JP2010222805A - Method for evaluating stability of excavated surface against sump water - Google Patents

Method for evaluating stability of excavated surface against sump water Download PDF

Info

Publication number
JP2010222805A
JP2010222805A JP2009069460A JP2009069460A JP2010222805A JP 2010222805 A JP2010222805 A JP 2010222805A JP 2009069460 A JP2009069460 A JP 2009069460A JP 2009069460 A JP2009069460 A JP 2009069460A JP 2010222805 A JP2010222805 A JP 2010222805A
Authority
JP
Japan
Prior art keywords
stability
excavation
natural ground
hardness meter
gradient
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009069460A
Other languages
Japanese (ja)
Inventor
Takeshi Kawagoe
健 川越
Takuya Urakoshi
拓野 浦越
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Railway Technical Research Institute
Original Assignee
Railway Technical Research Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Railway Technical Research Institute filed Critical Railway Technical Research Institute
Priority to JP2009069460A priority Critical patent/JP2010222805A/en
Publication of JP2010222805A publication Critical patent/JP2010222805A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Excavating Of Shafts Or Tunnels (AREA)
  • Lining And Supports For Tunnels (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for evaluating stability of an excavated surface against sump water, which makes the stability of the excavated surface against the sump water rapidly and accurately evaluated in an excavation step. <P>SOLUTION: This method for evaluating the stability the excavated surface against the sump water includes: a measurement step of measuring bearing strength by a soil hardness meter on a cutting face (excavated surface); an estimation step of estimating a critical hydraulic gradient of natural ground of the cutting face by using the bearing strength measured by the soil hardness meter in the measurement step, and a uniformity coefficient of the natural ground, obtained by a soil survey before excavation; and an evaluation step of evaluating the stability of the cutting face against the sump water by comparing the critical hydraulic gradient, estimated in the estimation step, with a hydraulic gradient of surrounding ground of the cutting face. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は湧水に対する掘削面の安定性評価方法に関する。より詳しくは、砂質土地山における湧水に対する掘削面の安定性を評価する方法に関する。   The present invention relates to a method for evaluating the stability of an excavated surface against spring water. More specifically, the present invention relates to a method for evaluating the stability of a drilling surface against spring water in a sandy mountain.

未固結の砂質土地山における地下掘削では、湧水に伴う掘削面の崩壊が多く報告されている。砂質土地山の湧水に対する安定性を評価する手法として、掘削前の事前計画段階における手法が多く提案されている。これらは例えば土粒子の粒径等を指標とするものである。
湧水に対する安定性の指標の一つに限界動水勾配がある。非特許文献1には水平一次元浸透崩壊モデル実験により試料の限界動水勾配の値を得ることが記載されている。また、特許文献1には、透水性地盤に削孔して削孔内の水位を低下させ、動水勾配を増大させることによりボイリング現象を人為的に発生させ、ボイリング発生時の削孔内外の水位差を用いて限界動水勾配を演算する方法が記載されている。
In underground excavation in unconsolidated sandy land, there have been many reports of collapse of the excavated surface due to spring water. Many methods have been proposed in the pre-planning stage before excavation as a method to evaluate the stability of the sandy mountain to spring water. These are based on, for example, the particle size of soil particles.
One of the stability indicators for spring water is the critical dynamic gradient. Non-Patent Document 1 describes that the value of the critical hydrodynamic gradient of a sample is obtained by a horizontal one-dimensional osmotic collapse model experiment. Further, Patent Document 1 discloses that a boring phenomenon is artificially generated by drilling a hole in a water-permeable ground to lower a water level in the drilling hole and increasing a hydraulic gradient, and the inside and outside of the drilling hole when the boiling occurs. A method for calculating a critical hydraulic gradient using a water level difference is described.

特開2005−2711号公報JP 2005-2711 A

木谷日出男、大島洋志、榎本秀明「切羽安定性評価のための砂質地山の分類法」鉄道総研報告、Vol.5、No.6、pp.39−46.Hideo Kitani, Hiroshi Oshima, Hideaki Enomoto “Classification of sandy ground for evaluation of face stability” Railway Research Institute, Vol. 5, no. 6, pp. 39-46.

しかしながら、限界動水勾配等の湧水に対する安定性の指標は、一般的に掘削前の計画段階で土質試験により得ることが必要であり、掘削工程の中で掘削面において同様の指標を得ることは困難である。また、特許文献1に示した測定方法も、測定の際に地盤に削孔する必要があり、掘削工程の中で掘削面において実施することは難しい。現状では掘削工程の中で掘削面の湧水に対する安定性を評価する手法は確立されておらず、目視での観察を主体として安定性の評価を行なっている。   However, it is generally necessary to obtain stability indicators for spring water such as the critical hydrodynamic gradient by soil tests at the planning stage before excavation, and obtain similar indicators on the excavation surface during the excavation process. It is difficult. Moreover, the measurement method shown in Patent Document 1 also requires drilling in the ground during measurement, and is difficult to implement on the excavation surface during the excavation process. At present, no method has been established to evaluate the stability of the excavation surface against spring water during the excavation process, and the stability is evaluated mainly by visual observation.

このため、計画段階の湧水に対する地山の安定性の評価と、掘削中の掘削面の湧水に対する安定性とが異なる場合がある。この場合、例えば計画段階の湧水に対する地山の安定性の評価に基づき選定された支保等が不十分であると、湧水に伴い掘削中の掘削面が崩壊を引き起こす危険性がある。   For this reason, there are cases where the evaluation of the stability of the natural ground against the spring at the planning stage and the stability of the excavation surface during the excavation with respect to the spring are different. In this case, for example, if the support selected based on the evaluation of the stability of the natural ground against the spring water at the planning stage is insufficient, there is a risk that the excavation surface during excavation will cause collapse due to the spring water.

これに対して、掘削面の湧水に対する安定性を迅速かつ正確に評価する手法があれば、評価に応じて掘削中の掘削面において適切な対策工等を実施でき、上記のような危険性を低減することができる。また、掘削工程の中での評価手法を確立することは計画段階での安定性評価の妥当性を検討するために必要である。   On the other hand, if there is a method for quickly and accurately evaluating the stability of the excavated surface against spring water, appropriate countermeasures can be implemented on the excavated surface during excavation according to the evaluation. Can be reduced. Establishing an evaluation method during the excavation process is necessary to examine the validity of the stability evaluation at the planning stage.

本発明は、前述した問題点に鑑みてなされたもので、掘削面の湧水に対する安定性を迅速かつ正確に評価する湧水に対する掘削面の安定性評価方法を提供することを目的とする。   The present invention has been made in view of the above-described problems, and an object of the present invention is to provide a method for evaluating the stability of an excavation surface against spring water, which quickly and accurately evaluates the stability of the excavation surface against spring water.

前述した目的を達するための本発明は、掘削面において土壌硬度計による支持強度を計測する計測工程と、前記計測工程で計測した土壌硬度計による支持強度を用いて前記掘削面における地山の限界動水勾配を推定する推定工程と、前記推定工程で推定した限界動水勾配と、前記掘削面の周辺地盤における動水勾配とを比較することにより、湧水に対する前記掘削面の安定性を評価する評価工程と、を具備することを特徴とする湧水に対する掘削面の安定性評価方法である。   The present invention for achieving the above-described object includes a measuring step for measuring a supporting strength by a soil hardness meter on an excavation surface, and a limit of a natural ground on the excavating surface by using the supporting strength by the soil hardness meter measured in the measuring step. The stability of the excavation surface against spring water is evaluated by comparing the estimation step for estimating the hydraulic gradient, the critical hydraulic gradient estimated in the estimation step, and the hydraulic gradient in the surrounding ground of the excavation surface. And a step of evaluating the stability of the excavated surface against spring water.

上記構成により、湧水に対する掘削面の安定性を評価することが可能になる。また、掘削面の安定性の評価を定量的に行うので、従来の目視による評価に比べて熟練を必要とせずに正確な評価ができ、誰でも実行可能な点で有利である。加えて、計画段階での地山の湧水に対する安定性の評価の検証が可能になる。   With the above configuration, it becomes possible to evaluate the stability of the excavation surface against spring water. Further, since the stability of the excavated surface is quantitatively evaluated, it is advantageous in that accurate evaluation can be performed without requiring skill as compared with conventional visual evaluation, and anyone can perform it. In addition, it is possible to verify the stability evaluation of natural ground springs at the planning stage.

土壌硬度計は公知のものを利用可能である。一般的に小さく持ち運びが容易であり、使用方法も先端の円錐体を切羽に差し込んだ後目盛を読むだけでよいので、迅速に土壌硬度計による支持強度が計測される。上記構成により、掘削時に試料を採取して試験を行う必要がなく、湧水に対する掘削面の安定性の評価を安価且つ迅速に行うことができる。評価を迅速に行うので、掘削工程の中で湧水に対する掘削面の安定性の評価が可能になる。   A known soil hardness meter can be used. Generally, it is small and easy to carry, and it is only necessary to read the scale after inserting the cone at the tip into the face, so that the support strength by the soil hardness meter can be measured quickly. With the above configuration, it is not necessary to perform a test by collecting a sample at the time of excavation, and the stability of the excavated surface against spring water can be evaluated inexpensively and quickly. Since the evaluation is performed quickly, it is possible to evaluate the stability of the excavated surface against spring water during the excavation process.

前記推定工程では、前記計測工程で計測した土壌硬度計による支持強度に加えて、掘削前の土質調査で得られた地山の物性値を用いて前記掘削面における地山の限界動水勾配を推定する。
上記構成により、湧水に対する安定性の評価の精度を向上させることができる。
In the estimation step, in addition to the support strength by the soil hardness meter measured in the measurement step, the natural hydrological gradient of the natural ground on the excavation surface is calculated using the physical property values of the natural ground obtained in the soil investigation before excavation. presume.
By the said structure, the precision of the stability evaluation with respect to spring water can be improved.

前記物性値は、地山の均等係数であることが望ましい。
地山の均等係数は、地山による値の違いが大きい指標である点、土壌硬度計による支持強度との関連性が低く共線性の問題が生じない点で有利である。
It is desirable that the physical property value is a uniformity coefficient of natural ground.
The uniformity coefficient of natural ground is advantageous in that it is an index with a large difference in value depending on natural ground, and is not related to the supporting strength by the soil hardness meter and does not cause a problem of collinearity.

本発明により、掘削面の湧水に対する安定性を迅速かつ正確に評価する湧水に対する掘削面の安定性評価方法を提供することができる。   ADVANTAGE OF THE INVENTION By this invention, the stability evaluation method of the excavation surface with respect to the spring which evaluates the stability with respect to the spring of a excavation surface quickly and correctly can be provided.

トンネルの掘削工程を示す断面図Sectional view showing tunnel excavation process 本実施形態の湧水に対する掘削面の安定性評価方法の流れを示す流れ図Flow chart showing the flow of the stability evaluation method of the excavation surface against the spring water of this embodiment 土壌硬度計による支持強度の計測について説明する図The figure explaining the measurement of the support strength with the soil hardness meter 土壌硬度計による支持強度と限界動水勾配の関係を示す図The figure which shows the relationship between the support strength by the soil hardness meter and the critical hydrodynamic gradient 地山の均等係数、土壌硬度計による支持強度と限界動水勾配の関係を示す図Figure showing the relationship between the uniformity coefficient of natural ground, the support strength by the soil hardness tester, and the limit hydrodynamic gradient

以下、図1、図2、図3を参照しながら、本発明の湧水に対する掘削面の安定性評価方法の実施形態について説明する。
図1は、トンネルの掘削工程を示す断面図である。
図2は、本実施形態の湧水に対する掘削面の安定性評価方法の流れを示す流れ図である。
図3は、土壌硬度計による支持強度の計測について説明する図である。
Hereinafter, an embodiment of a method for evaluating the stability of an excavation surface against spring water according to the present invention will be described with reference to FIGS. 1, 2, and 3.
FIG. 1 is a cross-sectional view showing a tunnel excavation process.
FIG. 2 is a flowchart showing the flow of the method for evaluating the stability of the excavation surface against the spring water of the present embodiment.
FIG. 3 is a diagram for explaining the measurement of the support strength by the soil hardness meter.

本実施形態の湧水に対する掘削面の安定性評価方法は、砂質土地山等における図1に示すようなトンネル1の掘削工程の中で、トンネル1の切羽(掘削面)の湧水に対する安定性を評価する際に用いられる。
図1において、3a、3bはトンネル1の切羽である。本実施形態では切羽3a、3bにおいて湧水に対する安定性の評価が行われる。5a、5bはボーリング孔である。トンネル1の掘削が予定される地点において、ボーリング孔5a、5b、…が掘削前の事前計画段階で地山の土質調査のため掘削される。6a、6bは土質調査においてボーリング孔5a、5bでそれぞれ観測される地下水位を示す。破線Aはトンネル1の掘削前の地山の地下水位の例であり、破線Bはトンネル1を切羽3aまで掘削した時の地山の地下水位の例である。
The stability evaluation method of the excavation surface with respect to the spring water of this embodiment is based on the stability of the face of the tunnel 1 (excavation surface) against the spring water in the excavation process of the tunnel 1 as shown in FIG. Used when evaluating sex.
In FIG. 1, 3 a and 3 b are the faces of the tunnel 1. In this embodiment, the stability with respect to spring water is evaluated in the face 3a, 3b. 5a and 5b are boring holes. At the point where the tunnel 1 is scheduled to be excavated, the boreholes 5a, 5b,... Are excavated for soil investigation of the natural ground in the preliminary planning stage before excavation. 6a and 6b indicate groundwater levels observed in the boreholes 5a and 5b, respectively, in the soil survey. A broken line A is an example of the groundwater level of the natural ground before excavation of the tunnel 1, and a broken line B is an example of the groundwater level of the natural ground when the tunnel 1 is excavated to the face 3a.

図2を参照して、トンネル1の掘削工程において用いる本実施形態の湧水に対する掘削面の安定性評価方法の流れについて説明する。   With reference to FIG. 2, the flow of the stability evaluation method of the excavation surface with respect to the spring water of this embodiment used in the excavation process of the tunnel 1 will be described.

まず、トンネル1の掘削に先立つ事前計画段階で対象地山の土質調査が行われる(ステップ201)。   First, a soil survey of the target ground is conducted at a preliminary planning stage prior to excavation of the tunnel 1 (step 201).

ステップ201の土質調査では、トンネル1の掘削が予定される地点において、地表面から図1のボーリング孔5a、5b、…を掘削したり、地山に対する弾性波探査を行ったりして地層の状態等が調べられる。また、ボーリング孔5a、5b、…より試料を採取し、各種試験によって試料の一軸圧縮強度や相対密度、細粒分含有率、均等係数等の地山の物性値が調べられる。   In the soil investigation in Step 201, the state of the formation is excavated from the ground surface at the point where the tunnel 1 is scheduled to be excavated, or the elastic wave exploration of the natural ground is performed by excavating the boreholes 5a, 5b,. Etc. are examined. Further, samples are taken from the boreholes 5a, 5b,..., And physical properties of the natural ground such as the uniaxial compressive strength, relative density, fine particle content, and uniformity coefficient of the sample are examined by various tests.

ステップ201の土質調査のデータを基に対象地山について地山分類が行われる(ステップ202)。地山分類は、トンネルの安定性を左右する諸特性により地山を分類するものである。例えば地山を構成する岩種及び砂質土等の土砂の種類、さらには弾性波速度や地山強度比等、特に砂質土地山についてはその相対密度や細粒分含有率等の地山の物性値により地山が分類される。   Based on the soil investigation data in step 201, the natural ground classification is performed on the target natural ground (step 202). The natural ground classification classifies natural ground according to various characteristics that affect the stability of the tunnel. For example, the types of rocks that make up the natural ground and the type of earth and sand such as sandy soil, as well as the elastic wave velocity and natural ground strength ratio, etc. Natural mountains are classified according to their physical properties.

また、本実施形態では特に、ステップ201の土質調査により対象地山について地山の均等係数を得ておく(ステップ203)。
均等係数は試料を構成する土粒子の粒径が揃っている度合いを示す。既知の指標であるので詳細は省略するが、大きな値をとるほど様々な粒径の土粒子が混在していることになる。均等係数は後述する限界動水勾配の値と関連性を有し、後述する切羽の湧水に対する安定性の評価の際に用いられる。
Further, in the present embodiment, in particular, the uniformity coefficient of the natural ground is obtained for the target natural ground by the soil investigation in Step 201 (Step 203).
The uniformity coefficient indicates the degree to which the particle diameters of the soil particles constituting the sample are uniform. Although it is a known index, the details are omitted, but the larger the value is, the more soil particles with various particle sizes are mixed. The uniformity coefficient is related to the value of the critical hydraulic gradient, which will be described later, and is used when evaluating the stability of the face against spring water described later.

加えて、ステップ201の土質調査において、対象地山の地下水位が事前計画段階で観測される(ステップ204)。土質調査で掘削した図1のボーリング孔5a、5b、…において地下水位6a、6b、…が観測される。   In addition, in the soil investigation in step 201, the groundwater level of the target ground is observed at the preliminary planning stage (step 204). In the boreholes 5a, 5b,... Excavated in the soil survey, groundwater levels 6a, 6b,.

ステップ202の地山分類を基にして、トンネル1の掘削時の掘削面における支保等が計画される(ステップ205)。ロックボルトの本数や吹付けコンクリート厚など、地山分類に応じトンネル1に対して適切な支保が選択される。また、場合によっては先受け工や水抜き孔など、切羽の安定化や地下水位低下のための対策工が計画される。   Based on the natural ground classification in step 202, support on the excavation surface during excavation of the tunnel 1 is planned (step 205). Appropriate support is selected for the tunnel 1 according to the ground classification, such as the number of rock bolts and the thickness of shotcrete. In some cases, measures to stabilize the face and lower the groundwater level, such as receiving work and drain holes, are planned.

ステップ205で計画された支保等で、トンネル1の掘削が行われる(ステップ206)。   The tunnel 1 is excavated by the support planned in step 205 (step 206).

ステップ206でトンネル1を所定の位置まで掘削すると、その切羽について、以降に示す湧水に対する安定性評価を行う。ここでは、図1に示す切羽3aまで掘削したとする。   When the tunnel 1 is excavated to a predetermined position in step 206, the stability evaluation for the spring shown below is performed for the face. Here, suppose that it excavated to the face 3a shown in FIG.

まず、切羽3aにおいて、土壌硬度計による支持強度を土壌硬度計を用いて計測する(ステップ207)。土壌硬度計には、例えば山中式土壌硬度計等がある。土壌硬度計については既知であるので、以下簡単な説明に留める。   First, in the face 3a, the support strength by the soil hardness meter is measured using the soil hardness meter (step 207). Examples of the soil hardness meter include a Yamanaka type soil hardness meter. Since the soil hardness meter is known, only a brief description will be given below.

図3(a)に示すように、(山中式)土壌硬度計7は、筒体9と、筒体9の先端に位置し、筒体9の長さ方向に移動可能な円錐体11と、筒体9内部に取り付けられ、円錐体11の底面を弾性力により支持するばね(不図示)と、ばねの縮み量に応じて筒体9の長さ方向に変動する遊動指標13とを有し、筒体9には支持強度目盛15が設けられている。   As shown in FIG. 3 (a), the (Yamanaka type) soil hardness meter 7 is a cylinder 9, a cone 11 located at the tip of the cylinder 9 and movable in the length direction of the cylinder 9, A spring (not shown) that is attached to the inside of the cylindrical body 9 and supports the bottom surface of the conical body 11 with an elastic force, and a floating index 13 that varies in the length direction of the cylindrical body 9 according to the amount of contraction of the spring. The cylindrical body 9 is provided with a support strength scale 15.

図3(b)に示すように、本実施形態では、土壌硬度計7の円錐体11を切羽3aに対して垂直に差し込み貫入させ、筒体9の先端を切羽3aにつき当てて用いる。この時の円錐体11に対する地山の抵抗力と円錐体11を支持するばねの縮みによる弾性力との釣り合いから地山の抵抗力を求め、円錐体11の底面積で除して土壌硬度計による支持強度とする。支持強度目盛15により、遊動指標13の位置から土壌硬度計による支持強度が一目でわかるようになっている。   As shown in FIG.3 (b), in this embodiment, the cone 11 of the soil hardness meter 7 is inserted perpendicularly with respect to the face 3a, and the front-end | tip of the cylinder 9 is used for the face 3a. At this time, the resistance force of the natural ground is obtained from the balance between the resistance force of the natural ground to the cone 11 and the elastic force due to the contraction of the spring supporting the cone 11, and is divided by the bottom area of the cone 11 to determine the soil hardness meter. Support strength by With the support strength scale 15, the support strength by the soil hardness meter can be seen at a glance from the position of the floating index 13.

土壌硬度計は、一般的に小さく持ち運びが容易である。使用方法も先端の円錐体を切羽に差し込んだ後目盛を読むだけでよいので、迅速に土壌硬度計による支持強度が計測される。   The soil hardness meter is generally small and easy to carry. Since the usage method only needs to read the scale after inserting the cone of the tip into the face, the support strength by the soil hardness meter is quickly measured.

ここで、上記求めた土壌硬度計による支持強度が限界動水勾配と関連することを、図4を参照して説明する。   Here, it will be described with reference to FIG. 4 that the support strength obtained by the soil hardness meter is related to the limit hydrodynamic gradient.

図4は、乱れの少ない複数の試料について水平一次元浸透崩壊モデル実験(非特許文献1参照)を行い限界動水勾配の値を求めるとともに、各試料を採取した露頭やトンネル切羽で(山中式)土壌硬度計による支持強度を計測し、その関係をプロットした散布図である。   Fig. 4 shows a horizontal one-dimensional osmotic collapse model experiment (see Non-Patent Document 1) for a plurality of samples with little disturbance, and obtains the value of the critical hydrodynamic gradient, as well as the outcrop and tunnel face where each sample was collected (Yamanaka equation) ) It is a scatter diagram in which the support strength by a soil hardness meter is measured and the relationship is plotted.

図4の縦軸は限界動水勾配であり対数軸である。横軸は土壌硬度計による支持強度である。図4より、決定係数Rが0.75以上と両者が強い関連性を有し、土壌硬度計による支持強度が大きくなるほど限界動水勾配も大きくなることがわかる。 The vertical axis in FIG. 4 is the critical hydraulic gradient and is the logarithmic axis. The horizontal axis is the support strength by the soil hardness meter. From FIG. 4, the coefficient of determination R 2 has a strong association 0.75 or more and both the more critical hydraulic gradient support strength by soil hardness scale increases it can be seen that also increases.

次に、ステップ203で得られた地山の均等係数、ステップ207で得られた土壌硬度計による支持強度より、限界動水勾配を推定する(ステップ208)。   Next, the critical hydraulic gradient is estimated from the uniformity coefficient of the natural ground obtained in step 203 and the support strength by the soil hardness meter obtained in step 207 (step 208).

図5を用いてこれを説明する。図5は、地山の均等係数及び土壌硬度計による支持強度と限界動水勾配Icの関係を示す図である。図5のグラフにおいて、縦軸は地山の均等係数、横軸は土壌硬度計による支持強度であり、各値の組み合わせに対応する地山の限界動水勾配Icが推定できるようになっている。これらの関係は、事前の実験検討により得られたものである。事前の検討では、トンネル計画地周辺の露頭やボーリングコアなどから採取した試料を用いて、限界動水勾配と土壌硬度計による支持強度との関係を把握し、上記限界動水勾配Icの推定に用いることが望ましい。これにより、限界動水勾配Icの推定や、以降に示す湧水に対する切羽の安定性の評価を当該トンネル計画地の現場の条件により適したものにすることができる。   This will be described with reference to FIG. FIG. 5 is a diagram showing the relationship between the uniformity coefficient of natural ground, the support strength by the soil hardness meter, and the critical hydrodynamic gradient Ic. In the graph of FIG. 5, the vertical axis is the uniformity coefficient of the natural ground, and the horizontal axis is the support strength by the soil hardness meter, so that the critical hydraulic gradient Ic of the natural ground corresponding to each combination of values can be estimated. . These relationships have been obtained through prior experimental studies. In the preliminary study, using the samples collected from the outcrop around the tunnel planned site, the boring core, etc., the relationship between the critical hydrodynamic gradient and the support strength by the soil hardness tester is grasped, and the above-mentioned critical hydrodynamic gradient Ic is estimated. It is desirable to use it. Thereby, the estimation of the limit hydrodynamic gradient Ic and the evaluation of the stability of the face against the spring shown below can be made more suitable for the conditions at the site of the tunnel planned site.

例えば、図5の点Cは均等係数の値が約20、土壌硬度計による支持強度が約2(N/mm)の地山を表しており、限界動水勾配Icが20≦Ic<50の範囲19に含まれることが図5より読み取れる。従って、均等係数が約20、土壌硬度計による支持強度が約2(N/mm)の地山の限界動水勾配Icが取り得る値の範囲が20≦Ic<50であると推定される。以上のように地山の均等係数と土壌硬度計による支持強度より限界動水勾配Icが推定される。 For example, a point C in FIG. 5 represents a natural ground having an equality coefficient value of about 20 and a soil hardness meter supporting strength of about 2 (N / mm 2 ), and the critical hydraulic gradient Ic is 20 ≦ Ic <50. It can be seen from FIG. Therefore, it is estimated that the range of values that can be taken by the limit hydrodynamic gradient Ic of the natural ground having the uniformity coefficient of about 20 and the soil strength meter support strength of about 2 (N / mm 2 ) is 20 ≦ Ic <50. . As described above, the critical hydraulic gradient Ic is estimated from the uniformity coefficient of the natural ground and the support strength by the soil hardness meter.

なお、ステップ208における限界動水勾配の推定は、限界動水勾配の値や値の範囲を直接的あるいは間接的に推定しているものであればよい。
よって、図5のグラフでは地山の均等係数及び土壌硬度計による支持強度と限界動水勾配Icの値や値の範囲との関係が直接的あるいは間接的に表現されていればよく、表現方法は問わない。例えば地山の均等係数と土壌硬度計による支持強度に応じて限界動水勾配Icの値が取り得る範囲の下限値を示すものでもよい。また、地山の均等係数と土壌硬度計による支持強度より推定された限界動水勾配Icに代えて、後述のステップ210で当該限界動水勾配Icと比較し切羽が安定と判定される動水勾配の値の範囲を示すなど、間接的に限界動水勾配Icの推定がされている表現を行うことも可能である。
The limit dynamic gradient in step 208 may be estimated as long as the limit hydraulic gradient value or value range is estimated directly or indirectly.
Therefore, in the graph of FIG. 5, it is only necessary to directly or indirectly represent the relationship between the uniformity coefficient of the natural ground, the support strength by the soil hardness meter, and the value or range of the limit hydrodynamic gradient Ic. Does not matter. For example, the lower limit value of the range that can be taken by the limit hydrodynamic gradient Ic according to the uniformity coefficient of the natural ground and the support strength by the soil hardness meter may be indicated. In addition, instead of the critical dynamic gradient Ic estimated from the uniformity coefficient of the natural ground and the support strength by the soil hardness meter, the dynamic water whose face is determined to be stable is compared with the critical dynamic gradient Ic in Step 210 described later. It is also possible to perform an expression in which the limit hydraulic gradient Ic is indirectly estimated, such as indicating a range of gradient values.

また、切羽3aの周辺地盤における動水勾配を得る(ステップ209)。
これは、例えば、事前計画段階(ステップ204)で行われた、切羽3aの前方に位置するボーリング孔5aにおける地下水位観測の結果(地下水位6a)を用いる。即ち、地下水位6aと切羽3aの位置とがなす勾配により動水勾配の値を定める。
In addition, a hydrodynamic gradient in the ground around the face 3a is obtained (step 209).
This uses, for example, the result of groundwater level observation (groundwater level 6a) in the borehole 5a located in front of the face 3a performed in the preliminary planning stage (step 204). That is, the value of the hydrodynamic gradient is determined by the gradient formed by the groundwater level 6a and the position of the face 3a.

実際には、掘削と同時に地下水の排水を行う等の理由により、一般にトンネル1の掘削時の地下水位は、図1の破線Aで示されるような事前計画時(トンネル掘削前)の地下水位に比べ、図1の破線Bで示されるように切羽3aに向かうほど低下する状態となる。よって、上記のように事前計画段階で観測した地下水位6aに基づいて動水勾配を定めた場合、一般にトンネル1の掘削時の実際の動水勾配の値よりも大きく評価することになる。これは、本実施形態の湧水に対する掘削面の安定性評価方法における後述する切羽の安定性評価においては動水勾配を安全側に評価することになる。
なお、迅速に評価を行えないという難点はあるものの、切羽3aからの先進ボーリング等により動水勾配を測定することも可能である。
In practice, the groundwater level at the time of excavation of the tunnel 1 is generally the groundwater level at the time of prior planning (before tunnel excavation) as shown by the broken line A in FIG. In comparison, as shown by the broken line B in FIG. Therefore, when the hydraulic gradient is determined based on the groundwater level 6a observed in the preliminary planning stage as described above, generally, the evaluation is larger than the actual hydraulic gradient value when the tunnel 1 is excavated. This means that the hydrodynamic gradient is evaluated on the safe side in the stability evaluation of the face to be described later in the method for evaluating the stability of the excavated surface with respect to the spring water of the present embodiment.
In addition, although there is a difficulty that the evaluation cannot be performed quickly, it is possible to measure the hydrodynamic gradient by advanced boring from the face 3a.

次に、ステップ208で推定された限界動水勾配と、ステップ209で得られた動水勾配とを比較する(ステップ210)。これにより、湧水に対する切羽の安定性を判定(評価)する(ステップ211)。   Next, the critical hydraulic gradient estimated in step 208 is compared with the hydraulic gradient obtained in step 209 (step 210). Thereby, the stability of the face against spring water is determined (evaluated) (step 211).

即ち、推定された限界動水勾配の範囲の下限値より動水勾配の値が低ければ、切羽3aは湧水に対して安定であると判定する。ステップ211の分岐はYesとなり、事前に計画した支保等でトンネルを掘り進める(ステップ212)。   That is, if the value of the hydraulic gradient is lower than the lower limit value of the estimated limit hydraulic gradient range, it is determined that the face 3a is stable with respect to the spring water. The branch of step 211 is Yes, and the tunnel is dug with a support planned in advance (step 212).

一方、動水勾配が限界動水勾配の範囲の下限値より高ければ、切羽3aは湧水に対して安定であるとはいえないと判定され、ステップ211の分岐はNoとなる。このとき、切羽3aに対して湧水に対する安定化のための対策工を実施する(ステップ213)。場合によっては対策工の変更や支保の見直しを行う。例えば水抜き孔により地下水位を低下させる、切羽3aにウレタン注入等して切羽3aの安定化を図る等行う。対策工の実施後、ステップ212に進み、トンネル1を掘り進める。   On the other hand, if the hydrodynamic gradient is higher than the lower limit value of the range of the critical hydrodynamic gradient, it is determined that the face 3a is not stable with respect to the spring water, and the branch of step 211 becomes No. At this time, countermeasure work for stabilizing the spring water is performed on the face 3a (step 213). In some cases, change of countermeasure work or review of support. For example, the groundwater level is lowered by a drain hole or the face 3a is stabilized by injecting urethane into the face 3a. After implementing the countermeasure work, the process proceeds to step 212 and the tunnel 1 is dug.

湧水に対する切羽の安定性の評価は、トンネル1の掘削長さやボーリング孔5a、5b、…との位置関係、トンネル1やその掘削面の状況等に応じて適宜行うことができる。   The stability of the face against the spring water can be evaluated appropriately according to the excavation length of the tunnel 1, the positional relationship with the boreholes 5a, 5b,.

ステップ212でトンネル1を掘り進み、次に切羽の安定性の評価を行う地点(図1の切羽3b)に達したら、土質調査で得られた均等係数及び切羽3bで計測した土壌硬度計による支持強度により切羽3bの地山の限界動水勾配を推定し、切羽3bの周辺地盤における動水勾配と比較して切羽3bの湧水に対する安定性評価を再度行う。   When the tunnel 1 is dug in Step 212 and the point where the stability of the face is to be evaluated (face 3b in FIG. 1) is reached, the uniformity coefficient obtained in the soil investigation and the support by the soil hardness meter measured by the face 3b The limit hydrodynamic gradient of the ground of the face 3b is estimated from the strength, and the stability evaluation of the face 3b against the spring water is performed again in comparison with the hydrodynamic gradient in the surrounding ground of the face 3b.

なお、本実施形態では湧水に対する切羽の安定性評価の際に土壌硬度計による支持強度に加え、地山の均等係数を用いて評価を行った。これは、評価の精度を向上させるためである。しかしながら、土壌硬度計による支持強度のみ用いて切羽の安定性評価を行うことも可能である。これは、例えば図4に示すような土壌硬度計による支持強度と限界動水勾配の関係に基づいて、計測された土壌硬度計による支持強度を有する地山の限界動水勾配の値あるいは値の取り得る範囲等を推定することにより行うことができる。   In addition, in this embodiment, in the stability evaluation of the face with respect to spring water, in addition to the support strength by a soil hardness meter, it evaluated using the uniformity coefficient of a natural mountain. This is to improve the accuracy of evaluation. However, it is also possible to evaluate the stability of the face using only the supporting strength by the soil hardness meter. This is because, for example, based on the relationship between the support strength by the soil hardness meter and the critical hydrodynamic gradient as shown in FIG. This can be done by estimating the possible range.

また、地山の均等係数は、土粒子の細粒分含有率等、地山の限界動水勾配に関連する他の地山の物性値にかえてもよい。ただし、地山の均等係数を用いることは、地山による値の違いが大きい指標である点、土壌硬度計による支持強度との相関性が低く共線性の問題が生じない点で有利である。また、事前の調査により均等係数と肉眼観察結果との対応をとることで、掘削工程の中で均等係数をおおまかに推定することも可能である。   Further, the uniformity coefficient of the natural ground may be changed to a physical property value of other natural ground related to the critical hydrodynamic gradient of the natural ground such as the fine particle content rate of the soil particles. However, the use of the uniformity coefficient of natural ground is advantageous in that it is an index with a large difference in values depending on natural ground, and that the correlation with the support strength by the soil hardness meter is low and the problem of collinearity does not occur. In addition, it is possible to roughly estimate the uniformity coefficient during the excavation process by taking a correspondence between the uniformity coefficient and the result of the naked eye observation in advance.

以上説明したように、本実施形態の湧水に対する掘削面の安定性評価方法によれば、土壌硬度計による支持強度と地山の均等係数を用いて湧水に対する掘削面の安定性評価を行う。均等係数は事前計画段階の土質調査から得られる値であり、土壌硬度計による支持強度は掘削時に切羽で計測される。このため、試料を採取して試験を行う必要がなく、湧水に対する切羽の安定性評価を安価且つ迅速に行うことができる。よって、掘削工程の中で安定性評価を実施することができる。また、安定性評価を定量的に行うので、従来の目視による評価に比べて熟練を必要とせず、誰でも正確な評価を行うことができる。加えて、当初の地山分類の妥当性の検証や、指標等評価方法の詳細について検証して精度を向上させることが可能になる。また、純粋な力学的指標を用いるので地山の地域性に影響されず、汎用性を有する点においても有利である。   As described above, according to the method for evaluating the stability of the excavated surface with respect to the spring water according to the present embodiment, the stability evaluation of the excavated surface with respect to the spring water is performed using the support strength by the soil hardness meter and the uniformity coefficient of the natural ground. . The uniformity coefficient is a value obtained from a soil survey at the preliminary planning stage, and the support strength by the soil hardness meter is measured at the face during excavation. For this reason, it is not necessary to perform a test by collecting a sample, and the stability evaluation of the face against spring water can be performed inexpensively and promptly. Therefore, stability evaluation can be performed in the excavation process. Further, since the stability evaluation is quantitatively performed, anyone can perform an accurate evaluation without requiring skill as compared with the conventional visual evaluation. In addition, it is possible to improve the accuracy by verifying the validity of the initial ground classification and the details of the evaluation method such as the index. In addition, since a pure mechanical index is used, it is not affected by the locality of the natural ground and is advantageous in that it has versatility.

以上、添付図面を参照しながら、本発明にかかる湧水に対する掘削面の安定性評価方法等の実施形態について説明したが、本発明はかかる例に限定されない。当業者であれば、本願で開示した技術的思想の範疇内において、各種の変更例又は修正例に想到し得ることは明らかであり、それらについても当然に本発明の技術的範囲に属するものと了解される。   As mentioned above, although embodiment of the stability evaluation method of the excavation surface with respect to the spring which concerns on this invention was described, referring an accompanying drawing, this invention is not limited to this example. It will be apparent to those skilled in the art that various changes or modifications can be conceived within the scope of the technical idea disclosed in the present application, and these naturally belong to the technical scope of the present invention. Understood.

1………トンネル
3a、3b………切羽
5a、5b………ボーリング孔
6a、6b………地下水位
7………(山中式)土壌硬度計
1 ......... Tunnels 3a, 3b ......... Faces 5a, 5b ......... Boring holes 6a, 6b ......... Ground water level 7 ......... (Yamanaka type) soil hardness meter

Claims (3)

掘削面において土壌硬度計による支持強度を計測する計測工程と、
前記計測工程で計測した土壌硬度計による支持強度を用いて前記掘削面における地山の限界動水勾配を推定する推定工程と、
前記推定工程で推定した限界動水勾配と、前記掘削面の周辺地盤における動水勾配とを比較することにより、湧水に対する前記掘削面の安定性を評価する評価工程と、
を具備することを特徴とする湧水に対する掘削面の安定性評価方法。
A measurement process for measuring the support strength by a soil hardness meter on the excavation surface;
An estimation step for estimating a limit hydrodynamic gradient of a natural ground on the excavation surface using a support strength by a soil hardness meter measured in the measurement step;
An evaluation step for evaluating the stability of the excavation surface against spring water by comparing the critical hydraulic gradient estimated in the estimation step with the hydraulic gradient in the surrounding ground of the excavation surface;
The stability evaluation method of the excavation surface with respect to the spring water characterized by comprising.
前記推定工程では、前記計測工程で計測した土壌硬度計による支持強度に加えて、掘削前の土質調査で得られた地山の物性値を用いて前記掘削面における地山の限界動水勾配を推定することを特徴とする請求項1記載の湧水に対する掘削面の安定性評価方法。   In the estimation step, in addition to the support strength by the soil hardness meter measured in the measurement step, the natural hydrological gradient of the natural ground on the excavation surface is calculated using the physical property values of the natural ground obtained in the soil investigation before excavation. The method for evaluating stability of an excavation surface against spring water according to claim 1, wherein the estimation is performed. 前記物性値は、地山の均等係数であることを特徴とする請求項2記載の湧水に対する掘削面の安定性評価方法。   The method for evaluating stability of an excavated surface against spring water according to claim 2, wherein the physical property value is a uniformity coefficient of natural ground.
JP2009069460A 2009-03-23 2009-03-23 Method for evaluating stability of excavated surface against sump water Pending JP2010222805A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009069460A JP2010222805A (en) 2009-03-23 2009-03-23 Method for evaluating stability of excavated surface against sump water

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009069460A JP2010222805A (en) 2009-03-23 2009-03-23 Method for evaluating stability of excavated surface against sump water

Publications (1)

Publication Number Publication Date
JP2010222805A true JP2010222805A (en) 2010-10-07

Family

ID=43040289

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009069460A Pending JP2010222805A (en) 2009-03-23 2009-03-23 Method for evaluating stability of excavated surface against sump water

Country Status (1)

Country Link
JP (1) JP2010222805A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104831743A (en) * 2015-04-02 2015-08-12 山东大学 Assessment method of water-rich surrounding rock grouting water controlling effect
JP2020094434A (en) * 2018-12-13 2020-06-18 鹿島建設株式会社 Face stability evaluation method and tunnel boring method
CN112380594A (en) * 2020-10-10 2021-02-19 上海市政工程设计研究总院(集团)有限公司 Pit bottom confined water-based foundation pit wall bottom anti-uplift stability calculation method
CN113779489A (en) * 2021-08-18 2021-12-10 同济大学 Entropy change principle-based method for judging stability of excavation surface of slurry balance shield system

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104831743A (en) * 2015-04-02 2015-08-12 山东大学 Assessment method of water-rich surrounding rock grouting water controlling effect
JP2020094434A (en) * 2018-12-13 2020-06-18 鹿島建設株式会社 Face stability evaluation method and tunnel boring method
JP7106437B2 (en) 2018-12-13 2022-07-26 鹿島建設株式会社 Face stability evaluation method
CN112380594A (en) * 2020-10-10 2021-02-19 上海市政工程设计研究总院(集团)有限公司 Pit bottom confined water-based foundation pit wall bottom anti-uplift stability calculation method
CN113779489A (en) * 2021-08-18 2021-12-10 同济大学 Entropy change principle-based method for judging stability of excavation surface of slurry balance shield system
CN113779489B (en) * 2021-08-18 2024-02-02 同济大学 Method for judging stability of excavation surface of slurry balance shield system based on entropy change principle

Similar Documents

Publication Publication Date Title
CN106405675B (en) For the dynamic monitoring method of outdoor pit Tailings Dam slope and land slide early warning
Zhao et al. Damage stress and acoustic emission characteristics of the Beishan granite
Likitlersuang et al. Geotechnical parameters from pressuremeter tests for MRT Blue Line Extension in Bangkok
CN103075150A (en) In-situ stress testing method of method for relieving stress in original hole site for multiple times
Zhang et al. Excavation-induced structural deterioration of rock masses at different depths
JP2010222805A (en) Method for evaluating stability of excavated surface against sump water
Karagkounis et al. Geology and geotechnical evaluation of Doha rock formations
Briaud et al. Borehole erosion test
Viana da Fonseca et al. Improved laboratory techniques for advanced geotechnical characterization towards matching in situ properties
JP2005091295A (en) Groundwater level survey method
Kelly et al. In-situ and laboratory testing of soft clays
Tjelta et al. Ormen Lange geoborings-geological and geotechnical site investigations in the Storegga Slide area
Munir Development of correlation between rock classification system and modulus of deformation
Papamichael et al. CPT interpretation and correlations to SPT for near-shore marine Mediterranean soils
Larsson et al. Settlements and shear strength increase below embankments-long-term observations and measurement of shear strength increase by seismic cross-hole tomography
Yunfeng et al. Analysis of slug interference tests conducted in an artificial fracture
Bulko et al. CPT Profiling and Laboratory Data Correlations for Deriving of Selected Geotechnical Parameter
Haugen et al. A preliminary attempt towards soil classification chart from total sounding
Zainil et al. A Comparative Analysis of Mechanical Properties Between Granite and Basalt Rock Core Samples
Nasrulloh et al. In relation between RMR89 and GSI rock mass classification, study case in diversion tunnel of Pammukulu Dam, South Sulawesi, Indonesia
Sanada et al. In situ stress measurements in siliceous mudstones at Horonobe underground research laboratory, Japan
Ouellet et al. Study of the cemented pastefill and rock mass interaction and behavior in backfilled stopes
Abrah et al. Importance of anisotropy in dam foundation, estimated by in-situ dilatometer tests
Altwegg et al. In-situ stress measurements at the Coxwell Bypass Tunnel along the inner Harbour East and Lower Don River, Toronto, Ontario
Langford et al. Assessing stress conditions for Coast Range tunnels in British Columbia