JP2010223779A - Method of inspecting thin film and thin-film inspection apparatus - Google Patents

Method of inspecting thin film and thin-film inspection apparatus Download PDF

Info

Publication number
JP2010223779A
JP2010223779A JP2009071774A JP2009071774A JP2010223779A JP 2010223779 A JP2010223779 A JP 2010223779A JP 2009071774 A JP2009071774 A JP 2009071774A JP 2009071774 A JP2009071774 A JP 2009071774A JP 2010223779 A JP2010223779 A JP 2010223779A
Authority
JP
Japan
Prior art keywords
thin film
solution
substrate
image
thin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009071774A
Other languages
Japanese (ja)
Other versions
JP5499504B2 (en
Inventor
Ayumi Oguchi
歩美 小口
Yoshiyuki Negishi
佳之 根岸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toppan Inc
Original Assignee
Toppan Printing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toppan Printing Co Ltd filed Critical Toppan Printing Co Ltd
Priority to JP2009071774A priority Critical patent/JP5499504B2/en
Publication of JP2010223779A publication Critical patent/JP2010223779A/en
Application granted granted Critical
Publication of JP5499504B2 publication Critical patent/JP5499504B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of inspecting thin films capable of ideally inspecting a diffused state of a thin film in solution. <P>SOLUTION: The method of inspecting thin-film inspects thin films for inspecting diffused state of a thin-film material in solution. The thin-film inspection method includes the thin-film formation process for forming a thin film by a thin-film material, including a fluorescent particle on a substrate; a solution impregnation process for impregnating the substrate in the solution; an excitation light irradiation process for applying excitation light to the fluorescent particle vertical to the substrate in the solution; an image acquisition process for acquiring an image near the substrate while applying excitation light; a luminance distribution acquisition process for acquiring luminance distribution of a fluorescent particle from the image; and a calculation processing for calculating the degree of diffusion of a thin-film material dispersed to the solution from the luminance distribution. Since the fluorescent particles are mixed with the thin-film material, diffusion of the fluorescent particle following the diffusion of the thin-film material can be tracked and observed by the exciting light. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、薄膜検査方法、および該薄膜検査方法の実施に適した薄膜検査装置に関する。   The present invention relates to a thin film inspection method and a thin film inspection apparatus suitable for carrying out the thin film inspection method.

微細加工技術であるリソグラフィ法では、現像解像度の向上が求められている。リソグラフィ法では、基板上にレジストを塗布し、レジストに露光光を照射し、極性または分子量の差を利用してレジストを現像剤に溶解させ、任意の形状に形成する。このとき、レジスト形状の高い解像性を達成するために、露光光の露光量と現像速度などのレジスト特性との関係性を評価し、最適化することが求められている。   In the lithography method, which is a fine processing technique, improvement in development resolution is required. In the lithography method, a resist is applied onto a substrate, the resist is irradiated with exposure light, and the resist is dissolved in a developer using a difference in polarity or molecular weight to form an arbitrary shape. At this time, in order to achieve high resolution of the resist shape, it is required to evaluate and optimize the relationship between the exposure amount of exposure light and resist characteristics such as development speed.

レジストのような薄膜の特性を評価する方法として、種々の薄膜検査装置が提案されている。   Various thin film inspection apparatuses have been proposed as a method for evaluating characteristics of a thin film such as a resist.

例えば、光学的手段を用いた薄膜検査装置が提案されている(特許文献1参照)。
図1に示すように、光源から照射された光3の内、レジスト薄膜1の表面で反射した光4と透過して基板2に反射した光5との光路差によって起きる干渉を利用し、膜厚を測定する。これより、現像剤へのレジストの溶解による膜厚変化を測定し、現像特性を評価することが出来る。
For example, a thin film inspection apparatus using optical means has been proposed (see Patent Document 1).
As shown in FIG. 1, among the light 3 irradiated from the light source, the interference is caused by the optical path difference between the light 4 reflected by the surface of the resist thin film 1 and the light 5 transmitted and reflected by the substrate 2. Measure the thickness. Thus, the change in film thickness due to dissolution of the resist in the developer can be measured to evaluate the development characteristics.

しかしながら、光学的手段を用いた薄膜検査装置では、原理的にレーザー光の干渉できる範囲の膜厚に限定され、レーザー光の干渉できる範囲外の膜厚の場合、十分な精度で測定することができない。また、測定部位はレーザー光が当たる狭い範囲に限定される。このため、基板に形成された薄膜の溶液への空間的な拡散を観察することは困難であった。   However, in a thin film inspection apparatus using optical means, in principle, the film thickness is limited to a range where laser light can interfere, and in the case of a film thickness outside the range where laser light can interfere, measurement can be performed with sufficient accuracy. Can not. In addition, the measurement site is limited to a narrow range where the laser beam hits. For this reason, it has been difficult to observe the spatial diffusion of the thin film formed on the substrate into the solution.

例えば、水晶振動子を用いた薄膜検査装置が提案されている(特許文献2参照)。
図2に示すように、水晶振動子を用いた方法では、電極板7の付属した水晶の振動子6にレジストなどの物質を塗布し、電極8に電圧をかけ、水晶の圧電気性質による電気的共振周波数の変化を測定し、膜厚の変化を測定することができる。
For example, a thin film inspection apparatus using a crystal resonator has been proposed (see Patent Document 2).
As shown in FIG. 2, in the method using a crystal resonator, a substance such as a resist is applied to the crystal resonator 6 attached to the electrode plate 7, a voltage is applied to the electrode 8, and the electricity due to the piezoelectric properties of the crystal is applied. It is possible to measure the change in film thickness by measuring the change in the resonant frequency.

しかしながら、水晶振動子を用いた薄膜検査装置では、水晶の圧電気性質を利用するため、基板には水晶しか用いることはできず、従って被加工膜の材料は水晶に塗布できるものに限られ、水晶以外の基板上に膜形成した薄膜について評価することが出来ない。また、基板自体が微小に揺動するため、基板に形成された薄膜の溶液への拡散を正確に評価することは困難であった。   However, in a thin film inspection apparatus using a crystal resonator, since the piezoelectric property of the crystal is used, only the crystal can be used for the substrate. Therefore, the material of the film to be processed is limited to that which can be applied to the crystal, A thin film formed on a substrate other than quartz cannot be evaluated. Further, since the substrate itself swings slightly, it is difficult to accurately evaluate the diffusion of the thin film formed on the substrate into the solution.

特開平7−71924号公報JP 7-71924 A 特開2001−349816号公報JP 2001-349816 A

上述したような従来の薄膜検査装置では、溶液中における薄膜材料の拡散状態を観察することは困難であった。   In the conventional thin film inspection apparatus as described above, it is difficult to observe the diffusion state of the thin film material in the solution.

そこで、本発明は、溶液中の薄膜材料の拡散状態を好適に検査することの出来る薄膜検査方法を提供することを目的とする。   Then, an object of this invention is to provide the thin film inspection method which can test | inspect suitably the diffusion state of the thin film material in a solution.

請求項1に記載の本発明は、溶液中における薄膜材料の拡散状態を検査する薄膜検査方法であって、基板上に蛍光粒子を含む薄膜材料を用いて薄膜を形成する薄膜形成工程と、前記基板を溶液に浸漬する溶液浸漬工程と、溶液中の前記基板に対して垂直に前記蛍光粒子に対する励起光を照射する励起光照射工程と、励起光を照射したまま基板近傍の画像を取得する画像取得工程と、前記画像から蛍光粒子の輝度分布を取得する輝度分布取得工程と、前記輝度分布より溶液に拡散した薄膜材料の拡散度を算出する算出工程と、を備えたことを特徴とする薄膜検査方法である。   The present invention according to claim 1 is a thin film inspection method for inspecting a diffusion state of a thin film material in a solution, the thin film forming step of forming a thin film using a thin film material containing fluorescent particles on a substrate, A solution immersion step of immersing the substrate in the solution, an excitation light irradiation step of irradiating the fluorescent particles with excitation light perpendicular to the substrate in the solution, and an image for acquiring an image near the substrate while irradiating the excitation light A thin film comprising: an acquisition step; a luminance distribution acquisition step of acquiring a luminance distribution of fluorescent particles from the image; and a calculation step of calculating a diffusion degree of the thin film material diffused into the solution from the luminance distribution. Inspection method.

請求項2に記載の本発明は、前記画像取得工程にあたり、単位時間ごとに画像を取得することにより複数の画像を取得し、前記算出工程にあたり、前記複数の画像の輝度分布から、所定部位の単位面積あたりの輝度を取得し、溶液に拡散した薄膜材料の単位時間あたりの濃度変化を算出することを特徴とする請求項1に記載の薄膜検査方法である。   According to a second aspect of the present invention, in the image acquisition step, a plurality of images are acquired by acquiring images every unit time, and in the calculation step, from a luminance distribution of the plurality of images, a predetermined region is acquired. The thin film inspection method according to claim 1, wherein brightness per unit area is acquired and a change in concentration per unit time of the thin film material diffused in the solution is calculated.

請求項3に記載の本発明は、前記算出工程にあたり、前記画像の輝度分布における輝度の積算から、溶液に拡散した薄膜材料の全体量を算出し、残存する基板表面の薄膜の膜厚を算出することを特徴とする請求項1に記載の薄膜検査方法である。   According to the third aspect of the present invention, in the calculation step, the total amount of the thin film material diffused in the solution is calculated from the luminance integration in the luminance distribution of the image, and the film thickness of the thin film on the remaining substrate surface is calculated. The thin film inspection method according to claim 1, wherein:

請求項4に記載の本発明は、前記画像取得工程にあたり、単位時間ごとに画像を取得することにより複数の画像を取得し、前記算出工程にあたり、前記画像の輝度分布から、拡散した薄膜材料の単位時間に対する拡散長を算出することを特徴とする請求項1に記載の薄膜検査方法である。   According to a fourth aspect of the present invention, in the image acquisition step, a plurality of images are acquired by acquiring images every unit time, and in the calculation step, the diffused thin film material is extracted from the luminance distribution of the images. The thin film inspection method according to claim 1, wherein a diffusion length with respect to a unit time is calculated.

請求項5に記載の本発明は、基板と、前記基板上に蛍光粒子を含む薄膜材料を用いて形成された薄膜と、前記基板を浸漬する溶液槽と、前記溶液槽内に対し励起光を照射する光源と、前記溶液槽内の画像を取得する画像取得機構と、前記画像取得機構で取得した画像の輝度分布から溶液内の薄膜材料の拡散度を算出する計算機構と、を備えたことを特徴とする薄膜検査装置である。   The present invention according to claim 5 is a substrate, a thin film formed using a thin film material containing fluorescent particles on the substrate, a solution bath in which the substrate is immersed, and excitation light into the solution bath. An illumination light source, an image acquisition mechanism for acquiring an image in the solution tank, and a calculation mechanism for calculating the diffusivity of the thin film material in the solution from the luminance distribution of the image acquired by the image acquisition mechanism. Is a thin film inspection apparatus.

本発明の薄膜検査方法は、薄膜材料に蛍光粒子を混合することから、薄膜材料の拡散に伴う蛍光粒子の拡散を励起光を用いて追跡観察することが出来る。このとき、蛍光粒子の輝度分布は薄膜材料の濃度と相関を持つことから、蛍光粒子の輝度分布から観察時点における溶液内の薄膜材料の拡散度合いを評価することが出来る。よって、溶液中の薄膜材料の拡散状態を好適に検査することの出来る。   Since the thin film inspection method of the present invention mixes fluorescent particles with a thin film material, the diffusion of the fluorescent particles accompanying the diffusion of the thin film material can be tracked and observed using excitation light. At this time, since the luminance distribution of the fluorescent particles has a correlation with the concentration of the thin film material, the degree of diffusion of the thin film material in the solution at the time of observation can be evaluated from the luminance distribution of the fluorescent particles. Therefore, the diffusion state of the thin film material in the solution can be suitably inspected.

従来の光学的手段を用いた薄膜検査装置を示す概略図である。It is the schematic which shows the thin film inspection apparatus using the conventional optical means. 従来の水晶振動子を用いた薄膜検査装置を示す概略図である。It is the schematic which shows the thin film inspection apparatus using the conventional crystal oscillator. 本発明の薄膜検査方法の一実施形態を示すフローチャート図である。It is a flowchart figure which shows one Embodiment of the thin film test | inspection method of this invention. 本発明の薄膜検査装置に係る斜視概略図である。It is a perspective schematic diagram concerning the thin film inspection device of the present invention. 本発明の薄膜検査装置に係る概略図である。It is the schematic which concerns on the thin film inspection apparatus of this invention. 本発明の薄膜検査装置に係る概略図である。It is the schematic which concerns on the thin film inspection apparatus of this invention.

以下、本発明の薄膜検査方法について説明を行なう。   Hereinafter, the thin film inspection method of the present invention will be described.

<薄膜形成工程>
まず、基板に対し、蛍光粒子を含む薄膜材料を用いて薄膜を形成する。
<Thin film formation process>
First, a thin film is formed on a substrate using a thin film material containing fluorescent particles.

基板は、検査対象である薄膜を支持できる程度の機械強度を備えていれば良く、特に限定されるものではない。具体的には、例えば、シリコン基板、石英基板、ガラス基板、樹脂基板、金属基板、などを用いても良い。   The substrate is not particularly limited as long as it has a mechanical strength that can support the thin film to be inspected. Specifically, for example, a silicon substrate, a quartz substrate, a glass substrate, a resin substrate, a metal substrate, or the like may be used.

蛍光粒子は、後述する励起光の照射により発光を行なう粒子である。蛍光を示す材料を担持体に担持させ粒子状にしたものであり、粒径は20nm〜300μm程度であれば良い。このとき、担持体としては、シリカ、ポリスチレンなどの樹脂、などを用いることが出来る。   The fluorescent particles are particles that emit light by irradiation with excitation light described later. A material exhibiting fluorescence is supported on a carrier to form particles, and the particle size may be about 20 nm to 300 μm. At this time, a resin such as silica or polystyrene can be used as the carrier.

薄膜形成方法は、検査対象の薄膜に用いる薄膜材料の特性に応じて適宜公知の薄膜形成方法を用いて良い。具体的には、例えば、ディップコート法、キャスト法、スピンコート法、真空蒸着法、電界重合法、などの薄膜形成方法が挙げられる。
また、薄膜形成前に、基板にHMDS(Hexamethyldisilazane)処理、UV処理、などの表面処理を施しても良い。
As the thin film forming method, a known thin film forming method may be used as appropriate according to the characteristics of the thin film material used for the thin film to be inspected. Specific examples include thin film forming methods such as dip coating, casting, spin coating, vacuum deposition, and electric field polymerization.
Further, before the thin film is formed, the substrate may be subjected to a surface treatment such as HMDS (Hexamethyldisilazane) treatment or UV treatment.

<溶液浸漬工程>
次に、薄膜が形成された基板を溶液に浸漬する。
<Solution immersion process>
Next, the substrate on which the thin film is formed is immersed in the solution.

溶液は、検査対象の薄膜に用いる薄膜材料に対応した溶液であればよく、検査環境に応じて適宜設定してよい。例えば、レジスト材料を検査評価する場合には、該レジスト材料の現像液を用いれば良い。   The solution may be a solution corresponding to the thin film material used for the thin film to be inspected, and may be appropriately set according to the inspection environment. For example, when a resist material is inspected and evaluated, a developer for the resist material may be used.

また、溶液は攪拌状態の溶液であっても良い。本発明の薄膜検査方法では、蛍光粒子の輝度分布より薄膜材料の拡散度を評価することから、溶液が攪拌された状態であっても、薄膜材料が溶液内をどのように拡散していくかを観察することが出来る。
従来の薄膜評価装置は浸漬式であることから、このような攪拌状態の溶液に対し薄膜材料がどのように拡散していくかを評価することは困難であった。
半導体における現像プロセスでは、レジストの塗布された基板はパドル式などで現像処理されることが多く、レジスト薄膜表面での現像剤の置換効率は高い。このため、本発明の薄膜検査方法は、特に、レジスト材料の現像液の拡散状態を評価することに好適に用いることが出来る。
The solution may be a stirred solution. In the thin film inspection method of the present invention, since the degree of diffusion of the thin film material is evaluated from the luminance distribution of the fluorescent particles, how the thin film material diffuses in the solution even when the solution is stirred. Can be observed.
Since the conventional thin film evaluation apparatus is an immersion type, it has been difficult to evaluate how the thin film material diffuses into such a stirred solution.
In a development process in a semiconductor, a substrate coated with a resist is often developed by a paddle method or the like, and the replacement efficiency of the developer on the resist thin film surface is high. For this reason, the thin film inspection method of the present invention can be suitably used particularly for evaluating the diffusion state of the developer of the resist material.

<励起光照射工程>
次に、溶液内に蛍光粒子に対する励起光を照射し、蛍光粒子を発光させる。励起光を照射することにより、蛍光粒子を発光させることが出来る。
<Excitation light irradiation process>
Next, the excitation light for the fluorescent particles is irradiated into the solution to cause the fluorescent particles to emit light. By irradiating with excitation light, fluorescent particles can be emitted.

励起光は、用いた蛍光粒子に対応する波長の光であれば良い。   The excitation light may be light having a wavelength corresponding to the fluorescent particles used.

<画像取得工程>
次に、溶液内の蛍光粒子の発光を画像として取得する。
<Image acquisition process>
Next, the light emission of the fluorescent particles in the solution is acquired as an image.

画像取得手段としては、適宜公知の画像取得手段を用いてよく、光学的なカメラで静止画像を取得してよい。また、一定の単位時間毎に連続して画像を取得することにより、経過時間毎の薄膜材料の拡散度合いを評価することが出来る。また、画像取得手段は、動画であっても良い。   As the image acquisition unit, a known image acquisition unit may be used as appropriate, and a still image may be acquired with an optical camera. Further, by acquiring images continuously every certain unit time, the degree of diffusion of the thin film material for each elapsed time can be evaluated. The image acquisition means may be a moving image.

<算出工程>
次に、画像取得工程にて取得した画像から、蛍光粒子の輝度分布を取得し、該輝度分布から、薄膜材料の拡散度を算出する。
蛍光粒子の拡散度合いと、薄膜材料の拡散度合いは、ほぼ同等と見なすことができることから、蛍光粒子の輝度分布は薄膜材料の濃度と相関を持つことになる。このため、蛍光粒子の輝度分布から観察時点における溶液内の薄膜材料の拡散度合いを評価することが出来る。よって、溶液中の薄膜材料の拡散状態を好適に検査することの出来る。
本発明は、蛍光粒子の輝度分布と、薄膜材料の濃度と、の相関を利用するものであるから、溶解域全体の輝度の積算と、溶解したレジスト薄膜の体積を照らし合わせ、それらの関係の相関基準データを作成することにより、未知の蛍光粒子の輝度より、薄膜材料の濃度を算出することが出来る。
<Calculation process>
Next, the luminance distribution of the fluorescent particles is acquired from the image acquired in the image acquisition step, and the diffusion degree of the thin film material is calculated from the luminance distribution.
Since the degree of diffusion of the fluorescent particles and the degree of diffusion of the thin film material can be regarded as almost equal, the luminance distribution of the fluorescent particles has a correlation with the concentration of the thin film material. For this reason, the diffusion degree of the thin film material in the solution at the time of observation can be evaluated from the luminance distribution of the fluorescent particles. Therefore, the diffusion state of the thin film material in the solution can be suitably inspected.
Since the present invention utilizes the correlation between the luminance distribution of the fluorescent particles and the concentration of the thin film material, the accumulated luminance of the entire dissolution zone is compared with the volume of the dissolved resist thin film, By creating the correlation reference data, the concentration of the thin film material can be calculated from the brightness of the unknown fluorescent particles.

例えば、「前記画像取得工程にあたり、単位時間ごとに画像を取得することにより複数の画像を取得し、前記算出工程にあたり、前記複数の画像の輝度分布から、所定部位の単位面積あたりの輝度を取得し、溶液に拡散した薄膜材料の単位時間あたりの濃度変化を算出」しても良い。
取得した画像の指定部位における蛍光粒子の輝度の経時変化は、指定部位の薄膜材料の濃度の経時変化と相関することから、溶液に拡散した薄膜材料の単位時間あたりの濃度変化を算出することが出来る。
For example, “In the image acquisition step, a plurality of images are acquired by acquiring images per unit time, and in the calculation step, the luminance per unit area of a predetermined part is acquired from the luminance distribution of the plurality of images. Then, the concentration change per unit time of the thin film material diffused into the solution may be calculated.
Since the change over time in the brightness of the fluorescent particles at the specified site in the acquired image correlates with the change over time in the concentration of the thin film material at the specified site, it is possible to calculate the concentration change per unit time of the thin film material that has diffused into the solution. I can do it.

例えば、「前記算出工程にあたり、前記画像の輝度分布における輝度の積算から、溶液に拡散した薄膜材料の全体量を算出し、残存する基板表面の薄膜の膜厚を算出」しても良い。
蛍光粒子の輝度分布は蛍光粒子の濃度分布と相関がある。このとき、溶液内の蛍光粒子の数は、拡散前の薄膜の状態と、溶液に拡散した状態と、で同一であることから、蛍光粒子の輝度分布において輝度の積算は常に一定値である。このため、溶液内の輝度分布を積算することにより、溶液内に溶出した薄膜材料の全体量を算出することが出来る。また、拡散前の薄膜の状態における蛍光粒子の輝度分布の輝度の積算値から、溶液内の蛍光粒子の輝度分布の輝度の積算値を、引くことにより、基板上に残存している蛍光粒子の数量を算出することが出来、これにより、基板上に残存している蛍光粒子の数量から、基板に残存している薄膜材料の量(基板に残存している薄膜の膜厚)を求めることが出来る。
For example, “in the calculation step, the total amount of thin film material diffused in the solution may be calculated from the luminance integration in the luminance distribution of the image, and the film thickness of the thin film on the remaining substrate surface may be calculated”.
The luminance distribution of the fluorescent particles has a correlation with the concentration distribution of the fluorescent particles. At this time, the number of fluorescent particles in the solution is the same in the thin film state before diffusion and in the state of diffusion in the solution, and therefore the luminance integration is always a constant value in the luminance distribution of the fluorescent particles. Therefore, by integrating the luminance distribution in the solution, the total amount of the thin film material eluted in the solution can be calculated. Further, by subtracting the integrated value of the luminance distribution of the fluorescent particles in the solution from the integrated value of the luminance distribution of the fluorescent particles in the state of the thin film before diffusion, the fluorescent particles remaining on the substrate are subtracted. The quantity can be calculated, whereby the quantity of thin film material remaining on the substrate (the film thickness of the thin film remaining on the substrate) can be obtained from the quantity of fluorescent particles remaining on the substrate. I can do it.

例えば、「前記画像取得工程にあたり、単位時間ごとに画像を取得することにより複数の画像を取得し、前記算出工程にあたり、前記画像の輝度分布から、拡散した薄膜材料の単位時間に対する拡散長を算出」しても良い。
取得した画像において、蛍光粒子の発光に由来する輝度の変化があった部位は、拡散した薄膜材料が到達した部位と見なすことが出来る。このため、画像において、蛍光粒子の発光に由来する輝度の変化があった部位の経時変化より、拡散した薄膜材料の単位時間に対する拡散長を算出することが出来る。
For example, “In the image acquisition step, a plurality of images are acquired by acquiring images per unit time, and in the calculation step, the diffusion length of the diffused thin film material per unit time is calculated from the luminance distribution of the image. "You may."
In the acquired image, the portion where the luminance has changed due to the emission of the fluorescent particles can be regarded as the portion where the diffused thin film material has reached. For this reason, in the image, the diffusion length per unit time of the diffused thin film material can be calculated from the change over time of the portion where the luminance change caused by the emission of the fluorescent particles.

図3に、一例として、レジスト薄膜を検査する場合における、本発明の薄膜検査方法のフローチャート図を示す。
まず、基板に蛍光粒子を含むレジスト薄膜を形成する。
次に、基板を現像剤に浸漬する。
次に、浸漬したままで、基板に対して垂直に励起光を照射する。
次に、照射したままレジスト薄膜の拡散状態の画像を取得する。
次に、画像から蛍光粒子の輝度の分布を取得する。
次に、取得した輝度分布から現像剤に溶解したレジスト薄膜の体積を算出する。
As an example, FIG. 3 shows a flowchart of the thin film inspection method of the present invention in the case of inspecting a resist thin film.
First, a resist thin film containing fluorescent particles is formed on a substrate.
Next, the substrate is immersed in a developer.
Next, while being immersed, excitation light is irradiated perpendicularly to the substrate.
Next, an image of the diffusion state of the resist thin film is acquired with irradiation.
Next, the luminance distribution of the fluorescent particles is acquired from the image.
Next, the volume of the resist thin film dissolved in the developer is calculated from the acquired luminance distribution.

以上より、本発明の薄膜検査方法を実施することが出来る。
本発明の薄膜検査方法によれば、蛍光粒子の輝度分布より、溶液内の薄膜における膜厚や薄膜材料の拡散度合いを観察し評価することが出来る。
From the above, the thin film inspection method of the present invention can be carried out.
According to the thin film inspection method of the present invention, the film thickness in the thin film in the solution and the diffusion degree of the thin film material can be observed and evaluated from the luminance distribution of the fluorescent particles.

以下、本発明の薄膜検査装置について説明を行なう。
本発明の薄膜検査装置は、基板と、前記基板上に蛍光粒子を含む薄膜材料を用いて形成された薄膜と、前記基板を浸漬する溶液槽と、前記溶液槽内に対し励起光を照射する光源と、前記溶液槽内の画像を取得する画像取得機構と、前記画像取得機構で取得した画像の輝度分布から溶液内の薄膜材料の拡散度を算出する計算機構と、を備える。
Hereinafter, the thin film inspection apparatus of the present invention will be described.
The thin film inspection apparatus of the present invention irradiates excitation light into a substrate, a thin film formed using a thin film material containing fluorescent particles on the substrate, a solution tank in which the substrate is immersed, and the solution tank. A light source; an image acquisition mechanism for acquiring an image in the solution tank; and a calculation mechanism for calculating a diffusivity of the thin film material in the solution from the luminance distribution of the image acquired by the image acquisition mechanism.

本発明の薄膜検査装置によれば、溶液内を拡散する蛍光粒子を、励起光を照射することにより発光させ、蛍光粒子の発光を画像として取得することが出来る。このとき、取得した画像の輝度分布は拡散した蛍光粒子の濃度分布と相関しており、画像の輝度分布から蛍光粒子の輝度分布から観察時点における溶液内の薄膜材料の拡散度合いを評価することが出来る。よって、溶液中の薄膜材料の拡散状態を好適に検査することが出来る。   According to the thin film inspection apparatus of the present invention, the fluorescent particles diffusing in the solution can emit light by irradiating with excitation light, and the emission of the fluorescent particles can be acquired as an image. At this time, the luminance distribution of the acquired image is correlated with the concentration distribution of the diffused fluorescent particles, and from the luminance distribution of the image, the diffusion degree of the thin film material in the solution at the time of observation can be evaluated from the luminance distribution of the fluorescent particles. I can do it. Therefore, the diffusion state of the thin film material in the solution can be suitably inspected.

図4に、本発明の薄膜検査装置に基板2を設置した概略図を示す。図4において、基板2、基板2上に形成されたレジスト薄膜1、レジスト薄膜1のパターン露光部であるレジスト薄膜の露光部分16、観察部位に励起光を照射する励起光の光源9、光源9から照射された励起光10、観察部位を撮像するカメラ11、である。   FIG. 4 shows a schematic view in which the substrate 2 is installed in the thin film inspection apparatus of the present invention. In FIG. 4, the substrate 2, the resist thin film 1 formed on the substrate 2, the exposed portion 16 of the resist thin film that is the pattern exposure portion of the resist thin film 1, the excitation light source 9 that irradiates the observation site with excitation light, and the light source 9. Excitation light 10 irradiated from the camera 11 and a camera 11 for imaging an observation site.

図5は、図4のy軸方向から見た、本発明の薄膜検査装置の概略図である。図5において、現像液13が満たされた溶液槽12は、基板2に対し、y軸の延長線上に配置されており、基板2を浸漬するにあたり、基板2を現像液13内に浸す。   FIG. 5 is a schematic view of the thin film inspection apparatus of the present invention viewed from the y-axis direction of FIG. In FIG. 5, the solution tank 12 filled with the developer 13 is disposed on the y-axis extension line with respect to the substrate 2, and the substrate 2 is immersed in the developer 13 when the substrate 2 is immersed.

図6は、図4のx軸方向から見た、本発明の薄膜検査装置の概略図である。   FIG. 6 is a schematic view of the thin film inspection apparatus of the present invention viewed from the x-axis direction of FIG.

図6において、観察範囲をz方向に長く、y方向に短い観察範囲14とした場合、取得した画像から、y方向と、z方向に変化する輝度の空間分布が得られる。レジスト薄膜が等方的に時間変化すると仮定すると、z方向への輝度分布の時間変化は、レジスト薄膜の拡散距離の時間変化に対応する。従って、レジスト薄膜の時間に対する拡散長を算出することが出来る。   In FIG. 6, when the observation range is long in the z direction and short in the y direction, a spatial distribution of luminance that changes in the y direction and the z direction is obtained from the acquired image. Assuming that the resist thin film changes isotropically with time, the time change of the luminance distribution in the z direction corresponds to the time change of the diffusion distance of the resist thin film. Therefore, the diffusion length with respect to time of the resist thin film can be calculated.

図6において、観察範囲をレジスト薄膜表面付近でz方向とy方向に短い観察範囲15とした場合、レジスト薄膜が現像剤に溶解し、選択した領域の面積あたりの輝度は高くなる。このため、画像の輝度分布と相関基準データから、選択した領域における現像剤に対するレジスト薄膜の濃度変化を算出できる。   In FIG. 6, when the observation range is the observation range 15 short in the z direction and y direction near the resist thin film surface, the resist thin film dissolves in the developer, and the luminance per area of the selected region increases. For this reason, the density change of the resist thin film relative to the developer in the selected region can be calculated from the luminance distribution of the image and the correlation reference data.

図6において、観察範囲をレジスト薄膜の溶解する全域とした場合、全域を撮像した画像の溶解域全域における輝度の積算と、上記基準データから、溶解したレジスト薄膜の全体積を算出し、基板に残ったレジスト薄膜の膜厚を算出できる。また、このとき、上記レジスト薄膜の溶解域の全域の経時変化を取得することで、レジスト薄膜の膜厚の時間変化を算出することが出来る。   In FIG. 6, when the observation range is the entire area where the resist thin film is dissolved, the total volume of the dissolved resist thin film is calculated from the integration of luminance in the entire dissolution area of the image obtained by imaging the entire area and the reference data, The film thickness of the remaining resist thin film can be calculated. Further, at this time, by obtaining the change with time of the whole region of dissolution of the resist thin film, it is possible to calculate the time change of the film thickness of the resist thin film.

以下、本発明の薄膜検査方法について、具体的に説明を行なう。   Hereinafter, the thin film inspection method of the present invention will be specifically described.

まず、ポジ型のレジスト薄膜1に蛍光粒子を混合した。
蛍光粒子は、波長542nmの単一波長光を照射すると色がレッドに発光するPSL(ポリスチレン)粒子であり、粒子径0.025μm、粒子密度1.05g/cmのものを選択した。また、混合比は、レジスト薄膜に対し体積比で5%であった。
First, fluorescent particles were mixed in the positive resist thin film 1.
The fluorescent particles are PSL (polystyrene) particles that emit red light when irradiated with single-wavelength light having a wavelength of 542 nm, and those having a particle diameter of 0.025 μm and a particle density of 1.05 g / cm 2 were selected. The mixing ratio was 5% by volume with respect to the resist thin film.

次に、ガラス基板2に、蛍光粒子を混合したポジ型のレジスト薄膜1を塗布した。
このとき、塗布方法としてはレジストコート法を用いた。レジストコート法の条件としては、温度23℃、湿度50%、回転数1000rpm、膜厚0.7μm程度であった。
また、レジストを塗布した後に120℃で10分の加熱処理を施した。
Next, a positive resist thin film 1 mixed with fluorescent particles was applied to a glass substrate 2.
At this time, a resist coating method was used as a coating method. The conditions of the resist coating method were a temperature of 23 ° C., a humidity of 50%, a rotation speed of 1000 rpm, and a film thickness of about 0.7 μm.
Moreover, after apply | coating a resist, the heat processing for 10 minutes were performed at 120 degreeC.

次に、レジスト薄膜1が形成された基板2に電子線露光でパターン描画した。
このとき、レジスト薄膜1の露光光源としては電子線を用いた。また、3mm角の正方形パターンを描画した。
また、描画した後に、110℃で10分の加熱処理を施した。
Next, a pattern was drawn by electron beam exposure on the substrate 2 on which the resist thin film 1 was formed.
At this time, an electron beam was used as an exposure light source for the resist thin film 1. A 3 mm square pattern was drawn.
Moreover, after drawing, the heat processing for 10 minutes were performed at 110 degreeC.

次に、レジスト薄膜1を塗布し描画した基板2を、現像剤13に浸漬した。
このとき、現像剤13として、TMAH(Tetra methyl ammonium hydroxide)を用いた。
Next, the substrate 2 on which the resist thin film 1 was applied and drawn was immersed in the developer 13.
At this time, TMAH (Tetra methyl ammonium hydroxide) was used as the developer 13.

次に、現像剤13内での、レジスト薄膜1の溶出状態をカメラにより画像として取得した。   Next, the elution state of the resist thin film 1 in the developer 13 was acquired as an image by a camera.

次に、得られた画像に対し、画像処理を行い、画像内の輝度分布を取得した。   Next, image processing was performed on the obtained image to obtain a luminance distribution in the image.

次に、取得した輝度分布より、カメラで撮像した範囲内の、レジスト材料の濃度を算出し、膜厚の経時変化をデータとして取得できた。   Next, the concentration of the resist material within the range imaged by the camera was calculated from the acquired luminance distribution, and the change in film thickness over time could be acquired as data.

本発明の薄膜検査方法は、溶液中の薄膜の拡散状態を検査することが求められる分野に利用できる。具体的には、例えば、微細加工技術であるリソグラフィ法におけるレジスト材料の現像液の拡散状態を評価することに利用することが出来る。   The thin film inspection method of the present invention can be used in a field where it is required to inspect the diffusion state of a thin film in a solution. Specifically, for example, it can be used to evaluate the diffusion state of a developer of a resist material in a lithography method that is a fine processing technique.

1……レジスト薄膜
2……基板
3……露光光
4……レジスト薄膜表面の反射光
5……レジスト薄膜を透過した反射光
6……水晶振動子
7……電極板
8……電極
9……光源
10……励起光
11……カメラ
12……現像剤用槽
13……現像剤
14……観察範囲
15……観察範囲
16……レジスト薄膜の露光部分
DESCRIPTION OF SYMBOLS 1 ... Resist thin film 2 ... Board | substrate 3 ... Exposure light 4 ... Reflected light of resist thin film surface 5 ... Reflected light which permeate | transmitted resist thin film 6 ... Crystal oscillator 7 ... Electrode plate 8 ... Electrode 9 ... ... light source 10 ... excitation light 11 ... camera 12 ... developer tank 13 ... developer 14 ... observation range 15 ... observation range 16 ... exposed portion of resist thin film

Claims (5)

溶液中における薄膜材料の拡散状態を検査する薄膜検査方法であって、
基板上に蛍光粒子を含む薄膜材料を用いて薄膜を形成する薄膜形成工程と、
前記基板を溶液に浸漬する溶液浸漬工程と、
溶液中の前記基板に対して垂直に前記蛍光粒子に対する励起光を照射する励起光照射工程と、
励起光を照射したまま基板近傍の画像を取得する画像取得工程と、
前記画像から蛍光粒子の輝度分布を取得する輝度分布取得工程と、
前記輝度分布より溶液に拡散した薄膜材料の拡散度を算出する算出工程と、
を備えたことを特徴とする薄膜検査方法。
A thin film inspection method for inspecting a diffusion state of a thin film material in a solution,
A thin film forming step of forming a thin film using a thin film material containing fluorescent particles on a substrate;
A solution immersion step of immersing the substrate in a solution;
An excitation light irradiation step of irradiating the fluorescent particles with excitation light perpendicular to the substrate in the solution;
An image acquisition step of acquiring an image near the substrate while irradiating the excitation light;
A luminance distribution acquisition step of acquiring a luminance distribution of fluorescent particles from the image;
A calculation step of calculating the degree of diffusion of the thin film material diffused into the solution from the luminance distribution;
A thin film inspection method comprising:
前記画像取得工程にあたり、単位時間ごとに画像を取得することにより複数の画像を取得し、
前記算出工程にあたり、前記複数の画像の輝度分布から、所定部位の単位面積あたりの輝度を取得し、溶液に拡散した薄膜材料の単位時間あたりの濃度変化を算出すること
を特徴とする請求項1に記載の薄膜検査方法。
In the image acquisition step, a plurality of images are acquired by acquiring images every unit time,
2. In the calculation step, the luminance per unit area of a predetermined part is acquired from the luminance distribution of the plurality of images, and the concentration change per unit time of the thin film material diffused in the solution is calculated. The thin film inspection method described in 1.
前記算出工程にあたり、前記画像の輝度分布における輝度の積算から、溶液に拡散した薄膜材料の全体量を算出し、残存する基板表面の薄膜の膜厚を算出すること
を特徴とする請求項1に記載の薄膜検査方法。
2. The calculation step according to claim 1, wherein the total amount of the thin film material diffused in the solution is calculated from the luminance integration in the luminance distribution of the image, and the film thickness of the thin film on the remaining substrate surface is calculated. The thin film inspection method described.
前記画像取得工程にあたり、単位時間ごとに画像を取得することにより複数の画像を取得し、
前記算出工程にあたり、前記画像の輝度分布から、拡散した薄膜材料の単位時間に対する拡散長を算出すること
を特徴とする請求項1に記載の薄膜検査方法。
In the image acquisition step, a plurality of images are acquired by acquiring images every unit time,
The thin film inspection method according to claim 1, wherein in the calculation step, a diffusion length per unit time of the diffused thin film material is calculated from the luminance distribution of the image.
基板と、
前記基板上に蛍光粒子を含む薄膜材料を用いて形成された薄膜と、
前記基板を浸漬する溶液槽と、
前記溶液槽内に対し励起光を照射する光源と、
前記溶液槽内の画像を取得する画像取得機構と、
前記画像取得機構で取得した画像の輝度分布から溶液内の薄膜材料の拡散度を算出する計算機構と、
を備えたことを特徴とする薄膜検査装置。
A substrate,
A thin film formed using a thin film material containing fluorescent particles on the substrate;
A solution bath for immersing the substrate;
A light source for irradiating excitation light into the solution tank;
An image acquisition mechanism for acquiring an image in the solution tank;
A calculation mechanism for calculating the diffusivity of the thin film material in the solution from the luminance distribution of the image acquired by the image acquisition mechanism;
A thin film inspection apparatus comprising:
JP2009071774A 2009-03-24 2009-03-24 Thin film inspection method and thin film inspection apparatus Expired - Fee Related JP5499504B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009071774A JP5499504B2 (en) 2009-03-24 2009-03-24 Thin film inspection method and thin film inspection apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009071774A JP5499504B2 (en) 2009-03-24 2009-03-24 Thin film inspection method and thin film inspection apparatus

Publications (2)

Publication Number Publication Date
JP2010223779A true JP2010223779A (en) 2010-10-07
JP5499504B2 JP5499504B2 (en) 2014-05-21

Family

ID=43041124

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009071774A Expired - Fee Related JP5499504B2 (en) 2009-03-24 2009-03-24 Thin film inspection method and thin film inspection apparatus

Country Status (1)

Country Link
JP (1) JP5499504B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109916317A (en) * 2019-03-06 2019-06-21 武汉理工大学 A kind of caliberating device and method of fluorescence imaging membrane thickness measuring system
CN115170572A (en) * 2022-09-08 2022-10-11 山东瑞峰新材料科技有限公司 BOPP composite film surface gluing quality monitoring method
CN115452659A (en) * 2022-11-11 2022-12-09 北京建筑大学 Method for evaluating diffusion capacity of asphalt activator in old asphalt by utilizing image characteristics

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5613730A (en) * 1979-07-13 1981-02-10 Fujitsu Ltd Etching method
JPS59208724A (en) * 1983-05-06 1984-11-27 アメリカン・テレフオン・アンド・テレグラフ・カムパニ− Method of producing device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5613730A (en) * 1979-07-13 1981-02-10 Fujitsu Ltd Etching method
JPS59208724A (en) * 1983-05-06 1984-11-27 アメリカン・テレフオン・アンド・テレグラフ・カムパニ− Method of producing device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109916317A (en) * 2019-03-06 2019-06-21 武汉理工大学 A kind of caliberating device and method of fluorescence imaging membrane thickness measuring system
CN109916317B (en) * 2019-03-06 2023-09-19 武汉理工大学 Calibration device and method of fluorescence imaging film thickness measurement system
CN115170572A (en) * 2022-09-08 2022-10-11 山东瑞峰新材料科技有限公司 BOPP composite film surface gluing quality monitoring method
CN115452659A (en) * 2022-11-11 2022-12-09 北京建筑大学 Method for evaluating diffusion capacity of asphalt activator in old asphalt by utilizing image characteristics
CN115452659B (en) * 2022-11-11 2023-01-17 北京建筑大学 Method for evaluating diffusion capacity of asphalt activator in old asphalt by utilizing image characteristics

Also Published As

Publication number Publication date
JP5499504B2 (en) 2014-05-21

Similar Documents

Publication Publication Date Title
TWI227382B (en) Inspection method and device manufacturing method
Walton et al. Film thickness measurement and contamination layer correction for quantitative XPS
JP5499504B2 (en) Thin film inspection method and thin film inspection apparatus
Sparks et al. Picoliter solution deposition for total reflection X-ray fluorescence analysis of semiconductor samples
WO2012153462A1 (en) Method for determining film thickness of soi layer of soi wafer
Leshchev et al. Sub-nanosecond secondary geminate recombination in mercury halides HgX2 (X= I, Br) investigated by time-resolved x-ray scattering
JP2009145243A (en) Method and device for quantitatively measuring element using laser guiding breakdown spectral analyzing method
Ogaki et al. High‐Resolution Surface Chemical Analysis of a Trifunctional Pattern Made by Sequential Colloidal Shadowing
JP7081530B2 (en) Liquid film thickness measurement method
Chi et al. Direct impurity analysis of semiconductor photoresist samples with laser ablation ICP-MS
CN101510050B (en) Method for extracting electron-beam exposure scattering parameter
JP2009288016A (en) Fluorescent x-ray analyzer and evaluation system of semiconductor device using it
Ide et al. Surface‐enhanced Raman Spectroscopy for Versatile in situ Measurements of Local pH near Electrode Surface
Lenhart et al. X-ray absorption spectroscopy to probe surface composition and surface deprotection in photoresist films
Eleftheriades et al. Label‐Free Spontaneous Raman Sensing in Photonic Crystal Fibers with Nanomolar Sensitivity
TW202108974A (en) Systems and methods for measuring patterns on a substrate
Kobayashi et al. Facile wide-scale defect detection of UV-nanoimprinted resist patterns by fluorescent microscopy
RU2148853C1 (en) Process determining depth of position of modified surface layer in polymer film
WO2004044656A3 (en) Method for washing an optical lens
Im et al. Size estimation of nanoparticle using diffused laser scattering in Mie regime
Sajjadian et al. Photoemission spectroscopy on photoresist materials: A protocol for analysis of radiation sensitive materials
JP2005217254A (en) Method and device for evaluation of resist development speed variation
Tüzün et al. Novel production method for traceable surface sources by aluminium functionalisation
Jones et al. Preliminary evaluation of line-edge roughness metrology based on CD-SAXS
KR20120074545A (en) Method for measuring spreaded quantity of coating layer

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120220

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130515

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130521

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130710

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140212

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140225

R150 Certificate of patent or registration of utility model

Ref document number: 5499504

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees