JP2010221253A - Joining device, joining method, and semiconductor device - Google Patents

Joining device, joining method, and semiconductor device Download PDF

Info

Publication number
JP2010221253A
JP2010221253A JP2009070855A JP2009070855A JP2010221253A JP 2010221253 A JP2010221253 A JP 2010221253A JP 2009070855 A JP2009070855 A JP 2009070855A JP 2009070855 A JP2009070855 A JP 2009070855A JP 2010221253 A JP2010221253 A JP 2010221253A
Authority
JP
Japan
Prior art keywords
bonded
objects
bonding
surface activation
joined
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009070855A
Other languages
Japanese (ja)
Other versions
JP5429926B2 (en
Inventor
Akira Yamauchi
朗 山内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bondtech Inc
Original Assignee
Bondtech Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bondtech Inc filed Critical Bondtech Inc
Priority to JP2009070855A priority Critical patent/JP5429926B2/en
Publication of JP2010221253A publication Critical patent/JP2010221253A/en
Application granted granted Critical
Publication of JP5429926B2 publication Critical patent/JP5429926B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Pressure Welding/Diffusion-Bonding (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a joining technique capable of preventing deposits adhered to one material to be joined from re-adhering to the other material to be joined, when subjecting various kinds of materials to surface activation treatment. <P>SOLUTION: The joint surfaces of both materials 91, 92 to be joined are arranged in parallel and adversely to each other, and further both materials 91, 92 to be joined are arranged in a manner of being mutually deviated in X direction so that the joint surfaces of both materials 91, 92 to be joined are not overlapped as seen from Z direction. In this state, a specific substance (Argon or the like) is discharged by radiation of an atom beam (or an ion beam or the like) from beam radiating parts 11, 21, so that the joint surfaces of both materials 91, 92 to be joined are activated. Thereafter, the joint surfaces of both materials 91, 92 to be joined are relatively moved in the X direction, so that the joint surfaces of both materials to be joined are brought into an opposite state to each other. Further, both materials 91, 92 to be joined, which are in the opposite state, are relatively moved in the Z direction so that they come closer to each other, and both materials to be joined are joined. <P>COPYRIGHT: (C)2011,JPO&amp;INPIT

Description

本発明は、被接合物の接合表面を活性化して接合する技術に関する。   The present invention relates to a technique for activating and bonding a bonding surface of an object to be bonded.

2つの被接合物を対向配置した状態で両被接合物の接合表面をプラズマ洗浄(表面活性化処理)した後に、両被接合物を接合する技術が存在する。   There is a technique of joining both objects to be bonded after plasma cleaning (surface activation treatment) of the bonding surfaces of both objects to be bonded in a state where the two objects to be bonded are arranged to face each other.

しかしながら、このような対向配置状態で両被接合物の表面活性化処理を施すと、一方の被接合物に付着していた付着物が他方の被接合物へと再付着するという問題がある。   However, when the surface activation treatment is performed on both the objects to be bonded in such a facing arrangement state, there is a problem that the objects adhering to one object to be bonded reattach to the other object to be bonded.

そこで、このような問題を解消する技術として、特許文献1に記載の技術が存在する。   Therefore, there is a technique described in Patent Document 1 as a technique for solving such a problem.

特許文献1の技術においては、両被接合物同士がその接合面が(上面視にて)重ならない側方位置へ移動した状態で互いに向かう合うように配置され、両被接合物の接合表面がプラズマ洗浄された後に、当該両被接合物が相対的にスライドされて対向する。その後、両被接合物が接合面に垂直な方向に相対的に移動されて、両被接合物が接合される。   In the technology of Patent Document 1, both objects to be joined are arranged so as to face each other in a state where their joining surfaces are moved to a lateral position where the joining surfaces do not overlap (in top view), and the joining surfaces of both objects to be joined are arranged. After the plasma cleaning, the objects to be joined are slid relative to each other. Thereafter, both objects to be bonded are relatively moved in a direction perpendicular to the bonding surface, and both objects to be bonded are bonded.

特開2005−268766号公報JP 2005-268766 A

しかしながら、特許文献1に記載の引き込み型電界プラズマ(以降、単に「プラズマ」とも称する)を用いた接合技術は、金あるいは銅を被接合物とする場合には適用可能であるが、他の種類の物質(例えばサファイア等)を被接合物とする場合には適用することが困難である。   However, the joining technique using the retractable electric field plasma (hereinafter also simply referred to as “plasma”) described in Patent Document 1 is applicable when gold or copper is used as an object to be joined. This material is difficult to apply when a material such as sapphire is used as an object to be bonded.

ここにおいて、プラズマを用いた接合技術においては、被接合物を保持する電極に交番電圧を印加して電気的な極性(例えば負極性)を付与し、逆極性を有する特定物質(例えばアルゴンイオン)を引き込むことによって、当該特定物質接合表面に衝突させ、その衝突力によって不純物を除去することが行われる。しかしながら、被接合物を保持する電極には交番電圧(交番電界)が付与されるため当該電極はさらに逆極性を有することもあり、特定物質以外のイオン化された物質が存在していれば、その物質も引き込むこととなってしまう。但し、金および銅は、他物質との反応が鈍い物質であるため、プラズマ処理における特定物質(例えばアルゴン)とは異なる他の物質(例えば酸素)が存在しているときでも当該他の物質と反応しにくい。したがって、金あるいは銅を被接合物とする場合には、プラズマによって表面活性化処理を行うことが可能である。一方、他の種類の物質(例えば酸素)と反応しやすい物質の場合には、特定物質(アルゴン等)のみならず、当該他の物質とも反応してしまうため、表面活性化処理を適切に行うことができない。   Here, in a bonding technique using plasma, an alternating voltage is applied to an electrode holding an object to be bonded to impart an electrical polarity (for example, negative polarity), and a specific substance having a reverse polarity (for example, argon ions). By pulling in, it is made to collide with the said specific substance joining surface, and an impurity is removed by the collision force. However, since an alternating voltage (alternating electric field) is applied to the electrode that holds the object to be bonded, the electrode may further have a reverse polarity, and if an ionized substance other than the specific substance exists, The material will also be drawn. However, since gold and copper are substances that do not react easily with other substances, even when there is another substance (for example, oxygen) different from a specific substance (for example, argon) in plasma processing, It is hard to react. Therefore, when gold or copper is used as the object to be bonded, surface activation treatment can be performed by plasma. On the other hand, in the case of a substance that easily reacts with another type of substance (for example, oxygen), it reacts not only with the specific substance (such as argon) but also with the other substance, so the surface activation treatment is appropriately performed. I can't.

このように、特許文献1に記載のプラズマによる接合技術は、限定された種類の被接合物にしか適用できないという問題がある。   As described above, the plasma bonding technique described in Patent Document 1 has a problem that it can be applied only to limited types of objects to be bonded.

そこで、この発明は、様々な種類の被接合物に対して表面活性化処理を施す際に、一方の被接合物に付着していた付着物が他方の被接合物へと再付着することを防止することが可能な接合技術を提供することを課題とする。   In view of this, the present invention provides that, when surface activation treatment is performed on various types of objects to be bonded, the objects that have adhered to one object to be reattached to the other object to be bonded. It is an object to provide a bonding technique that can be prevented.

上記の課題を解決するため、請求項1の発明は、接合装置であって、第1の被接合物と第2の被接合物との両被接合物の接合表面が互いに略平行に且つ互いに逆向きに配置されるとともに、前記接合表面の法線方向から見て前記両被接合物の接合表面が重ならないように前記両被接合物が第1の方向において互いにずらされて配置される状態において、イオン化された特定物質を電界で加速し前記第1の被接合物の接合表面と前記第2の被接合物の接合表面とのそれぞれに向けて当該特定物質を放出することにより、前記第1の被接合物の接合表面と前記第2の被接合物の接合表面とのそれぞれを活性化する第1および第2の表面活性化手段と、前記第1および第2の表面活性化手段を用いて表面活性化処理が施された前記両被接合物を前記第1の方向に相対的に移動して、前記両被接合物の接合表面を対向させる第1の相対的移動手段と、前記第1の相対的移動手段により対向状態にされた前記両被接合物を接近させるように前記両被接合物を相対的に移動して、前記両被接合物を接合する第2の相対的移動手段とを備えることを特徴とする。   In order to solve the above-mentioned problems, the invention of claim 1 is a bonding apparatus, wherein the bonding surfaces of both the first and second objects to be bonded are substantially parallel to each other and to each other. A state in which both the objects to be bonded are arranged so as to be shifted from each other in the first direction so that the bonding surfaces of the objects to be bonded do not overlap each other when viewed from the normal direction of the bonding surface. The ionized specific substance is accelerated by an electric field, and the specific substance is released toward the bonding surface of the first object to be bonded and the bonding surface of the second object to be bonded, respectively. First and second surface activating means for activating each of a bonding surface of one object to be bonded and a bonding surface of the second object to be bonded; and the first and second surface activating means. The two objects to be joined that have been subjected to surface activation treatment using the 1st relative movement means which moves relatively in the direction of 1, and makes the joining surface of both said to-be-joined objects oppose, and both said to-be-joined objects made into the opposing state by the said 1st relative movement means And a second relative moving means for relatively moving both the objects to be joined together to join the objects to be joined.

請求項2の発明は、請求項1の発明に係る接合装置において、前記対向状態を有する前記両被接合物の対向空間の側方から当該対向空間に向けて、イオン化された特定物質を電界で加速して当該特定物質を放出することにより、前記第1の被接合物の接合表面と前記第2の被接合物の接合表面とを活性化する第3の表面活性化手段、をさらに備え、前記第2の相対的移動手段は、前記第3の表面活性化手段による表面活性化処理が施された後に前記両被接合物を接合することを特徴とする。   According to a second aspect of the present invention, in the bonding apparatus according to the first aspect of the present invention, an ionized specific substance is applied by an electric field from the side of the facing space of the two objects to be bonded having the facing state toward the facing space. A third surface activation means for activating the bonding surface of the first object to be bonded and the bonding surface of the second object to be bonded by accelerating and releasing the specific substance; The second relative moving means joins both the objects to be joined after the surface activation process by the third surface activating means is performed.

請求項3の発明は、請求項2の発明に係る接合装置において、前記第2の相対的移動手段は、前記第3の表面活性化手段による表面活性化処理に並行して、前記両被接合物を接近させるように前記両被接合物を相対的に移動することを特徴とする。   According to a third aspect of the present invention, in the joining apparatus according to the second aspect of the present invention, the second relative movement means is configured to perform the two joints in parallel with the surface activation process by the third surface activation means. The two objects to be joined are relatively moved so as to bring the objects close to each other.

請求項4の発明は、請求項1ないし請求項3のいずれかの発明に係る接合装置において、前記両被接合物が配置される処理空間の圧力を、前記第1および第2の表面活性化手段による表面活性化処理の前において、前記第1および第2の表面活性化手段による表面活性化処理時における圧力値よりも低い値にまで低減する減圧手段、をさらに備えることを特徴とする。   According to a fourth aspect of the present invention, there is provided a bonding apparatus according to any one of the first to third aspects, wherein the first and second surface activations are applied to the pressure in the processing space in which the objects to be bonded are arranged. Before the surface activation treatment by the means, the pressure reduction means further reduces the pressure value to a value lower than the pressure value at the time of the surface activation treatment by the first and second surface activation means.

請求項5の発明は、請求項1ないし請求項4のいずれかの発明に係る接合装置において、前記第1および第2の表面活性化手段による表面活性化処理中においては、前記第1の被接合物の接合表面と前記第2の被接合物の接合表面とは、前記第1の方向において互いにずらされ且つ互いに向かい合う向きで配置されるとともに、前記第1の被接合物の接合表面を含む平面と前記第2の被接合物の接合表面を含む平面とは近接して配置されることを特徴とする。   According to a fifth aspect of the present invention, in the bonding apparatus according to any one of the first to fourth aspects of the present invention, during the surface activation treatment by the first and second surface activation means, the first object is provided. The bonded surface of the bonded object and the bonded surface of the second bonded object are arranged so as to be shifted from each other in the first direction and face each other, and include the bonded surface of the first bonded object. The flat surface and the flat surface including the bonding surface of the second object to be bonded are arranged close to each other.

請求項6の発明は、請求項5の発明に係る接合装置において、前記第1および第2の表面活性化手段による表面活性化処理中においては、前記第1の被接合物の接合表面を含む平面と前記第2の被接合物の接合表面を含む平面との距離は20ミリメートル以下であることを特徴とする。   According to a sixth aspect of the present invention, in the joining apparatus according to the fifth aspect of the invention, the surface of the first object to be joined is included during the surface activation treatment by the first and second surface activating means. The distance between the plane and the plane including the bonding surface of the second workpiece is 20 millimeters or less.

請求項7の発明は、請求項1ないし請求項6のいずれかの発明に係る接合装置において、前記第1および第2の表面活性化手段は、イオン化された特定物質を電界で加速した後にイオン化されたまま放出するイオンビーム照射手段と、イオン化された特定物質を電界で加速した後にその電気特性を中和して放出する原子ビーム照射手段と、の少なくとも一方を有することを特徴とする。   According to a seventh aspect of the present invention, in the bonding apparatus according to any one of the first to sixth aspects, the first and second surface activation means are ionized after accelerating the ionized specific substance with an electric field. It is characterized by having at least one of ion beam irradiation means for emitting the ionized material as it is and atomic beam irradiation means for neutralizing and discharging the ionized specific substance after accelerating it with an electric field.

請求項8の発明は、接合方法であって、a)第1の被接合物と第2の被接合物との両被接合物の接合表面が互いに略平行に且つ互いに逆向きに配置されるとともに、当該接合表面の法線方向から見て前記両被接合物の接合表面が重ならないように前記両被接合物が第1の方向において互いにずらされて配置される状態において、イオン化された特定物質を電界で加速し前記第1の被接合物の接合表面と前記第2の被接合物の接合表面とのそれぞれに向けて当該特定物質を放出することにより、前記第1の被接合物の接合表面と前記第2の被接合物の接合表面とのそれぞれを活性化する工程と、b)前記工程a)の後に、前記第1の被接合物と前記第2の被接合物との両被接合物を前記第1の方向に相対的に移動して前記両被接合物の接合表面を対向させるとともに、前記両被接合物を前記法線方向に相対的に移動して前記両被接合物を接合する工程とを含むことを特徴とする。   The invention according to claim 8 is a joining method, wherein a) the joining surfaces of both of the first and second objects to be joined are arranged substantially parallel to each other and opposite to each other. In addition, in the state where both the objects to be bonded are arranged so as to be shifted from each other in the first direction so that the bonding surfaces of the objects to be bonded do not overlap each other when viewed from the normal direction of the bonding surface, By accelerating the substance with an electric field and releasing the specific substance toward the bonding surface of the first bonded object and the bonding surface of the second bonded object, A step of activating each of the bonding surface and the bonding surface of the second object to be bonded; and b) after the step a), both the first object to be bonded and the second object to be bonded. The bonded surfaces of both objects to be bonded are moved relative to each other in the first direction. Causes opposing to, characterized in that it comprises a step of bonding the two objects to be bonded to the normal direction to move relatively to the two objects to be bonded.

請求項9の発明は、請求項8の発明に係る接合方法において、前記工程b)は、b−1)前記工程a)の後に、前記第1の被接合物と前記第2の被接合物との両被接合物を前記第1の方向に相対的に移動して前記両被接合物の接合表面を対向させる工程と、b−2)前記両被接合物の接合表面を対向させた状態で、前記両被接合物の対向空間の側方から当該対向空間に向けて、イオン化された特定物質を電界で加速して当該特定物質を放出することにより、前記両被接合物の接合表面を活性化する工程と、b−3)前記工程b−2)の後に、前記両被接合物を接合する工程とを含むことを特徴とする。   According to a ninth aspect of the present invention, in the joining method according to the eighth aspect of the invention, the step b) comprises the steps of b-1) the step a), and the first and second objects to be joined. And a step of relatively moving the objects to be bonded in the first direction so as to oppose the bonding surfaces of the objects to be bonded, and b-2) a state in which the bonding surfaces of the objects to be bonded are opposed to each other. Then, the ionized specific substance is accelerated by an electric field from the side of the opposing space of the both objects to be opposed to the opposing space to release the specific substance, thereby the bonding surfaces of the both objects to be bonded. A step of activating, and b-3) after the step b-2), a step of joining the two objects to be joined.

請求項10の発明は、請求項9の発明に係る接合方法において、前記工程b−2)は、b−2−1)前記両被接合物に対する表面活性化処理を実行しつつ、前記両被接合物の相互間の距離を低減させるように前記両被接合物を相対的に移動させる工程、を含むことを特徴とする。   A tenth aspect of the present invention is the joining method according to the ninth aspect of the present invention, wherein the step b-2) includes the step b-2-1) performing the surface activation process on the both objects to be bonded, A step of relatively moving both the objects to be bonded so as to reduce a distance between the objects to be bonded.

請求項11の発明は、請求項8ないし請求項10のいずれかの発明に係る接合方法において、前記工程a)と前記工程b)とはいずれも同一の接合装置内で実行されることを特徴とする。   The invention of claim 11 is the joining method according to any one of claims 8 to 10, wherein both the step a) and the step b) are performed in the same joining apparatus. And

請求項12の発明は、請求項11の発明に係る接合方法において、c)前記工程a)の前において、前記第1の被接合物と前記第2の被接合物とが配置される処理空間の圧力を、前記工程a)における前記処理空間の圧力値よりも低い値にまで低減する工程、をさらに含むことを特徴とする。   A twelfth aspect of the present invention is the bonding method according to the eleventh aspect of the present invention, in which c) the processing space in which the first object and the second object are arranged before the step a). The method further includes a step of reducing the pressure to a value lower than the pressure value of the processing space in the step a).

請求項13の発明は、請求項8ないし請求項12のいずれかの発明に係る接合方法において、前記工程a)においては、前記第1の被接合物の接合表面と前記第2の被接合物の接合表面とは、前記第1の方向において互いにずらされ且つ互いに向かい合う向きで配置されるとともに、前記第1の被接合物の接合表面を含む平面と前記第2の被接合物の接合表面を含む平面とは近接して配置されることを特徴とする。   A thirteenth aspect of the present invention is the bonding method according to any one of the eighth to twelfth aspects, wherein in the step a), the bonding surface of the first bonded object and the second bonded object. The bonding surface of the first object to be bonded and a plane including the bonding surface of the first object to be bonded and the bonding surface of the second object to be bonded to each other. It is characterized in that it is arranged close to the plane containing it.

請求項14の発明は、半導体装置であって、請求項8ないし請求項13のいずれかの発明に係る接合方法により接合されて生成された半導体装置であることを特徴とする。   A fourteenth aspect of the present invention is a semiconductor device, which is a semiconductor device produced by bonding by the bonding method according to any of the eighth to thirteenth aspects.

請求項1ないし請求項13に記載の発明によれば、両被接合物に対する表面活性化処理は、両被接合物が第1の方向において互いにずらされて配置された状態で行われるため、一方の被接合物に付着していた付着物が他方の被接合物へと再付着することを防止することが可能である。また特に、様々な種類の被接合物を良好に接合することが可能である。   According to the first to thirteenth aspects of the present invention, the surface activation treatment for both objects to be bonded is performed in a state in which both objects to be bonded are shifted from each other in the first direction. It is possible to prevent the adhered matter that has adhered to the object to be bonded again from adhering to the other object to be bonded. In particular, various types of objects to be joined can be favorably joined.

また、請求項14に記載の発明によれば、不純物の少ない状態で良好に接合されて生成された半導体装置を得ることができる。   In addition, according to the invention described in claim 14, it is possible to obtain a semiconductor device that is formed by being satisfactorily bonded with a small amount of impurities.

特に、請求項2に記載の発明によれば、第1および第2の表面活性化手段による表面活性化処理終了後に付着した付着物を第3の表面活性化手段による表面活性化処理によって低減することができるので、被接合物をさらに良好に接合することが可能である。同様に、請求項9に記載の発明によれば、工程a)の移動後に再付着した付着物を低減することによって、被接合物をさらに良好に接合することができる。   In particular, according to the second aspect of the present invention, deposits adhered after the surface activation treatment by the first and second surface activation means are reduced by the surface activation treatment by the third surface activation means. Therefore, it is possible to join the objects to be joined more satisfactorily. Similarly, according to the ninth aspect of the present invention, the objects to be joined can be further satisfactorily bonded by reducing the deposits reattached after the movement in step a).

また特に、請求項3および請求項10に記載の発明によれば、接合直前まで被接合物を表面活性化することにより再付着の機会が最低限となるため、被接合物をさらに良好に接合することができる。   In particular, according to the inventions according to claim 3 and claim 10, since the opportunity of reattachment is minimized by surface activating the objects to be bonded until immediately before bonding, the objects to be bonded are bonded more satisfactorily. can do.

また特に、請求項4および請求項11に記載の発明によれば、あらかじめ真空度を高めておくことによって、不要な浮遊物を低減することができる。   In particular, according to the inventions of claims 4 and 11, unnecessary floating matters can be reduced by increasing the degree of vacuum in advance.

接合装置の全体構成を示す縦断面図である。It is a longitudinal cross-sectional view which shows the whole structure of a joining apparatus. 接合装置の横断面図である。It is a cross-sectional view of a joining apparatus. I−I断面を示す断面図である。It is sectional drawing which shows an II cross section. II−II断面を示す断面図である。It is sectional drawing which shows the II-II cross section. III−III断面を示す断面図である。It is sectional drawing which shows an III-III cross section. 位置認識部の構成等を示す図である。It is a figure which shows the structure etc. of a position recognition part. 接合装置における動作を示す図である。It is a figure which shows the operation | movement in a joining apparatus. 接合装置における動作を示す図である。It is a figure which shows the operation | movement in a joining apparatus. 接合装置における動作を示す図である。It is a figure which shows the operation | movement in a joining apparatus. 接合装置における動作を示す図である。It is a figure which shows the operation | movement in a joining apparatus. 接合装置における動作を示す図である。It is a figure which shows the operation | movement in a joining apparatus. 接合装置における動作を示す図である。It is a figure which shows the operation | movement in a joining apparatus. 接合装置における動作を示す図である。It is a figure which shows the operation | movement in a joining apparatus. 圧力変化を示す図である。It is a figure which shows a pressure change. 表面活性化処理の原理を示す模式図でIn the schematic diagram showing the principle of surface activation treatment イオンビーム照射の原理を示す模式図である。It is a schematic diagram which shows the principle of ion beam irradiation. 原子ビーム照射の原理を示す模式図である。It is a schematic diagram which shows the principle of atomic beam irradiation. プラズマを用いた表面活性化処理を示す図である。It is a figure which shows the surface activation process using plasma. 変形例に係る動作を示す図である。It is a figure which shows the operation | movement which concerns on a modification. 変形例に係る接合装置を示す図である。It is a figure which shows the joining apparatus which concerns on a modification. 変形例に係る動作を示す図である。It is a figure which shows the operation | movement which concerns on a modification. 変形例に係る動作を示す図である。It is a figure which shows the operation | movement which concerns on a modification. 変形例に係る表面活性化処理を示す図である。It is a figure which shows the surface activation process which concerns on a modification.

以下、本発明の実施形態を図面に基づいて説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

<1.装置>
図1および図2は、本発明に係る接合装置1を示す図である。図1は接合装置1の縦断面図であり、図2は当該接合装置1の横断面図である。なお、各図においては、便宜上、XYZ直交座標系を用いて方向等を示している。
<1. Device>
1 and 2 are views showing a joining device 1 according to the present invention. FIG. 1 is a longitudinal sectional view of the joining apparatus 1, and FIG. 2 is a transverse sectional view of the joining apparatus 1. In each figure, directions and the like are shown using an XYZ orthogonal coordinate system for convenience.

この接合装置1は、減圧下のチャンバ(真空チャンバ)2内で、被接合物91の接合表面と被接合物92の接合表面とを原子ビーム等で活性化させ、両被接合物91,92を接合する装置である。この装置1によれば、両被接合物91,92の接合表面に対して表面活性化処理を施すとともに、当該両被接合物91,92を固相接合することが可能である。なお、両被接合物91,92としては、様々な材料(例えば半導体ウエハーなど)が用いられる。   This bonding apparatus 1 activates the bonding surface of the object to be bonded 91 and the bonding surface of the object to be bonded 92 with an atomic beam or the like in a chamber (vacuum chamber) 2 under reduced pressure, and both the objects to be bonded 91 and 92 are activated. Is a device for joining. According to this apparatus 1, it is possible to perform surface activation processing on the bonding surfaces of both objects to be bonded 91 and 92 and to perform solid-phase bonding of both objects to be bonded 91 and 92. Note that various materials (for example, a semiconductor wafer) are used as the objects to be bonded 91 and 92.

接合装置1は、両被接合物91,92の処理空間である真空チャンバ2と、当該真空チャンバ2に連結されたロードロックチャンバ3とを備える。真空チャンバ2は、排気管6と排気弁7とを介して真空ポンプ5に接続されている。真空ポンプ5の吸引動作に応じて真空チャンバ2内の圧力が低減(減圧)されることによって、真空チャンバ2は真空状態にされる。また、排気弁7は、その開閉動作と排気流量の調整動作とによって、真空チャンバ2内の真空度を調整することができる。   The bonding apparatus 1 includes a vacuum chamber 2 which is a processing space for both the objects to be bonded 91 and 92, and a load lock chamber 3 connected to the vacuum chamber 2. The vacuum chamber 2 is connected to a vacuum pump 5 via an exhaust pipe 6 and an exhaust valve 7. The vacuum chamber 2 is put into a vacuum state by reducing (reducing pressure) the pressure in the vacuum chamber 2 in accordance with the suction operation of the vacuum pump 5. Further, the exhaust valve 7 can adjust the degree of vacuum in the vacuum chamber 2 by the opening / closing operation and the exhaust flow rate adjusting operation.

両被接合物91,92は、ロードロックチャンバ3内において導入棒4の先端部のクランピングチャック4cで保持された後、真空チャンバ2内に移動される。具体的には、上側の被接合物92は、導入棒4の先端部で保持され、ヘッド22の直下位置PG2にまでX方向に移動された後、ヘッド22によって保持される。同様に、下側の被接合物91は、導入棒4の先端部で保持された状態でX方向においてステージ12に向けて位置PG1にまで移動され、当該ステージ12によって保持される。   Both objects 91 and 92 are held in the load lock chamber 3 by the clamping chuck 4 c at the tip of the introduction rod 4 and then moved into the vacuum chamber 2. Specifically, the upper article 92 is held at the tip of the introduction rod 4, moved in the X direction to the position PG <b> 2 immediately below the head 22, and then held by the head 22. Similarly, the lower workpiece 91 is moved to the position PG <b> 1 toward the stage 12 in the X direction while being held at the tip of the introduction rod 4, and is held by the stage 12.

ヘッド22およびステージ12は、いずれも、真空チャンバ2内に設置されている。また、ヘッド22は、ヒータ24によって加熱され、ヘッド22に保持された被接合物92の温度を調整することができる。同様に、ステージ12は、当該ステージ12に内蔵されたヒータ12h(不図示)によって加熱され、ステージ12上の被接合物91の温度を調整することができる。   Both the head 22 and the stage 12 are installed in the vacuum chamber 2. Further, the head 22 is heated by the heater 24, and the temperature of the workpiece 92 held by the head 22 can be adjusted. Similarly, the stage 12 is heated by a heater 12 h (not shown) built in the stage 12, and the temperature of the workpiece 91 on the stage 12 can be adjusted.

ヘッド22は、アライメントテーブル23によってX方向およびY方向に移動(並進移動)されるとともに、回転駆動機構25によってθ方向(Z軸回りの回転方向)に回転される。ヘッド22は、後述する位置認識部28による位置検出結果等に基づいてアライメントテーブル23および回転駆動機構25によって駆動され、X方向、Y方向、θ方向におけるアライメント動作が実行される。   The head 22 is moved (translationally moved) in the X direction and the Y direction by the alignment table 23, and is rotated in the θ direction (rotation direction about the Z axis) by the rotation drive mechanism 25. The head 22 is driven by the alignment table 23 and the rotation drive mechanism 25 based on a position detection result by a position recognition unit 28 described later, and alignment operations in the X direction, the Y direction, and the θ direction are executed.

また、ヘッド22は、Z軸昇降駆動機構26によってZ方向に移動(昇降)される。Z軸昇降駆動機構26は、不図示の圧力検出センサにより検出した信号に基づいて、接合時の加圧力を制御することができる。   The head 22 is moved (lifted / lowered) in the Z direction by the Z-axis lifting / lowering drive mechanism 26. The Z-axis raising / lowering drive mechanism 26 can control the applied pressure at the time of joining based on a signal detected by a pressure detection sensor (not shown).

また、ステージ12は、スライド移動機構14によってX方向に移動(並進移動)可能である。ステージ12は、ビーム照射部11付近の待機位置(位置PG1付近)とヘッド22直下の接合位置(位置PG2付近)との間でX方向において移動する。スライド移動機構14は高精度の位置検出器(リニアスケール)を有しており、ステージ12は高精度に位置決めされる。   The stage 12 can be moved (translated) in the X direction by the slide moving mechanism 14. The stage 12 moves in the X direction between a standby position (near position PG1) near the beam irradiation unit 11 and a bonding position just below the head 22 (near position PG2). The slide moving mechanism 14 has a highly accurate position detector (linear scale), and the stage 12 is positioned with high accuracy.

また、接合装置1は、被接合物91,92の位置を認識する位置認識部18,28を備えている。位置認識部18,28は、それぞれ、被接合物等に関する光像を画像データとして取得する撮像部(カメラ)18b,28bを有する。また、両被接合物91,92には、それぞれ、位置識別用マーク(以下、単にマークとも称する)が付されている。例えば、一方の被接合物91に2つの位置識別用マークが設けられ、他方の被接合物92にも2つの位置識別用マークが設けられる。なお、当該各マークは、特定の形状を有することが好ましい。ただし、これに限定されず、ウエハーのオリフラ、あるいは、ウエハー上に形成された回路パターンなどの一部を位置識別用マークとして流用するようにしてもよい。   Moreover, the joining apparatus 1 includes position recognition units 18 and 28 that recognize the positions of the workpieces 91 and 92. The position recognizing units 18 and 28 have imaging units (cameras) 18b and 28b, respectively, that acquire optical images related to the objects to be joined as image data. Further, both the objects to be bonded 91 and 92 are each provided with a position identification mark (hereinafter also simply referred to as a mark). For example, two position identification marks are provided on one workpiece 91, and two position identification marks are provided on the other workpiece 92. Each mark preferably has a specific shape. However, the present invention is not limited to this, and a portion of the orientation flat of the wafer or a circuit pattern formed on the wafer may be used as a position identification mark.

両被接合物91,92の位置決め動作は、当該位置認識部(カメラ等)により、両被接合物91,92に付されたマークの位置を認識することによって実行される。   The positioning operation of both the workpieces 91 and 92 is executed by recognizing the positions of the marks attached to both the workpieces 91 and 92 by the position recognition unit (camera or the like).

例えば、位置認識部18は、位置PG1に存在する被接合物91の光像を画像データとして取得する。具体的には、真空チャンバ2の外部上方に配置された光源18aから出射された光は、真空チャンバ2の窓部2aを透過して被接合物91(位置PG1)に到達して反射される。そして、被接合物91で反射された光は、再び真空チャンバ2の窓部2aを透過して進行し、撮像部18bに到達する。このようにして、位置認識部18は、被接合物91に関する光像を画像データとして取得する。そして、位置認識部18は、当該画像データに基づいてマークを抽出するとともに、当該マークの位置を認識し、ひいては被接合物91の位置を認識する。   For example, the position recognition unit 18 acquires an optical image of the workpiece 91 existing at the position PG1 as image data. Specifically, light emitted from the light source 18a disposed above the outside of the vacuum chamber 2 passes through the window portion 2a of the vacuum chamber 2 and reaches the object to be bonded 91 (position PG1) to be reflected. . And the light reflected by the to-be-joined object 91 permeate | transmits the window part 2a of the vacuum chamber 2, and advances again, and reaches | attains the imaging part 18b. In this way, the position recognizing unit 18 acquires an optical image related to the workpiece 91 as image data. Then, the position recognition unit 18 extracts a mark based on the image data, recognizes the position of the mark, and eventually recognizes the position of the workpiece 91.

同様に、位置認識部28は、位置PG2に存在する被接合物92の光像を画像データとして取得する。具体的には、真空チャンバ2の外部下方に配置された光源28aから出射された光は、真空チャンバ2の窓部2bを透過して被接合物92(位置PG2)に到達して反射される。そして、被接合物92(詳細にはその一部)で反射された光は、再び真空チャンバ2の窓部2bを透過して進行し、撮像部28bに到達する。このようにして、位置認識部28は、被接合物92に関する光像を画像データとして取得する。また、位置認識部28は、当該画像データに基づいてマークを抽出するとともに、当該マークの位置を認識し、ひいては被接合物92の位置を認識する。   Similarly, the position recognition unit 28 acquires an optical image of the object 92 present at the position PG2 as image data. Specifically, the light emitted from the light source 28a disposed below the vacuum chamber 2 passes through the window 2b of the vacuum chamber 2 and reaches the object 92 (position PG2) to be reflected. . Then, the light reflected by the object to be bonded 92 (specifically, a part thereof) travels again through the window 2b of the vacuum chamber 2 and reaches the imaging unit 28b. In this way, the position recognizing unit 28 acquires an optical image related to the workpiece 92 as image data. Further, the position recognition unit 28 extracts a mark based on the image data, recognizes the position of the mark, and consequently recognizes the position of the workpiece 92.

さらに、後述するように、この接合装置1においては、ステージ12がX方向に移動することによって、被接合物91が位置PG2に移動し、両被接合物91,92が対向する状態(図10参照)に遷移する。図6に示すように、位置認識部28は両被接合物91,92の対向状態において、両被接合物91,92に関する光像を画像データとして取得することもできる。具体的には、真空チャンバ2の外部下方に配置された光源28aから出射された光は、真空チャンバ2の窓部2bを透過して両被接合物91,92(詳細にはその一部)で反射され、再び真空チャンバ2の窓部2bを透過して進行し、撮像部28bに到達する。位置認識部28は、このようにして取得された両被接合物91,92に関する光像(反射光に関する画像)を画像データとして取得し、当該画像データに基づいてマークの位置を認識する。なお、光源28aとしては、両被接合物91,92およびステージ12等を透過する光(例えば赤外光)が用いられればよい。   Further, as will be described later, in this bonding apparatus 1, the stage 91 moves in the X direction, whereby the article 91 is moved to the position PG2, and the objects 91 and 92 are opposed to each other (FIG. 10). Transition to Reference). As shown in FIG. 6, the position recognizing unit 28 can also acquire an optical image related to both the objects to be bonded 91 and 92 as image data in a state where the objects to be bonded 91 and 92 are opposed to each other. Specifically, the light emitted from the light source 28a disposed below the vacuum chamber 2 passes through the window portion 2b of the vacuum chamber 2 and is bonded to both objects 91 and 92 (specifically, part thereof). Is transmitted through the window 2b of the vacuum chamber 2 again, and reaches the imaging unit 28b. The position recognizing unit 28 acquires, as image data, the optical images (images related to the reflected light) regarding both the objects 91 and 92 acquired in this way, and recognizes the position of the mark based on the image data. In addition, as the light source 28a, the light (for example, infrared light) which permeate | transmits both the to-be-joined objects 91 and 92, the stage 12, etc. should just be used.

また、この実施形態においては、図6に示すように、位置認識部28は、別の光源28c,28dをも有している。位置認識部28は、両被接合物91,92が対向する状態において、当該光源28c,28dからの光の透過光に関する画像データを用いて、両被接合物91,92の位置を認識することも可能である。具体的には、真空チャンバ2の外部側方に配置された光源28c,28dから出射された光は、真空チャンバ2の窓部2c,2dをそれぞれ透過し、その後、ミラー28e,28fで反射されてその進行方向が変更され下方に進行する。当該光は、さらに、両被接合物91,92(詳細にはその一部)を透過した後、窓部2bを透過して撮像部28bに到達する。位置認識部28は、このようにして取得された両被接合物91,92に関する光像(透過光に関する画像)を画像データとして取得し、当該画像データに基づいてマークの位置を認識する。   In this embodiment, as shown in FIG. 6, the position recognition unit 28 also has other light sources 28c and 28d. The position recognizing unit 28 recognizes the positions of the objects to be bonded 91 and 92 using image data relating to the transmitted light from the light sources 28c and 28d in a state where the objects to be bonded 91 and 92 face each other. Is also possible. Specifically, the light emitted from the light sources 28c and 28d disposed on the outer side of the vacuum chamber 2 is transmitted through the windows 2c and 2d of the vacuum chamber 2, and then reflected by the mirrors 28e and 28f. The direction of travel is changed and proceeds downward. The light further passes through both of the objects to be joined 91 and 92 (specifically, a part thereof), and then passes through the window portion 2b to reach the imaging unit 28b. The position recognizing unit 28 acquires, as image data, the optical images (images related to transmitted light) relating to the both objects 91 and 92 acquired in this way, and recognizes the position of the mark based on the image data.

このように、接合装置1は、反射光による撮像システム(光源28aおよび撮像部28b等を有する)と、透過光による撮像システム(光源28c,28dおよび撮像部28b等を有する)との2種類の撮像システムを備えている。接合装置1は、状況に応じて、これら2種類の撮像システムを適宜に切り換えて利用し、各マークの位置を認識することが可能である。   As described above, the joining apparatus 1 includes two types of an imaging system using reflected light (including the light source 28a and the imaging unit 28b) and an imaging system using transmitted light (including the light sources 28c and 28d and the imaging unit 28b). An imaging system is provided. The joining apparatus 1 can recognize the position of each mark by appropriately switching between these two types of imaging systems according to the situation.

以上のような位置認識部18,28によって両被接合物91,92の位置が認識される。そして、認識された位置情報に基づいて、アライメントテーブル23および回転駆動機構25によってヘッド22がX方向、Y方向、および/またはθ方向に駆動されることによって、両被接合物91,92の相対的に移動され、アライメント動作が実行される。例えば被接合物91に付された2つのマークと被接合物92に付された2つのマークとが重なるように、両被接合物91,92を微小移動することによって、両被接合物91,92を精密に位置決めすることができる。   The positions of the workpieces 91 and 92 are recognized by the position recognition units 18 and 28 as described above. Then, based on the recognized position information, the head 22 is driven in the X direction, the Y direction, and / or the θ direction by the alignment table 23 and the rotation drive mechanism 25, so And the alignment operation is performed. For example, by moving the workpieces 91 and 92 slightly so that two marks attached to the workpiece 91 and two marks attached to the workpiece 92 overlap, 92 can be precisely positioned.

また、接合装置1は、3つのビーム照射部11,21,31を備えている。接合装置1においては、これらの3つのビーム照射部11,21,31を用いて表面活性化処理が実行される。図1に示すように、ビーム照射部11,21は、真空チャンバ2の奥側(+Y側)の側壁面に設けられており、ビーム照射部31は、真空チャンバ2の右側(+X側)の側壁面に設けられている(図2も参照)。ビーム照射部11,21,31は、それぞれ、真空チャンバ2内部の対応位置に向けて特定物質のビームを照射する。   The bonding apparatus 1 includes three beam irradiation units 11, 21, and 31. In the bonding apparatus 1, the surface activation process is executed using these three beam irradiation units 11, 21, and 31. As shown in FIG. 1, the beam irradiation units 11 and 21 are provided on the side wall surface on the back side (+ Y side) of the vacuum chamber 2, and the beam irradiation unit 31 is on the right side (+ X side) of the vacuum chamber 2. It is provided on the side wall surface (see also FIG. 2). Each of the beam irradiation units 11, 21, 31 irradiates a specific material beam toward a corresponding position in the vacuum chamber 2.

より具体的には、図1および図2に示すように、ビーム照射部11は、真空チャンバ2内の比較的左側(−X側)の位置PG1付近に配置され、ビーム照射部21は、真空チャンバ2内の比較的右側(+X側)の位置PG2付近に配置される。   More specifically, as shown in FIGS. 1 and 2, the beam irradiation unit 11 is disposed near the position PG1 on the relatively left side (−X side) in the vacuum chamber 2, and the beam irradiation unit 21 is a vacuum. It is disposed near the position PG2 on the relatively right side (+ X side) in the chamber 2.

ビーム照射部11は、図3の断面図にも示すように、真空チャンバ2の+Y側壁面の上方寄りの位置において、斜め下方を向いて設置されている。これにより、ビーム照射部11は、ステージ12に保持された被接合物91が位置PG1に存在するときに、当該被接合物91の接合表面に対して、斜め上方からビームを照射する。また、ビーム照射部11によるビーム照射方向は、X軸に垂直な平面(YZ平面)に平行な方向である。なお、図3は、図1のI−I断面における断面図である。   As shown in the cross-sectional view of FIG. 3, the beam irradiator 11 is installed facing obliquely downward at a position near the upper side of the + Y side wall surface of the vacuum chamber 2. Thereby, the beam irradiation part 11 irradiates a beam from diagonally upward with respect to the bonding surface of the said to-be-joined object 91, when the to-be-joined object 91 hold | maintained at the stage 12 exists in position PG1. The beam irradiation direction by the beam irradiation unit 11 is a direction parallel to a plane (YZ plane) perpendicular to the X axis. 3 is a cross-sectional view taken along the line II of FIG.

ビーム照射部21は、図4の断面図にも示すように、真空チャンバ2の+Y側壁面の下方寄りの位置において、斜め上方を向いて設置されている。これにより、ビーム照射部21は、ヘッド22に保持された被接合物92が位置PG2に存在するときに、当該被接合物92の接合表面に対して、斜め下方からビームを照射する。また、ビーム照射部21によるビーム照射方向も、X軸に垂直な平面(YZ平面)に平行な方向である。なお、図4は、図1のII−II断面における断面図である。   As shown also in the cross-sectional view of FIG. 4, the beam irradiation unit 21 is installed facing obliquely upward at a position closer to the lower side of the + Y side wall surface of the vacuum chamber 2. Thereby, the beam irradiation part 21 irradiates a beam from diagonally downward with respect to the joining surface of the said to-be-joined object 92, when the to-be-joined object 92 hold | maintained at the head 22 exists in position PG2. The beam irradiation direction by the beam irradiation unit 21 is also a direction parallel to a plane (YZ plane) perpendicular to the X axis. 4 is a cross-sectional view taken along the line II-II in FIG.

ビーム照射部31は、図5の断面図にも示すように、真空チャンバ2の+X側壁面において、水平面に平行に設置されている。これにより、ビーム照射部31は、ステージ12に保持された被接合物91とヘッド22に保持された被接合物92との両者が位置PG2において対向配置される状態において、当該両者91,92の対向空間SP(図11参照)の側方から、当該対向空間SPに向けてビームを照射する。ビーム照射部31によるビーム照射方向は、X軸に平行な方向である。なお、図5は、図2のIII−III断面における断面図である。   As shown in the cross-sectional view of FIG. 5, the beam irradiation unit 31 is installed in parallel to the horizontal plane on the + X side wall surface of the vacuum chamber 2. As a result, the beam irradiation unit 31 is configured such that both the workpiece 91 held by the stage 12 and the workpiece 92 held by the head 22 are arranged opposite to each other at the position PG <b> 2. A beam is emitted from the side of the facing space SP (see FIG. 11) toward the facing space SP. The beam irradiation direction by the beam irradiation unit 31 is a direction parallel to the X axis. 5 is a cross-sectional view taken along the line III-III in FIG.

この接合装置1においては、後述するようなスライド配置状態(図8参照)において、ビーム照射部11,21を用いて特定物質(例えばアルゴン)を放出することにより、両被接合物91,92の接合表面を活性化する表面活性化処理が実行される。そして、接合装置1は、表面活性化処理が施された両被接合物91,92を近接対向状態(図10)にした後に、互いに近接させて両被接合物91,92を接合する(図12および図13)。   In this bonding apparatus 1, in a slide arrangement state (see FIG. 8) as will be described later, a specific substance (for example, argon) is released using the beam irradiation units 11 and 21, whereby both of the objects 91 and 92 are bonded. A surface activation process for activating the bonding surface is performed. Then, the joining apparatus 1 brings both the objects to be joined 91 and 92 subjected to the surface activation process into a close-to-opposed state (FIG. 10), and then brings them close to each other to join the objects to be joined 91 and 92 (FIG. 10). 12 and FIG. 13).

また、この実施形態においては、両被接合物91,92を近接対向状態にした後に、さらにビーム照射部31を用いて特定物質(例えばアルゴン)を放出することにより、両被接合物91,92の接合表面を活性化する表面活性化処理をも実行する(図11)。   Moreover, in this embodiment, after making both the to-be-joined objects 91 and 92 close to each other, a specific substance (for example, argon) is further emitted by using the beam irradiation unit 31, thereby both the to-be-joined objects 91 and 92. A surface activation process for activating the bonding surface is also performed (FIG. 11).

ここにおいて、ビーム照射部11,21,31は、イオン化された特定物質(ここではアルゴン)を電界で加速し両被接合物91,92の接合表面に向けて当該特定物質を放出することにより、両被接合物91,92の接合表面を活性化する。   Here, the beam irradiation units 11, 21, 31 accelerate the ionized specific substance (here, argon) by an electric field and release the specific substance toward the bonding surfaces of both the objects to be bonded 91, 92, The bonding surfaces of both workpieces 91 and 92 are activated.

この実施形態では、ビーム照射部11,21として原子ビーム照射装置を用い、ビーム照射部31としてイオンビーム照射装置を用いるものとする。   In this embodiment, an atomic beam irradiation device is used as the beam irradiation units 11 and 21, and an ion beam irradiation device is used as the beam irradiation unit 31.

図15は、表面活性化処理の原理を示す模式図である。また、図16は、イオンビーム照射の原理を示す模式図であり、図17は、原子ビーム照射の原理を示す模式図である。   FIG. 15 is a schematic diagram showing the principle of the surface activation treatment. FIG. 16 is a schematic diagram showing the principle of ion beam irradiation, and FIG. 17 is a schematic diagram showing the principle of atomic beam irradiation.

図15に示すように、この表面活性化処理においては、特定物質(例えばアルゴン)を被接合物の接合表面に衝突させることによって、接合表面の付着物99を除去し、被接合物(例えば91)の表面原子の未結合手であるダングリングボンド(図15では短い線分で示す)が露出した状態を形成する。そして、このような状態を2つの被接合物91,92の双方の接合表面に形成した後に、当該被接合物91の接合表面を互いに接触させることによって、ダングリングボンド同士を接合させる。これにより、両被接合物91,92が原子レベルで接合される。これによれば、非常に強固な接合状態を実現することができる。   As shown in FIG. 15, in this surface activation treatment, a specific substance (for example, argon) is caused to collide with the bonding surface of the object to be bonded, thereby removing the deposit 99 on the bonding surface, and the object to be bonded (for example, 91). ), Dangling bonds (indicated by short line segments in FIG. 15), which are dangling bonds of surface atoms, are exposed. Then, after such a state is formed on the bonding surfaces of the two objects to be bonded 91 and 92, the bonding surfaces of the objects to be bonded 91 are brought into contact with each other to bond the dangling bonds. As a result, the objects to be bonded 91 and 92 are bonded at the atomic level. According to this, a very strong joined state can be realized.

このように特定物質を接合表面に衝突させる技術としては、例えば、イオンビーム照射技術および原子ビーム照射技術が存在する。   As a technique for causing a specific substance to collide with the bonding surface in this way, for example, there are an ion beam irradiation technique and an atomic beam irradiation technique.

図16に示すように、イオンビーム照射においては、イオン化された特定物質(アルゴン等)が電界Eで加速された後にイオン化されたまま放出される。そして、当該特定物質はイオン状態のまま被接合物へと向かう。なお、イオン状態のアルゴン等は、被接合物の表面に到達するまでに電荷と結合して電気的に中和される。   As shown in FIG. 16, in ion beam irradiation, a specific ionized substance (such as argon) is accelerated by an electric field E and then released while being ionized. And the said specific substance heads to a to-be-joined object with an ion state. Note that argon or the like in an ionic state is electrically neutralized by being combined with electric charges before reaching the surface of the object to be bonded.

一方、図17に示すように、原子ビーム照射においては、イオン化された特定物質(アルゴン等)が電界Eで加速された後に、ビーム照射部内で供給された電荷と直ちに結合して、その電気特性が中和される。そして、電気的に中和された特定物質が高速で被接合物へと向かう。   On the other hand, as shown in FIG. 17, in the atomic beam irradiation, an ionized specific substance (such as argon) is accelerated by the electric field E and then immediately combined with the electric charge supplied in the beam irradiation section, and its electrical characteristics. Is neutralized. And the specific substance electrically neutralized goes to a to-be-joined object at high speed.

このように、イオンビームと原子ビームとでは、その電気的中和のタイミングが異なっているが、イオン化された特定物質(アルゴン等)が電界Eで加速される点で共通する。そして、加速された特定物質が高速で接合表面に衝突することによって、図15に示すような表面活性化処理が実行される点でも共通する。   As described above, the timing of electrical neutralization differs between the ion beam and the atom beam, but they are common in that the ionized specific substance (such as argon) is accelerated by the electric field E. And it is common also in the point that the surface activation process as shown in FIG. 15 is performed when the accelerated specific substance collides with a joining surface at high speed.

この実施形態においては、このようなビーム照射を用いて表面活性化処理等を実行する。これによれば、上述のプラズマ洗浄による表面活性化処理に比べて、より多様な種類の被接合物に対して適用することが可能である。以下では、その原理について説明する。   In this embodiment, surface activation processing or the like is performed using such beam irradiation. According to this, compared with the surface activation process by the above-mentioned plasma cleaning, it can be applied to a wider variety of types of objects to be bonded. Hereinafter, the principle will be described.

図18は、プラズマ洗浄を用いた表面活性化処理について説明する図である。図18に示すように、プラズマ洗浄を用いた表面活性化処理においては、被処理物(被接合物)の接合表面に電気的な極性(例えば負極性)が付与される。そして、当該接合表面の極性とは逆の極性を有する特定物質(例えば正極性を有するアルゴン)が当該接合表面に向けてクーロン力で引き込まれて当該接合表面に衝突し、その衝突力によって不純物の除去が行われる。このとき、当該特定物質(アルゴン等)以外のイオン化された他の物質(例えば正極性を有する酸素)が存在していれば、その物質も引き込むこととなってしまう。すなわち、当該特定物質(アルゴン等)のみならず、他の物質(例えば正極性を有する酸素)もが当該被接合物の表面に衝突する。また、被接合物を保持する電極には交番電圧(交番電界)が付与されるため、当該電極および被接合物の接合表面はさらに逆極性(例えば正極性)を有することもある。したがって、当該逆極性のさらに逆極性を有する他の物質(例えば負極性を有する酸素)もが当該被接合物の表面に衝突する。   FIG. 18 is a diagram for explaining the surface activation process using plasma cleaning. As shown in FIG. 18, in the surface activation process using plasma cleaning, electrical polarity (for example, negative polarity) is imparted to the bonding surface of the object to be processed (bonded object). Then, a specific substance (for example, positive polarity argon) having a polarity opposite to the polarity of the bonding surface is drawn toward the bonding surface by a Coulomb force and collides with the bonding surface. Removal is performed. At this time, if another ionized substance (for example, oxygen having positive polarity) other than the specific substance (such as argon) is present, that substance is also drawn. That is, not only the specific substance (such as argon) but also other substances (for example, oxygen having positive polarity) collide with the surface of the object to be bonded. Further, since an alternating voltage (alternating electric field) is applied to the electrode that holds the object to be bonded, the bonding surface of the electrode and the object to be bonded may have a reverse polarity (for example, positive polarity). Therefore, another substance (for example, oxygen having negative polarity) having a reverse polarity of the reverse polarity also collides with the surface of the object to be bonded.

ここにおいて、金および銅は、プラズマ処理における特定物質(例えばアルゴン)とは異なる他の物質(例えば酸素)が存在しているときでも当該他の物質と反応しにくい。したがって、金あるいは銅を被接合物とする場合には、特定物質のプラズマによって比較的良好に表面活性化処理を行うことが可能である。   Here, gold and copper are difficult to react with other substances even when other substances (for example, oxygen) different from the specific substances (for example, argon) in the plasma treatment are present. Therefore, when gold or copper is used as the object to be bonded, the surface activation treatment can be performed relatively well with the plasma of the specific substance.

一方、被接合物が上記特定物質以外の物質(例えば酸素)と反応しやすい物質である場合には、当該被接合物は特定物質(アルゴン等)のみならず当該他の物質とも反応してしまう。そのため、被接合物に関する表面活性化処理を適切に行うことができない。   On the other hand, when the object to be joined is a substance that easily reacts with a substance other than the specific substance (for example, oxygen), the object to be joined reacts with not only the specific substance (such as argon) but also the other substance. . For this reason, it is not possible to appropriately perform the surface activation process for the object to be bonded.

これに対して、この実施形態においては、原子ビームおよびイオンビームが用いられる。これらのビームでは、上述のように、イオン化された特定物質(アルゴン等)が電界で加速されて、被接合物の表面に向けて放出される。したがって、ダングリングボンド生成には不適切な物質(例えば酸素)ではなく所望の特定物質(例えばアルゴン)を、選択的に被接合物の接合表面に照射することが可能である。換言すれば、不適切な物質の供給を抑制しつつ、所望の特定物質を当該接合表面上に潤沢に(多量に)供給することができる。   In contrast, in this embodiment, an atomic beam and an ion beam are used. In these beams, as described above, an ionized specific substance (such as argon) is accelerated by an electric field and emitted toward the surface of the object to be bonded. Therefore, it is possible to selectively irradiate the bonding surface of the object to be bonded with a desired specific substance (for example, argon) instead of a substance inappropriate for generating dangling bonds (for example, oxygen). In other words, a desired specific substance can be supplied abundantly (in a large amount) onto the bonding surface while suppressing supply of an inappropriate substance.

したがって、この実施形態によれば、当該他の種類の物質(酸素等)と反応しやすい物質(酸化しやすい物質等)を被接合物とする場合においても、当該被接合物の接合表面に対する表面活性化処理を良好に行うことが可能である。すなわち、様々な物質の表面活性化処理を良好に実行することが可能である。たとえば、酸化しやすいAl(アルミニウム)などの金属、シリコン、化合物半導体(例えば、GaS(ガリウム砒素))、SiO2(二酸化珪素)、サファイアなどを被接合物とする場合にも、その表面を良好に活性化させて接合することが可能である。また、同種の両被接合物を接合する場合だけでなく、互いに異なる種類の両被接合物を接合する場合にも適用することができる。特に両被接合物が異種材料であるときには、当該両被接合物間の熱膨張差により反りや割れが発生し易いため、当該両被接合物を低温で接合することが好ましい。したがって、異種材料の接合には、上述のようなダングリングボンドによる直接接合が非常に適する。そして、このような各種の両被接合物91,92を接合することによって、各種の半導体装置を生成(製造)することができる。   Therefore, according to this embodiment, even when a substance that easily reacts with another type of substance (such as oxygen) (a substance that easily oxidizes) is used as the object to be bonded, the surface of the object to be bonded to the bonding surface The activation process can be performed satisfactorily. That is, it is possible to satisfactorily execute the surface activation treatment of various substances. For example, even when a metal such as Al (aluminum) that is easily oxidized, silicon, a compound semiconductor (for example, GaS (gallium arsenide)), SiO2 (silicon dioxide), sapphire, or the like is used as an object to be bonded, the surface is excellent. It can be activated and joined. Further, the present invention can be applied not only to the case of joining the same type of both objects to be joined, but also to the case of joining both kinds of objects to be joined. In particular, when both the objects to be bonded are different materials, warpage and cracking are likely to occur due to the difference in thermal expansion between the both objects to be bonded, and therefore it is preferable to bond both the objects to be bonded at a low temperature. Therefore, direct bonding by dangling bonds as described above is very suitable for bonding different materials. Various semiconductor devices can be generated (manufactured) by bonding the various objects to be bonded 91 and 92.

<2.動作>
次に、接合装置1における接合動作について、図7〜図13の模式図を参照しながら説明する。図7〜図13は、当該接合動作(接合方法)における時系列の各工程を順次に示す図である。なお、図7〜図13においては、便宜上、ステージ12およびヘッド22等の図示を省略している。
<2. Operation>
Next, the joining operation in the joining apparatus 1 will be described with reference to the schematic diagrams of FIGS. FIG. 7 to FIG. 13 are diagrams sequentially showing each time-series process in the joining operation (joining method). 7 to 13, the stage 12 and the head 22 are not shown for convenience.

図7は、導入棒4(図1)等を用いて両被接合物91,92が真空チャンバ2内に導入された状態を示している。この導入動作は減圧下において実行される。図7においては、導入直後において、上側の被接合物92が位置PG2においてヘッド22によって保持されており、下側の被接合物91が位置PG1においてステージ12によって保持されている状態を示している。   FIG. 7 shows a state in which the workpieces 91 and 92 are introduced into the vacuum chamber 2 using the introduction rod 4 (FIG. 1) or the like. This introduction operation is performed under reduced pressure. In FIG. 7, immediately after the introduction, the upper workpiece 92 is held by the head 22 at the position PG2, and the lower workpiece 91 is held by the stage 12 at the position PG1. .

この後、図14に示すように期間TM0において接合装置1は、さらに真空ポンプ5による減圧動作を実行して、真空チャンバ2内の圧力を圧力値PR0にまで低減し高真空状態ないし超高真空状態にする。たとえば、10−10Torr〜10−6Torr程度にまで真空引きする。これにより、真空チャンバ2内における不要な浮遊物(不純物等)を減少させることができる。この期間TM0における圧力値PR0は、図14に示すように、次述するビーム照射(図8)を伴う期間TM1における圧力値PR1(例えば10−4Torr)よりも低い値である。すなわち、期間TM0の真空度は、期間TM1の真空度よりも高い。換言すれば、真空チャンバ2内の真空度は、期間TM1に先立って期間TM0において予め高められる。なお、期間TM0における減圧処理は、ビーム照射(図8)よりも前に実行される処理であることから、「バックグラウンド減圧処理」とも称される。 After that, as shown in FIG. 14, in the period TM0, the bonding apparatus 1 further performs a pressure reducing operation by the vacuum pump 5 to reduce the pressure in the vacuum chamber 2 to the pressure value PR0, so that the high vacuum state or the ultra high vacuum is obtained. Put it in a state. For example, vacuuming is performed to about 10 −10 Torr to 10 −6 Torr. Thereby, unnecessary floating matters (impurities and the like) in the vacuum chamber 2 can be reduced. As shown in FIG. 14, the pressure value PR0 in this period TM0 is lower than the pressure value PR1 (for example, 10 −4 Torr) in the period TM1 accompanied by beam irradiation (FIG. 8) described below. That is, the degree of vacuum in the period TM0 is higher than the degree of vacuum in the period TM1. In other words, the degree of vacuum in the vacuum chamber 2 is increased in advance in the period TM0 prior to the period TM1. Note that the decompression process in the period TM0 is a process executed before the beam irradiation (FIG. 8), and is also referred to as a “background decompression process”.

つぎに、図8に示すように、接合装置1は、ビーム照射部11,21を用いた表面活性化処理(以下、第1の表面活性化処理とも称する。)F1を実行する。   Next, as shown in FIG. 8, the bonding apparatus 1 executes a surface activation process (hereinafter also referred to as a first surface activation process) F <b> 1 using the beam irradiation units 11 and 21.

この第1の表面活性化処理F1においては、両被接合物91,92は次のように配置されている。すなわち、被接合物91,92の接合表面が互いに略平行に且つ互いに逆向きに配置される。詳細には、比較的下側の被接合物91の接合表面はXY平面に略平行に且つ上向きで配置され、比較的上側の被接合物92の接合表面はXY平面に略平行に且つ下向きに配置される。換言すれば、両被接合物91,92は互いに向かい合う向きで配置される。ただし、両被接合物91,92は対向状態を有していない。具体的には、両被接合物91,92の接合表面の法線方向(Z方向)から見て、両被接合物91,92の接合表面が互いに重ならないように、両被接合物91,92は、X方向(Z方向に垂直な方向)において互いにずらされて配置されている。このような配置状態は、対向状態に対して両被接合物91,92が相対的にスライドされた状態であることから、「スライド配置状態」とも称される。   In the first surface activation treatment F1, the objects to be bonded 91 and 92 are arranged as follows. That is, the bonding surfaces of the workpieces 91 and 92 are arranged substantially parallel to each other and opposite to each other. Specifically, the bonding surface of the relatively lower workpiece 91 is arranged substantially parallel to the XY plane and upward, and the bonding surface of the relatively upper workpiece 92 is arranged substantially parallel and downward to the XY plane. Be placed. In other words, the objects to be joined 91 and 92 are arranged in a direction facing each other. However, both the objects to be joined 91 and 92 do not have an opposing state. Specifically, when viewed from the normal direction (Z direction) of the bonding surfaces of the objects to be bonded 91 and 92, both the objects to be bonded 91 and 92 are provided so that the bonding surfaces of the objects to be bonded 91 and 92 do not overlap each other. 92 are displaced from each other in the X direction (direction perpendicular to the Z direction). Such an arrangement state is also referred to as a “slide arrangement state” because both the objects 91 and 92 are slid relative to the opposed state.

そして、ビーム照射部11,21によるビーム照射(ここでは原子ビーム照射)が行われる。具体的には、ビーム照射部11によるビーム照射によって被接合物91の接合表面が活性化され、ビーム照射部21によるビーム照射によって被接合物92の接合表面が活性化される。また、このビーム照射部11,21によるビーム照射は、同時並列的に実行される。   Then, beam irradiation (in this case, atomic beam irradiation) is performed by the beam irradiation units 11 and 21. Specifically, the bonding surface of the workpiece 91 is activated by the beam irradiation by the beam irradiation unit 11, and the bonding surface of the workpiece 92 is activated by the beam irradiation by the beam irradiation unit 21. Further, the beam irradiation by the beam irradiation units 11 and 21 is executed simultaneously in parallel.

ここでは、両被接合物91,92に対しては、それぞれ、各対応位置PG1,PG2付近において、両被接合物91,92の配列方向(X方向)に垂直な平面(YZ平面に平行な平面)に沿ってビーム照射が行われる。   Here, with respect to the objects to be bonded 91 and 92, in the vicinity of the corresponding positions PG1 and PG2, respectively, a plane perpendicular to the arrangement direction (X direction) of the objects to be bonded 91 and 92 (parallel to the YZ plane). Beam irradiation is performed along a plane.

具体的には、ビーム照射部11の照射口は、図3に示すように、位置PG1付近において、+Y側の比較的上方の位置から−Y側の比較的下方の位置に向けて、被接合物91の接合表面に対して所定の傾斜角度(例えば45度)で傾斜して配置されている。そして、ビーム照射部11は、被接合物91に対して斜め上方からビーム照射を行う。   Specifically, as shown in FIG. 3, the irradiation port of the beam irradiation unit 11 is to be joined from a relatively upper position on the + Y side to a relatively lower position on the −Y side in the vicinity of the position PG1. It is inclined with respect to the bonding surface of the object 91 at a predetermined inclination angle (for example, 45 degrees). Then, the beam irradiation unit 11 performs beam irradiation on the workpiece 91 from obliquely above.

また、ビーム照射部21の照射口は、図4に示すように、位置PG2付近において、+Y側の比較的下方の位置から−Y側の比較的上方の位置に向けて、被接合物92の接合表面に対して所定の傾斜角度(例えば30度)で傾斜して配置されている。そして、ビーム照射部21は、被接合物92に対して斜め下方からビーム照射を行う。   Further, as shown in FIG. 4, the irradiation port of the beam irradiation unit 21 is located near the position PG2 from the relatively lower position on the + Y side toward the relatively upper position on the −Y side. It is arranged to be inclined at a predetermined inclination angle (for example, 30 degrees) with respect to the bonding surface. Then, the beam irradiation unit 21 performs beam irradiation on the workpiece 92 from obliquely below.

さて、図8に示すような第1の表面活性化処理F1が終了(図9参照)すると、図10に示すように、ステージ12および被接合物91がスライド移動機構14によってX方向に(+X側に向けて)移動される。このようにして、ビーム照射部11,21によるビーム照射によって表面活性化処理が施された両被接合物91,92がX方向に相対的に移動される。そして、移動動作完了後には、両被接合物91,92は、その接合表面が対向する状態(対向状態)を有している。   When the first surface activation process F1 as shown in FIG. 8 is completed (see FIG. 9), the stage 12 and the workpiece 91 are moved in the X direction (+ X by the slide moving mechanism 14 as shown in FIG. Moved to the side). In this way, both the objects 91 and 92 subjected to the surface activation process by the beam irradiation by the beam irradiation units 11 and 21 are relatively moved in the X direction. Then, after the movement operation is completed, both the objects to be bonded 91 and 92 have a state in which the bonding surfaces face each other (opposing state).

なお、ここでは、図9の状態(すなわち移動前)において大まかな位置計測動作を行っておき、その位置計測動作に基づいて図10の移動動作を行い、移動動作完了後に更に正確な位置決め動作(ファインアライメント動作)を実行するものとする。具体的には、まず、第1の表面活性化処理F1の実行後において、被接合物91が位置PG1に存在し且つ被接合物92が位置PG2に存在する状態で、それぞれの位置を計測しておく。そして、両被接合物91,92をスライド移動させて両被接合物91,92を近接対向状態(図10)に遷移させる。この移動後の近接対向状態において、上述のような反射光による撮像システムと透過光による撮像システムとの一方もしくは双方を用いて位置を計測し、当該計測結果に基づいて微小位置調整動作(ファインアライメント動作)を行う。これによれば、両被接合物91,92の位置を非常に正確に調整することが可能である。   Here, a rough position measurement operation is performed in the state of FIG. 9 (that is, before the movement), the movement operation of FIG. 10 is performed based on the position measurement operation, and a more accurate positioning operation ( Fine alignment operation) is executed. Specifically, first, after the execution of the first surface activation process F1, each position is measured in a state where the workpiece 91 is present at the position PG1 and the workpiece 92 is present at the position PG2. Keep it. Then, both the objects to be bonded 91 and 92 are slid to move both the objects to be bonded 91 and 92 to the proximity facing state (FIG. 10). After the movement, the position is measured using one or both of the reflected light imaging system and the transmitted light imaging system as described above, and a fine position adjustment operation (fine alignment) is performed based on the measurement result. Operation). According to this, it is possible to adjust the positions of the workpieces 91 and 92 very accurately.

次に、図11に示すように、第2の表面活性化処理F2をさらに実行する。   Next, as shown in FIG. 11, a second surface activation process F2 is further performed.

第2の表面活性化処理F2は、対向状態を有する両被接合物91,92の対向空間の側方から当該対向空間に向けて、イオン化された特定物質を電界で加速して当該特定物質を放出することにより、両被接合物91,92の接合表面を活性化する処理である。具体的には、ビーム照射部31によるビーム照射によって両被接合物91,92の接合表面を活性化する。ここでは、ビーム照射部31によってイオンビームを照射する場合を例示する。   In the second surface activation treatment F2, the ionized specific substance is accelerated by an electric field from the side of the facing space of both the objects to be bonded 91 and 92 having the facing state toward the facing space to This is a process of activating the bonding surfaces of both the objects to be bonded 91 and 92 by discharging. Specifically, the bonding surfaces of both objects 91 and 92 are activated by beam irradiation by the beam irradiation unit 31. Here, a case where an ion beam is irradiated by the beam irradiation unit 31 is illustrated.

その後、図12に示すように第2の表面活性化処理F2が終了した後に、両被接合物91,92を互いに接近させていく。そして、図13に示すように、両被接合物91,92を接合する。これにより、両被接合物91,92が良好な状態で接合される。   Thereafter, as shown in FIG. 12, after the second surface activation process F <b> 2 is completed, the objects to be bonded 91 and 92 are brought closer to each other. And as shown in FIG. 13, both the to-be-joined objects 91 and 92 are joined. Thereby, both the to-be-joined objects 91 and 92 are joined in a good state.

この実施形態においては、以上のような動作が実行される。   In this embodiment, the operation as described above is executed.

ここにおいて、図8に示すような表面活性化処理を行うことによれば、接合表面が活性化される。そして、当該表面活性化処理後に両被接合物91,92をX方向にスライド移動させ更にZ方向に接近させて接合することによって、両被接合物91,92が良好に接合される。特に、図8に示すように、両被接合物91,92がX方向において互いにずらされて配置された状態で行われるため、一方の被接合物に付着していた付着物が跳ね返ったとしても他方の被接合物へ向けて飛散する可能性が低下する。したがって、一方の被接合物に付着していた付着物が他方の被接合物に再付着することを防止することが可能である。   Here, when the surface activation treatment as shown in FIG. 8 is performed, the bonding surface is activated. Then, both the objects to be bonded 91 and 92 are satisfactorily bonded by sliding the both objects to be bonded 91 and 92 in the X direction after the surface activation treatment and further bringing them into the Z direction. In particular, as shown in FIG. 8, since both the objects to be bonded 91 and 92 are arranged so as to be shifted from each other in the X direction, even if the object adhered to one of the objects to be bonded rebounds. The possibility of scattering toward the other object to be bonded is reduced. Therefore, it is possible to prevent the deposit that has adhered to one workpiece to be reattached to the other workpiece.

また特に、特定物質のビーム照射(ここでは原子ビーム照射)を用いた表面活性化処理が実行されるため、プラズマを用いた表面活性処理を実行する場合に比べて、様々な種類の被接合物を良好に接合することが可能である。詳細には、上記実施形態においては、特定物質のみがイオン化されて加速され、イオンのままあるいは中和されて原子の状態で被接合物に衝突する照射方式が採用されるため、当該特定物質以外の物質の再付着を防止することが可能である。   In particular, since surface activation processing using beam irradiation of a specific substance (here, atomic beam irradiation) is executed, various types of objects to be bonded are compared with the case where surface activation processing using plasma is executed. Can be bonded satisfactorily. Specifically, in the above-described embodiment, since an irradiation method is adopted in which only a specific substance is ionized and accelerated, and remains in an ion or neutralized and collides with an object to be joined in an atomic state, other than the specific substance. It is possible to prevent re-deposition of these substances.

また、特定物質としては例えば他の物質と反応しないアルゴンが使用されることが好ましい。また、アルゴンは、分子重量も大きいため、被接合物の表面分子を衝突により切り離して結合手を露出させること(ダングリングボンドを生成すること)、すなわち表面活性化処理に特に適している。そして、このようなダングリングボンドが適切に生成された両被接合表面を接合することによって、良好な接合状態を実現することが可能である。   As the specific substance, for example, argon that does not react with other substances is preferably used. In addition, since argon has a large molecular weight, it is particularly suitable for surface activation treatment by separating the surface molecules of the object to be bonded by collision and exposing the bonds (producing dangling bonds). And it is possible to implement | achieve a favorable joining state by joining both the to-be-joined surfaces in which such a dangling bond was produced | generated appropriately.

なお、上記のようなビーム照射部11,21を用いた表面活性化処理(図8)中においては、被接合物91の接合表面を含む平面PL1と被接合物92の接合表面を含む平面PL2とは、近接して配置されることが好ましい。これによれば、一方の被接合物に付着していた付着物が跳ね返ったとしても他方の被接合物へ向けて飛散する可能性がさらに低下する。したがって、一方の被接合物に付着していた付着物が他方の被接合物に再付着することを、より確実に防止することが可能である。   During the surface activation process using the beam irradiation units 11 and 21 as described above (FIG. 8), the plane PL1 including the bonding surface of the article 91 and the plane PL2 including the bonding surface of the article 92 are joined. Are preferably arranged close to each other. According to this, even if the deposit adhered to one of the objects to be bonded rebounds, the possibility of scattering toward the other object to be bonded further decreases. Therefore, it is possible to more reliably prevent the adhered matter that has adhered to one of the objects to be bonded from reattaching to the other object to be bonded.

より詳細には、被接合物91の接合表面を含む平面PL1と被接合物92の接合表面を含む平面PL2との距離D1(図8参照)は20ミリメートル以下であることが好ましい。   More specifically, the distance D1 (see FIG. 8) between the plane PL1 including the bonding surface of the workpiece 91 and the plane PL2 including the bonding surface of the workpiece 92 is preferably 20 millimeters or less.

対向配置された両被接合物に対してプラズマ洗浄による表面活性化処理を行った後に被接合物を接合する上述の従来技術に係る装置においては、通常、対向する両被接合物91,92が少なくとも30mm程度離して配置される。   In the apparatus according to the above-described prior art in which the objects to be bonded are bonded after the surface activation treatment by plasma cleaning is performed on both the objects to be bonded, the both objects to be bonded 91 and 92 facing each other are usually provided. They are arranged at least 30 mm apart.

これに対して、平面PL1,PL2の相互間の距離D1が20ミリメートル以下である場合には、さらに接近した状態で第1の表面活性化処理F1が実行される。したがって、一方の被接合物に付着していた付着物が他方の被接合物へと再付着することを、より確実に防止することが可能である。   On the other hand, when the distance D1 between the planes PL1 and PL2 is 20 millimeters or less, the first surface activation process F1 is executed in a closer state. Therefore, it is possible to more reliably prevent the adhered matter that has adhered to one of the objects to be bonded from reattaching to the other object to be bonded.

また、距離D1が比較的大きいときには、Z軸の傾き等に起因して、ヘッド下降時に位置ずれが発生することがある。これに対して、当該両平面PL1,PL2相互間の距離を20ミリメートル以下にすることによれば、ヘッド下降時における位置ずれを抑制して、アライメント精度の向上を図ることも可能である。   Further, when the distance D1 is relatively large, misalignment may occur when the head is lowered due to the inclination of the Z axis or the like. On the other hand, by setting the distance between the two planes PL1, PL2 to 20 millimeters or less, it is possible to suppress the positional deviation when the head is lowered and to improve the alignment accuracy.

以上のように、距離D1は小さいことが好ましい。   As described above, the distance D1 is preferably small.

また、この距離D1はさらに小さいことが好ましく、例えば5μm以下であることが好ましい。これによれば、一方の被接合物に付着していた付着物が他方の被接合物へと再付着することを、さらに確実に防止することが可能である。   The distance D1 is preferably even smaller, for example, 5 μm or less. According to this, it is possible to more reliably prevent the adhered matter that has adhered to one of the objects to be bonded again from adhering to the other object to be bonded.

また、この実施形態においては、第1の表面活性化処理F1において、図3、図4および図8に示すように、両被接合物91,92の配列方向(X方向)に垂直な平面(YZ平面に平行な平面)に沿って、斜め上方および斜め下方からビーム照射が行われる。そのため、一方の被接合物から除去された物質は、Y方向およびZ方向を中心に飛散し、他方の被接合物が存在するX方向には飛散しにくい。これによれば、一方の被接合物に付着していた付着物が他方の被接合物へと再付着することを、さらに確実に防止することが可能である。   In this embodiment, in the first surface activation treatment F1, as shown in FIGS. 3, 4, and 8, a plane perpendicular to the arrangement direction (X direction) of the objects to be bonded 91, 92 ( Beam irradiation is performed obliquely from above and obliquely downward along a plane parallel to the YZ plane. Therefore, the substance removed from one of the objects to be bonded is scattered around the Y direction and the Z direction, and hardly scattered in the X direction where the other object to be bonded exists. According to this, it is possible to more reliably prevent the adhered matter that has adhered to one of the objects to be bonded again from adhering to the other object to be bonded.

なお、第1の表面活性化処理F1において、仮に被接合物に対して真横からビーム照射を行う場合には、被接合物に対して均一な処理を施すことが困難である。特に、第1の表面活性化処理F1においては比較的大きな出力でのビーム照射を伴うことが好ましく、そのような状況では、ビーム照射口に近い部分とビーム照射口から離れた部分とで表面活性化処理の程度を同程度にすることは困難である。これに対して、上記実施形態においては、両被接合物91,92に対して斜めからビーム照射が行われる。したがって、被接合物に対して均一な表面活性化処理を施すことが比較的容易である。これにより、比較的大きな接合表面を有する被接合物を処理対象とする場合にも、良好な接合を実現することができる。例えば、チップ単位ではなく基板(半導体ウエハー)単位での接合を良好に行うことが可能である。さらには、より大きな基板に関する接合を良好に行うことが可能である。   Note that, in the first surface activation process F1, if beam irradiation is performed on the object to be bonded from the side, it is difficult to perform a uniform process on the object to be bonded. In particular, the first surface activation treatment F1 preferably involves beam irradiation with a relatively large output. In such a situation, surface activation is performed between a portion near the beam irradiation port and a portion away from the beam irradiation port. It is difficult to make the degree of the conversion process comparable. On the other hand, in the above-described embodiment, beam irradiation is performed obliquely with respect to both the workpieces 91 and 92. Therefore, it is relatively easy to perform a uniform surface activation process on the object to be bonded. As a result, even when an object to be bonded having a relatively large bonding surface is to be processed, good bonding can be realized. For example, it is possible to satisfactorily perform bonding not in units of chips but in units of substrates (semiconductor wafers). Furthermore, it is possible to satisfactorily bond a larger substrate.

また、この実施形態においては、第1の表面活性化処理F1(図8)が終了して対向状態への移動動作が実行された後に、第2の表面活性化処理F2(図11)が実行される。すなわち、両被接合物91,92に対する表面活性化処理が移動期間後に再び実行される。そして、その後に被接合物92が接合される。そのため、仮に、表面活性化処理F1後の移動期間(図10)等において、不要な物質が両被接合物91,92の各接合表面に再付着する場合であっても、表面活性化処理F1の終了後に付着した付着物等をビーム照射部31による表面活性化処理によってさらに除去できる。端的に言えば、ビーム照射部31による表面活性化処理が接合直前に実行され、表面活性化処理終了時点から接合時点までの期間が短くなるため、付着物を抑制した状態で接合を行うことができる。したがって、両被接合物91,92を非常に良好な状態で接合することが可能である。   In this embodiment, the second surface activation process F2 (FIG. 11) is performed after the first surface activation process F1 (FIG. 8) is completed and the movement operation to the facing state is performed. Is done. That is, the surface activation process for both the workpieces 91 and 92 is performed again after the movement period. And the to-be-joined object 92 is joined after that. Therefore, even if an unnecessary substance is reattached to the bonding surfaces of the objects to be bonded 91 and 92 in the transfer period after the surface activation process F1 (FIG. 10), the surface activation process F1. Deposits and the like attached after the end of the step can be further removed by surface activation processing by the beam irradiation unit 31. In short, the surface activation process by the beam irradiation unit 31 is performed immediately before bonding, and the period from the end of the surface activation process to the bonding time is shortened, so that bonding can be performed in a state in which deposits are suppressed. it can. Therefore, it is possible to join the workpieces 91 and 92 in a very good state.

また、この実施形態のように、第1の表面活性化処理F1と第2の表面活性化処理F2との2回に分けて表面活性化処理を実行することによれば、両被接合物91,92の温度上昇を抑制することが可能である。   Moreover, according to this embodiment, by performing the surface activation process in two times of the first surface activation process F1 and the second surface activation process F2, both the objects to be bonded 91 are obtained. , 92 can be suppressed.

例えば、仮に、1回の表面活性化処理のみで同程度の効果を得るために所定時間T10(例えば10分程度)の処理を行う場合を想定する。この場合には両被接合物91,92の温度が例えば比較的高い温度(例えば120℃程度)にまで上昇する。   For example, suppose a case where a treatment for a predetermined time T10 (for example, about 10 minutes) is performed in order to obtain the same effect by only one surface activation treatment. In this case, the temperatures of the objects to be bonded 91 and 92 are increased to, for example, a relatively high temperature (for example, about 120 ° C.).

これに対して、上記実施形態のように、2回に分けて表面活性化処理を実行することによれば両被接合物91,92の温度上昇を抑制することが可能である。例えば、1回目の時間T11(例えば8分)の処理では100℃程度、そして2回目の時間T11(例えば2分)の処理では80℃程度に抑制することが可能である。   On the other hand, if the surface activation process is performed in two steps as in the above-described embodiment, it is possible to suppress the temperature rise of both objects 91 and 92. For example, it is possible to suppress the temperature to about 100 ° C. in the first time T11 (for example, 8 minutes) and to about 80 ° C. in the second time T11 (for example, 2 minutes).

また、この実施形態では、第1の表面活性化処理F1にて原子ビームが用いられ、第2の表面活性化処理F2にてイオンビームが用いられている。ここにおいて、イオンビームによるエネルギーは、原子ビームによるエネルギーよりも小さい。そのため、特に、接合直前における両被接合物91,92の温度上昇、より詳細にはファインアライメント(図10)後における両被接合物91,92の温度上昇を抑制できる。したがって、両被接合物91,92の温度上昇に起因する変形等を抑制することが可能である。   In this embodiment, an atomic beam is used in the first surface activation process F1, and an ion beam is used in the second surface activation process F2. Here, the energy by the ion beam is smaller than the energy by the atomic beam. Therefore, in particular, it is possible to suppress an increase in temperature of both objects 91 and 92 immediately before bonding, and more specifically, an increase in temperature of both objects 91 and 92 after fine alignment (FIG. 10). Therefore, it is possible to suppress deformation and the like due to the temperature rise of both objects to be joined 91 and 92.

仮に、比較的大きな温度上昇が生じた場合には、基板の反り或いは割れが発生することがある。このような反りは接合時の位置ずれ等を誘発する。また、反りが発生しないとしても、例えば、両被接合物91,92が互いに異なる種類の材料であるときには、当該両被接合物91,92の熱膨張率の差異に起因して、両被接合物91,92の相互間に位置ずれが生じることがある。これに対して、両被接合物91,92の温度上昇を抑制することによれば、このような事態を回避することができる。特に、異種材料間での熱膨張差によるそりや割れを防ぐことができるとともに、被接合物同士での位置合わせ精度であるアライメント精度を向上することができる。   If a relatively large temperature rise occurs, the substrate may be warped or cracked. Such warpage induces misalignment at the time of joining. Even if warpage does not occur, for example, when both the objects 91 and 92 are of different kinds of materials, both the objects to be bonded are caused by the difference in thermal expansion coefficient between the objects to be bonded 91 and 92. Misalignment may occur between the objects 91 and 92. On the other hand, such a situation can be avoided by suppressing the temperature rise of both the workpieces 91 and 92. In particular, it is possible to prevent warpage and cracking due to a difference in thermal expansion between different materials, and it is possible to improve alignment accuracy, which is alignment accuracy between objects to be joined.

また、上記実施形態においては、ビーム照射部11,21,31は、同一の接合装置1内(詳細には同一の真空チャンバ2内)に設けられている。換言すれば、この実施形態においては、第1の表面活性化処理F1と第2の表面活性化処理F2と接合処理とが同一の装置内において実行される。そのため、両被接合物91,92を別の装置に移動することを要さず、第1の表面活性化処理F1の終了後の比較的短い期間において、第2の表面活性化処理F2をも実行して両被接合物91,92を接合することができる。例えば表面活性化処理F1を行う処理室と接合処理を行う接合室とが別個に設けられ且つ搬送ロボット等を用いて当該処理室から当該接合室へと被接合物を搬送する場合に比べて、第1の表面活性化処理の終了時点から接合完了までの時間が短縮される。したがって、再付着を抑えて良好な接合を行うことが可能である。   Moreover, in the said embodiment, the beam irradiation parts 11, 21, and 31 are provided in the same joining apparatus 1 (specifically in the same vacuum chamber 2). In other words, in this embodiment, the first surface activation process F1, the second surface activation process F2, and the bonding process are performed in the same apparatus. Therefore, it is not necessary to move both the objects 91 and 92 to another apparatus, and the second surface activation treatment F2 is performed in a relatively short period after the completion of the first surface activation treatment F1. It is possible to join both the workpieces 91 and 92 by execution. For example, compared with a case where a processing chamber for performing the surface activation process F1 and a bonding chamber for performing the bonding process are provided separately and the workpiece is transferred from the processing chamber to the bonding chamber using a transfer robot or the like, The time from the end of the first surface activation process to the completion of bonding is shortened. Therefore, it is possible to perform good bonding while suppressing reattachment.

また特に、第1の表面活性化処理F1が終了した後に、同一の接合装置1内において両被接合物をスライドさせることによって両被接合物を対向させ接合可能な状態にすることができるので、接合までの時間をさらに短縮することができる。したがって、再付着をさらに抑制して良好な接合を行うことが可能である。   In particular, after the first surface activation treatment F1 is completed, both the objects to be bonded can be opposed to each other by sliding both objects in the same bonding apparatus 1, so that the objects can be bonded. The time until joining can be further shortened. Therefore, it is possible to further suppress the reattachment and perform good bonding.

また、上記実施形態においては、ビーム照射部11,21,31は、それぞれ、接合装置1に固定されている。そして、ビーム照射部11,21,31に対する電力供給は、真空チャンバ2の外部から行うことが可能である。そのため、真空チャンバ2内に電力供給経路を設けることを要しない。一方、上記特許文献1に記載の技術においては、プラズマ処理のために可動ステージ等に電力を供給する必要があるため、電気的構成が比較的複雑である。このように、上記実施形態によれば、特許文献1に記載の技術よりも電気的構成を簡易に構築することができる。   Moreover, in the said embodiment, the beam irradiation parts 11, 21, and 31 are each being fixed to the joining apparatus 1. FIG. The power supply to the beam irradiation units 11, 21, 31 can be performed from outside the vacuum chamber 2. Therefore, it is not necessary to provide a power supply path in the vacuum chamber 2. On the other hand, in the technique described in Patent Document 1, it is necessary to supply power to a movable stage or the like for plasma processing, so that the electrical configuration is relatively complicated. As described above, according to the embodiment, the electrical configuration can be easily constructed as compared with the technique described in Patent Document 1.

また、上記実施形態においては、期間TM0においてバックグラウンド減圧処理(図14)を予め実行しているため、不要な浮遊物等を予め低減することができる。そのため、非常に良好に両被接合物91,92を接合することができる。また特に、このバックグラウンド減圧処理が実行されることによって、第2の表面活性化処理F2の際に比較的大きな浮遊物、不純物が存在する確率は、非常に低くなる。そして、第2の表面活性化処理F2においては、比較的小さな衝撃力で除去することが可能な不純物(例えば水分やハイドロカーボン(水とカーボンとの反応物)等)が主要な浮遊物になる。そのため、第2の表面活性化処理F2における照射エネルギーを低減し、両被接合物91,92の温度上昇を抑制しつつ、ビーム照射部31による比較的小さなエネルギーのビーム照射によって付着物を除去することが可能である。このように、バックグラウンド減圧処理は、上述のような第1の表面活性化処理F1と第2の表面活性化処理F2とを有する2段階処理には特に有効な手法である。   In the above embodiment, since the background decompression process (FIG. 14) is executed in advance during the period TM0, unnecessary floating matters can be reduced in advance. Therefore, both the objects to be bonded 91 and 92 can be bonded very well. In particular, when the background decompression process is performed, the probability that a relatively large suspended matter or impurity exists in the second surface activation process F2 is very low. In the second surface activation treatment F2, impurities that can be removed with a relatively small impact force (for example, moisture or hydrocarbon (reaction product of water and carbon)) become the main suspended matter. . Therefore, the irradiation energy in the second surface activation treatment F2 is reduced, and the adhering material is removed by the beam irradiation of the relatively small energy by the beam irradiation unit 31 while suppressing the temperature rise of the both objects 91 and 92. It is possible. Thus, the background decompression process is a particularly effective technique for the two-stage process including the first surface activation process F1 and the second surface activation process F2 as described above.

また、原子ビーム照射処理およびイオンビーム照射処理は、プラズマ処理に比べて、比較的高い真空状態(比較的低圧力)での処理が可能である。したがって、バックグラウンド減圧処理と原子ビーム照射処理(および/またはイオンビーム照射処理)とを組み合わせて実行することによれば、不要な浮遊物等を予め低減した後において当該浮遊物等が少ない状態を維持しつつ、表面活性化処理および接合処理を非常に良好に行うことが可能である。   In addition, the atomic beam irradiation treatment and the ion beam irradiation treatment can be performed in a relatively high vacuum state (relatively low pressure) as compared with the plasma treatment. Therefore, by executing a combination of the background decompression process and the atomic beam irradiation process (and / or the ion beam irradiation process), after reducing unnecessary floating substances and the like in advance, a state in which the floating substances and the like are small is obtained. The surface activation treatment and the bonding treatment can be performed very well while maintaining.

さらに、ビーム照射処理とバックグラウンド減圧処理との組み合わせに係る思想は、プラズマ処理とバックグラウンド処理とを組み合わせる思想に比べて、複数組の両被接合物の連続処理に対しても良好に適用される。具体的には、或る両被接合物に対する表面活性化処理と次の両被接合物に対するバックグラウンド減圧処理とが引き続いて実行される技術において、当該表面活性化処理としてビーム照射処理が採用される場合には、当該表面活性化処理としてプラズマ処理が採用される場合に比べて、比較的高い真空状態での表面活性化処理が実行されるため、当該表面活性化処理時の圧力と当該バックグラウンド減圧処理時の圧力との差(圧力差)は比較的小さい。そのため、或る両被接合物に対する表面活性化処理後において、再び真空引きし、次の両被接合物に対するバックグラウンド減圧処理での所定の圧力状態(高真空状態等)を実現するための時間を短縮することが可能である。このように、バックグラウンド減圧処理とビーム照射処理とを組み合わせる技術は、複数組の両被接合物の連続処理、すなわち量産に適している。   Furthermore, the idea related to the combination of the beam irradiation process and the background decompression process can be applied to the continuous process of a plurality of sets of both objects to be bonded as compared to the idea of combining the plasma process and the background process. The Specifically, in a technique in which a surface activation process for a certain object to be bonded and a background decompression process for the next both objects to be bonded are successively performed, a beam irradiation process is employed as the surface activation process. In this case, since the surface activation process is performed in a relatively high vacuum state as compared with the case where the plasma treatment is adopted as the surface activation process, the pressure during the surface activation process and the back The difference (pressure difference) from the pressure during ground decompression is relatively small. Therefore, after the surface activation treatment for both of the objects to be bonded, the time for evacuating again to realize a predetermined pressure state (high vacuum state or the like) in the background decompression process for the next both objects to be bonded is obtained. Can be shortened. Thus, the technique combining the background decompression process and the beam irradiation process is suitable for continuous processing of a plurality of sets of both objects to be bonded, that is, mass production.

また、上記実施形態に係る処理は、金(および銅)以外の上述のような物質(アルミニウム等)の接合にも適しているが、金(および銅)の接合にも好適に用いることが可能である。   In addition, the treatment according to the above embodiment is suitable for bonding of the above-described substances (such as aluminum) other than gold (and copper), but can also be suitably used for bonding gold (and copper). It is.

<3.変形例等>
以上、この発明の実施の形態について説明したが、この発明は上記説明した内容のものに限定されるものではない。
<3. Modified example>
Although the embodiments of the present invention have been described above, the present invention is not limited to the contents described above.

たとえば、上記実施形態においては、第2の表面活性化処理F2中は、両被接合物91,92を移動させず、第2の表面活性化処理F2が終了した後に、両被接合物91,92を互いに接近させる動作を開始する場合(図11〜図13)を例示したが、これに限定されない。   For example, in the above-described embodiment, during the second surface activation process F2, the objects to be bonded 91, 92 are not moved, and after the second surface activation process F2 is completed, the objects to be bonded 91, Although the case where the operation | movement which makes 92 approach mutually is started (FIGS. 11-13) was illustrated, it is not limited to this.

具体的には、図19に示すように、ビーム照射部31による第2の表面活性化処理F2を実行しつつ両被接合物91,92を互いに接近させていき、両被接合物91,92を接合するようにしてもよい。換言すれば、ビーム照射部31による第2の表面活性化処理F2に並行して、両被接合物91,92を互いに接近させるように両被接合物91,92を相対的に移動するようにしてもよい。これによれば、接合完了時点もしくは当該接合完了時点の直前の時点まで表面活性化処理が継続される。そのため、付着物が再付着する機会が最低限となるため、さらに良好な状態で両被接合物91,92を接合することができる。なお、特に、接合完了時点まで表面活性化処理が継続されることが好ましい。   Specifically, as shown in FIG. 19, both the objects to be bonded 91 and 92 are brought close to each other while performing the second surface activation process F <b> 2 by the beam irradiation unit 31. May be joined. In other words, in parallel to the second surface activation process F2 by the beam irradiation unit 31, the objects to be bonded 91 and 92 are relatively moved so that the objects to be bonded 91 and 92 are close to each other. May be. According to this, the surface activation process is continued until the time when the bonding is completed or the time immediately before the time when the bonding is completed. For this reason, the opportunity for the deposits to re-adhere is minimized, so that the workpieces 91 and 92 can be joined in a better state. In particular, it is preferable that the surface activation treatment is continued until the completion of bonding.

また、このような変形例において、さらに、両被接合物91,92のZ方向における相対移動に応じてビーム照射部31をZ方向に移動するように改変してもよい。   Further, in such a modification, the beam irradiation unit 31 may be further modified to move in the Z direction in accordance with the relative movement in the Z direction of both the workpieces 91 and 92.

具体的には、図20に示すように、接合装置1において、ビーム照射部31をZ方向に駆動する駆動部33を設ける。そして、図21および図22に示すように、第2の表面活性化処理F2と両被接合物91,92の接近動作とが並行して実行される際には、ビーム照射部31の照射口が両被接合物91,92相互間の中央位置CTに存在するように、当該照射口と両被接合物91,92とが相対的に移動される。   Specifically, as shown in FIG. 20, in the bonding apparatus 1, a drive unit 33 that drives the beam irradiation unit 31 in the Z direction is provided. Then, as shown in FIGS. 21 and 22, when the second surface activation process F2 and the approaching operation of the objects to be bonded 91 and 92 are executed in parallel, the irradiation port of the beam irradiation unit 31 is used. The irradiation port and both the objects to be bonded 91, 92 are relatively moved so that there is a central position CT between the objects to be bonded 91, 92.

より詳細には、例えば、まずZ方向の移動直前(図19参照)においてビーム照射部31の照射口を両被接合物91,92相互間の中央位置に配置した後、ヘッド22の下降開始に応じてビーム照射部31をヘッド22の下降速度の半分の速度で下降させればよい。このとき、ステージ12は停止したままである。これによれば、ヘッド22とビーム照射部31とが下降する際において、常に、ビーム照射部31の照射口が両被接合物91,92相互間の中央位置CTに存在する(図21参照)。したがって、ビーム照射部31からのビームを両被接合物91,92に対して均等に照射することができる。   More specifically, for example, immediately before the movement in the Z direction (see FIG. 19), the irradiation port of the beam irradiation unit 31 is arranged at the center position between the objects to be bonded 91 and 92, and then the head 22 starts to descend. Accordingly, the beam irradiation unit 31 may be lowered at half the lowering speed of the head 22. At this time, the stage 12 remains stopped. According to this, when the head 22 and the beam irradiation unit 31 are lowered, the irradiation port of the beam irradiation unit 31 always exists at the center position CT between the objects to be bonded 91 and 92 (see FIG. 21). . Therefore, the beam from the beam irradiation unit 31 can be evenly applied to both the workpieces 91 and 92.

また、上記実施形態においては、ビーム照射部11,21によって原子ビームを照射し、ビーム照射部31によってイオンビームを照射する場合を例示したが、これに限定されない。例えば、ビーム照射部11,21,31が全てイオンビームを照射するものであってもよい。あるいは、逆に、ビーム照射部11,21,31が全て原子ビームを照射するものであってもよい。換言すれば、第1の表面活性化処理F1と第2の表面活性化処理F2とは、同じ種類のビームを照射する処理であってもよい。   In the above embodiment, the case where the beam irradiation units 11 and 21 irradiate the atomic beam and the beam irradiation unit 31 irradiates the ion beam is exemplified, but the present invention is not limited to this. For example, all of the beam irradiation units 11, 21 and 31 may irradiate an ion beam. Or, conversely, all of the beam irradiation units 11, 21, 31 may irradiate an atomic beam. In other words, the first surface activation treatment F1 and the second surface activation treatment F2 may be treatments that irradiate the same type of beam.

また、特にこのような場合においては、ビーム照射部31によるビーム照射時間(特定物質の放出時間)は、ビーム照射部11,21によるビーム照射時間よりも短いことが好ましい。換言すれば、第2の表面活性化処理F2におけるビーム照射時間は、第1の表面活性化処理F1におけるビーム照射時間よりも短いことが好ましい。例えば、ビーム照射部31のビーム照射時間T3を、ビーム照射部11,21のビーム照射時間T1,T2よりも短く設定すればよい。例えば、値T1,T2がそれぞれ8分であるときには、値T3は2分に設定されればよい。これによれば、接合直前における両被接合物91,92の温度上昇、特に、ファインアライメント(図10)後における両被接合物91,92の温度上昇を抑制できる。したがって、両被接合物91,92の温度上昇に起因する変形等を抑制することが可能である。   Particularly in such a case, the beam irradiation time (specific substance release time) by the beam irradiation unit 31 is preferably shorter than the beam irradiation time by the beam irradiation units 11 and 21. In other words, the beam irradiation time in the second surface activation treatment F2 is preferably shorter than the beam irradiation time in the first surface activation treatment F1. For example, the beam irradiation time T3 of the beam irradiation unit 31 may be set shorter than the beam irradiation times T1 and T2 of the beam irradiation units 11 and 21. For example, when the values T1 and T2 are each 8 minutes, the value T3 may be set to 2 minutes. According to this, the temperature rise of both the to-be-joined objects 91 and 92 immediately before joining, especially the temperature rise of both the to-be-joined objects 91 and 92 after fine alignment (FIG. 10) can be suppressed. Therefore, it is possible to suppress deformation and the like due to the temperature rise of both objects to be joined 91 and 92.

同様に、ビーム照射部31によるビーム照射出力(特定物質の放出強度)は、ビーム照射部11,21によるビーム照射出力よりも小さいことが好ましい。換言すれば、第2の表面活性化処理F2におけるビーム照射出力は、第1の表面活性化処理F1におけるビーム照射出力よりも小さいことが好ましい。具体的には、ビーム照射部31のビーム照射出力電圧V3を、ビーム照射部11,21のビーム照射出力電圧V1,V2よりも小さく設定すればよい。例えば、値V1,V2がともに80V(ボルト)であるときには、値V3は20V(ボルト)に設定されればよい。これによれば、特に、接合直前における両被接合物91,92の温度上昇、より詳細にはファインアライメント後における両被接合物91,92の温度上昇を抑制できる。したがって、両被接合物91,92の温度上昇に起因する変形等を抑制することが可能である。   Similarly, the beam irradiation output (specific substance emission intensity) by the beam irradiation unit 31 is preferably smaller than the beam irradiation output by the beam irradiation units 11 and 21. In other words, the beam irradiation output in the second surface activation process F2 is preferably smaller than the beam irradiation output in the first surface activation process F1. Specifically, the beam irradiation output voltage V3 of the beam irradiation unit 31 may be set smaller than the beam irradiation output voltages V1 and V2 of the beam irradiation units 11 and 21. For example, when the values V1 and V2 are both 80 V (volts), the value V3 may be set to 20 V (volts). According to this, especially the temperature rise of both the to-be-joined objects 91 and 92 just before joining, more specifically, the temperature rise of the to-be-joined objects 91 and 92 after fine alignment can be suppressed. Therefore, it is possible to suppress deformation and the like due to the temperature rise of both objects to be joined 91 and 92.

また、上記実施形態においては、ビーム照射部11,21によるビーム照射は、それぞれ、両被接合物91,92の配列方向(X方向)に垂直な平面(YZ平面に平行な平面)に沿って行われる場合を例示したが、これに限定されない。例えば、図23に示すように、両被接合物91,92の配列方向(X方向)に平行な平面(XZ平面に平行な平面)に沿って、斜め上方および斜め下方からビーム照射が実行されるようにしてもよい。この場合においても両被接合物91,92の接合表面を互いに近接させることによって、一方の被接合物に付着していた付着物が他方の被接合物へと再付着することをより確実に防止することが可能である。   Moreover, in the said embodiment, the beam irradiation by the beam irradiation parts 11 and 21 is along a plane (plane parallel to a YZ plane) perpendicular | vertical to the arrangement direction (X direction) of both to-be-joined objects 91 and 92, respectively. Although the case where it was performed was illustrated, it is not limited to this. For example, as shown in FIG. 23, beam irradiation is executed obliquely from above and obliquely downward along a plane (plane parallel to the XZ plane) parallel to the arrangement direction (X direction) of the workpieces 91 and 92. You may make it do. Even in this case, by bringing the bonding surfaces of the objects to be bonded 91 and 92 close to each other, it is possible to more reliably prevent the adhering material adhering to one object to be reattached to the other object to be bonded. Is possible.

ただし、上記実施形態のような態様(図3、図4および図8参照)でビーム照射が行われることがより好ましい。上記実施形態によれば、ビームの照射方向には他方の被接合物が存在しないため、図23のような態様に比べて、一方の被接合物に付着していた付着物が他方の被接合物へと再付着することをより確実に防止することが可能である。   However, it is more preferable that the beam irradiation is performed in the manner as in the above embodiment (see FIGS. 3, 4 and 8). According to the above-described embodiment, the other object to be bonded does not exist in the beam irradiation direction. Therefore, compared to the embodiment illustrated in FIG. It is possible to more reliably prevent reattachment to an object.

また、上記実施形態においては、ビーム照射部11,21を用いた表面活性化処理中においては、両被接合物91,92の接合表面は、X方向において互いにずらされた状態において互いに向かい合う向きで近接して配置される場合を例示したが、本発明はこれに限定されない。例えば、被接合物92の接合表面が被接合物91の接合表面よりも下側に存在する状態で、両被接合物91,92が配置されるようにしてもよい。具体的には、被接合物92の接合表面は、被接合物91の接合表面よりもZ方向下向き(−Z方向)に所定距離(例えば数ミリメートル)シフトして配置されるようにしてもよい。これによれば、上記と同様に、一方の被接合物に付着していた付着物が他方の被接合物へと再付着するという問題を回避することが可能である。   Further, in the above-described embodiment, during the surface activation process using the beam irradiation units 11 and 21, the bonding surfaces of the objects to be bonded 91 and 92 face each other in a state of being shifted from each other in the X direction. Although the case where it arrange | positions closely was illustrated, this invention is not limited to this. For example, both the objects to be bonded 91 and 92 may be arranged in a state where the bonding surface of the object to be bonded 92 exists below the bonding surface of the object to be bonded 91. Specifically, the bonding surface of the workpiece 92 may be arranged with a predetermined distance (for example, several millimeters) shifted downward in the Z direction (−Z direction) from the bonding surface of the workpiece 91. . According to this, similarly to the above, it is possible to avoid the problem that the adhering material adhering to one object to be bonded reattaches to the other object to be bonded.

なお、この場合には、ビーム照射部11,21を用いた表面活性化処理F1後において、両被接合物91,92をX方向とZ方向との双方に相対的に移動することによって、両被接合物91,92の接合表面を対向させた後に、両被接合物91,92を接合するようにすればよい。詳細には、被接合物91を+X方向に移動するとともに被接合物92を+Z方向に移動(上昇)することによって、両被接合物91,92を対向させればよい。ただし、動作簡略化等の観点からは、Z方向の移動を伴うことなく、両被接合物91,92を対向状態に遷移させることが好ましい。   In this case, after the surface activation treatment F1 using the beam irradiation units 11 and 21, both the objects to be bonded 91 and 92 are moved relatively in both the X direction and the Z direction, thereby What is necessary is just to join both the to-be-joined objects 91 and 92 after making the joining surface of the to-be-joined objects 91 and 92 oppose. Specifically, the workpieces 91 and 92 may be made to face each other by moving the workpiece 91 in the + X direction and moving (raising) the workpiece 92 in the + Z direction. However, from the viewpoint of operation simplification or the like, it is preferable to cause both the objects to be joined 91 and 92 to transition to the facing state without accompanying movement in the Z direction.

また、上記実施形態においては、被接合物91を+X方向にスライド移動させて両被接合物91,92を対向状態にする場合を例示したが、これに限定されない。例えば、逆に、被接合物92をX方向にスライド移動させることによって、両被接合物91,92をX方向に相対的に移動して両被接合物91,92を対向状態にするようにしてもよい。   Moreover, in the said embodiment, although the case where the to-be-joined object 91 was slid in the + X direction and the both to-be-joined objects 91 and 92 were made into the opposing state was illustrated, it is not limited to this. For example, conversely, by moving the workpiece 92 in the X direction, the workpieces 91 and 92 are moved relative to each other in the X direction so that the workpieces 91 and 92 face each other. May be.

また、上記実施形態においては、被接合物92を−Z方向に移動させて両被接合物91,92を接合する場合を例示したが、これに限定されない。例えば、逆に被接合物91を+Z方向に移動させて両被接合物91,92をZ方向に相対的に移動させるようにしてもよい。   Moreover, in the said embodiment, although the to-be-joined object 92 was moved to -Z direction and the case where both the to-be-joined objects 91 and 92 were joined was illustrated, it is not limited to this. For example, the workpiece 91 may be moved in the + Z direction to move both the workpieces 91 and 92 relatively in the Z direction.

また、上記実施形態においては、第1の表面活性化処理F1の後に第2の表面活性化処理F2をさらに実行する場合を例示したが、これに限定されない。例えば、第2の表面活性化処理F2を実行することなく両被接合物91,92を接合するようにしてもよい。具体的には、第1の表面活性化処理F1を実行した後に、両被接合物91,92をX方向にスライド移動させて対向させる。そして、第2の表面活性化処理F2を伴うことなく、対向状態の両被接合物91,92をZ方向に相対移動して接合するようにしてもよい。このような変形例によっても両被接合物91,92を良好に接合することができる。また、当該変形例に係る処理は、金(および銅)以外の上述のような物質(アルミニウム等)の接合にも適しているが、金(および銅)の接合にも好適に用いることが可能である。   Moreover, in the said embodiment, although the case where the 2nd surface activation process F2 was further performed after the 1st surface activation process F1 was illustrated, it is not limited to this. For example, the objects to be bonded 91 and 92 may be bonded without executing the second surface activation process F2. Specifically, after the first surface activation process F1 is performed, both the objects to be bonded 91 and 92 are slid in the X direction to face each other. And you may make it join both the to-be-joined objects 91 and 92 of an opposing state relatively moving to a Z direction, without accompanying the 2nd surface activation process F2. Also by such a modification, both the to-be-joined objects 91 and 92 can be joined favorably. Moreover, although the process which concerns on the said modification is suitable also for joining of the above substances (aluminum etc.) other than gold (and copper), it can be used suitably also for joining of gold (and copper). It is.

例えば、第1の表面活性化処理F1としてイオンビーム照射等を用いた当該変形例に係る処理は、次述する比較例に係るプラズマ処理を用いた表面活性化処理に比べても、良好な接合状態を実現することが可能である。ここで、当該比較例は、第1の表面活性化処理F1を「プラズマ」を用いて実行した後に、両被接合物91,92をX方向にスライド移動させて対向させて、第2の表面活性化処理F2を伴うことなく、対向状態の両被接合物91,92をZ方向に相対移動して接合する技術である。例えば、当該比較例に係る処理(接合温度=25℃)による接合結果においては比較的大きな面積のボイド(両被接合物相互間に生じる空隙)が生じるとしても、当該変形例に係る処理(接合温度=25℃)による接合結果においてはボイドの面積を比較的小さくすることが可能である。   For example, the process according to the modified example using ion beam irradiation or the like as the first surface activation process F1 is better bonding than the surface activation process using the plasma process according to the comparative example described below. It is possible to realize the state. Here, in the comparative example, after the first surface activation process F1 is performed using “plasma”, both the objects to be bonded 91 and 92 are slid in the X direction so as to face each other. This is a technique of joining both the workpieces 91 and 92 facing each other in the Z direction without the activation process F2. For example, even if a void having a relatively large area (a gap generated between both objects to be bonded) occurs in the bonding result of the process according to the comparative example (bonding temperature = 25 ° C.), the process according to the modified example (bonding) In the result of bonding by (temperature = 25 ° C.), the void area can be made relatively small.

なお、ボイドを小さくためには、両被接合物91,92の温度は室温(25℃)よりも高い方が好ましい。例えば、ヒータ12h,24(図1)を用いて両被接合物91,92の温度を適切な温度(ボイド消滅温度とも称する)TEにまで上昇させた状態で、当該両被接合物を接合することにより、ボイドをほぼ消滅させることが可能である。比較例に係るボイド消滅温度TEは比較的高い温度TE2(例えば150℃)であるのに対して、当該変形例に係るボイド消滅温度TEは比較的低い温度TE1(例えば80℃)(<TE2)である。すなわち、このような加熱処理を行う場合において、当該変形例によれば、比較的低い温度TE1でボイドをほぼ消滅させることが可能である。換言すれば、ボイドをほぼ消滅をさせるための温度が比較的低い温度TE1で済む。したがって、被接合物における反り等の発生を抑制ないし回避しつつ、良好な接合状態を実現することが可能である。   In order to reduce the voids, it is preferable that the temperature of both objects to be bonded 91 and 92 is higher than room temperature (25 ° C.). For example, both the objects to be bonded are bonded in a state where the temperatures of the objects to be bonded 91 and 92 are raised to an appropriate temperature (also referred to as void disappearance temperature) TE using the heaters 12h and 24 (FIG. 1). Thus, the void can be almost eliminated. The void extinction temperature TE according to the comparative example is a relatively high temperature TE2 (for example, 150 ° C.), whereas the void extinction temperature TE according to the modification is a relatively low temperature TE1 (for example, 80 ° C.) (<TE2). It is. That is, in the case where such heat treatment is performed, according to the modification, it is possible to substantially eliminate voids at a relatively low temperature TE1. In other words, the temperature TE1 for relatively eliminating the voids may be a relatively low temperature TE1. Therefore, it is possible to realize a good joined state while suppressing or avoiding the occurrence of warpage or the like in the article to be joined.

また、上記実施形態においては、ビーム照射において放出される特定物質としてアルゴン(Ar)を例示したが、これに限定されず、クリプトン(Kr)あるいはキセノン(Xe)などの他の物質であってもよい。   In the above embodiment, argon (Ar) is exemplified as the specific substance released by beam irradiation. However, the specific substance is not limited to this, and other substances such as krypton (Kr) or xenon (Xe) may be used. Good.

1 接合装置
2 真空チャンバ
5 真空ポンプ
6 排気管
7 排気弁
11,21,31 ビーム照射部
12 ステージ
14 スライド移動機構
18,28 位置認識部
22 ヘッド
23 アライメントテーブル
25 回転駆動機構
26 Z軸昇降駆動機構
28e,28f ミラー
33 駆動部
91,92 被接合物
99 付着物
DESCRIPTION OF SYMBOLS 1 Joining apparatus 2 Vacuum chamber 5 Vacuum pump 6 Exhaust pipe 7 Exhaust valve 11, 21, 31 Beam irradiation part 12 Stage 14 Slide movement mechanism 18, 28 Position recognition part 22 Head 23 Alignment table 25 Rotation drive mechanism 26 Z-axis raising / lowering drive mechanism 28e, 28f Mirror 33 Drive unit 91, 92 Bonded object 99 Adhered substance

Claims (14)

第1の被接合物と第2の被接合物との両被接合物の接合表面が互いに略平行に且つ互いに逆向きに配置されるとともに、前記接合表面の法線方向から見て前記両被接合物の接合表面が重ならないように前記両被接合物が第1の方向において互いにずらされて配置される状態において、イオン化された特定物質を電界で加速し前記第1の被接合物の接合表面と前記第2の被接合物の接合表面とのそれぞれに向けて当該特定物質を放出することにより、前記第1の被接合物の接合表面と前記第2の被接合物の接合表面とのそれぞれを活性化する第1および第2の表面活性化手段と、
前記第1および第2の表面活性化手段を用いて表面活性化処理が施された前記両被接合物を前記第1の方向に相対的に移動して、前記両被接合物の接合表面を対向させる第1の相対的移動手段と、
前記第1の相対的移動手段により対向状態にされた前記両被接合物を接近させるように前記両被接合物を相対的に移動して、前記両被接合物を接合する第2の相対的移動手段と、
を備えることを特徴とする接合装置。
The bonding surfaces of both the objects to be bonded of the first object to be bonded and the second object to be bonded are arranged substantially in parallel with each other and opposite to each other, and the both surfaces are viewed from the normal direction of the bonding surface. In a state where both the objects to be bonded are arranged so as to be shifted from each other in the first direction so that the bonding surfaces of the objects to be bonded do not overlap, the ionized specific substance is accelerated by an electric field to bond the first objects to be bonded. By releasing the specific substance toward each of the surface and the bonding surface of the second object to be bonded, the bonding surface of the first object to be bonded and the bonding surface of the second object to be bonded First and second surface activation means for activating each;
The two objects to be bonded that have been subjected to the surface activation process using the first and second surface activating means are moved relative to each other in the first direction, and the bonding surfaces of the two objects to be bonded are moved. First relative movement means to be opposed;
A second relative position for moving both the objects to be bonded together so as to bring the objects to be bonded brought close to each other by the first relative moving means to join the objects to be bonded; Transportation means;
A joining apparatus comprising:
請求項1に記載の接合装置において、
前記対向状態を有する前記両被接合物の対向空間の側方から当該対向空間に向けて、イオン化された特定物質を電界で加速して当該特定物質を放出することにより、前記第1の被接合物の接合表面と前記第2の被接合物の接合表面とを活性化する第3の表面活性化手段、
をさらに備え、
前記第2の相対的移動手段は、前記第3の表面活性化手段による表面活性化処理が施された後に前記両被接合物を接合することを特徴とする接合装置。
The joining apparatus according to claim 1,
By accelerating an ionized specific substance with an electric field from the side of the opposing space of the objects to be bonded having the opposing state toward the opposing space, the specific substance is released. A third surface activation means for activating the bonding surface of the object and the bonding surface of the second object to be bonded;
Further comprising
The second relative moving means joins the objects to be joined after the surface activation treatment by the third surface activating means is performed.
請求項2に記載の接合装置において、
前記第2の相対的移動手段は、前記第3の表面活性化手段による表面活性化処理に並行して、前記両被接合物を接近させるように前記両被接合物を相対的に移動することを特徴とする接合装置。
The joining apparatus according to claim 2,
The second relative moving means relatively moves the objects to be bonded so that the objects to be bonded approach each other in parallel with the surface activation processing by the third surface activating means. A joining apparatus characterized by.
請求項1ないし請求項3のいずれかに記載の接合装置において、
前記両被接合物が配置される処理空間の圧力を、前記第1および第2の表面活性化手段による表面活性化処理の前において、前記第1および第2の表面活性化手段による表面活性化処理時における圧力値よりも低い値にまで低減する減圧手段、
をさらに備えることを特徴とする接合装置。
In the joining apparatus in any one of Claims 1 thru | or 3,
The surface activation by the first and second surface activation means is performed before the surface activation treatment by the first and second surface activation means by applying the pressure in the treatment space in which both the objects to be bonded are arranged. Pressure reducing means for reducing the pressure value to a value lower than the pressure value during processing,
The joining apparatus further comprising:
請求項1ないし請求項4のいずれかに記載の接合装置において、
前記第1および第2の表面活性化手段による表面活性化処理中においては、前記第1の被接合物の接合表面と前記第2の被接合物の接合表面とは、前記第1の方向において互いにずらされ且つ互いに向かい合う向きで配置されるとともに、前記第1の被接合物の接合表面を含む平面と前記第2の被接合物の接合表面を含む平面とは近接して配置されることを特徴とする接合装置。
In the joining apparatus in any one of Claims 1 thru | or 4,
During the surface activation treatment by the first and second surface activation means, the bonding surface of the first object to be bonded and the bonding surface of the second object to be bonded are in the first direction. The plane including the bonding surface of the first object to be bonded and the plane including the bonding surface of the second object to be bonded are arranged close to each other and arranged to face each other. Characteristic joining device.
請求項5に記載の接合装置において、
前記第1および第2の表面活性化手段による表面活性化処理中においては、前記第1の被接合物の接合表面を含む平面と前記第2の被接合物の接合表面を含む平面との距離は20ミリメートル以下であることを特徴とする接合装置。
The joining apparatus according to claim 5,
During the surface activation process by the first and second surface activation means, a distance between a plane including the bonding surface of the first object to be bonded and a plane including the bonding surface of the second object to be bonded. Is 20 mm or less.
請求項1ないし請求項6のいずれかに記載の接合装置において、
前記第1および第2の表面活性化手段は、
イオン化された特定物質を電界で加速した後にイオン化されたまま放出するイオンビーム照射手段と、
イオン化された特定物質を電界で加速した後にその電気特性を中和して放出する原子ビーム照射手段と、
の少なくとも一方を有することを特徴とする接合装置。
In the joining apparatus in any one of Claims 1 thru | or 6,
The first and second surface activation means include:
An ion beam irradiation means for accelerating an ionized specific substance with an electric field and then releasing the ionized substance as it is,
An atomic beam irradiation means for neutralizing and discharging the ionized specific substance after accelerating it with an electric field;
A joining apparatus comprising at least one of the following.
a)第1の被接合物と第2の被接合物との両被接合物の接合表面が互いに略平行に且つ互いに逆向きに配置されるとともに、当該接合表面の法線方向から見て前記両被接合物の接合表面が重ならないように前記両被接合物が第1の方向において互いにずらされて配置される状態において、イオン化された特定物質を電界で加速し前記第1の被接合物の接合表面と前記第2の被接合物の接合表面とのそれぞれに向けて当該特定物質を放出することにより、前記第1の被接合物の接合表面と前記第2の被接合物の接合表面とのそれぞれを活性化する工程と、
b)前記工程a)の後に、前記第1の被接合物と前記第2の被接合物との両被接合物を前記第1の方向に相対的に移動して前記両被接合物の接合表面を対向させるとともに、前記両被接合物を前記法線方向に相対的に移動して前記両被接合物を接合する工程と、
を含むことを特徴とする接合方法。
a) The bonding surfaces of both of the first and second objects to be bonded are arranged substantially parallel to each other and opposite to each other, and are viewed from the normal direction of the bonding surface. In a state where both the objects to be bonded are arranged so as to be shifted from each other in the first direction so that the bonding surfaces of both objects to be bonded do not overlap, the ionized specific substance is accelerated by an electric field, and the first object to be bonded is obtained. The specific surface is released toward each of the bonding surface of the first object to be bonded and the bonding surface of the second object to be bonded, whereby the bonding surface of the first object to be bonded and the bonding surface of the second object to be bonded are released. And a step of activating each of
b) After the step a), both the objects to be bonded of the first object to be bonded and the second object to be bonded are moved relative to each other in the first direction to bond the objects to be bonded. A process of facing the surfaces and moving both the objects to be bonded relative to each other in the normal direction to bond the objects to be bonded;
A bonding method comprising:
請求項8に記載の接合方法において、
前記工程b)は、
b−1)前記工程a)の後に、前記第1の被接合物と前記第2の被接合物との両被接合物を前記第1の方向に相対的に移動して前記両被接合物の接合表面を対向させる工程と、
b−2)前記両被接合物の接合表面を対向させた状態で、前記両被接合物の対向空間の側方から当該対向空間に向けて、イオン化された特定物質を電界で加速して当該特定物質を放出することにより、前記両被接合物の接合表面を活性化する工程と、
b−3)前記工程b−2)の後に、前記両被接合物を接合する工程と、
を含むことを特徴とする接合方法。
The joining method according to claim 8,
Said step b)
b-1) After the step a), both the objects to be bonded of the first object to be bonded and the second object to be bonded are moved relative to each other in the first direction, and the both objects to be bonded. A step of facing the bonding surface of
b-2) With the bonding surfaces of the objects to be bonded facing each other, the ionized specific substance is accelerated by an electric field from the side of the space facing the objects to be bonded to the space facing the object. Activating the bonding surfaces of both objects to be bonded by releasing a specific substance;
b-3) After the step b-2), joining both the objects to be joined;
A bonding method comprising:
請求項9に記載の接合方法において、
前記工程b−2)は、
b−2−1)前記両被接合物に対する表面活性化処理を実行しつつ、前記両被接合物の相互間の距離を低減させるように前記両被接合物を相対的に移動させる工程、
を含むことを特徴とする接合方法。
The joining method according to claim 9,
The step b-2)
b-2-1) a step of relatively moving the objects to be bonded so as to reduce the distance between the objects to be bonded while performing a surface activation process on the objects to be bonded;
A bonding method comprising:
請求項8ないし請求項10のいずれかに記載の接合方法において、
前記工程a)と前記工程b)とはいずれも同一の接合装置内で実行されることを特徴とする接合方法。
In the joining method in any one of Claims 8 thru | or 10,
The step a) and the step b) are both performed in the same bonding apparatus.
請求項11に記載の接合方法において、
c)前記工程a)の前において、前記第1の被接合物と前記第2の被接合物とが配置される処理空間の圧力を、前記工程a)における前記処理空間の圧力値よりも低い値にまで低減する工程、
をさらに含むことを特徴とする接合方法。
The joining method according to claim 11,
c) Before the step a), the pressure of the processing space in which the first and second objects are arranged is lower than the pressure value of the processing space in the step a). Process to reduce to the value,
The joining method characterized by further including.
請求項8ないし請求項12のいずれかに記載の接合方法において、
前記工程a)においては、前記第1の被接合物の接合表面と前記第2の被接合物の接合表面とは、前記第1の方向において互いにずらされ且つ互いに向かい合う向きで配置されるとともに、前記第1の被接合物の接合表面を含む平面と前記第2の被接合物の接合表面を含む平面とは近接して配置されることを特徴とする接合方法。
The bonding method according to any one of claims 8 to 12,
In the step a), the bonding surface of the first object to be bonded and the bonding surface of the second object to be bonded are arranged so as to be shifted from each other in the first direction and facing each other, A bonding method characterized in that a plane including a bonding surface of the first object to be bonded and a plane including a bonding surface of the second object to be bonded are arranged close to each other.
請求項8ないし請求項13のいずれかに記載の接合方法により接合されて生成された半導体装置。   A semiconductor device formed by bonding by the bonding method according to claim 8.
JP2009070855A 2009-03-23 2009-03-23 Bonding apparatus, bonding method, and semiconductor device Active JP5429926B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009070855A JP5429926B2 (en) 2009-03-23 2009-03-23 Bonding apparatus, bonding method, and semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009070855A JP5429926B2 (en) 2009-03-23 2009-03-23 Bonding apparatus, bonding method, and semiconductor device

Publications (2)

Publication Number Publication Date
JP2010221253A true JP2010221253A (en) 2010-10-07
JP5429926B2 JP5429926B2 (en) 2014-02-26

Family

ID=43039002

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009070855A Active JP5429926B2 (en) 2009-03-23 2009-03-23 Bonding apparatus, bonding method, and semiconductor device

Country Status (1)

Country Link
JP (1) JP5429926B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012121045A1 (en) * 2011-03-04 2012-09-13 東京エレクトロン株式会社 Joining method, joining device, and joining system
JP2014113633A (en) * 2012-12-12 2014-06-26 Bondtech Inc Bonding method and bonding device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005229006A (en) * 2004-02-16 2005-08-25 Bondotekku:Kk Individual aligning method and apparatus thereof
JP2005268766A (en) * 2004-02-16 2005-09-29 Bondotekku:Kk Individual cleaning method and apparatus
JP2005294800A (en) * 2003-12-02 2005-10-20 Bondotekku:Kk Joining method, device created thereby, surface activating device and joining device provided therewith

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005294800A (en) * 2003-12-02 2005-10-20 Bondotekku:Kk Joining method, device created thereby, surface activating device and joining device provided therewith
JP2005229006A (en) * 2004-02-16 2005-08-25 Bondotekku:Kk Individual aligning method and apparatus thereof
JP2005268766A (en) * 2004-02-16 2005-09-29 Bondotekku:Kk Individual cleaning method and apparatus

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012121045A1 (en) * 2011-03-04 2012-09-13 東京エレクトロン株式会社 Joining method, joining device, and joining system
JP2012186244A (en) * 2011-03-04 2012-09-27 Tokyo Electron Ltd Joining method, program, computer storage medium, joining device, and joining system
TWI503861B (en) * 2011-03-04 2015-10-11 Tokyo Electron Ltd Bonding method and computer strage mrdium and bonding apparatus and bonding system
KR101907709B1 (en) 2011-03-04 2018-10-12 도쿄엘렉트론가부시키가이샤 Joining method, joining device and joining system
JP2014113633A (en) * 2012-12-12 2014-06-26 Bondtech Inc Bonding method and bonding device

Also Published As

Publication number Publication date
JP5429926B2 (en) 2014-02-26

Similar Documents

Publication Publication Date Title
JP3751972B2 (en) JOINING METHOD, DEVICE PRODUCED BY THIS METHOD, SURFACE ACTIVATION DEVICE, AND JOINING DEVICE PROVIDED WITH THIS DEVICE
JP4919604B2 (en) Joining method and joining apparatus
JP6448848B2 (en) Substrate bonding method
KR102445060B1 (en) Method for bonding substrates together, and substrate bonding device
JP4695014B2 (en) JOINING METHOD, DEVICE PRODUCED BY THIS METHOD, AND JOINING DEVICE
JP6617227B2 (en) Substrate bonding apparatus and substrate bonding method
JP6122297B2 (en) Bonded substrate creating method, substrate bonding method, and bonded substrate creating apparatus
WO2005055293A1 (en) Bonding method, device formed by such method, surface activating unit and bonding apparatus comprising such unit
US9601350B2 (en) Bonding-substrate fabrication method, bonding substrate, substrate bonding method, bonding-substrate fabrication apparatus, and substrate assembly
US20070111471A1 (en) Bonding method, device produced by this method, and bonding device
US11837444B2 (en) Substrate joining method, substrate joining system and method for controlling hydrophilic treatment device
JP2011119717A (en) Bonding system and bonding method
TWI681482B (en) Method and device for prefixing substrates
JP5392105B2 (en) Bonding apparatus, bonding method, and semiconductor device
JP3820409B2 (en) JOINING METHOD, DEVICE PRODUCED BY THIS METHOD, AND JOINING DEVICE
JP5429926B2 (en) Bonding apparatus, bonding method, and semiconductor device
JP5438734B2 (en) Joining method
JP2006121061A (en) Method and device for applying vibration and pressure
JP5760392B2 (en) Bonding method, bonding system, and semiconductor device
JP2017123470A (en) Joining device, joining method, manufacturing method of semiconductor device, and manufacturing method of mems device
JP2006134899A (en) Bonding method and bonder
JP6436455B2 (en) Substrate surface treatment apparatus and method
JPH08318378A (en) Method for joining minute object
JP7268931B2 (en) Bonding method, substrate bonding apparatus, and substrate bonding system
WO2024147351A1 (en) Bonding method, bonding system, illumination device, and activation processing device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120229

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130716

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130913

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131119

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131129

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5429926

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250