JP2010223844A - Shield louver with movable cascade slits - Google Patents

Shield louver with movable cascade slits Download PDF

Info

Publication number
JP2010223844A
JP2010223844A JP2009073070A JP2009073070A JP2010223844A JP 2010223844 A JP2010223844 A JP 2010223844A JP 2009073070 A JP2009073070 A JP 2009073070A JP 2009073070 A JP2009073070 A JP 2009073070A JP 2010223844 A JP2010223844 A JP 2010223844A
Authority
JP
Japan
Prior art keywords
facility
storage facility
radioactive substance
slit
exhaust tower
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009073070A
Other languages
Japanese (ja)
Inventor
Takuya Takahashi
拓也 高橋
Toshinao Tsukiyama
俊尚 月山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi GE Nuclear Energy Ltd
Original Assignee
Hitachi GE Nuclear Energy Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi GE Nuclear Energy Ltd filed Critical Hitachi GE Nuclear Energy Ltd
Priority to JP2009073070A priority Critical patent/JP2010223844A/en
Publication of JP2010223844A publication Critical patent/JP2010223844A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Abstract

<P>PROBLEM TO BE SOLVED: To achieve improvement in required countermeasures for such as the importance of radiation shielding design in an existing storage facility for radioactive material where (1) a large number of metal casks encapsulating spent fuel are stored in a relatively narrow site, and (2) in order to avoid an excessive rise in temperature of the metal casks, the facility is provided with large opening parts (an air intake opening and an exhaust tower) for efficiently releasing heat outside the facility by natural cooling. <P>SOLUTION: A shield louver composed of movable cascade slit plates is installed on the exhaust tower in order to reduce streaming through the air intake opening of the storage facility for radioactive material or spent fuel. The cascade slit plates are arranged in parallel with each other so as to minimize the obstruction of air flow. As for the slit plates, their angle can be changed corresponding to a target dose level so that the shielding effect can be adjusted. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、放射性物質の貯蔵施設における遮へいルーバに関するものである。   The present invention relates to a shielding louver in a radioactive material storage facility.

現行の放射性物質の貯蔵施設は、その特徴として
(1)使用済燃料を封入した金属キャスクが比較的狭隘な敷地に多量に貯蔵されていること。
(2)金属キャスクの過度な温度上昇を避けるため、自然冷却により効率的に熱を施設外に放出するための大きな開口部(吸気口及び排気塔)が設けられていることが挙げられる。上記の特徴に加え、当該施設は、現行の原子力発電所,原子力燃料再処理施設と比較し敷地境界が近く、敷地境界において法定線量目標値を遵守する上で、金属キャスクから発生する中性子及びガンマ線等の放射線に対する遮へい設計が重要となる。
The current radioactive material storage facilities are characterized by the following: (1) A large amount of metal cask containing spent fuel is stored in a relatively small site.
(2) In order to avoid an excessive temperature rise of the metal cask, it is mentioned that a large opening (intake port and exhaust tower) for efficiently releasing heat to the outside of the facility by natural cooling is provided. In addition to the above features, the facility is closer to the site boundary than the existing nuclear power plant and nuclear fuel reprocessing facility, and neutrons and gamma rays generated from metal casks are required to comply with legal dose target values at the site boundary. Therefore, it is important to design shields against radiation.

特開2002−40191号公報にはダクト放射線遮へい構造に関し、翼板ユニットを設けた技術について記載されている。   Japanese Patent Application Laid-Open No. 2002-40191 describes a technology provided with a blade unit regarding a duct radiation shielding structure.

特開2002−40191号公報JP 2002-40191 A

日本原子力学会和文論文誌,vol.6,No.2,p.225-238(2007)Journal of Japanese Society of Atomic Energy, vol.6, No.2, p.225-238 (2007)

前述のように放射性物質の貯蔵施設においては、敷地境界における目標線量を遵守する上で吸気口及び排気塔からの放射線ストリーミングが問題となる。放射線ストリーミングを低減させるには、排気塔軸方向に対し、ルーバを垂直に配置すれば良いが、この場合、空気の流れを阻害してしまい除熱効率が低下するため、現在はスリット板の枚数を増やすといった対応が採られている。従って本発明の目的は、排気塔における空気の流れを確保しつつ、ストリーミングを低減させることである。   As described above, in the radioactive material storage facility, radiation streaming from the air inlet and the exhaust tower becomes a problem in order to comply with the target dose at the site boundary. In order to reduce radiation streaming, the louver may be arranged perpendicular to the direction of the exhaust tower axis. In this case, however, the flow of air is obstructed and the heat removal efficiency is lowered. Measures such as increasing are taken. Accordingly, an object of the present invention is to reduce streaming while ensuring air flow in the exhaust tower.

本発明は、放射性物質又は使用済燃料の貯蔵施設の吸気口からのストリーミングを低減させるために、排気塔部に可動翼列型のスリット板からなる遮へいルーバを設置したことを最も主要な特徴とする。翼列型スリットについては、各々を平行に配置することにより、極力空気の流れを阻害しないようにする。スリット板は、目標とする線量レベルに応じてスリット板角度を変化させ、遮へい効果を調節することが可能である。   The main feature of the present invention is that a shielding louver made of a movable blade row-type slit plate is installed in the exhaust tower in order to reduce streaming from the intake of a radioactive material or spent fuel storage facility. To do. About a cascade row type | mold slit, it arrange | positions in parallel so that it may not inhibit the flow of air as much as possible. The slit plate can adjust the shielding effect by changing the slit plate angle according to the target dose level.

また、スリットは鉄,レジンの二層構造とし、翼型スリット板の表面及び排気塔内側表面の微視的構造は、鋸刃型加工とする(図2)。   In addition, the slit has a two-layer structure of iron and resin, and the microscopic structure of the surface of the wing-shaped slit plate and the inner surface of the exhaust tower is a saw blade type process (FIG. 2).

本発明の可動翼列型スリットを採用した場合(図1)、排気塔における空気の流れを大きく阻害することなく、図3に示す現行のものと比較し、排気塔からのストリーミングが低減され、敷地境界における線量を減少させることが可能である。   When adopting the movable blade row type slit of the present invention (FIG. 1), the streaming from the exhaust tower is reduced as compared with the current one shown in FIG. 3 without greatly hindering the air flow in the exhaust tower, It is possible to reduce the dose at the site boundary.

特に、スリット板角度を変化させることにより遮へい効果を調節可能であることが最たる特徴である。スリット板の層数を変化させずに遮へい性能を自在に変化させることは、貯蔵施設の標準化に繋がり、経済性を高めることができる。   In particular, it is the most characteristic that the shielding effect can be adjusted by changing the slit plate angle. Changing the shielding performance freely without changing the number of layers of the slit plate leads to standardization of the storage facility and can improve the economic efficiency.

漏洩放射線量について、近似的に以下の式が成立する。   The following equation is established approximately for the leakage radiation dose.

線量∝S′/S(S及びS′については図4参照)。   Dose ∝ S '/ S (See Fig. 4 for S and S').

金属キャスク方式中間貯蔵施設の概要図。Schematic diagram of a metal cask intermediate storage facility. 排気塔内部の翼列型スリット。Cascade-type slit inside the exhaust tower. スリット拡大図。FIG. 金属キャスク方式中間貯蔵施設の概要図(平板スリット)。Schematic diagram of a metal cask intermediate storage facility (flat slit). 漏洩放射線量について。About leakage radiation dose. 金属キャスク方式中間貯蔵施設の概要図(波板スリット)。Schematic diagram of a metal cask intermediate storage facility (corrugated slit).

以下に本発明の実施形態について図面を参照し説明する。   Embodiments of the present invention will be described below with reference to the drawings.

原子力発電所等で一定期間使用された核燃料を貯蔵する施設は、使用済燃料の崩壊熱による金属キャスクの過度な温度上昇を避けるため、自然冷却により効率的に熱を施設外に放出するための大きな開口部(排気塔)が設けられている。また、使用済燃料を封入した金属キャスクが比較的狭隘な敷地に多量に貯蔵されていることから、当該施設の敷地境界における目標線量を遵守する上で、前記排気塔からの放射線ストリーミングに対する遮へい設計が重要となる。具体的には排気塔における十分な空気の流れを確保しつつ、放射線ストリーミングを低減させる設計が求められている。   Facilities that store nuclear fuel that has been used for a certain period of time at nuclear power plants, etc. are designed to efficiently release heat outside the facility by natural cooling in order to avoid excessive temperature rise of the metal cask due to decay heat of spent fuel. A large opening (exhaust tower) is provided. In addition, since a large amount of metal cask filled with spent fuel is stored in a relatively narrow site, a shielding design against radiation streaming from the exhaust tower is required to comply with the target dose at the site boundary of the facility. Is important. Specifically, there is a need for a design that reduces radiation streaming while ensuring sufficient air flow in the exhaust tower.

図1は本発明の可動翼列型スリット板を有する遮へいルーバを採用したキャスク方式中間貯蔵施設の概要図である。当該施設は施設内に使用済燃料1を封入した金属キャスク2を貯蔵し、また、外部から空気を施設内に取り込むための吸気口3,2から放出される崩壊熱を施設外に排気するための排気塔4を有し、排気塔4内部に可動翼列型スリット板6の集合体5を配置する。金属キャスクにより温められた金属キャスク周辺の空気は上昇し、前記排気塔から施設外に放出され、また、外気が吸気口より取り入れられる。この空気の循環による自然冷却によりキャスクは冷却される。図2は排気塔4内部の断面図及び側面図の拡大図である。各スリット板6は回転棒7に連結しており、この回転棒7を自由に回転できる構造で排気塔に接続する。敷地境界における放射線量の測定結果及び、貯蔵施設の躯体表面温度の測定結果に応じ、施設外の管理室より回転棒7を回転させることで、スリット板角度を調節する。目標値に対し、測定される放射線量レベルが高い場合、スリット板を排気塔軸方向に対し垂直に近づくように傾け、測定される躯体温度が高い場合、空気流量を増加させるため、スリット板を排気塔軸方向に平行に近づくよう傾けることで漏洩放射線量を調節する。スリット板の角度調節において、各スリット板は連動しており、常に各スリット板は平行を保つ。これは空気の流れの阻害効果(空気の圧力損失効果)を最小限に抑えるためである。   FIG. 1 is a schematic view of a cask-type intermediate storage facility that employs a shielding louver having a movable blade row type slit plate of the present invention. The facility stores a metal cask 2 filled with spent fuel 1 in the facility, and exhausts decay heat released from the intake ports 3 and 2 for taking air from outside into the facility. And an assembly 5 of movable blade row slit plates 6 is disposed inside the exhaust tower 4. The air around the metal cask heated by the metal cask rises and is discharged from the exhaust tower to the outside of the facility, and the outside air is taken in from the intake port. The cask is cooled by natural cooling by this air circulation. FIG. 2 is an enlarged view of a sectional view and a side view of the inside of the exhaust tower 4. Each slit plate 6 is connected to a rotating rod 7, and the rotating rod 7 is connected to the exhaust tower with a structure that can freely rotate. According to the measurement result of the radiation dose at the site boundary and the measurement result of the housing surface temperature of the storage facility, the angle of the slit plate is adjusted by rotating the rotating rod 7 from the management room outside the facility. If the measured radiation dose level is higher than the target value, tilt the slit plate so that it approaches perpendicular to the exhaust tower axis direction.If the measured enclosure temperature is high, increase the air flow rate. The amount of radiation leaked is adjusted by tilting it closer to the exhaust tower axis direction. In adjusting the angle of the slit plate, each slit plate is interlocked, and each slit plate always keeps parallel. This is to minimize the air flow obstruction effect (air pressure loss effect).

施設からの放射線ストリーミングによる漏洩放射線量は図5に示すS,S′を用いて近似的に線量∝S′/Sとなることが確認されている(空気の圧力損失について、定量的な知見,評価結果はないが、S′/Sの現象に伴い圧力損失も大きくなる傾向がある)。以上の放射線量調節機能は、同じ敷地内に、同施設を増設するケースを考えた場合、非常に有用である。敷地境界における放射線量は敷地内全ての当該施設からの放射線量の合計値であり、本発明を適用した場合、新設される施設以外の既存の施設からの放射線量をコントロールできることは建設計画の自由度を高めることができると考えられる。   It has been confirmed that the amount of radiation leaked by the radiation streaming from the facility is approximately ∝S ′ / S using S and S ′ shown in FIG. 5 (quantitative knowledge about air pressure loss, Although there is no evaluation result, the pressure loss tends to increase with the phenomenon of S ′ / S). The radiation dose adjustment function described above is very useful when considering the case where the same facility is expanded on the same site. The radiation dose at the site boundary is the total of the radiation doses from all the relevant facilities in the site, and when the present invention is applied, the radiation dose from existing facilities other than the newly established facility can be controlled. It is thought that the degree can be increased.

また、スリット板6は鉄(γ線の遮へいに有効な遮へい体),レジン(中性子の遮へいに有効な遮へい体)の二層構造とし、スリット板6の表面及び排気塔4内側表面の微視的構造は、図3に示す鋸刃型加工とすることにより更なるストリーミング低減を図ることが可能である。   The slit plate 6 has a two-layer structure of iron (shielding body effective for shielding gamma rays) and resin (shielding body effective for shielding neutrons), and a microscopic view of the surface of the slit plate 6 and the inner surface of the exhaust tower 4. The target structure can be further reduced by using the saw blade processing shown in FIG.

図2のように、複数の平板スリットを段毎に平行になるよう配置した構造の遮へいルーバを有するキャスク方式中間貯蔵施設。   As shown in FIG. 2, a cask-type intermediate storage facility having a shielding louver having a structure in which a plurality of flat plate slits are arranged parallel to each other.

図6のように波型スリット板から構成される遮へいルーバを有するキャスク方式中間貯蔵施設。   A cask-type intermediate storage facility having a shielding louver composed of corrugated slit plates as shown in FIG.

〔実施例2〕〔実施例3〕の効果について、該施設からの漏洩放射線量は前述のように、近似的に線量∝S′/Sと表せることから、現行の平板スリットを排気塔軸方向に平行に配置したものと比較し、漏洩線量の低減を図ることが可能である。〔実施例1〕と比較した場合、固定型でスリット回転機能が無い分、低コストで建設可能である。   [Embodiment 2] Regarding the effect of [Embodiment 3], the amount of radiation leaked from the facility can be approximately expressed as a dose ∝S '/ S as described above. It is possible to reduce the leakage dose as compared with the one arranged in parallel with. Compared with [Example 1], it can be constructed at a low cost because it is a fixed type and does not have a slit rotation function.

最大金属キャスク収容数に対するそのときの金属キャスク収容数の割合と、図5に示すスリット仰角θが以下の関係になるよう調節する。
(i)0〜4割の金属キャスクが収納されている場合:20度
(ii)4〜7割の金属キャスクが収納されている場合:30度
(iii)7〜9割の金属キャスクが収納されている場合:40度
(iv)9〜10割の金属キャスクが収納されている場合:50度
The ratio of the number of metal casks accommodated at that time to the maximum number of metal casks accommodated is adjusted so that the slit elevation angle θ shown in FIG.
(I) When 0 to 40% metal cask is stored: 20 degrees (ii) When 40 to 70% metal cask is stored: 30 degrees (iii) 70 to 90% metal cask is stored When it is: 40 degrees (iv) When 90 to 100% of the metal cask is stored: 50 degrees

尚、敷地内に同施設を増設した場合は数値を見直す。   If the facility is expanded on the premises, the figures will be revised.

このように、放射性物質を内蔵した密封容器を貯蔵する貯蔵室を備え、前記貯蔵室に外部から取り入れた空気を前記貯蔵室に取り入れる吸気口及び前記貯蔵室内の空気を外部に排出する排気塔を有し、前記放射性物質の貯蔵施設に放射線量測定装置を設け、前記排気塔内にスリット板を備える放射性物質の貯蔵施設において、前記スリット板が可動翼列型であり、前記可動翼の可動は、前記貯蔵室内の貯蔵容器の割合または、放射線量測定装置から得られる線量測定値から線量測定値が一定の値になるように設定する放射性物質の貯蔵施設の運用方法により排気塔における空気の流れを確保しつつ、ストリーミングを低減させることである。これは手動で行ってもよいし、放射線量測定装置から取り込んだ測定値に基づいて制御を行う制御装置によって行ってもよい。   As described above, the storage room for storing the sealed container containing the radioactive substance is provided, and the intake port for taking in the air taken from the outside into the storage room and the exhaust tower for discharging the air in the storage room to the outside. The radioactive material storage facility is provided with a radiation dose measuring device, and in the radioactive material storage facility provided with a slit plate in the exhaust tower, the slit plate is a movable blade row type, the movable blade is movable The flow of air in the exhaust tower according to the operation method of the radioactive substance storage facility, in which the dose measurement value is set to be a constant value from the ratio of the storage container in the storage chamber or the dose measurement value obtained from the radiation dose measuring device Is to reduce streaming while ensuring. This may be performed manually or may be performed by a control device that performs control based on the measurement values taken from the radiation dose measuring device.

放射性物質の貯蔵施設(例えば排気塔部)に放射線量測定装置を設け、施設内の金属キャスク収容数に関わらず、常に線量測定値が一定の値になるようスリット仰角θを調節する。   A radiation dose measuring device is provided in a radioactive material storage facility (for example, an exhaust tower), and the slit elevation angle θ is adjusted so that the dose measurement value is always a constant value regardless of the number of metal casks accommodated in the facility.

排気塔部に温度測定装置を設け、漏えい放射線量に関わらず、常に施設外に放出される空気温度が一定の値を下回るようスリット仰角θを調節する。   A temperature measuring device is provided in the exhaust tower, and the slit elevation angle θ is adjusted so that the temperature of the air discharged outside the facility is always below a certain value regardless of the amount of radiation leaked.

1 使用済燃料
2 金属キャスク
3 吸気口
4 排気塔
5 集合体
6 スリット板
7 回転棒
1 Spent Fuel 2 Metal Cask 3 Inlet 4 Exhaust Tower 5 Assembly 6 Slit Plate 7 Rotating Rod

Claims (5)

放射性物質を内蔵した密封容器を貯蔵する貯蔵室を備え、前記貯蔵室に外部から取り入れた空気を前記貯蔵室に取り入れる吸気口及び前記貯蔵室内の空気を外部に排出する排気塔を有し、
前記排気塔内にスリット板を備える放射性物質の貯蔵施設において、
前記スリット板が可動翼列型であることを特徴とする放射性物質の貯蔵施設。
A storage chamber for storing a sealed container containing a radioactive substance; an intake port for taking in air taken from the outside into the storage chamber; and an exhaust tower for discharging the air in the storage chamber to the outside,
In a radioactive material storage facility comprising a slit plate in the exhaust tower,
A radioactive substance storage facility, wherein the slit plate is of a movable blade row type.
請求項1に記載の放射性物質の貯蔵施設において、
前記スリット板は、複数の平板スリットを段毎に平行になるよう配置した構造の遮へいルーバを有することを特徴とする放射性物質の貯蔵施設。
In the radioactive substance storage facility according to claim 1,
The said slit board has the shielding louver of the structure which has arrange | positioned the several flat plate slit so that it may become parallel for every step, The storage facility of the radioactive substance characterized by the above-mentioned.
請求項1又は請求項2に記載の放射性物質の貯蔵施設において、
前記スリット板は波型スリット板から構成される遮へいルーバを有することを特徴とする放射性物質の貯蔵施設。
In the radioactive substance storage facility according to claim 1 or 2,
The said slit board has a shielding louver comprised from a waveform slit board, The storage facility of the radioactive substance characterized by the above-mentioned.
請求項1から請求項3いずれかに記載の放射性物質の貯蔵施設において、
前記放射性物質の貯蔵施設に放射線量測定装置を設け、
前記可動翼の可動は、前記貯蔵室内の貯蔵容器の割合または、放射線量測定装置から得られる線量測定値により設定するものとしたことを特徴とする放射性物質の貯蔵施設。
In the radioactive substance storage facility according to any one of claims 1 to 3,
A radiation dose measuring device is installed in the radioactive substance storage facility,
The movement of the movable wing is set according to a ratio of the storage container in the storage chamber or a dose measurement value obtained from a radiation dose measuring device.
放射性物質を内蔵した密封容器を貯蔵する貯蔵室を備え、前記貯蔵室に外部から取り入れた空気を前記貯蔵室に取り入れる吸気口及び前記貯蔵室内の空気を外部に排出する排気塔を有し、
前記放射性物質の貯蔵施設に放射線量測定装置を設け、
前記排気塔内にスリット板を備える放射性物質の貯蔵施設において、
前記スリット板が可動翼列型であり、
前記可動翼の可動は、前記貯蔵室内の貯蔵容器の割合または、放射線量測定装置から得られる線量測定値から線量測定値が一定の値になるように設定することを特徴とする放射性物質の貯蔵施設の運用方法。
A storage chamber for storing a sealed container containing a radioactive substance; an intake port for taking in air taken from the outside into the storage chamber; and an exhaust tower for discharging the air in the storage chamber to the outside,
A radiation dose measuring device is installed in the radioactive substance storage facility,
In a radioactive material storage facility comprising a slit plate in the exhaust tower,
The slit plate is a movable blade row type,
The movement of the movable wing is set so that the dose measurement value becomes a constant value from the ratio of the storage container in the storage chamber or the dose measurement value obtained from the radiation dose measuring device. How to operate the facility.
JP2009073070A 2009-03-25 2009-03-25 Shield louver with movable cascade slits Pending JP2010223844A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009073070A JP2010223844A (en) 2009-03-25 2009-03-25 Shield louver with movable cascade slits

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009073070A JP2010223844A (en) 2009-03-25 2009-03-25 Shield louver with movable cascade slits

Publications (1)

Publication Number Publication Date
JP2010223844A true JP2010223844A (en) 2010-10-07

Family

ID=43041179

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009073070A Pending JP2010223844A (en) 2009-03-25 2009-03-25 Shield louver with movable cascade slits

Country Status (1)

Country Link
JP (1) JP2010223844A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013148434A (en) * 2012-01-18 2013-08-01 Mitsubishi Heavy Ind Ltd Radioactive material storage facility
CN109616235A (en) * 2018-12-29 2019-04-12 清华大学 A kind of discharging apparatus for temporary storage

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013148434A (en) * 2012-01-18 2013-08-01 Mitsubishi Heavy Ind Ltd Radioactive material storage facility
CN109616235A (en) * 2018-12-29 2019-04-12 清华大学 A kind of discharging apparatus for temporary storage
US11887740B2 (en) 2018-12-29 2024-01-30 Chinergy Co., Ltd. Unloading and temporary storage device

Similar Documents

Publication Publication Date Title
US9105365B2 (en) Method for controlling temperature of a portion of a radioactive waste storage system and for implementing the same
RU2525229C2 (en) Device for storage and/or transportation of radioactive wastes and method of its production
US9208914B2 (en) System, method and apparatus for providing additional radiation shielding to high level radioactive materials
CN111344809B (en) Method for storing high level radioactive waste
WO2013115881A2 (en) Method for storing radioactive waste, and system for implementing the same
JP2016513803A (en) Power source from spent fuel cask
SE460936B (en) NUCLEAR BRAKE CARTRIDGE FOR A COOKING WATER REACTOR
JP2013519094A (en) Modular fission waste converter
EP3097567B1 (en) Solid state electrical generator
JP2010223844A (en) Shield louver with movable cascade slits
US9466399B2 (en) Expansion gap radiation shield
SE537113C2 (en) Fuel component and process for producing a fuel component
JP2011252837A (en) Heat removal system and method for reactor container
US9666320B2 (en) Tritium removal device for lithium loop
JP2004226217A (en) Radioactive material dry storage facility
JP2012127935A (en) Nuclear reactor cavity arrangements for ice capacitor type plants
JP7052077B2 (en) Systems and methods for dismantling and decontaminating bioprotective concrete in pressurized light water reactor nuclear power plants
JP2009186473A (en) Cold shutdown apparatus for sodium cooled reactor
JP2002202396A (en) Method for controlling temperature of hermetic container housing radioactive substance and system and facility for storing the hermetic container
ES2545179T3 (en) Procedures and devices related to a light water nuclear reactor of the boiling water type
US9543047B2 (en) System and method for storing fresh and irradiated nuclear fuel
JP6430478B2 (en) Reactor steam supply system and reactor steam supply method characterized by storage of spent fuel in a containment vessel for suppressing the replenishment amount of spent fuel pool water
JP6746922B2 (en) Method and device for storing radioactive waste
JP2006010313A (en) Radioactive material storage building
Fukui Twenty years of experience in monitoring 41Ar in a research reactor and decrease of its discharge into the environment