JP2010223261A - Lubricating structure of power transmission section - Google Patents

Lubricating structure of power transmission section Download PDF

Info

Publication number
JP2010223261A
JP2010223261A JP2009068532A JP2009068532A JP2010223261A JP 2010223261 A JP2010223261 A JP 2010223261A JP 2009068532 A JP2009068532 A JP 2009068532A JP 2009068532 A JP2009068532 A JP 2009068532A JP 2010223261 A JP2010223261 A JP 2010223261A
Authority
JP
Japan
Prior art keywords
power transmission
refrigerant
lubricating
composite fluid
transmission element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009068532A
Other languages
Japanese (ja)
Other versions
JP4862058B2 (en
Inventor
Keisuke Ichige
敬介 市毛
Yosuke Taniguchi
洋介 谷口
Kisaburo Hayakawa
喜三郎 早川
Masanori Iritani
昌徳 入谷
Hiroyuki Nishizawa
博幸 西澤
Arata Murakami
新 村上
Shuji Moriyama
修司 森山
Daisuke Tokozakura
大輔 床桜
Masashi Yamamoto
真史 山本
Yuya Takahashi
裕哉 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Toyota Central R&D Labs Inc
Original Assignee
Toyota Motor Corp
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp, Toyota Central R&D Labs Inc filed Critical Toyota Motor Corp
Priority to JP2009068532A priority Critical patent/JP4862058B2/en
Publication of JP2010223261A publication Critical patent/JP2010223261A/en
Application granted granted Critical
Publication of JP4862058B2 publication Critical patent/JP4862058B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Lubricants (AREA)
  • General Details Of Gearings (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a lubricating structure of power transmission section which can stably lubricate and cool a power transmission element for a long period of time. <P>SOLUTION: The lubricating structure 10 of power transmission section includes a power transmission element 12, a compound fluid 22 consisting of a lubricating oil 24 for lubricating the power transmission element 12 and refrigerant 26 non-compatible with the lubricating oil 24, and gear 20 for stirring the compound fluid 22 lubricating the power transmission element 12 in connection with an operation of gear train 16 constructing the power transmission element 12. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、潤滑液にて潤滑される動力伝達部の潤滑構造に関する。   The present invention relates to a lubricating structure of a power transmission unit lubricated with a lubricating liquid.

自動車のエンジン油として用いられ、一般的な潤滑油と比較して冷却性が高く潤滑性が同等であるO/W/O型複合エマルジョン自動車用潤滑材が知られている(例えば、特許文献1参照)。   O / W / O type composite emulsion automotive lubricants are known that are used as engine oils for automobiles and have a higher cooling performance and equivalent lubricity compared to general lubricating oils (for example, Patent Document 1). reference).

特許第2513718号明細書Japanese Patent No. 2513318

しかしながら、上記の如き従来の技術では、熱力学的に不安定で凍結しやすく、腐りやすい水が含まれるエマルジョンを用いるため、潤滑、冷却の各性能を長期間に亘り安定して果たすことが困難であった。   However, the conventional techniques as described above use emulsions containing water that is thermodynamically unstable, freezes easily, and perishes easily, and therefore it is difficult to stably achieve each performance of lubrication and cooling over a long period of time. Met.

本発明は、動力伝達要素を長期間に亘り安定して潤滑、冷却することができる動力伝達部の潤滑構造を得ることが目的である。   An object of the present invention is to obtain a lubrication structure for a power transmission unit that can stably lubricate and cool a power transmission element over a long period of time.

請求項1記載の発明に係る動力伝達部の潤滑構造は、動力伝達要素と、前記動力伝達要素を潤滑するための潤滑液と、該潤滑液に対する非相溶性の冷媒との複合流体と、前記動力伝達要素の潤滑に供される前記複合流体を撹拌する撹拌要素と、を備えている。   The lubricating structure of the power transmission unit according to the invention of claim 1 is a power transmission element, a composite fluid of a lubricating liquid for lubricating the power transmission element, a refrigerant incompatible with the lubricating liquid, and the And a stirring element that stirs the composite fluid that is used for lubrication of the power transmission element.

請求項1記載の動力伝達部の潤滑構造では、撹拌要素によって撹拌された複合流体が動力伝達要素に供給される。これにより、動力伝達要素は、潤滑液によって良好に潤滑されつつ、冷媒との接触よって良好に冷却される。ここで、複合流体の潤滑液と冷媒とが互いに非相溶性であるため、これらの潤滑液と冷媒とは、互い独立してそれぞれの機能を安定して果たすことができる。すなわち、本動力伝達部の潤滑構造では、例えば潤滑液と冷媒との結合、該結合の解除等に起因する性能低下の虞がない。   In the lubricating structure of the power transmission unit according to the first aspect, the composite fluid stirred by the stirring element is supplied to the power transmission element. As a result, the power transmission element is satisfactorily cooled by contact with the refrigerant while being well lubricated by the lubricating liquid. Here, since the lubricating fluid and the refrigerant of the composite fluid are incompatible with each other, the lubricating liquid and the refrigerant can stably perform their functions independently of each other. That is, in the lubrication structure of the power transmission unit, there is no risk of performance degradation due to, for example, the coupling between the lubricating liquid and the refrigerant, the release of the coupling, and the like.

このように、請求項1記載の動力伝達部の潤滑構造では、動力伝達部の構成部品を長期間に亘り安定して潤滑、冷却することができる。   Thus, in the lubricating structure of the power transmission unit according to the first aspect, the components of the power transmission unit can be stably lubricated and cooled over a long period of time.

請求項2記載の発明に係る動力伝達部の潤滑構造は、請求項1記載の動力伝達部の潤滑構造において、前記冷媒として、前記潤滑液よりも粘度の低い冷媒が用いられている。   According to a second aspect of the present invention, in the power transmission unit lubricating structure, a refrigerant having a viscosity lower than that of the lubricating liquid is used as the refrigerant.

請求項2記載の動力伝達部の潤滑構造では、複合流体の冷媒が潤滑液よりも低粘度であるため、潤滑油単体を用いる場合と比較して、複合流体の流動抵抗(せん断力)が低減される。これにより、動力伝達ロスの低減が図られる。   In the lubricating structure of the power transmission unit according to claim 2, since the refrigerant of the composite fluid has a lower viscosity than the lubricating liquid, the flow resistance (shearing force) of the composite fluid is reduced as compared with the case of using a single lubricant. Is done. Thereby, reduction of power transmission loss is achieved.

請求項3記載の発明に係る動力伝達部の潤滑構造は、請求項1又は請求項2記載の動力伝達部の潤滑構造において、前記冷媒としてフッ素系冷媒が用いられている。   According to a third aspect of the present invention, there is provided a lubricating structure for a power transmission unit according to the first or second aspect, wherein a fluorine-based refrigerant is used as the refrigerant.

請求項3記載の動力伝達部の潤滑構造では、フッ素系冷媒は、それ自体が腐食し難く、また動力伝達要素(の構成部品)を腐食させ難く、かつ凍り難い(低流動点である)ものとすることができる。このため、本動力伝達部の潤滑構造では、動力伝達部の構成部品を一層長期間に亘り一層安定して潤滑、冷却することができる。   In the lubricating structure of the power transmission unit according to claim 3, the fluorine-based refrigerant is not easily corroded itself, hardly corrodes the power transmission element (components thereof), and is not easily frozen (has a low pour point). It can be. For this reason, in the lubricating structure of this power transmission part, the component of a power transmission part can be lubricated and cooled more stably over a longer period of time.

請求項4記載の発明に係る動力伝達部の潤滑構造は、請求項1〜請求項3の何れか1項記載の動力伝達部の潤滑構造において、前記動力伝達要素を収容し、底部に前記複合流体を貯留させるハウジングをさらに備え、前記撹拌要素は、前記ハウジングの底部に貯留された前記複合流体に浸漬され、前記動力伝達要素の一部を構成する回転部材を含んで構成されている。   According to a fourth aspect of the present invention, there is provided a lubrication structure for a power transmission unit according to any one of the first to third aspects, wherein the power transmission element is accommodated and the composite is disposed at the bottom. A housing for storing fluid is further provided, and the stirring element includes a rotating member that is immersed in the composite fluid stored in the bottom of the housing and forms a part of the power transmission element.

請求項4記載の動力伝達部の潤滑構造では、動力伝達要素の一部を構成する回転部材によって、ハウジングの底部に貯留されている複合流体が撹拌され、この複合流体が動力伝達要素の潤滑に供される。動力伝達要素自体が撹拌要素を成すので、部品点数を増すことなく複合流体による潤滑性と冷却性の両立を図ることができる。   In the lubricating structure of the power transmission unit according to claim 4, the composite fluid stored in the bottom of the housing is agitated by the rotating member constituting a part of the power transmission element, and this composite fluid is used for lubricating the power transmission element. Provided. Since the power transmission element itself forms a stirring element, it is possible to achieve both lubricity and cooling performance by the composite fluid without increasing the number of parts.

請求項5記載の発明に係る動力伝達部の潤滑構造は、請求項1〜請求項4の何れか1項記載の動力伝達部の潤滑構造において、前記冷媒として、前記動力伝達要素の作動温度よりも沸点が低い冷媒が用いられており、気化した前記冷媒の圧力によって膨張可能な圧力調整要素と、気化した前記冷媒を冷却するための冷却要素とをさらに備えた。   According to a fifth aspect of the present invention, there is provided a lubricating structure for a power transmission unit according to any one of the first to fourth aspects, wherein the coolant is an operating temperature of the power transmission element as the refrigerant. In addition, a refrigerant having a low boiling point is used, and further includes a pressure adjusting element that can be expanded by the pressure of the vaporized refrigerant, and a cooling element for cooling the vaporized refrigerant.

請求項5記載の動力伝達部の潤滑構造では、通常の作動温度(運転温度)に達した動力伝達要素に接触した冷媒は、該動力伝達要素からの潜熱を奪いつつ蒸発する。このため、本動力伝達部の潤滑構造では、動力伝達要素の冷却性が一層高い。また、冷媒が蒸発すると圧力調整要素が膨張して内圧が過大になることが防止され、蒸発した冷媒は冷却要素に潜熱を奪われ液化する(液相に復帰する)。   In the lubricating structure of the power transmission unit according to the fifth aspect, the refrigerant that has contacted the power transmission element that has reached a normal operating temperature (operation temperature) evaporates while taking away latent heat from the power transmission element. For this reason, the cooling structure of the power transmission element is further enhanced in the lubricating structure of the power transmission unit. Further, when the refrigerant evaporates, the pressure adjusting element is prevented from expanding and the internal pressure is prevented from becoming excessive, and the evaporated refrigerant is deprived of latent heat by the cooling element and is liquefied (returns to the liquid phase).

以上説明したように本発明に係る動力伝達部の潤滑構造は、動力伝達要素を長期間に亘り安定して潤滑、冷却することができるという優れた効果を有する。   As described above, the lubricating structure of the power transmission unit according to the present invention has an excellent effect that the power transmission element can be stably lubricated and cooled over a long period of time.

本発明の第1の実施形態に係る動力伝達部の潤滑構造の概略構成を模式的に示す図であって、(A)は動力伝達要素の模式的な断面図、(B)は複合液体の静止時の斜視図である。BRIEF DESCRIPTION OF THE DRAWINGS It is a figure which shows typically schematic structure of the lubrication structure of the power transmission part which concerns on the 1st Embodiment of this invention, (A) is typical sectional drawing of a power transmission element, (B) is composite liquid. It is a perspective view at the time of stationary. 本発明の第1の実施形態に係る動力伝達部の潤滑構造を構成する複合液体を評価するのに用いたブロックオンリング摩擦摩耗試験機を模式的に示す正面図である。1 is a front view schematically showing a block-on-ring friction and wear tester used for evaluating a composite liquid constituting a lubricating structure of a power transmission unit according to a first embodiment of the present invention. 上記ブロックオンリング摩擦摩耗試験機によるブロック34の摩耗評価結果を示す図であって、(A)は潤滑油のみを用いた場合の摩耗状態を示す写真、(B)は冷媒のみを用いた場合の摩耗状態を示す写真、(C)は本発明の第1の実施形態に係る動力伝達部の潤滑構造を構成する複合液体を用いた場合の摩耗状態を示す写真である。It is a figure which shows the abrasion evaluation result of the block 34 by the said block on-ring friction abrasion tester, Comprising: (A) is a photograph which shows the abrasion state at the time of using only lubricating oil, (B) is the case where only a refrigerant | coolant is used. (C) is a photograph which shows a wear state at the time of using the composite liquid which comprises the lubrication structure of the power transmission part which concerns on the 1st Embodiment of this invention. 本発明の第1の実施形態に係る動力伝達部の潤滑構造を構成する複合液体を評価するのに用いた放熱能力試験機を模式的に示す側面図である。It is a side view which shows typically the heat dissipation capability testing machine used in evaluating the composite liquid which comprises the lubrication structure of the power transmission part which concerns on the 1st Embodiment of this invention. (A)は、上記放熱能力試験機の計測結果より算出した被試験液体ごとの放熱性能と撹拌速度との関係を示す線図、(B)は、上記放熱能力試験機での鉄塊の温度変化から放熱性能を算出し得ることを説明するための線図である。(A) is a diagram showing the relationship between the heat dissipation performance and the stirring speed for each liquid under test calculated from the measurement results of the heat dissipation capability tester, and (B) is the temperature of the iron ingot in the heat dissipation capability tester. It is a diagram for demonstrating that heat dissipation performance can be calculated from a change. 上記ブロックオンリング摩擦摩耗試験機による各部の温度計測結果を示す図であって、(A)は潤滑油のみを用いた場合の結果を示す線図、(B)は本発明の第1の実施形態に係る動力伝達部の潤滑構造を構成する複合液体を用いた場合の結果を示す線図である。It is a figure which shows the temperature measurement result of each part by the said block on-ring friction abrasion test machine, Comprising: (A) is a diagram which shows the result at the time of using only lubricating oil, (B) is 1st implementation of this invention It is a diagram which shows the result at the time of using the composite liquid which comprises the lubrication structure of the power transmission part which concerns on a form. 本発明の第1の実施形態に係る動力伝達部の潤滑構造を構成する複合液体を評価するのに用いた負荷試験装置を模式的に示す側面図である。It is a side view which shows typically the load test apparatus used in evaluating the composite liquid which comprises the lubrication structure of the power transmission part which concerns on the 1st Embodiment of this invention. 上記負荷試験装置による回転円板の回転に伴う引き摺りトルク計測結果について、潤滑油のみを用いた場合と、本発明の第1の実施形態に係る動力伝達部の潤滑構造を構成する複合液体を用いた場合とを比較して示すグラフである。About the drag torque measurement result accompanying the rotation of the rotating disk by the load test device, the case where only the lubricating oil is used and the composite liquid constituting the lubricating structure of the power transmission unit according to the first embodiment of the present invention are used. It is a graph which compares and shows the case where it was. 上記負荷試験装置による回転円板への流体引き摺り状態を示す図であって、(A)は潤滑油のみを用いた場合の写真、(B)は本発明の第1の実施形態に係る動力伝達部の潤滑構造を構成する複合液体を用いた場合の写真である。It is a figure which shows the fluid dragging state to the rotating disk by the said load test apparatus, Comprising: (A) is a photograph at the time of using only lubricating oil, (B) is the power transmission which concerns on the 1st Embodiment of this invention. It is a photograph at the time of using the composite liquid which comprises the lubricating structure of a part. 本発明の第2の実施形態に係る動力伝達部の潤滑構造の概略構成を模式的に示す断面図である。It is sectional drawing which shows typically schematic structure of the lubrication structure of the power transmission part which concerns on the 2nd Embodiment of this invention.

本発明の実施形態に係る動力伝達部の潤滑構造10について図面に基づいて説明する。図1(A)には、動力伝達部の潤滑構造10の概略全体構成が、模式的な断面図にて示されている。この図に示される如く、動力伝達部の潤滑構造10は、動力伝達要素12の潤滑、冷却に適用されている。   A power transmission lubricating structure 10 according to an embodiment of the present invention will be described with reference to the drawings. In FIG. 1A, a schematic overall configuration of a lubricating structure 10 of a power transmission unit is shown in a schematic cross-sectional view. As shown in this drawing, the lubricating structure 10 of the power transmission unit is applied to lubrication and cooling of the power transmission element 12.

図1(A)に例示する動力伝達要素12は、ハウジング14と、該ハウジング14内に配設された歯車列16とを含んで構成されている。ハウジング14の底部には、後述する複合流体22が貯留される液溜り部18が形成されている。歯車列16の一部を成す歯車20は、少なくとも重力方向の下部が液溜り部18に浸漬されている。したがって、動力伝達部の潤滑構造10では、歯車20が自軸廻りに回転すると、複合流体22が撹拌される構成である。すなわち、図1の例では、歯車20が本発明における撹拌要素、回転部材に相当する。   The power transmission element 12 illustrated in FIG. 1A includes a housing 14 and a gear train 16 disposed in the housing 14. At the bottom of the housing 14 is formed a liquid reservoir 18 in which a composite fluid 22 described later is stored. The gear 20 that forms part of the gear train 16 is immersed in the liquid reservoir 18 at least in the lower part in the direction of gravity. Therefore, in the lubricating structure 10 of the power transmission unit, the composite fluid 22 is agitated when the gear 20 rotates around its own axis. That is, in the example of FIG. 1, the gear 20 corresponds to the stirring element and the rotating member in the present invention.

そして、この実施形態では、歯車20の回転によって複合流体22は、撹拌されると共にハウジング14内で撒き上げられ(飛散され)、歯車列16を構成する他の歯車、歯車列16のシャフト16Aの軸受部16B等に供給されるようになっている。また、歯車列16の潤滑に供された複合流体22は、重力によって液溜り部18に戻されるようになっている。   In this embodiment, the composite fluid 22 is agitated by the rotation of the gear 20 and is sprinkled (scattered) in the housing 14, and the other gears constituting the gear train 16, the shaft 16 </ b> A of the gear train 16. It is supplied to the bearing portion 16B and the like. The composite fluid 22 used for lubricating the gear train 16 is returned to the liquid reservoir 18 by gravity.

複合流体22は、図1(B)に示される如く、潤滑液としての潤滑油24と、冷媒26とが混合されて構成されている。潤滑油24は、例えば鉱油や合成油をベースにした用途(動力伝達要素12の種類)に応じた一般的な潤滑油とされている。冷媒26は、潤滑油24に対し非相溶性(非溶解性)とされており、溶け合うことがない(機械的に分離可能で、分離状態では界面が形成される)ものが採用されている。   As shown in FIG. 1B, the composite fluid 22 is configured by mixing a lubricating oil 24 as a lubricating liquid and a refrigerant 26. The lubricating oil 24 is a general lubricating oil corresponding to an application (kind of the power transmission element 12) based on, for example, mineral oil or synthetic oil. The refrigerant 26 is made incompatible with the lubricating oil 24 (insoluble) and does not melt (is mechanically separable and forms an interface in the separated state).

複合流体22は、無負荷(歯車20による撹拌のない)状態では、図1(B)に示される如く、重力によって上下に分離されるようになっている。この実施形態では、冷媒26は潤滑油24よりも密度が高い。このため、静止状態の複合流体22は、冷媒26の界面が潤滑油24にて覆われる構成である。   The composite fluid 22 is separated up and down by gravity as shown in FIG. 1B in an unloaded state (without stirring by the gear 20). In this embodiment, the refrigerant 26 has a higher density than the lubricating oil 24. For this reason, the stationary composite fluid 22 has a configuration in which the interface of the refrigerant 26 is covered with the lubricating oil 24.

また、この実施形態では、冷媒26としてフッ素系冷媒が用いられている。このようにフッ素系冷媒である冷媒26は、例えば水等の冷媒と比較して、化学的に安定で腐食し難く、鋼製の歯車列16やハウジング14を劣化(錆発生等)させ難く、かつ流動点が低く凍り難い構成とされている。また、この冷媒26は、潤滑油24よりも低粘度のものとされている。   In this embodiment, a fluorine-based refrigerant is used as the refrigerant 26. Thus, the refrigerant 26, which is a fluorine-based refrigerant, is chemically stable and hardly corroded, for example, compared with a refrigerant such as water, and the steel gear train 16 and the housing 14 are not easily deteriorated (such as rust generation). The pour point is low and it is difficult to freeze. The refrigerant 26 has a lower viscosity than the lubricating oil 24.

より具体的には、この実施形態(後述の実験例)では、冷媒26として、住友3M(株)製のフロリナートFC−84が採用されている。このフロリナートFC−84は、その流動点が−95[℃]とされ、25[℃]での粘度が略0.0009515[Pa・s]、25[℃]での密度が略1730[kg/m]とされている。フロリナートFC−84の粘度について補足すると、粘度μ=密度ρ×動粘度νであるところ、フロリナートFC−84の動粘度は略0.55×10−6[m/s]であるから、
μ = ρ × ν
= 1730[kg/m] × 0.55×10−6[m/s]
= 0.0009515[Pa・s]
とされる。なお、この実施形態に係る潤滑油24の25[℃]での粘度、密度は、それぞれ略0.043[Pa・s]、略844.7[kg/m]である。また、この実施形態に係る冷媒26の沸点は、大気圧で略80[℃]とされている。
More specifically, in this embodiment (an experimental example described later), Fluorinert FC-84 manufactured by Sumitomo 3M Co., Ltd. is employed as the refrigerant 26. Fluorinert FC-84 has a pour point of −95 [° C.], a viscosity at 25 [° C.] of about 0.0009515 [Pa · s], and a density at 25 [° C.] of about 1730 [kg / m 3 ]. Supplementing the viscosity of Fluorinert FC-84, where viscosity μ = density ρ × kinematic viscosity ν, the kinetic viscosity of Fluorinert FC-84 is approximately 0.55 × 10 −6 [m 2 / s].
μ = ρ × ν
= 1730 [kg / m 3 ] × 0.55 × 10 −6 [m 2 / s]
= 0.0009515 [Pa · s]
It is said. The viscosity and density at 25 [° C.] of the lubricating oil 24 according to this embodiment are approximately 0.043 [Pa · s] and approximately 844.7 [kg / m 3 ], respectively. Further, the boiling point of the refrigerant 26 according to this embodiment is approximately 80 [° C.] at atmospheric pressure.

以上説明した動力伝達部の潤滑構造10は、例えば、動力伝達要素12としての内燃機関及び外燃機関の軸受やクランク軸や動弁系、自動車用の変速機(手動変速機、自動変速機、無段変速機を含む)、一般機械のギヤボックス等に適用される。また例えば、自動車用変速機に動力伝達部の潤滑構造10が適用された例では、撹拌要素である歯車20として、ファイナルギヤやディファレンシャルギヤ(FF車用変速機の場合)を採用することができる。   The lubricating structure 10 of the power transmission unit described above includes, for example, a bearing, a crankshaft, a valve system of an internal combustion engine and an external combustion engine as the power transmission element 12, and a transmission for an automobile (manual transmission, automatic transmission, (Including continuously variable transmission), and gearboxes for general machinery. Further, for example, in an example in which the power transmission lubrication structure 10 is applied to an automobile transmission, a final gear or a differential gear (in the case of a FF vehicle transmission) can be employed as the gear 20 that is a stirring element. .

次に、本実施形態の作用を説明する。   Next, the operation of this embodiment will be described.

上記構成の動力伝達部の潤滑構造10が適用された動力伝達要素12では、その動作に伴って歯車列16の歯車20が回転されることで、複合流体22が撹拌され、潤滑油24と冷媒26とが溶け合うことなく混ぜられる(混濁される)。このように潤滑油24と冷媒26とが混濁された複合流体22は、ハウジング14内で飛散され(撒き上げられ)、歯車20以外の歯車列16にも供給され、該歯車列16の潤滑、冷却に供される。   In the power transmission element 12 to which the lubricating structure 10 of the power transmission unit having the above configuration is applied, the composite fluid 22 is agitated by rotating the gear 20 of the gear train 16 in accordance with the operation thereof, and the lubricating oil 24 and the refrigerant are mixed. 26 is mixed (melted) without melting. The composite fluid 22 in which the lubricating oil 24 and the refrigerant 26 are turbid in this way is scattered (spread up) in the housing 14 and supplied to the gear train 16 other than the gear 20 to lubricate the gear train 16. Provided for cooling.

ここで、動力伝達部の潤滑構造10では、潤滑油24と冷媒26との複合流体22を用いているため、例えば潤滑油24のみで潤滑を行う構成と比較して、同等の潤滑性能を確保しながら、冷却性が向上する。また、動力伝達部の潤滑構造10では、潤滑油24よりも低粘度の冷媒26と潤滑油24との複合流体22を用いているため、例えば潤滑油24のみで潤滑を行う構成と比較して、潤滑剤の流動抵抗が低く、伝達動力ロスの低減に寄与する。   Here, since the lubricating structure 10 of the power transmission unit uses the composite fluid 22 of the lubricating oil 24 and the refrigerant 26, for example, the same lubricating performance is ensured as compared with a configuration in which the lubricating oil 24 alone is used for lubrication. However, the cooling performance is improved. Further, since the lubricating structure 10 of the power transmission unit uses the composite fluid 22 of the refrigerant 26 and the lubricating oil 24 having a viscosity lower than that of the lubricating oil 24, for example, compared with a configuration in which the lubricating oil 24 alone is used for lubrication. The flow resistance of the lubricant is low, which contributes to the reduction of transmission power loss.

以下、これらの効果について、実験結果を参照しつつ説明する。図2には、ASTM D2714に記載されているブロックオンリング摩擦摩耗試験機(LFW−1)30が模式的な側面図にて示されている。ブロックオンリング摩擦摩耗試験機30は、自軸周りに所定の周速vで回転するリング32に、ブロック34を所定の加重(面圧)Fで押し付けながら、リング32の回転トルクを測定するものである。リング32は、その下部が被試験液体に浸漬されており、該リング32とブロック34との摺動部が被試験液体にて潤滑される。   Hereinafter, these effects will be described with reference to experimental results. FIG. 2 is a schematic side view of a block-on-ring friction and wear tester (LFW-1) 30 described in ASTM D2714. The block-on-ring friction and wear testing machine 30 measures the rotational torque of the ring 32 while pressing the block 34 with a predetermined load (surface pressure) F against the ring 32 rotating at a predetermined peripheral speed v around its own axis. It is. The lower portion of the ring 32 is immersed in the liquid under test, and the sliding portion between the ring 32 and the block 34 is lubricated with the liquid under test.

先ず、このブロックオンリング摩擦摩耗試験機30を用いた各被試験液体の潤滑特性を説明する。具体的には、ブロック34の押し付け荷重とリング32の回転トルクの測定値とに基づいて摩擦係数を算出し、また、試験後のブロック34の摩耗状況を確認した。被試験液体としては、潤滑油24単体、冷媒26単体、及び複合流体22(潤滑油24と冷媒26との混合比は体積比で50%ずつとした)の3種類を用いた。   First, the lubrication characteristics of each liquid under test using this block-on-ring friction and wear tester 30 will be described. Specifically, the friction coefficient was calculated based on the pressing load of the block 34 and the measured value of the rotational torque of the ring 32, and the wear state of the block 34 after the test was confirmed. Three types of liquids to be tested were used: lubricating oil 24 alone, refrigerant 26 alone, and composite fluid 22 (mixing ratio of lubricating oil 24 and refrigerant 26 was 50% by volume).

各被試験液体を用いた場合の摩擦係数、摩耗深さ(最大)を表1に示す。また、各被試験液体を用いたブロック34の摩耗状況を図3に示す。図3(A)は被試験液体として潤滑油24単体を用いた場合、図3(B)は被試験液体として冷媒26単体を用いた場合、図3(C)は被試験液体として複合流体22を用いた場合をそれぞれ示している。なお、試験条件は、ブロック34の押し付け荷重F=444[N]、リング32の周速v=1.2[m/s]、液体総量50[ml]、測定時間30[min]とした。また、摩擦係数は、測定終了直前の1[min]の平均値とした。   Table 1 shows the friction coefficient and the wear depth (maximum) when each liquid under test is used. Moreover, the abrasion state of the block 34 using each liquid under test is shown in FIG. 3A shows a case where the lubricating oil 24 alone is used as the liquid under test, FIG. 3B shows a case where the refrigerant 26 alone is used as the liquid under test, and FIG. 3C shows a composite fluid 22 as the liquid under test. Each case is shown. The test conditions were set such that the pressing load F of the block 34 was F = 444 [N], the peripheral speed v of the ring 32 was 1.2 [m / s], the total amount of liquid was 50 [ml], and the measurement time was 30 [min]. The friction coefficient was an average value of 1 [min] immediately before the end of measurement.

表1及び図3から、複合流体22を用いた場合、潤滑油24単体の場合に対し少なくとも同等の潤滑性能が得られることが確かめられた。 From Table 1 and FIG. 3, it was confirmed that when the composite fluid 22 was used, at least equivalent lubricating performance was obtained compared to the case of the lubricating oil 24 alone.

次に、図4に示す放熱能力試験機40を用いた各被試験液体の冷却特性を説明する。放熱能力試験機40は、スターラ42にて容器44内の被試験液体を撹拌しつつ、該被試験液体中に降温に熱した鉄塊46を浸漬し、該鉄塊46の内部温度の時間変化を熱電対48にて計測するものである。図5(A)は、放熱能力試験機40による計測結果より求めた被試験液体ごとの放熱性能Phr[W/K]とスターラ42による撹拌速度(撹拌子42Aの回転数[rpm])との関係を示す線図である。この図5(A)から、複合流体22を用いた場合は、潤滑油24単体を用いた場合と比較して、各撹拌速度において(撹拌速度0として示す自然対流の条件、及び、強制対流の各条件で)、放熱性能Phrが高いことが解る。これは、複合流体22を用いた場合には、鉄塊46に潤滑油24よりも熱伝達率が高い冷媒26が流動接触することによる該冷媒26への放熱効果が得られるためと推定される。なお、放熱能力試験機40による計測では、複合流体22(潤滑油24及び冷媒26)、潤滑油24単体の沸騰は観測されていない。   Next, the cooling characteristics of each liquid under test using the heat dissipation capability tester 40 shown in FIG. 4 will be described. The heat radiation capacity tester 40 stirs the liquid to be tested in the container 44 with the stirrer 42, immerses the iron lump 46 heated to lower temperature in the liquid to be tested, and changes the internal temperature of the iron lump 46 over time. Is measured by a thermocouple 48. FIG. 5 (A) shows the heat dissipation performance Phr [W / K] for each liquid under test obtained from the measurement results by the heat dissipation capability tester 40 and the stirring speed by the stirrer 42 (the rotation speed [rpm] of the stirrer 42A). It is a diagram which shows a relationship. From FIG. 5 (A), when the composite fluid 22 is used, compared with the case where the lubricating oil 24 is used alone, at each stirring speed (the condition of natural convection shown as stirring speed 0 and forced convection) Under each condition, it can be seen that the heat dissipation performance Phr is high. This is presumably because when the composite fluid 22 is used, a heat dissipation effect to the refrigerant 26 is obtained by the fluid contact of the refrigerant 26 having a higher heat transfer coefficient than the lubricating oil 24 with the iron block 46. . In the measurement by the heat radiation capability tester 40, boiling of the composite fluid 22 (the lubricating oil 24 and the refrigerant 26) and the lubricating oil 24 alone is not observed.

放熱性能Phrについて補足すると、放熱性能Phrは、被試験液体の熱伝達係数α[W/(m・K)]と放熱面積A[m]との積(α×A)として算出される。一方、被試験液体中での鉄塊46の温度変化は、図5(B)の如くなる。ここで、図5(B)に示す温度変化を質点系(鉄塊46の熱伝導大、比熱、質量は有限)のものと仮定すると、被試験液体中での鉄塊46の温度変化は、
T’= exp(−τ)
の関係を満たす。そして、鉄塊46の温度(変数)をT、初期温度をT0、飽和温度をTsatとすると、
T’= (T−T0)/(Tsat−T0)
であるから、鉄塊46の温度Tは、
T = T0+(Tsat−T0)×exp(−τ)
となる。
Supplementing the heat dissipation performance Phr, the heat dissipation performance Phr is calculated as the product (α × A) of the heat transfer coefficient α [W / (m 2 · K)] and the heat dissipation area A [m 2 ] of the liquid under test. . On the other hand, the temperature change of the iron block 46 in the liquid under test is as shown in FIG. Here, assuming that the temperature change shown in FIG. 5B is a mass system (large heat conduction, specific heat, and mass is limited for the iron block 46), the temperature change of the iron block 46 in the liquid to be tested is
T ′ = exp (−τ)
Satisfy the relationship. If the temperature (variable) of the iron block 46 is T, the initial temperature is T0, and the saturation temperature is Tsat,
T ′ = (T−T0) / (Tsat−T0)
Therefore, the temperature T of the iron block 46 is
T = T0 + (Tsat−T0) × exp (−τ)
It becomes.

また、鉄塊46の比熱をC、密度をρ、体積をV、時間をtとすると、
τc= C×ρ×V/(α×A)
として、
τ = t/τc
となるので、鉄塊46の温度Tは、
T = T0+(Tsat−T0)×exp(−t/τc)
となることが解る。
Further, when the specific heat of the iron ingot 46 is C, the density is ρ, the volume is V, and the time is t,
τc = C × ρ × V / (α × A)
As
τ = t / τc
Therefore, the temperature T of the iron block 46 is
T = T0 + (Tsat−T0) × exp (−t / τc)
I understand that

そして、この鉄塊46の温度Tの時間変化は、放熱能力試験機40を用いて計測することで図5(B)に示す如く得られるので、各被試験液体の撹拌速度ごとの放熱性能Phr=(α×A)を算出することができる。   And the time change of the temperature T of this iron ingot 46 is obtained as shown in FIG. 5 (B) by measuring with the heat dissipation capability tester 40, so that the heat dissipation performance Phr for each stirring speed of each liquid under test. = (Α × A) can be calculated.

さらに、ブロックオンリング摩擦摩耗試験機30(図2参照)を用いた各被試験液体の冷却特性について説明する。図6(A)及び図6(B)は、ブロックオンリング摩擦摩耗試験機30の運転中において、被試験液体の温度を測定する液温計36、ブロック34の温度を測定するブロック温度計38、及び図示しない室温計による各測定温度を示している。ブロック温度計38は、リング32とブロック34との接触点からの間隔Dが略1mmの位置に配置されている。図5(A)は、被試験液体として潤滑油24単体を用いた場合、図5(B)は被試験液体として複合流体22単体を用いた場合の結果をそれぞれ示している。   Further, the cooling characteristics of each liquid under test using the block-on-ring friction wear tester 30 (see FIG. 2) will be described. 6A and 6B show a liquid thermometer 36 that measures the temperature of the liquid under test and a block thermometer 38 that measures the temperature of the block 34 during the operation of the block-on-ring friction and wear tester 30. , And each measured temperature by a room temperature meter (not shown). The block thermometer 38 is disposed at a position where the distance D from the contact point between the ring 32 and the block 34 is approximately 1 mm. 5A shows the results when the lubricant 24 alone is used as the liquid under test, and FIG. 5B shows the results when the composite fluid 22 is used as the liquid under test.

これらの図から解るように、両被試験流体の試験時の室温は一定とされている。また、上記の通り両被試験流体の摩擦係数は同等であるから、試験時のリング32とブロック34との摩擦に発熱量は略一定であると推定される。なお、ブロック34の温度が段階的に変化しているのは、ブロック34の押し付け荷重Fを段階的に増しているためであり、試験開始から略600秒経過後にはブロック34の押し付け荷重F=444[N]の定常試験状態とされている。   As can be seen from these figures, the room temperature during testing of both fluids to be tested is constant. Further, as described above, since the friction coefficients of the fluids to be tested are the same, it is estimated that the heat generation amount is substantially constant due to the friction between the ring 32 and the block 34 during the test. The reason why the temperature of the block 34 changes stepwise is that the pressing load F of the block 34 increases stepwise, and after approximately 600 seconds from the start of the test, the pressing load F of the block 34 = A steady test state of 444 [N] is set.

そして、これら図6(A)と図6(B)との比較から、複合流体22を用いた場合は、潤滑油24単体を用いた場合と比較して、定常試験状態において、液温、ブロック34の温度の両者とも低くなることが確かめられた。この実験において複合流体22を用いた場合に潤滑油24単体の場合よりもブロック34の温度が低くなるのは、ブロック34に潤滑油24よりも熱伝達率が高い冷媒26が流動接触することによる該冷媒26への放熱効果(図5(A)で説明した)、及び沸点が80℃である冷媒26が80℃を超える温度のブロック34との接触で気化(蒸発)されたことによる沸騰冷却効果の何れ一方又は組み合わせ効果によるものである。   6 (A) and FIG. 6 (B), when the composite fluid 22 is used, the liquid temperature and the block in the steady test state are compared with the case where the lubricating oil 24 is used alone. It was confirmed that both of the 34 temperatures were lower. In this experiment, when the composite fluid 22 is used, the temperature of the block 34 is lower than that of the case of the lubricating oil 24 alone, because the refrigerant 26 having a higher heat transfer coefficient than the lubricating oil 24 is in fluid contact with the block 34. Heat dissipation effect on the refrigerant 26 (described with reference to FIG. 5A) and boiling cooling due to the vaporization (evaporation) of the refrigerant 26 having a boiling point of 80 ° C. in contact with the block 34 having a temperature exceeding 80 ° C. This is due to any one or combination of effects.

また、複合流体22の液温が潤滑油24単体の液温よりも低くなるのは、試験機のハウジング等との接触によって冷媒26が(潤滑油24よりも良好に)冷却されることによるものと考えられる。   The liquid temperature of the composite fluid 22 is lower than that of the lubricating oil 24 alone because the refrigerant 26 is cooled (better than the lubricating oil 24) by contact with the housing of the testing machine. it is conceivable that.

以上(図3、図5、及び図6の結果)により、複合流体22を用いた場合、潤滑油24単体を用いる場合と比較して、同等の潤滑性を確保しつつ、冷却性能が向上されることが確かめられた。したがって、複合流体22を用いた動力伝達部の潤滑構造10では、潤滑油24のみで潤滑を行う構成と比較して、同等の潤滑性能を確保しながら、歯車列16等の冷却性が向上する。なお、冷媒26の流動接触による冷却効果に対し冷媒26の沸騰冷却による冷却効果は大きいので、冷媒26の沸騰冷却が生じやすい設定とすることで、一層大きな冷却効果を得ることができる。   As described above (results of FIGS. 3, 5, and 6), when the composite fluid 22 is used, the cooling performance is improved while ensuring the same lubricity as compared with the case of using the lubricating oil 24 alone. It was confirmed that Therefore, in the lubrication structure 10 of the power transmission unit using the composite fluid 22, the cooling performance of the gear train 16 and the like is improved while ensuring equivalent lubrication performance as compared with the configuration in which lubrication is performed only with the lubricating oil 24. . In addition, since the cooling effect by boiling cooling of the refrigerant | coolant 26 is large with respect to the cooling effect by the fluid contact of the refrigerant | coolant 26, the bigger cooling effect can be acquired by setting it as the boiling-cooling of the refrigerant | coolant 26 being easy to produce.

さらに、図7に示す負荷試験装置50を用いて、各被試験液体の流動抵抗について説明する。負荷試験装置50は、下部に被試験液体が貯留された透明ハウジング52内でアルミ製の回転円板54を回転させ、該回転円板54の負荷トルク(流体の引き摺りトルク)をシャフト54Aに設けた歪ゲージ54Bによる測定するものである。   Furthermore, the flow resistance of each liquid under test will be described using the load test apparatus 50 shown in FIG. The load test apparatus 50 rotates an aluminum rotating disk 54 in a transparent housing 52 in which a liquid to be tested is stored in a lower portion, and a load torque (fluid drag torque) of the rotating disk 54 is provided on a shaft 54A. Measured with the strain gauge 54B.

図8は、各被試験液体を用いた場合の引き摺りトルクをアルミ製の回転円板54の回転速度ごとにプロット(複数回測定した最小値、最大値、及び平均値を示す)したものである。この図から、複合流体22を用いた場合は、潤滑油24単体の場合と比較して、各回転速度において引き摺りトルクが低減されることが確かめられた。引き摺りトルクの低減率は回転速度により異なる(回転速度が高いほど小さくなる)が、図8の結果では、平均的には引き摺りトルクが略30%低減されている。   FIG. 8 is a graph in which drag torque when each liquid under test is used is plotted for each rotation speed of the aluminum rotating disk 54 (showing the minimum value, maximum value, and average value measured multiple times). . From this figure, it was confirmed that when the composite fluid 22 was used, drag torque was reduced at each rotational speed as compared with the case of the lubricating oil 24 alone. The drag torque reduction rate varies depending on the rotation speed (the higher the rotation speed, the smaller the drag torque). However, in the results shown in FIG. 8, the drag torque is reduced by about 30% on average.

このような引き摺りトルクの低減効果は、図9に示す実験状況から視覚的にも確認される。図9(A)は、アルミ製の回転円板54が矢印方向に回転した場合の潤滑油24単体の流動状態を示しており、図9(B)は、アルミ製の回転円板54が矢印方向に回転した場合の複合流体22の流動状態を示している。これらの図の比較から、複合流体22を用いた場合は、潤滑油24単体を用いた場合と比較して、アルミ製の回転円板54の回転に伴う液位の変化が小さいことが解る。   Such a drag torque reduction effect can be visually confirmed from the experimental situation shown in FIG. 9A shows a flow state of the lubricating oil 24 alone when the aluminum rotating disk 54 rotates in the direction of the arrow, and FIG. 9B shows the aluminum rotating disk 54 having the arrow. The flow state of the composite fluid 22 when rotated in the direction is shown. From the comparison of these figures, it can be seen that when the composite fluid 22 is used, the change in the liquid level due to the rotation of the aluminum rotating disk 54 is smaller than when the lubricating oil 24 is used alone.

以上により、複合流体22を用いた場合、回転円板54の回転に伴う負荷が低減されることが解る。したがって、複合流体22を用いた動力伝達部の潤滑構造10では、潤滑油24のみで潤滑を行う構成と比較して、歯車列16(特に歯車20)の回転に伴う負荷が低減され、伝達動力のロス低減に寄与することが解る。   From the above, it can be seen that when the composite fluid 22 is used, the load accompanying the rotation of the rotating disk 54 is reduced. Therefore, in the lubrication structure 10 of the power transmission unit using the composite fluid 22, the load associated with the rotation of the gear train 16 (particularly the gear 20) is reduced as compared with a configuration in which lubrication is performed only with the lubricating oil 24, and transmission power is reduced. It can be seen that this contributes to the reduction of loss.

そして、動力伝達部の潤滑構造10では、潤滑油24と、該潤滑油24に対し非相溶性の冷媒26との複合流体22を用いるため、長期間に亘り安定して上記の各効果を得ることができる。例えば、水とオイルとを乳化分散させたエマルジョンを潤滑剤として用いた場合、以下に示す問題が懸念される。第1に、エマルジョンは熱力学的に不安定であるため、乳化分散状態が経時劣化しやすい。第2に、水とオイルとを均一に分散させたエマルジョンでは、冷媒成分である水分が大気に曝され、気化により消失しやすい。第3に、エマルジョン中の水分が氷点下では凍ってしまう。第4に、エマルジョン中の水分が経時劣化(腐食)しやすい。第5に、エマルジョン中の水分が動力伝達要素12の構成部品(鋼製の部品)を腐食させてしまう。   And in the lubricating structure 10 of a power transmission part, since the composite fluid 22 of the lubricating oil 24 and the refrigerant | coolant 26 incompatible with this lubricating oil 24 is used, each said effect is acquired stably over a long period of time. be able to. For example, when an emulsion in which water and oil are emulsified and dispersed is used as a lubricant, the following problems are concerned. First, since the emulsion is thermodynamically unstable, the emulsified dispersion state tends to deteriorate with time. Secondly, in an emulsion in which water and oil are uniformly dispersed, moisture, which is a refrigerant component, is exposed to the atmosphere and is easily lost by vaporization. Third, the water in the emulsion freezes below freezing. Fourthly, moisture in the emulsion is likely to deteriorate (corrode) with time. Fifth, moisture in the emulsion corrodes the components (steel parts) of the power transmission element 12.

これらに対して動力伝達部の潤滑構造10では、互いに非相溶性の潤滑油24と冷媒26との複合流体22を、動力伝達要素12の運転に際してこれらを歯車20にて撹拌、混合して用いているため、エマルジョンにおける第1の問題の如く複合流体として経時劣化することがない。また、動力伝達要素12の停止状態において液溜り部18内の複合流体22は、相対的に高密度である冷媒26の界面が潤滑油24にて覆われるため、冷媒26が気化により消失されることが防止又は効果的に抑制される。   On the other hand, in the lubricating structure 10 of the power transmission unit, the composite fluid 22 of the lubricating oil 24 and the refrigerant 26 that are incompatible with each other is used by being agitated and mixed by the gear 20 when the power transmission element 12 is operated. Therefore, the composite fluid does not deteriorate with time unlike the first problem in the emulsion. Further, when the power transmission element 12 is stopped, the composite fluid 22 in the liquid reservoir 18 is covered with the lubricating oil 24 at the interface of the refrigerant 26 having a relatively high density. Is prevented or effectively suppressed.

さらに、フッ素系冷媒である冷媒26は、上記の通り流動点が−95℃であるため、想定される動力伝達要素12の使用環境下(設計上の下限温度)では凍結することがない。また、この冷媒26は、フッ素系冷媒であるため、それ自身が腐食することがなく、さらに動力伝達要素12の構成部品(歯車列16、ハウジング14等の鋼製の部品)を腐食させ難い。   Furthermore, since the refrigerant 26, which is a fluorine-based refrigerant, has a pour point of −95 ° C. as described above, it does not freeze under the assumed use environment (design lower limit temperature) of the power transmission element 12. Moreover, since this refrigerant | coolant 26 is a fluorine-type refrigerant | coolant, it itself does not corrode and it is hard to corrode the component parts (steel parts, such as the gear train 16 and the housing 14) of the power transmission element 12.

以上により、複合流体22を用いた動力伝達部の潤滑構造10では、上記した潤滑性能を確保しながらの冷却性能の向上効果、流動抵抗の低減効果を、長期間に亘り安定して発揮することができる。   As described above, the lubricating structure 10 of the power transmission unit using the composite fluid 22 stably exhibits the above-described effect of improving the cooling performance and the effect of reducing the flow resistance while ensuring the lubrication performance. Can do.

このように、第1の実施形態に係る動力伝達部の潤滑構造10では、動力伝達要素12の歯車列16を含む構成部品を長期間に亘り安定して潤滑、冷却することができる。   Thus, in the lubricating structure 10 of the power transmission unit according to the first embodiment, the components including the gear train 16 of the power transmission element 12 can be stably lubricated and cooled over a long period of time.

なお、第1の実施形態では、冷媒26の沸騰冷却効果を奏し得る例を示したが、本発明はこれに限定されず、冷媒26としてより沸点の高い冷媒(例えば、沸点が174℃である住友3M(株)製のフロリナートFC−43等)を用いて、沸騰冷却に依らず流動接触による冷却効果(図4参照)を奏する構成としても良い。   In addition, although the example which can show | play the boiling cooling effect of the refrigerant | coolant 26 was shown in 1st Embodiment, this invention is not limited to this, The refrigerant | coolant with a higher boiling point as the refrigerant | coolant 26 (for example, boiling point is 174 degreeC) It is also possible to use a structure such as Fluorinert FC-43 manufactured by Sumitomo 3M Co., Ltd., which exhibits a cooling effect by fluid contact (see FIG. 4) regardless of boiling cooling.

一方、沸騰冷却を利用する場合、例えば、気化された冷媒26をハウジング14との熱交換によって凝縮させるために、ハウジング14の外面に放熱フィンを設ける構成としても良い。   On the other hand, when boiling cooling is used, for example, in order to condense the vaporized refrigerant 26 by heat exchange with the housing 14, a heat radiating fin may be provided on the outer surface of the housing 14.

(第2の実施形態)
次に、本発明の第2の実施形態を説明する。なお、上記第1の実施形態と基本的に同一の部分等については、上記第1の実施形態と同一の符号を付して説明を省略する。図10には、本発明の第2の実施形態に係る動力伝達部の潤滑構造60が図1に対応する模式的な断面図にて示されている。この図に示される如く、動力伝達部の潤滑構造60は、ハウジング14に連通した圧力調整要素としてのバッファ部62を備えている点で、第1の実施形態に係る動力伝達部の潤滑構造10とは異なる。
(Second Embodiment)
Next, a second embodiment of the present invention will be described. Note that portions that are basically the same as those in the first embodiment are denoted by the same reference numerals as those in the first embodiment, and description thereof is omitted. FIG. 10 is a schematic cross-sectional view corresponding to FIG. 1 showing a lubricating structure 60 for a power transmission unit according to a second embodiment of the present invention. As shown in this figure, the power transmission unit lubrication structure 60 includes a buffer unit 62 as a pressure adjusting element communicating with the housing 14, and thus the power transmission unit lubrication structure 10 according to the first embodiment. Is different.

具体的には、この実施形態に係るバッファ部62は、連通管64を介してハウジング14の上部空間に連通すると共に、該ハウジング14の上部空間よりも重力方向の上側に配置されている。このバッファ部62は、例えば蛇腹状に形成されることで、内部空間であるバッファ室の容量を拡縮し得る構成とされている。なお、バッファ部62は、ダイヤフラムや可動蓋(ピストン)等の変位によってバッファ室の容量を変化させ得る構成としても良い。   Specifically, the buffer unit 62 according to this embodiment communicates with the upper space of the housing 14 via the communication pipe 64 and is disposed above the upper space of the housing 14 in the gravitational direction. For example, the buffer 62 is formed in an accordion shape so that the capacity of the buffer chamber, which is the internal space, can be expanded or reduced. The buffer unit 62 may be configured such that the capacity of the buffer chamber can be changed by displacement of a diaphragm, a movable lid (piston), or the like.

そして、この実施形態に係る動力伝達部の潤滑構造60では、冷媒26の沸点が動力伝達要素12の作動温度(通常の運転温度)よりも低く設定されている。この実施形態では、動力伝達要素12の作動温度、140℃(潤滑油24のみで潤滑した場合の作動温度)に対し冷媒26の沸点が80℃に設定されている。これにより、動力伝達部の潤滑構造60では、動力伝達要素12(の歯車列16)が主に冷媒26の気化に伴う沸騰冷却効果により冷却される構成とされている。このような冷媒26としては、例えば住友3M(株)製のフロリナートFC−84を用いることができる。   And in the lubricating structure 60 of the power transmission part which concerns on this embodiment, the boiling point of the refrigerant | coolant 26 is set lower than the operating temperature (normal operating temperature) of the power transmission element 12. FIG. In this embodiment, the boiling point of the refrigerant 26 is set to 80 ° C. with respect to the operating temperature of the power transmission element 12, which is 140 ° C. (the operating temperature when only the lubricating oil 24 is used for lubrication). Thereby, in the lubricating structure 60 of the power transmission unit, the power transmission element 12 (the gear train 16) is mainly cooled by the boiling cooling effect accompanying the vaporization of the refrigerant 26. As such a refrigerant 26, for example, Fluorinert FC-84 manufactured by Sumitomo 3M Co., Ltd. can be used.

この動力伝達部の潤滑構造60では、通常の運転温度で運転中の歯車列16に接触した冷媒26が気化され、該気化された冷媒26が連通管64を通じてバッファ部62のバッファ室に導入されるようになっている。バッファ部62は、気相の冷媒26の圧力によってバッファ室の容量を拡大することで、ハウジング14の内圧が所定圧力を超えて高くなることを防止するようになっている。なお、冷媒26は、この所定圧力以下の圧力において沸点が動力伝達要素12の作動温度に対し低くなる構成とされている。   In the lubrication structure 60 of the power transmission unit, the refrigerant 26 that has contacted the gear train 16 that is operating at a normal operation temperature is vaporized, and the vaporized refrigerant 26 is introduced into the buffer chamber of the buffer unit 62 through the communication pipe 64. It has become so. The buffer unit 62 is configured to prevent the internal pressure of the housing 14 from increasing beyond a predetermined pressure by expanding the capacity of the buffer chamber by the pressure of the gas-phase refrigerant 26. The refrigerant 26 is configured to have a boiling point lower than the operating temperature of the power transmission element 12 at a pressure equal to or lower than the predetermined pressure.

また、動力伝達部の潤滑構造60は、気化した冷媒26を冷却して液化させるための冷却要素としての熱交換器(凝縮器)56を備えている。この実施形態では、熱交換器66は、連通管64に設けられている。より具体的には、熱交換器66は、連通管64の外周部にフィン66Aを設けることで外気に放熱する空冷式の凝縮器として構成されている。熱交換器66は、フィン66Aに冷却風を導くファンを設けても良く、例えば自動車用途では、走行風がフィン66Aに導かれるように構成されても良い。また、連通管64は、液化された冷媒6を重力によってハウジング14内の液溜り部18に戻すべく、バッファ部62からハウジング14へ向けて部分的な低所のない下り勾配を成すように設けられている。   Further, the lubricating structure 60 of the power transmission unit includes a heat exchanger (condenser) 56 as a cooling element for cooling and liquefying the vaporized refrigerant 26. In this embodiment, the heat exchanger 66 is provided in the communication pipe 64. More specifically, the heat exchanger 66 is configured as an air-cooled condenser that dissipates heat to the outside air by providing fins 66 </ b> A on the outer periphery of the communication pipe 64. The heat exchanger 66 may be provided with a fan that guides cooling air to the fins 66A. For example, in an automobile application, the traveling air may be guided to the fins 66A. Further, the communication pipe 64 is provided so as to form a downward slope without a partial low portion from the buffer part 62 toward the housing 14 in order to return the liquefied refrigerant 6 to the liquid reservoir 18 in the housing 14 by gravity. It has been.

以上説明した動力伝達部の潤滑構造60の作用について、動力伝達部の潤滑構造10の作用と異なる部分を主に説明する。   About the effect | action of the lubricating structure 60 of the power transmission part demonstrated above, the part different from the effect | action of the lubricating structure 10 of a power transmission part is mainly demonstrated.

動力伝達部の潤滑構造60が適用された動力伝達要素12では、その動作に伴って歯車列16の歯車20が回転されることで、複合流体22が撹拌され、潤滑油24と冷媒26とが溶け合うことなく混ぜられる(混濁される)。このように潤滑油24と冷媒26とが混濁された複合流体22は、ハウジング14内で飛散され(撒き上げられ)、歯車20以外の歯車列16に供給され、該歯車列16の潤滑、冷却に供される。   In the power transmission element 12 to which the lubrication structure 60 of the power transmission unit is applied, the composite fluid 22 is agitated by rotating the gear 20 of the gear train 16 in accordance with its operation, and the lubricating oil 24 and the refrigerant 26 are mixed. It is mixed (melted) without melting. The composite fluid 22 in which the lubricating oil 24 and the refrigerant 26 are thus turbid is scattered (spread up) in the housing 14 and supplied to the gear train 16 other than the gear 20 to lubricate and cool the gear train 16. To be served.

複合流体22中の冷媒26の沸点が動力伝達要素12の作動温度よりも低いので、該動力伝達要素12の歯車列16に接触した冷媒26は気化(蒸発)され、該歯車列16から気化熱(潜熱)を奪う。すなわち、動力伝達部の潤滑構造60では、歯車列16が沸騰冷却により冷却される。   Since the boiling point of the refrigerant 26 in the composite fluid 22 is lower than the operating temperature of the power transmission element 12, the refrigerant 26 in contact with the gear train 16 of the power transmission element 12 is vaporized (evaporated), and the heat of vaporization is generated from the gear train 16. Take away (latent heat). That is, in the lubricating structure 60 of the power transmission unit, the gear train 16 is cooled by boiling cooling.

気化された冷媒26は、連通管64を通じてバッファ部62のバッファ室に導かれ、該バッファ室を膨張させる、このため、冷媒26の気化によりハウジング14内の圧力が所定圧力を超えて高くなることが防止される。また、連通管64の流通に伴って熱交換器66にて冷却された冷媒26の一部は、液化(凝縮)されて重力にて液溜り部18に戻される。また、動力伝達要素12の運転停止後は、バッファ室内の冷媒26が冷却、液化されて液溜り部18に回収される。   The vaporized refrigerant 26 is led to the buffer chamber of the buffer unit 62 through the communication pipe 64 and expands the buffer chamber. Therefore, the pressure in the housing 14 becomes higher than a predetermined pressure due to vaporization of the refrigerant 26. Is prevented. A part of the refrigerant 26 cooled by the heat exchanger 66 along with the flow of the communication pipe 64 is liquefied (condensed) and returned to the liquid reservoir 18 by gravity. In addition, after the operation of the power transmission element 12 is stopped, the refrigerant 26 in the buffer chamber is cooled and liquefied and collected in the liquid reservoir 18.

以上により、動力伝達部の潤滑構造60は、主に冷媒26の沸騰冷却によって動力伝達要素12が冷却される点で動力伝達部の潤滑構造10とは異なり、冷却メカニズムを除く他の作用効果は動力伝達部の潤滑構造10の作用効果と共通する。したがって、第2の実施形態に係る動力伝達部の潤滑構造60によっても、基本的に動力伝達部の潤滑構造10と同様の作用によって同様の効果を得ることができる。   Thus, the lubrication structure 60 of the power transmission unit is different from the lubrication structure 10 of the power transmission unit in that the power transmission element 12 is cooled mainly by boiling cooling of the refrigerant 26. This is common with the effect of the lubricating structure 10 of the power transmission unit. Therefore, the power transmission unit lubrication structure 60 according to the second embodiment can basically obtain the same effect by the same operation as that of the power transmission unit lubrication structure 10.

特に、動力伝達部の潤滑構造60では、冷媒26が沸騰冷却にて動力伝達要素12を冷却するため、該動力伝達要素12の冷却性能が高い。そして、動力伝達部の潤滑構造60では、気化した冷媒26が導入されるバッファ部62を備えるため、ハウジング14内の過度の圧力上昇が防止され、ハウジング14の内圧に対し軸受部16B等のシール性が確保される。換言すれば、バッファ部62を備えた動力伝達部の潤滑構造60では、冷媒26の沸騰冷却効果を積極的に利用して冷却性能を向上することができる。   In particular, in the lubricating structure 60 of the power transmission unit, since the refrigerant 26 cools the power transmission element 12 by boiling cooling, the cooling performance of the power transmission element 12 is high. Since the lubrication structure 60 for the power transmission unit includes the buffer unit 62 into which the vaporized refrigerant 26 is introduced, an excessive pressure increase in the housing 14 is prevented, and the bearings 16B and the like are sealed against the internal pressure of the housing 14. Sex is secured. In other words, in the power transmission unit lubrication structure 60 including the buffer unit 62, the cooling performance can be improved by actively utilizing the boiling cooling effect of the refrigerant 26.

なお、第2の実施形態では、連通管64にフィン66Aを設けて熱交換器66が構成された例を示したが、本発明はこれに限定されず、例えば、連通管64の外周を冷却水ジャケットで覆ったり、バッファ部62や連通管64内に冷却水配管を導入したりすることで熱交換器66を構成しても良い。   In the second embodiment, the example in which the fins 66A are provided in the communication pipe 64 and the heat exchanger 66 is configured is shown. However, the present invention is not limited to this, and, for example, the outer periphery of the communication pipe 64 is cooled. The heat exchanger 66 may be configured by covering with a water jacket or introducing a cooling water pipe into the buffer section 62 or the communication pipe 64.

また、上記した各実施形態では、複合流体22を構成する冷媒26としてフッ素系冷媒を用いた例を示したが、本発明はこれに限定されず、潤滑油24と非相溶性の各種冷媒を採用することができる。   Further, in each of the above-described embodiments, an example in which a fluorine-based refrigerant is used as the refrigerant 26 constituting the composite fluid 22 is shown, but the present invention is not limited to this, and various refrigerants that are incompatible with the lubricating oil 24 are used. Can be adopted.

さらに、上記した各実施形態では、潤滑、冷却対象である歯車列16を構成する歯車20を撹拌要素として機能させる例を示したが、本発明はこれに限定されず、例えば、液溜り部18内に撹拌(撒き上げ)専用の撹拌装置を設けても良い。さらに、本発明は、複合流体22を撒き上げて歯車列16に供給する構成には限定されず、例えば、液溜り部18内の複合流体22をオイルポンプで汲み上げて歯車列16の上方から流下して供給するようにしても良い。この場合、オイルポンプを撹拌要素として用いる構成としても良く、またオイルポンプの下流に撹拌機等の撹拌要素を配設しても良い。後者の場合、撹拌機は、外部動力により複合流体22を撹拌する構成としても良く、複合流体22の流れによって該複合流体22が撹拌される構成としても良い。   Furthermore, in each of the above-described embodiments, the example in which the gear 20 constituting the gear train 16 that is the object of lubrication and cooling functions as the stirring element has been described. However, the present invention is not limited to this, and for example, the liquid reservoir 18 You may provide the stirring apparatus only for stirring (spreading) in the inside. Further, the present invention is not limited to the configuration in which the composite fluid 22 is spun up and supplied to the gear train 16. For example, the composite fluid 22 in the liquid reservoir 18 is pumped up by an oil pump and flows down from above the gear train 16. May be supplied. In this case, an oil pump may be used as a stirring element, and a stirring element such as a stirrer may be provided downstream of the oil pump. In the latter case, the stirrer may be configured to stir the composite fluid 22 by external power, or may be configured to stir the composite fluid 22 by the flow of the composite fluid 22.

10 動力伝達部の潤滑構造
12 動力伝達要素
14 ハウジング
16 歯車列(動力伝達要素)
20 歯車(撹拌要素、回転部材)
22 複合流体
24 潤滑油
26 冷媒
60 動力伝達部の潤滑構造
62 バッファ部(圧力調整要素)
66 熱交換器(冷却要素)
DESCRIPTION OF SYMBOLS 10 Lubricating structure of power transmission part 12 Power transmission element 14 Housing 16 Gear train (power transmission element)
20 Gear (stirring element, rotating member)
22 Complex fluid 24 Lubricating oil 26 Refrigerant 60 Lubricating structure of power transmission unit 62 Buffer unit (pressure adjusting element)
66 Heat exchanger (cooling element)

Claims (5)

動力伝達要素と、
前記動力伝達要素を潤滑するための潤滑液と、該潤滑液に対する非相溶性の冷媒との複合流体と、
前記動力伝達要素の潤滑に供される前記複合流体を撹拌する撹拌要素と、
を備えた動力伝達部の潤滑構造。
A power transmission element;
A composite fluid of a lubricating liquid for lubricating the power transmission element and a refrigerant incompatible with the lubricating liquid;
A stirring element that stirs the composite fluid that is provided for lubrication of the power transmission element;
A power transmission lubrication structure with
前記冷媒として、前記潤滑液よりも粘度の低い冷媒が用いられている請求項1記載の動力伝達部の潤滑構造。   The lubricating structure for a power transmission unit according to claim 1, wherein a refrigerant having a viscosity lower than that of the lubricating liquid is used as the refrigerant. 前記冷媒としてフッ素系冷媒が用いられている請求項1又は請求項2記載の動力伝達部の潤滑構造。   The lubricating structure for a power transmission unit according to claim 1 or 2, wherein a fluorine-based refrigerant is used as the refrigerant. 前記動力伝達要素を収容し、底部に前記複合流体を貯留させるハウジングをさらに備え、
前記撹拌要素は、前記ハウジングの底部に貯留された前記複合流体に浸漬され、前記動力伝達要素の一部を構成する回転部材を含んで構成されている請求項1〜請求項3の何れか1項記載の動力伝達部の潤滑構造。
A housing for accommodating the power transmission element and storing the composite fluid at a bottom;
The said stirring element is immersed in the said composite fluid stored at the bottom part of the said housing, and is comprised including the rotation member which comprises a part of said power transmission element. The lubrication structure of the power transmission part described in the item.
前記冷媒として、前記動力伝達要素の作動温度よりも沸点が低い冷媒が用いられており、
気化した前記冷媒の圧力によって膨張可能な圧力調整要素と、気化した前記冷媒を冷却するための冷却要素とをさらに備えた請求項1〜請求項4の何れか1項記載の動力伝達部の潤滑構造。
As the refrigerant, a refrigerant having a boiling point lower than the operating temperature of the power transmission element is used,
The lubrication of the power transmission unit according to any one of claims 1 to 4, further comprising: a pressure adjusting element that is expandable by the pressure of the vaporized refrigerant; and a cooling element for cooling the vaporized refrigerant. Construction.
JP2009068532A 2009-03-19 2009-03-19 Lubrication structure of power transmission part Expired - Fee Related JP4862058B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009068532A JP4862058B2 (en) 2009-03-19 2009-03-19 Lubrication structure of power transmission part

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009068532A JP4862058B2 (en) 2009-03-19 2009-03-19 Lubrication structure of power transmission part

Publications (2)

Publication Number Publication Date
JP2010223261A true JP2010223261A (en) 2010-10-07
JP4862058B2 JP4862058B2 (en) 2012-01-25

Family

ID=43040679

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009068532A Expired - Fee Related JP4862058B2 (en) 2009-03-19 2009-03-19 Lubrication structure of power transmission part

Country Status (1)

Country Link
JP (1) JP4862058B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011202719A (en) * 2010-03-25 2011-10-13 Toyota Motor Corp Lubricating device
US9416332B2 (en) 2010-11-17 2016-08-16 GM Global Technology Operations LLC Gear assembly and gear oil composition
CN110596179A (en) * 2019-09-20 2019-12-20 贵州工程应用技术学院 Engine lubricating oil experimental device of graphene modified lubricating oil

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03128992A (en) * 1989-07-05 1991-05-31 Kiyouseki Seihin Gijutsu Kenkyusho:Kk Lubricating oil for hydrogen-containing chlorofluorocarbon refrigerant
JP2008116018A (en) * 2006-11-08 2008-05-22 Toyota Motor Corp Power transmission device
JP2008156662A (en) * 2008-02-15 2008-07-10 Idemitsu Kosan Co Ltd Refrigerant oil composition
WO2008120536A1 (en) * 2007-03-29 2008-10-09 Nippon Oil Corporation Refrigerator oil composition and working fluid composition for refrigerating machine

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03128992A (en) * 1989-07-05 1991-05-31 Kiyouseki Seihin Gijutsu Kenkyusho:Kk Lubricating oil for hydrogen-containing chlorofluorocarbon refrigerant
JP2008116018A (en) * 2006-11-08 2008-05-22 Toyota Motor Corp Power transmission device
WO2008120536A1 (en) * 2007-03-29 2008-10-09 Nippon Oil Corporation Refrigerator oil composition and working fluid composition for refrigerating machine
JP2008156662A (en) * 2008-02-15 2008-07-10 Idemitsu Kosan Co Ltd Refrigerant oil composition

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011202719A (en) * 2010-03-25 2011-10-13 Toyota Motor Corp Lubricating device
US9416332B2 (en) 2010-11-17 2016-08-16 GM Global Technology Operations LLC Gear assembly and gear oil composition
CN110596179A (en) * 2019-09-20 2019-12-20 贵州工程应用技术学院 Engine lubricating oil experimental device of graphene modified lubricating oil

Also Published As

Publication number Publication date
JP4862058B2 (en) 2012-01-25

Similar Documents

Publication Publication Date Title
US8672094B2 (en) Transmission with lubrication device
CA2837218C (en) Hybrid nanolubricant
KR101206411B1 (en) Lubricant composition for chain and chain
Sharif et al. Energy saving in automotive air conditioning system performance using SiO 2/PAG nanolubricants
JP4862058B2 (en) Lubrication structure of power transmission part
Hemmat Esfe et al. Experimental investigation of effective parameters on MWCNT–TiO 2/SAE50 hybrid nanofluid viscosity
Yang et al. Study on the effect of graphene nanosheets refrigerant oil on domestic refrigerator performance
KR20080109742A (en) Operable transmission, working fluid for such a transmission, and method for commissioning the same
Kumar et al. Effect of CuO nanolubricant on compressor characteristics and performance of LPG based refrigeration cycle: experimental investigation
Soliman et al. Enhancement of vapor compression cycle performance using nanofluids: experimental results
Chun Aeration effects on the performance of a turbocharger journal bearing
Sharif et al. Comparative air conditioning performance using SiO2 and Al2O3 nanolubricants operating with Hydrofluoroolefin-1234yf refrigerant
Harichandran et al. Effect of h-BN solid nanolubricant on the performance of R134a–polyolester oil-based vapour compression refrigeration system
JP5222244B2 (en) Reciprocating compressor
US20150240639A1 (en) Apparatus, systems and methods for lubrication of fluid displacement machines
US20180066745A1 (en) Apparatus for Passive Fluid Flow Control
JP2003021148A (en) Ball bearing
Ismail et al. Tribological Performance Effect of SiO2 and TiO2 Nanoparticles as Lubricating Oil Additives
Albagachiev et al. Tribotechnical characteristics of nanomodifier 1
Zhao et al. Influence of rotating speed on local lubrication and friction characteristics of wet clutch
CN106164230B (en) Gear and engine oils with reduced surface tension
JP2011117522A (en) Lubricating device of transmission mechanism
TWI633965B (en) Spindle device and machine tool
Chong et al. Simulating thermo-hydrodynamic lubrication of turbocharger journal bearing
JP6136322B2 (en) Releasing and heat insulation switching structure of vehicle drive device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100802

TRDD Decision of grant or rejection written
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111027

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111101

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111107

R150 Certificate of patent or registration of utility model

Ref document number: 4862058

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141111

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313532

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141111

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees