 is a light shielding plate as a light shielding member, and is constructed by integrally molding the upper light shielding plate 11U and the lower light shielding plate 11L, and is generated in the imaging optical system 15a (15b). To block ghost light.

本実施例における遮光板11は、結像光学系15a内に設けられており、開口部を有しており、被走査面8a,8b上の有効走査領域の全域において、光偏向器5からの偏向反射される有効光束を遮光しないような形状より成っている。   The light-shielding plate 11 in this embodiment is provided in the imaging optical system 15a, has an opening, and is provided from the optical deflector 5 over the entire effective scanning area on the scanned surfaces 8a and 8b. The shape is such that the effective light beam deflected and reflected is not shielded.

前述の実施例1における上側、下側の遮光板は主走査断面内における形状を直線形状(つまり平板)で形成していた。これに対して本実施例では遮光板11の形状を主走査断面内において湾曲形状に形成している。これにより遮光板11の端部形状をコニカルスキャンしている有効光束に沿わせている。   The upper and lower light shielding plates in the first embodiment are formed in a linear shape (that is, a flat plate) in the main scanning section. On the other hand, in the present embodiment, the shape of the light shielding plate 11 is formed in a curved shape in the main scanning section. As a result, the shape of the end portion of the light shielding plate 11 is aligned with the effective light beam that is conically scanned.

つまり本実施例では遮光板11の主走査断面内の形状を結像光学系15aの光軸から離れるに従って、光偏向器5に近づく方向に湾曲させることにより、主走査断面内のどの位置でも遮光板11と軸上偏向点Oとの距離を一致させている。   In other words, in this embodiment, the shape of the light shielding plate 11 in the main scanning section is curved in a direction approaching the optical deflector 5 as it is away from the optical axis of the imaging optical system 15a, thereby blocking light at any position in the main scanning section. The distance between the plate 11 and the on-axis deflection point O is matched.

具体的には遮光板11の形状を主走査断面内において、軸上偏向点Oを円の中心とし、半径R=31mmの円弧(円弧形状)としている。   Specifically, the shape of the light shielding plate 11 is an arc (arc shape) having a radius R = 31 mm with the on-axis deflection point O as the center of the circle in the main scanning section.

また本実施例では遮光板11の副走査方向の端部形状を直線(直線形状)にしている。   In this embodiment, the end shape of the light shielding plate 11 in the sub-scanning direction is a straight line (linear shape).

図10は本実施例において結像光学系の光軸方向から見たときの遮光板上での画像形成に使用する有効光束の上側、下側の通過領域(走査軌跡)(実線)と、ゴースト光の通過領域(点線)と、本実施例の遮光板の開口形状を表したグラフ(説明図)である。   FIG. 10 shows the upper and lower passing areas (scanning trajectory) (solid line) of the effective light beam used for image formation on the light shielding plate when viewed from the optical axis direction of the imaging optical system in this embodiment, and the ghost. It is the graph (description figure) showing the passage region (dotted line) of light, and the opening shape of the light-shielding plate of a present Example.

図10において11は遮光板であり、上側の遮光板11Uと下側の遮光板11Lとを一体成型にして構成している。12は開口部であり、上側と下側の有効光束を通過させる形状より成っている。   In FIG. 10, reference numeral 11 denotes a light shielding plate, which is configured by integrally molding an upper light shielding plate 11U and a lower light shielding plate 11L. Reference numeral 12 denotes an opening having a shape that allows the upper and lower effective light beams to pass therethrough.

図10から分かるように本実施例では遮光板11の主走査断面内での形状を上記の如く湾曲させたことによって有効光束の通過領域を直線にしている。これにより全走査領域内において、遮光板11の端部形状は直線のまま有効光束の通過領域に沿わせることができ、有効光束を遮光せずに、かつ十分にゴースト光を遮光できる。   As can be seen from FIG. 10, in this embodiment, the effective light beam passage area is made straight by curving the shape of the light shielding plate 11 in the main scanning section as described above. As a result, the end shape of the light shielding plate 11 can remain along the effective light beam passage region in the entire scanning region, and the ghost light can be sufficiently shielded without shielding the effective light beam.

また本実施例では有効走査領域の全域において、遮光板11の副走査方向の端部を有効光束に対して0.6mm離れた高さに設定している。これにより取り付け公差などにより有効光束が副走査方向に変位した場合でも、遮光板11で有効光束がケラれないようにしている。   In this embodiment, the end of the light shielding plate 11 in the sub-scanning direction is set at a height of 0.6 mm away from the effective light flux in the entire effective scanning region. Thus, even when the effective light beam is displaced in the sub-scanning direction due to attachment tolerance or the like, the light shielding plate 11 prevents the effective light beam from vignetting.

尚、本実施例における遮光板11は上側遮光板と下側遮光板とを一体成型することにより、コンパクト化を図っているが、これに限らず、上側遮光板と下側遮光板をそれぞれ別部材で構成しても良い。   The light shielding plate 11 in this embodiment is made compact by integrally molding the upper light shielding plate and the lower light shielding plate. However, the present invention is not limited to this. You may comprise with a member.

また本実施例においては、遮光板11の成型難易度を下げるために副走査断面内において端部形状を直線に設定しているが、これに限らず、曲線に設定しても十分に本発明の効果が得られる。   In the present embodiment, the end shape is set to be a straight line in the sub-scanning section in order to reduce the difficulty of forming the light shielding plate 11, but the present invention is not limited to this, and the present invention is sufficient even if it is set to a curve. The effect is obtained.

尚、本実施例では遮光板11を第1の光走査装置S1に設けたが、これに限らず、第2の光走査装置S2に設けても良く、あるいは双方の光走査装置S1,S2に設けても良い。   In the present embodiment, the light shielding plate 11 is provided in the first optical scanning device S1, but not limited thereto, it may be provided in the second optical scanning device S2, or in both the optical scanning devices S1 and S2. It may be provided.

尚、各実施例では複数の光走査装置を有するカラー画像形成装置について説明してきたが、これに限らず、単一の光走査装置から成るモノクロ画像を形成する画像形成装置においても適用可能であることは言うまでもない。   In each of the embodiments, the color image forming apparatus having a plurality of optical scanning devices has been described. However, the present invention is not limited to this, and the present invention can also be applied to an image forming apparatus that forms a monochrome image composed of a single optical scanning device. Needless to say.

[画像形成装置]
図12は、本発明の画像形成装置の実施例を示す副走査方向の要部断面図である。図において、符号104は画像形成装置を示す。この画像形成装置104には、パーソナルコンピュータ等の外部機器117からコードデータDcが入力する。このコードデータDcは、装置内のプリンタコントローラ111によって、画像データ(ドットデータ)Diに変換される。この画像データDiは、光走査装置100に入力される。そして、この光走査装置100からは、画像データDiに応じて変調された光ビーム103が出射され、この光ビーム103によって感光ドラム(感光体)101の感光体面が主走査方向に走査される。
[Image forming apparatus]
FIG. 12 is a cross-sectional view of the main part in the sub-scanning direction showing an embodiment of the image forming apparatus of the present invention. In the figure, reference numeral 104 denotes an image forming apparatus. Code data Dc is input to the image forming apparatus 104 from an external device 117 such as a personal computer. The code data Dc is converted into image data (dot data) Di by a printer controller 111 in the apparatus. This image data Di is input to the optical scanning device 100. The light scanning device 100 emits a light beam 103 modulated in accordance with the image data Di, and the light beam 103 scans the photosensitive surface of the photosensitive drum (photosensitive member) 101 in the main scanning direction.

静電潜像担持体(感光ドラム)たる感光ドラム101は、モーター115によって時計廻りに回転させられる。そして、この回転に伴って、感光ドラム101の感光体面が光ビーム103に対して、主走査方向と直交する副走査方向に移動する。感光ドラム101の上方には、感光ドラム101の表面を一様に帯電せしめる帯電ローラ102が表面に当接するように設けられている。そして、帯電ローラ102によって帯電された感光ドラム101の表面に、前記光走査装置100によって走査される光ビーム103が照射されるようになっている。   The photosensitive drum 101 as an electrostatic latent image carrier (photosensitive drum) is rotated clockwise by a motor 115. With this rotation, the photosensitive surface of the photosensitive drum 101 moves in the sub-scanning direction perpendicular to the main scanning direction with respect to the light beam 103. Above the photosensitive drum 101, a charging roller 102 for uniformly charging the surface of the photosensitive drum 101 is provided so as to contact the surface. The surface of the photosensitive drum 101 charged by the charging roller 102 is irradiated with a light beam 103 scanned by the optical scanning device 100.

先に説明したように、光ビーム103は、画像データDiに基づいて変調されており、この光ビーム103を照射することによって感光ドラム101の表面に静電潜像を形成せしめる。この静電潜像は、上記光ビーム103の照射位置よりもさらに感光ドラム101の回転方向の下流側で感光ドラム101に当接するように配設された現像器107によってトナー像として現像される。   As described above, the light beam 103 is modulated based on the image data Di, and by irradiating the light beam 103, an electrostatic latent image is formed on the surface of the photosensitive drum 101. This electrostatic latent image is developed as a toner image by a developing device 107 disposed so as to abut on the photosensitive drum 101 further downstream in the rotation direction of the photosensitive drum 101 than the irradiation position of the light beam 103.

現像器107によって現像されたトナー像は、感光ドラム101の下方で、感光ドラム101に対向するように配設された転写ローラ108によって被転写材たる用紙112上に転写される。用紙112は感光ドラム101の前方(図12において右側)の用紙カセット109内に収納されているが、手差しでも給紙が可能である。用紙カセット109端部には、給紙ローラ110が配設されており、用紙カセット109内の用紙112を搬送路へ送り込む。   The toner image developed by the developing unit 107 is transferred onto a sheet 112 as a transfer material by a transfer roller 108 disposed below the photosensitive drum 101 so as to face the photosensitive drum 101. The paper 112 is stored in the paper cassette 109 in front of the photosensitive drum 101 (on the right side in FIG. 12), but can be fed manually. A paper feed roller 110 is provided at the end of the paper cassette 109, and feeds the paper 112 in the paper cassette 109 into the transport path.

以上のようにして、未定着トナー像を転写された用紙112はさらに感光ドラム101後方(図12において左側)の定着器へと搬送される。定着器は内部に定着ヒータ(図示せず)を有する定着ローラ113とこの定着ローラ113に圧接するように配設された加圧ローラ114とで構成されている。そして転写部(転写器)から搬送されてきた用紙112を定着ローラ113と加圧ローラ114の圧接部にて加圧しながら加熱することにより用紙112上の未定着トナー像を定着せしめる。更に定着ローラ113の後方には排紙ローラ116が配設されており、定着された用紙112を画像形成装置の外に排出せしめる。   As described above, the sheet 112 on which the unfixed toner image has been transferred is further conveyed to a fixing device behind the photosensitive drum 101 (left side in FIG. 12). The fixing device includes a fixing roller 113 having a fixing heater (not shown) therein and a pressure roller 114 disposed so as to be in pressure contact with the fixing roller 113. Then, the unfixed toner image on the sheet 112 is fixed by heating the sheet 112 conveyed from the transfer unit (transfer unit) while being pressed by the pressure roller 114 and the pressure roller 114. Further, a paper discharge roller 116 is disposed behind the fixing roller 113, and the fixed paper 112 is discharged out of the image forming apparatus.

図12においては図示していないが、プリントコントローラ111は、先に説明したデータの変換だけでなく、モーター115を始め画像形成装置内の各部や、後述する光走査装置内のモーターなどの制御を行う。   Although not shown in FIG. 12, the print controller 111 controls not only the data conversion described above but also each part in the image forming apparatus including the motor 115 and a motor in the optical scanning apparatus described later. Do.

[カラー画像形成装置]
図13は本発明のカラー画像形成装置の副走査断面図である。
[Color image forming device]
FIG. 13 is a sub-scan sectional view of the color image forming apparatus of the present invention.

同図において、60はカラー画像形成装置、201は実施例1又は2に示した構成を有する画像形成装置、21,22,23,24は各々像担持体としての感光ドラム、31,32,33,34は各々現像器である。51は搬送ベルト、52はパーソナルコンピュータ等の外部機器、53は外部機器52から入力した色信号を異なった色の画像データに変換して画像形成装置201に入力せしめるプリンタコントローラである。   In the figure, 60 is a color image forming apparatus, 201 is an image forming apparatus having the configuration shown in the first or second embodiment, 21, 22, 23, and 24 are photosensitive drums as image carriers, 31, 32, and 33, respectively. , 34 are developing devices. 51 is a conveyor belt, 52 is an external device such as a personal computer, and 53 is a printer controller that converts color signals input from the external device 52 into image data of different colors and inputs them to the image forming apparatus 201.

同図において、カラー画像形成装置60には、パーソナルコンピュータ等の外部機器52からR(レッド)、G(グリーン)、B(ブルー)の各色信号が入力する。これらの色信号は、装置内のプリンタコントローラ53によって、C(シアン),M(マゼンタ),Y(イエロー)、B(ブラック)の各画像データ(ドットデータ)に変換される。これらの画像データは、画像形成装置201に入力される。そして、画像形成装置201からは、各画像データに応じて変調された光束(光ビーム)41,42,43,44が出射され、これらの光束によって感光ドラム21,22,23,24の感光面が主走査方向に走査される。   In the figure, the color image forming apparatus 60 receives R (red), G (green), and B (blue) color signals from an external device 52 such as a personal computer. These color signals are converted into C (cyan), M (magenta), Y (yellow), and B (black) image data (dot data) by a printer controller 53 in the apparatus. These image data are input to the image forming apparatus 201. The image forming apparatus 201 emits light beams (light beams) 41, 42, 43, and 44 that are modulated according to each image data, and the photosensitive surfaces of the photosensitive drums 21, 22, 23, and 24 are emitted by these light beams. Are scanned in the main scanning direction.

本実施例におけるカラー画像形成装置は1つの画像形成装置201からC(シアン),M(マゼンタ),Y(イエロー)、B(ブラック)の各色に対応した光束を射出する。そして感光ドラム21,22,23,24面上に画像信号(画像情報)を記録し、カラー画像を高速に印字するものである。   The color image forming apparatus in this embodiment emits light beams corresponding to C (cyan), M (magenta), Y (yellow), and B (black) from one image forming apparatus 201. Then, image signals (image information) are recorded on the photosensitive drums 21, 22, 23, and 24, and a color image is printed at high speed.

本実施例におけるカラー画像形成装置は上述の如く1つの画像形成装置201により各々の画像データに基づいた光束を用いて各色の潜像を各々対応する感光ドラム21,22,23,24面上に形成している。その後、搬送ベルト51上の記録材に多重転写して1枚のフルカラー画像を形成し、該フルカラー画像をシート部材(紙)に転写している。   In the color image forming apparatus according to the present embodiment, as described above, the latent image of each color is formed on the corresponding photosensitive drums 21, 22, 23, and 24 using the light beams based on the respective image data by one image forming apparatus 201. Forming. After that, multiple transfer is performed on the recording material on the conveyance belt 51 to form one full-color image, and the full-color image is transferred to a sheet member (paper).

前記外部機器52としては、例えばCCD(ラインセンサー)を備えたカラー画像読取装置が用いられても良い。この場合には、このカラー画像読取装置と、カラー画像形成装置60とで、カラーデジタル複写機が構成される。   As the external device 52, for example, a color image reading device including a CCD (line sensor) may be used. In this case, the color image reading apparatus and the color image forming apparatus 60 constitute a color digital copying machine.

1a,1b,1c,1d 光源手段 2a,2b,2c,2d アパーチャー(開口絞り)
3a,3b,3c,3d コリメータレンズレンズ 4 シリンドリカルレンズ
5 偏向手段 5a 偏向面 15a,15b 結像光学系 6a,6b 第1の結像レンズ
7a,7b 第2の結像レンズ 8a,8b,8c,8d 被走査面(感光ドラム面)
21a,22a,23a 光束分離手段(反射ミラー)
21b,22b,23b 光束分離手段(反射ミラー)
10aU,10bU 上側の遮光板 10aL,10bL 下側の遮光板
11 遮光板 12 開口部 201 画像形成装置
21、22、23、24 像担持体(感光ドラム) 31、32、33、34 現像器
41、42、43、44 光ビーム 71 搬送ベルト 72 外部機器
73 プリンタコントローラ 60 カラー画像形成装置 100 光走査装置
101 感光ドラム 102 帯電ローラ 103 光ビーム 104 画像形成装置
107 現像装置 108 転写ローラ 109 用紙カセット 110 給紙ローラ
111 プリンタコントローラ 112 転写材(用紙) 113 定着ローラ
114 加圧ローラ 115 モーター 116 排紙ローラ 117 外部機器
1a, 1b, 1c, 1d Light source means 2a, 2b, 2c, 2d Aperture (aperture stop)
3a, 3b, 3c, 3d Collimator lens lens 4 Cylindrical lens 5 Deflection means 5a Deflection surfaces 15a, 15b Imaging optical system 6a, 6b First imaging lens 7a, 7b Second imaging lens 8a, 8b, 8c, 8d Scanned surface (photosensitive drum surface)
21a, 22a, 23a Light beam separating means (reflection mirror)
21b, 22b, 23b Light beam separating means (reflection mirror)
10aU, 10bU Upper light shielding plate 10aL, 10bL Lower light shielding plate 11 Light shielding plate 12 Opening 201 Image forming apparatus 21, 22, 23, 24 Image carrier (photosensitive drum) 31, 32, 33, 34 Developer 41, 42, 43, 44 Light beam 71 Conveying belt 72 External device 73 Printer controller 60 Color image forming device 100 Optical scanning device 101 Photosensitive drum 102 Charging roller 103 Light beam 104 Image forming device 107 Developing device 108 Transfer roller 109 Paper cassette 110 Paper feed Roller 111 Printer controller 112 Transfer material (paper) 113 Fixing roller 114 Pressure roller 115 Motor 116 Paper discharge roller 117 External device

Claims (2)

光源手段と、前記光源手段から出射された光束を偏向手段の偏向面に導光する入射光学系と、前記偏向手段の偏向面で偏向走査された光束を被走査面上に結像させる結像光学系と、を有する光走査装置であって、
副走査断面内において、前記偏向手段の偏向面に入射する光束は、前記結像光学系の光軸に対して斜め方向から前記偏向面に入射されており、
前記偏向面と前記被走査面との間の光路中にゴースト光を遮光する遮光部材を配置しており、かつ、
前記遮光部材の副走査方向の端部は、主走査方向の位置に応じて、副走査方向の高さが変化する湾曲形状で形成されており、かつ、
前記湾曲形状は、前記結像光学系の光軸との交点を中心としたとき、主走査方向において軸外に向うに従い、前記偏向手段の偏向面に入射する光束の軸上偏向点を含む前記偏向手段の回転軸に垂直な平面と前記遮光部材の副走査方向の端部との間隔が大きくなる方向に湾曲しており、かつ、
前記遮光部材は、前記遮光部材の副走査方向の端部のうち上側の副走査方向の端部を備えた上側遮光部材と、前記遮光部材の副走査方向の端部のうち下側の副走査方向の端部を備えた下側遮光部材から構成され、
前記上側遮光部材及び前記下側遮光部材は、前記光走査装置を保持する光学箱に一体成型されており、
前記上側遮光部材及び前記下側遮光部材は、前記結像光学系の光軸方向に対する位置をずらして配置されていることを特徴とする光走査装置。
A light source means, an incident optical system for guiding the light beam emitted from the light source means to the deflection surface of the deflection means, and an image forming an image of the light beam deflected and scanned by the deflection surface of the deflection means on the surface to be scanned An optical scanning device having an optical system,
In the sub-scan section, the light beam incident on the deflection surface of the deflection unit is incident on the deflection surface from an oblique direction with respect to the optical axis of the imaging optical system,
A light shielding member for shielding ghost light is disposed in an optical path between the deflection surface and the scanned surface; and
The end of the light shielding member in the sub-scanning direction is formed in a curved shape whose height in the sub-scanning direction changes according to the position in the main scanning direction, and
The curved shape includes an on-axis deflection point of a light beam incident on a deflecting surface of the deflecting unit as it goes off-axis in the main scanning direction when the intersection with the optical axis of the imaging optical system is the center. Curved in the direction in which the distance between the plane perpendicular to the rotation axis of the deflecting means and the end of the light shielding member in the sub-scanning direction is increased, and
The light-shielding member includes an upper light-shielding member having an upper end in the sub-scanning direction among ends in the sub-scanning direction of the light-shielding member, and a lower sub-scanning among ends in the sub-scanning direction of the light-shielding member. Composed of a lower light-shielding member with an end in the direction,
The upper light shielding member and the lower light shielding member are integrally molded in an optical box that holds the optical scanning device,
The optical scanning device according to claim 1, wherein the upper light shielding member and the lower light shielding member are arranged so as to be shifted in a position with respect to an optical axis direction of the imaging optical system.
請求項1に記載の光走査装置と、前記被走査面に配置された感光体と、前記光走査装置で走査された光ビームによって前記感光体の上に形成された静電潜像をトナー像として現像する現像器と、現像されたトナー像を被転写材に転写する転写器と、転写されたトナー像を被転写材に定着させる定着器とを有することを特徴とする画像形成装置。 An electrostatic latent image formed on the photosensitive member by a light beam scanned by the optical scanning device according to claim 1, the photosensitive member disposed on the surface to be scanned, and the optical scanning device, and a toner image. An image forming apparatus comprising: a developing device that develops the toner image; a transfer device that transfers the developed toner image onto a transfer material; and a fixing device that fixes the transferred toner image onto the transfer material.
JP2010105349A 2010-04-30 2010-04-30 Optical scanning device and image forming apparatus using the same Expired - Fee Related JP4975138B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010105349A JP4975138B2 (en) 2010-04-30 2010-04-30 Optical scanning device and image forming apparatus using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010105349A JP4975138B2 (en) 2010-04-30 2010-04-30 Optical scanning device and image forming apparatus using the same

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2007120513A Division JP5483805B2 (en) 2007-05-01 2007-05-01 Optical scanning device and image forming apparatus using the same

Publications (2)

Publication Number Publication Date
JP2010224552A true JP2010224552A (en) 2010-10-07
JP4975138B2 JP4975138B2 (en) 2012-07-11

Family

ID=43041728

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010105349A Expired - Fee Related JP4975138B2 (en) 2010-04-30 2010-04-30 Optical scanning device and image forming apparatus using the same

Country Status (1)

Country Link
JP (1) JP4975138B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014048563A (en) * 2012-09-03 2014-03-17 Canon Inc Optical scanner and image forming apparatus using the same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1096870A (en) * 1996-09-25 1998-04-14 Ricoh Co Ltd Optical scanner
JP2005004050A (en) * 2003-06-13 2005-01-06 Canon Inc Scanning type optical device
JP2006038912A (en) * 2004-07-22 2006-02-09 Brother Ind Ltd Image forming apparatus and scanning unit

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1096870A (en) * 1996-09-25 1998-04-14 Ricoh Co Ltd Optical scanner
JP2005004050A (en) * 2003-06-13 2005-01-06 Canon Inc Scanning type optical device
JP2006038912A (en) * 2004-07-22 2006-02-09 Brother Ind Ltd Image forming apparatus and scanning unit

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014048563A (en) * 2012-09-03 2014-03-17 Canon Inc Optical scanner and image forming apparatus using the same

Also Published As

Publication number Publication date
JP4975138B2 (en) 2012-07-11

Similar Documents

Publication Publication Date Title
JP5483805B2 (en) Optical scanning device and image forming apparatus using the same
JP4769734B2 (en) Optical scanning device and image forming apparatus using the same
JP5106033B2 (en) Optical scanning device and image forming apparatus using the same
JP5116559B2 (en) Optical scanning device and image forming apparatus using the same
JP4819392B2 (en) Scanning optical device and image forming apparatus using the same
JP4883795B2 (en) Multi-beam optical scanning device and image forming apparatus using the same
JP2007114484A (en) Optical scanner and image forming device using it
JP2007240608A (en) Optical scanner and image forming apparatus using same
JP2010049061A (en) Optical scanning apparatus and image forming apparatus using the same
JP5197045B2 (en) Optical scanning device and image forming apparatus using the same
JP4378081B2 (en) Optical scanning device and image forming apparatus using the same
JP5300505B2 (en) Method for adjusting optical scanning device
JP2010185935A (en) Optical scanning apparatus and image forming apparatus using the same
JP2008170487A (en) Optical scanner and image forming apparatus using the same
JP4975138B2 (en) Optical scanning device and image forming apparatus using the same
JP2005091966A (en) Optical scanner and color image forming apparatus using it
JP5094221B2 (en) Optical scanning device and image forming apparatus using the same
JP2005088352A (en) Scanning optical device and image forming apparatus using it
JP5116444B2 (en) Optical scanning device and image forming apparatus using the same
JP5826365B2 (en) Optical scanning device and image forming apparatus using the same
JP5344653B2 (en) Optical scanning device and image forming apparatus using the same
JP5441938B2 (en) Scanning optical device and image forming apparatus using the same
JP2004070110A (en) Optical scanner and image forming apparatus using the same
JP5318187B2 (en) Optical scanning device and image forming apparatus using the same
JP2006113552A (en) Optical scanner and image forming apparatus using the same

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111213

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111220

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120217

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120313

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120410

R151 Written notification of patent or utility model registration

Ref document number: 4975138

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150420

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees