JP2010219338A - Stationary induction apparatus - Google Patents

Stationary induction apparatus Download PDF

Info

Publication number
JP2010219338A
JP2010219338A JP2009064953A JP2009064953A JP2010219338A JP 2010219338 A JP2010219338 A JP 2010219338A JP 2009064953 A JP2009064953 A JP 2009064953A JP 2009064953 A JP2009064953 A JP 2009064953A JP 2010219338 A JP2010219338 A JP 2010219338A
Authority
JP
Japan
Prior art keywords
coil
electric field
field relaxation
conductor
section
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009064953A
Other languages
Japanese (ja)
Inventor
Takahiko Ishikura
隆彦 石倉
Manabu Yoshimura
学 吉村
Takashi Hoshino
貴司 星野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2009064953A priority Critical patent/JP2010219338A/en
Publication of JP2010219338A publication Critical patent/JP2010219338A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Regulation Of General Use Transformers (AREA)
  • Transformer Cooling (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a stationary induction apparatus that achieves size reduction, operation at higher voltages, and a lower price. <P>SOLUTION: Only the innermost coil conductor of the next coil section in a voltage application section of an HIS winding type stationary induction apparatus is removed, and then an electric field relaxer is wound by one turn in place of the removed one. The electric field relaxer is provided at a position axially corresponding to the innermost coil conductor in the voltage application coil section. This structure achieves size reduction, operation at higher voltages, and lower price, and reduces electromagnetic interference. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は静止誘導機器に関するものであり、特に円板状のコイルセクションの電界緩和構造を持つ静止誘導機器に関するものである。   The present invention relates to a static induction device, and more particularly, to a static induction device having a disk-shaped coil section electric field relaxation structure.

静止誘導機器、例えば変圧器の巻線構造の決定に当たってまず考えることは、系統からの雷サージの侵入に対して巻線の電位分布が全長に亘って均等で、且つ巻線の占積率(巻線断面に占める導体の比)が高く、作業性が良い巻線構造とすることである。この様な要求を満たす巻線構造の一つとしてHIS巻線(高直列容量巻線)が従来から広く使用されている。この巻線は相隣り合う導体間に電気的に離れた電位のコイル導体を配置する構造で、その巻き方の工夫により電位分布を改善する方法が今まで数多く提案されている。しかし、このHIS巻線はその構造から相隣り合うコイルセクション(円板状コイル)間にコイルセクション当たりの巻回数の約3倍の電位差が生じ、この部分に相当するコイルセクションの最内側のコイル導体に電界が集中するため絶縁の最弱点部分となり、機器の高電圧化の制約となっている。   When determining the winding structure of a static induction device, for example, a transformer, the first thing to consider is that the winding potential distribution is uniform over the entire length against the intrusion of lightning surge from the system, and the winding space factor ( The ratio of the conductor occupying the winding cross-section is high, and the winding structure has good workability. Conventionally, HIS windings (high series capacity windings) have been widely used as one of the winding structures satisfying such requirements. This winding has a structure in which coil conductors having electrical potentials are arranged between adjacent conductors, and many methods have been proposed so far to improve the potential distribution by devising the winding method. However, this HIS winding has a potential difference of about three times the number of turns per coil section between adjacent coil sections (disk coils) due to its structure, and the innermost coil of the coil section corresponding to this portion. Since the electric field concentrates on the conductor, it becomes the weakest point of insulation, limiting the voltage of the equipment.

このような高直列容量巻線を持つ静止誘導機器における電界集中の問題を解決するために、円板状のコイルセクションのコイル導体の径方向内側に、最内側のコイル導体と同一の電位を有するシールド導体を1ターン巻き込んでコイルセクションを構成した構造が提案されている。コイルセクションをこのようなシールド導体を巻き込んで構成することによって、電界緩和されて絶縁距離が減少し、コイル高さが減少でき、コイルが小形化することにより、絶縁信頼性が向上した小形化した静止誘導機器の巻線が得られる(例えば特許文献1参照)。   In order to solve the problem of electric field concentration in a static induction device having such a high series capacity winding, the same potential as that of the innermost coil conductor is provided on the radially inner side of the coil conductor of the disk-shaped coil section. A structure in which a coil section is formed by winding a shield conductor for one turn has been proposed. By constructing the coil section with such a shield conductor, the electric field is reduced, the insulation distance is reduced, the coil height can be reduced, and the coil is miniaturized, so that the insulation reliability is improved and the size is reduced. A winding of a static induction device can be obtained (see, for example, Patent Document 1).

特開平11−31628号公報Japanese Patent Laid-Open No. 11-31628

しかしながらこのような静止誘導機器においては、電界緩和装置はすべてのコイルセクションについてコイルの最内側のコイル導体に1ターンずつ挿入されている。このことは巻線の占積率(巻線断面に占める導体の比)が小さくなることとなり、機器の高電圧化を制約することとなる。また全てのコイルセクションに電界緩和装置を挿入するために、作業時間が増加し、工程の増加による機器の価格増大が発生する。   However, in such a static induction device, the electric field relaxation device is inserted into the innermost coil conductor of the coil one turn at a time for every coil section. This reduces the space factor of the windings (the ratio of the conductor in the winding cross section) and restricts the high voltage of the equipment. Further, since the electric field relaxation devices are inserted into all the coil sections, the working time is increased, and the price of the equipment is increased due to the increased number of processes.

従って本発明の目的は、電界緩和装置を電圧印加部周辺に効率的に配置し、電界を緩和して機器の高電圧化、小型化、シールド材の削減を実現した静止誘導機器を提供することである。   Accordingly, an object of the present invention is to provide a static induction device that efficiently arranges an electric field relaxation device around the voltage application unit and relaxes the electric field to realize higher voltage, smaller size, and reduction of shielding material of the device. It is.

この発明の静止誘導機器は、コイル導体により構成されて直列接続され、軸方向に重ねられた複数個の円板状のコイルセクションと、上記コイルセクション間に冷媒流路を形成するスペーサ装置と、上記コイルセクションの最内側に配置され、該コイルセクションの上記コイル導体と同電位の電界緩和装置とを備えた静止誘導機器において、上記電界緩和装置が、上記コイルセクションのうちの電圧印加コイルセクションに対して軸方向に隣接するコイルセクションについてだけ設けられている。   A stationary induction device according to the present invention includes a plurality of disk-shaped coil sections that are configured by coil conductors and connected in series and are stacked in the axial direction, and a spacer device that forms a refrigerant flow path between the coil sections, In a static induction device that is disposed on the innermost side of the coil section and includes an electric field relaxation device having the same potential as the coil conductor of the coil section, the electric field relaxation device is connected to the voltage application coil section of the coil section. On the other hand, it is provided only for the axially adjacent coil sections.

この発明の静止誘導機器によれば、機器の高電圧化、小型化、シールド材の削減を実現することができる。   According to the static induction device of the present invention, it is possible to realize a higher voltage, a smaller size, and a reduced shielding material of the device.

この発明の実施形態1の静止誘導機器の電界緩和装置の構成を示す概略図である。It is the schematic which shows the structure of the electric field relaxation apparatus of the static induction apparatus of Embodiment 1 of this invention. 図1の電界緩和装置の拡大概略図である。FIG. 2 is an enlarged schematic diagram of the electric field relaxation device of FIG. 1. この発明の電界緩和装置を備えていない静止誘導機器におけるコイルセクションの内端部における電界を示す概略図である。It is the schematic which shows the electric field in the inner-end part of the coil section in the static induction apparatus which is not equipped with the electric field relaxation apparatus of this invention. この発明の電界緩和装置を備えた静止誘導機器におけるコイルセクションの内端部における電界を示す概略図である。It is the schematic which shows the electric field in the inner-end part of the coil section in the static induction apparatus provided with the electric field relaxation apparatus of this invention. この発明の実施形態2に係る電界緩和装置を示す概略図である。It is the schematic which shows the electric field relaxation apparatus which concerns on Embodiment 2 of this invention.

以下、この発明の実施の形態について説明する。   Embodiments of the present invention will be described below.

実施の形態1.
図1にこの発明の実施の形態1に係るHIS巻きの静止誘導機器の巻線構造図を示す。静止誘導機器の巻線装置の軸心CLの方向に延びた絶縁筒1には、周方向に間隔を置いて軸方向に延びた複数の軸方向スペーサ2が取り付けられている。また軸方向スペーサ2には、軸方向および周方向に間隔を置いて放射状に配置されて径方向に延びた径方向スペーサ6が取り付けられている。径方向スペーサ6の間には、高直列容量巻線構造により配置された円板状のコイルセクションS1〜S3、…SnおよびS1’〜S3’、…Sn'が設けられていて、コイルセクションS1〜S3、…Sn、S1’〜S3’、…Sn'間には、軸方向スペーサ2および径方向スペーサ6で構成されたスペーサ装置9により冷媒流路8が形成されている。以後、簡単のためS3までの記述とする。
Embodiment 1 FIG.
FIG. 1 shows a winding structure diagram of a HIS-winding stationary induction device according to Embodiment 1 of the present invention. A plurality of axial spacers 2 extending in the axial direction at intervals in the circumferential direction are attached to the insulating cylinder 1 extending in the direction of the axis CL of the winding device of the stationary induction device. The axial spacer 2 is attached with radial spacers 6 arranged radially and spaced radially in the axial direction and circumferential direction. Between the radial spacers 6 are provided disk-shaped coil sections S1 to S3,... Sn and S1 ′ to S3 ′,. .., S3,... Sn, S1 ′ to S3 ′,... Sn ′, a refrigerant flow path 8 is formed by a spacer device 9 including an axial spacer 2 and a radial spacer 6. Hereinafter, for simplicity, the description up to S3 is used.

複数個の円板状のコイルセクションS1〜S3およびS1’〜S3’は、それぞれコイル導体5により構成されていて、互いに軸方向に重ねられ、直列接続されてHV巻線を構成している。HV巻線内のコイル導体5の位置は、図1中にコイル導体5の断面内に番号1〜27および1’〜27’を付して示してある。コイルセクションS1は1〜4および8〜11番のコイル導体5により構成され、コイルセクションS2は5〜7および12〜15番のコイル導体5により構成され、コイルセクションS3は16〜19および24〜27番のコイル導体5により構成されている。同様に、コイルセクションS1’は1’〜4’および8’〜11’番のコイル導体5により構成され、コイルセクションS2’は5’〜7’および12’〜15’番のコイル導体5により構成され、コイルセクションS3’は16’〜19’および24’〜27’番のコイル導体5により構成されている。図示はしないが上下端であるコイルセクションSn、Sn’は接地されている。絶縁筒1の内側には絶縁距離Lだけ離れてLV巻線が設けられ、HV巻線とともに巻線装置を構成している。   The plurality of disk-shaped coil sections S1 to S3 and S1 'to S3' are each composed of a coil conductor 5, and are overlapped in the axial direction and connected in series to constitute an HV winding. The position of the coil conductor 5 in the HV winding is shown in FIG. 1 with numbers 1 to 27 and 1 'to 27' in the cross section of the coil conductor 5. The coil section S1 is constituted by the coil conductors 5 of No. 1 to 4 and 8 to 11, the coil section S2 is constituted of the coil conductors 5 of Nos. 5 to 7 and 12 to 15, and the coil section S3 is constituted of 16 to 19 and 24 to The 27th coil conductor 5 is comprised. Similarly, the coil section S1 ′ is composed of coil conductors 5 of 1 ′ to 4 ′ and 8 ′ to 11 ′, and the coil section S2 ′ is composed of coil conductors 5 of 5 ′ to 7 ′ and 12 ′ to 15 ′. The coil section S3 ′ is composed of coil conductors 5 of Nos. 16 ′ to 19 ′ and 24 ′ to 27 ′. Although not shown, the coil sections Sn and Sn 'which are upper and lower ends are grounded. An LV winding is provided on the inner side of the insulating cylinder 1 by an insulation distance L, and constitutes a winding device together with the HV winding.

雷サージが侵入した場合には、サージ電圧の印加部であるコイルセクションS1、S1’に最も高いサージ電圧が掛かり、コイルセクションS2、S3およびS2’、S3’の順に次第に分担電圧が低下する。従って、絶縁距離LはコイルセクションS1、S1’の最内側のコイル導体に発生する電界によって絶縁破壊しないよう決定され、機器の高電圧化、小型化に影響を与える。またコイルセクション間が絶縁破壊しないようにスペーサ6の厚さt0、t1〜t3、t1’〜t3’が決定されており、コイル導体端部の微小ギャップ部の電界によってこのスペーサ厚が決定されている。   When a lightning surge enters, the highest surge voltage is applied to the coil sections S1 and S1 ', which are surge voltage application units, and the shared voltage gradually decreases in the order of the coil sections S2, S3 and S2', S3 '. Therefore, the insulation distance L is determined so as not to break down due to the electric field generated in the innermost coil conductors of the coil sections S1 and S1 ', which affects the increase in voltage and size of the device. Further, the thicknesses t0, t1 to t3, and t1 ′ to t3 ′ of the spacer 6 are determined so as not to cause dielectric breakdown between the coil sections, and this spacer thickness is determined by the electric field at the minute gap portion at the end of the coil conductor. Yes.

このようなサージ電圧によって発生する電界を緩和するために、シールド導体4、4’及び誘電体3、3’によって構成された電界緩和装置10を電圧印加セクションの上下のコイルセクションS2、S2’のみの最内側に、その位置のコイル導体を1つ除いて挿入する。すなわち、電界緩和装置10は、コイルセクションS1〜S3、S1’〜S3’のうちの電圧印加コイルセクションS1、S1’に対して軸方向に隣接するコイルセクションS2、S2’についてだけ、コイルセクションS2、S2’の径方向の最内側に配置され、コイルセクションS2、S2’の径方向の最内側の12番のコイル導体5と同電位にされている。このように、電界緩和装置10は、電界緩和装置10が挿入されなければ存在した最内側のコイル導体5が除去されて、その位置に代わりに挿入されたものであるとも言える。   In order to relieve the electric field generated by such a surge voltage, only the coil sections S2 and S2 ′ above and below the voltage application section of the electric field relaxation device 10 constituted by the shield conductors 4 and 4 ′ and the dielectrics 3 and 3 ′ are used. The coil conductor at that position is removed and inserted into the innermost side. In other words, the electric field relaxation device 10 is configured so that only the coil sections S2 and S2 ′ axially adjacent to the voltage application coil sections S1 and S1 ′ of the coil sections S1 to S3 and S1 ′ to S3 ′ are in the coil section S2. , S2 ′ is arranged on the innermost side in the radial direction, and has the same potential as the twelfth coil conductor 5 on the innermost side in the radial direction of the coil sections S2, S2 ′. Thus, it can be said that the electric field relaxation device 10 is one in which the innermost coil conductor 5 that has been present if the electric field relaxation device 10 is not inserted is removed and inserted instead.

電界緩和装置10は、軸方向スペーサ2に隣接して12番のコイル導体5とほぼ平行に延びる誘電体3と、誘電体3とコイルセクションS2、S2’の最内側の12、12’番のコイル導体5との間で12、12’番のコイル導体5に隣接して配置されたシールド導体4とを備えている。誘電体3およびシールド導体4の材質は公知のものでよい。   The electric field relaxation device 10 includes a dielectric 3 extending substantially parallel to the 12th coil conductor 5 adjacent to the axial spacer 2, and the innermost 12th and 12'th of the dielectric 3 and the coil sections S2 and S2 '. The shield conductor 4 is provided adjacent to the coil conductor 5 of No. 12 and 12 'between the coil conductor 5. The material of the dielectric 3 and the shield conductor 4 may be a known material.

図示の例では、図2に示すように、電界緩和装置10の径方向寸法すなわち厚さt10は、そのコイルセクションS2、S2’のコイル導体5(12、12’番)の径方向寸法tcに等しく、従って電界緩和装置10、10’は、軸方向に隣接のコイルセクションS1、S3、S1’、S3’の最内側のコイル導体5(11、27、11’27’番)に対して同じ径方向位置にあり、軸方向に整列している。また、電界緩和装置10の軸方向寸法すなわち幅w10はコイル導体5(1〜27、1’〜27’番)の軸方向寸法すなわち幅Wと等しくされている。   In the illustrated example, as shown in FIG. 2, the radial dimension of the electric field relaxation device 10, that is, the thickness t10, is equal to the radial dimension tc of the coil conductor 5 (No. 12, 12 ′) of the coil sections S2 and S2 ′. Equally, the field relaxation devices 10, 10 ′ are therefore the same for the innermost coil conductors 5 (11, 27, 11′27 ′) of the axially adjacent coil sections S1, S3, S1 ′, S3 ′. Located in radial position and aligned in the axial direction. Further, the axial dimension, ie, the width w10 of the electric field relaxation device 10 is made equal to the axial dimension, ie, the width W, of the coil conductor 5 (Nos. 1-27, 1'-27 ').

このようにコイル導体を除去することによっても上下の最内側のコイル導体間の距離が大きくなって、コイル導体端部の微小ギャップ電界を緩和することができるが、電界緩和装置10の電界緩和効果を合わせることでコイル導体端部の微小ギャップ部の電界緩和をさらに向上させることが可能である。   Even if the coil conductor is removed in this manner, the distance between the upper and lower innermost coil conductors can be increased and the minute gap electric field at the end of the coil conductor can be relaxed. By combining these, it is possible to further improve the electric field relaxation in the minute gap portion at the end portion of the coil conductor.

以上の説明から明らかなように、この発明の静止誘導機器は、コイル導体5(1〜27、1’〜27’番)により構成されて直列接続され、軸方向に重ねられた複数個の円板状のコイルセクションS1〜S3、S1’〜S3’と、コイルセクションS1〜S3、S1’〜S3’間に冷媒流路を形成するスペーサ装置9と、コイルセクションS1〜S3、S1’〜S3’の最内側に配置され、該コイルセクションの12番のコイル導体5と同電位の電界緩和装置10とを備えている。この電界緩和装置10は、コイルセクションS1〜S3、S1’〜S3’のうちの電圧印加コイルセクションS1、S1’に対して軸方向に隣接するコイルセクションS2、S2’についてだけ設けられている。   As is apparent from the above description, the static induction device of the present invention is composed of a plurality of circles that are constituted by the coil conductors 5 (Nos. 1 to 27, 1 ′ to 27 ′) and connected in series, and are stacked in the axial direction. Plate-shaped coil sections S1 to S3, S1 ′ to S3 ′, a spacer device 9 for forming a refrigerant flow path between the coil sections S1 to S3 and S1 ′ to S3 ′, and coil sections S1 to S3 and S1 ′ to S3 And the electric field relaxation device 10 having the same potential as the 12th coil conductor 5 of the coil section. The electric field relaxation device 10 is provided only for the coil sections S2 and S2 'that are adjacent in the axial direction to the voltage application coil sections S1 and S1' among the coil sections S1 to S3 and S1 'to S3'.

図示の例では、電界緩和装置10は、電圧印加コイルセクションS1、S1’の最内側のコイル導体5(11、11’番)に軸方向に対応する位置であって、さもなければ最内側のコイル導体5が配置されるべき位置に、設けられている。換言すれば、電界緩和装置10は、コイルセクションS2、S2’の最内側の12番のコイル導体5の位置に一ターン分巻き込んで配置されているとも言える。また、電界緩和装置10は、径方向寸法すなわち厚さt10がコイル導体5(1〜27、1’〜27’番)の径方向寸法すなわち厚さtcと等しく、軸方向寸法すなわち幅w10がコイル導体5(1〜27、1’〜27’番)の軸方向寸法すなわち幅Wと等しくされている。   In the illustrated example, the electric field relaxation device 10 is in a position corresponding to the innermost coil conductor 5 (No. 11, 11 ′) of the voltage application coil sections S1, S1 ′ in the axial direction, otherwise the innermost coil conductor 5 (No. 11). The coil conductor 5 is provided at a position where it should be disposed. In other words, it can be said that the electric field relaxation device 10 is arranged to be wound by one turn at the position of the twelfth coil conductor 5 on the innermost side of the coil sections S2 and S2 '. Further, the electric field relaxation device 10 has a radial dimension, ie, a thickness t10 equal to a radial dimension, ie, a thickness tc, of the coil conductor 5 (Nos. 1-27, 1'-27 '), and an axial dimension, ie, a width w10. The conductor 5 (Nos. 1 to 27, 1 'to 27') is made equal to the axial dimension, that is, the width W.

図3に従来の巻線構造における等電位線図を示し、図4に本発明によりコイルセクションS2について、最内側のコイル導体を除去して代わりに電界緩和装置10を挿入した場合における等電位線図を示す。これらの図より、コイルセクションS2に電界緩和装置10を挿入した場合は、通常の巻線構造の場合と比較して、電気力線同士の間隔が大きくなり、その結果最内側のコイル導体5の素線端部の微小ギャップ部の電界値が減少する。さらに電界緩和装置10によって挿入セクションの隣り合うコイル導体5の素線端部の微小ギャップの電界が大きく緩和されることが理解できる。   FIG. 3 shows an equipotential line diagram in a conventional winding structure, and FIG. 4 shows an equipotential line in the case where the innermost coil conductor is removed and the electric field relaxation device 10 is inserted instead of the coil section S2 according to the present invention. The figure is shown. From these figures, when the electric field relaxation device 10 is inserted into the coil section S2, the distance between the electric lines of force is larger than in the case of the normal winding structure, and as a result, the innermost coil conductor 5 The electric field value at the minute gap portion at the end of the strand decreases. Furthermore, it can be understood that the electric field of the minute gap at the end of the strand of the coil conductor 5 adjacent to the insertion section is greatly relaxed by the electric field relaxation device 10.

このような構造とすれば電界緩和装置10を挿入したコイルセクションS2の最内側の上下のコイル導体5の素線端部の電界を緩和することが可能であり、従って、コイルセクションS1〜S3およびS1’〜S3’の11、12、27番および11’、12’、27’番の内側のコイル導体5の電界集中を緩和することができる。このように電界集中を緩和することにより、HVコイルとLVコイルの絶縁距離Lを電界緩和装置10を挿入しない場合と比較して低減することが可能である。さらにコイルセクション間の径方向スペーサ6の厚さt0、t1〜t3、t1’〜t3’も低減させることができる。このように高耐圧化することにより機器を高電圧化しても従来と比較して絶縁距離を縮小した構造とすることができるため、小型化が図れる。さらに、挿入する電界緩和装置10は2本のみであるためシールド材の削減に繋がる。   With such a structure, it is possible to relieve the electric field at the ends of the strands of the upper and lower coil conductors 5 on the innermost side of the coil section S2 in which the electric field relaxation device 10 is inserted, and accordingly, the coil sections S1 to S3 and The electric field concentration of the coil conductor 5 inside the 11th, 12th, 27th and 11 ', 12', 27'th of S1'-S3 'can be relieved. By relaxing the electric field concentration in this way, the insulation distance L between the HV coil and the LV coil can be reduced as compared with the case where the electric field relaxation device 10 is not inserted. Further, the thicknesses t0, t1 to t3, and t1 'to t3' of the radial spacer 6 between the coil sections can be reduced. By increasing the breakdown voltage in this way, even if the voltage of the device is increased, the insulation distance can be reduced as compared with the conventional structure, so that the size can be reduced. Furthermore, since only two electric field relaxation devices 10 are inserted, the shielding material is reduced.

実施の形態2.
図5には実施の形態2に係る静止誘導機器の電界緩和装置11の構造を示す。この電界緩和装置11においては、実施の形態1と同様にシールド配置されるが、シールド挿入セクションの最内側の導体すなわち12番のコイル導体5と電界緩和装置11のシールド導体4との間の空間に電界緩和樹脂モールド7が充填されて設けられている。このように、電界緩和装置11は、誘電体3と、シールド導体4とを備えている他に、シールド導体4とコイルセクションS2の最内側の12番のコイル導体5との間に充填された電界緩和樹脂モールド7を備えている。電界緩和樹脂の誘電率をコイル導体の絶縁被覆と同等とすれば、誘電率の比が充填しない場合の3〜3.6から1程度に低減され、結果としてコイル導体端部の電界集中を緩和することが可能である。
Embodiment 2. FIG.
FIG. 5 shows the structure of the electric field relaxation device 11 for a stationary induction device according to the second embodiment. In this electric field relaxation device 11, the shield is arranged in the same manner as in the first embodiment, but the innermost conductor of the shield insertion section, that is, the space between the 12th coil conductor 5 and the shield conductor 4 of the electric field relaxation device 11. Are filled with an electric field relaxation resin mold 7. In this way, the electric field relaxation device 11 is filled between the shield conductor 4 and the innermost twelfth coil conductor 5 of the coil section S2 in addition to the dielectric 3 and the shield conductor 4. An electric field relaxation resin mold 7 is provided. If the dielectric constant of the electric field relaxation resin is equivalent to that of the insulation coating of the coil conductor, the dielectric constant ratio is reduced from 3 to 3.6 when the ratio is not filled, and as a result, the electric field concentration at the end of the coil conductor is reduced. Is possible.

以上に説明したとおり、HIS巻きの静止誘導機器の電圧印加部の次のコイルセクションS2、S2’の最内側のコイル導体5のみを取り除いてその位置のみに電界緩和装置10、11を挿入することで、最も絶縁破壊が生じ易い印加セクションS1及び次(上下)S2とその次(上下)S3のセクションの最内側にできるコイル導体端部の微小ギャップ部に発生する電界を緩和することができ、HV巻線全体のコイル導体端部の微小ギャップ部に発生する電界によって決定されるHV巻線とLV巻線との間の距離Lを電界緩和装置10、11を挿入しない場合と比較して低減することができる。従って、機器の小型化が図れる。電界緩和装置10、11は誘電体3が最内側となるよう配置される。この誘電体3により等電位線が歪曲し、1つ上および下のコイルセクションの最内側のコイル導体端部の電界を緩和することができる。また最内側よりも1つ内側に配置される電界緩和装置10、11は隣り合うコイル導体5と同電位に保たれ、その隣り合うコイル導体端部電界を大きく緩和できる。つまり、印加コイルセクションS1、S1’の次のコイルセクションS2、S2’に電界緩和装置10あるいは11を1つずつ挿入するだけで一番絶縁破壊が生じ易いコイルセクションのコイル導体端部の微小ギャップ電界を緩和することができる。このように効率的に静電シールド材及び誘電体を挿入することにより、部材を削減することができるので占積率が上昇し、このことによっても機器の高電圧化若しくは小型化、またその効果による低価格化を図ることができる。   As described above, only the innermost coil conductor 5 of the coil sections S2 and S2 ′ next to the voltage application unit of the HIS winding static induction device is removed, and the electric field relaxation devices 10 and 11 are inserted only at the positions. Thus, the electric field generated in the minute gap portion at the end of the coil conductor formed on the innermost side of the application section S1 and the next (upper and lower) S2 and the next (upper and lower) S3, which are most likely to cause dielectric breakdown, can be relaxed, The distance L between the HV winding and the LV winding determined by the electric field generated at the minute gap portion at the coil conductor end of the entire HV winding is reduced as compared with the case where the electric field relaxation devices 10 and 11 are not inserted. can do. Therefore, the device can be reduced in size. The electric field relaxation devices 10 and 11 are arranged such that the dielectric 3 is the innermost side. The equipotential lines are distorted by the dielectric 3, and the electric field at the innermost coil conductor end of the upper and lower coil sections can be relaxed. Further, the electric field relaxation devices 10 and 11 arranged on the inner side of the innermost side are kept at the same potential as that of the adjacent coil conductor 5 and can greatly relax the electric field at the end of the adjacent coil conductor. That is, the minute gap at the end of the coil conductor of the coil section where the dielectric breakdown is most likely to occur only by inserting the electric field relaxation devices 10 or 11 one by one in the coil sections S2 and S2 ′ next to the applied coil sections S1 and S1 ′. The electric field can be relaxed. By efficiently inserting the electrostatic shielding material and the dielectric in this way, the number of members can be reduced, so that the space factor increases. This also increases the voltage or size of the device, and the effect thereof. Can reduce the price.

以上に図示して説明した静止誘導機器は単なる例であって様々な変形が可能であり、またそれぞれの具体例の特徴を全てあるいは選択的に組み合わせて用いることもできる。   The static induction device illustrated and described above is merely an example, and various modifications can be made, and the features of each specific example can be used altogether or selectively combined.

この発明は静止誘導機器に利用できるものである。   The present invention can be used for static induction equipment.

1 絶縁筒、2 軸方向スペーサ、3 誘電体、4 シールド導体、5 コイル導体、6 径方向スペーサ、7 電界緩和樹脂モールド、8 冷媒通路、9 スペーサ装置、10、11 電界緩和装置、CL 軸心、L 絶縁距離、S1〜S3、S1’〜S3’ コイルセクション(S1、S1’ 電圧印加コイルセクション、S2、S2’ 隣接するコイルセクション)、tc 径方向寸法、W 幅、w10 幅。   DESCRIPTION OF SYMBOLS 1 Insulation cylinder, 2 Axial spacer, 3 Dielectric, 4 Shield conductor, 5 Coil conductor, 6 Radial direction spacer, 7 Electric field relaxation resin mold, 8 Refrigerant passage, 9 Spacer device 10, 11, 11 Electric field relaxation device, CL axis , L Insulation distance, S1 to S3, S1 ′ to S3 ′ coil sections (S1, S1 ′ voltage application coil sections, S2, S2 ′ adjacent coil sections), tc radial dimension, W width, w10 width.

Claims (7)

コイル導体により構成されて直列接続され、軸方向に重ねられた複数個の円板状のコイルセクションと、
上記コイルセクション間に冷媒流路を形成するスペーサ装置と、
上記コイルセクションの最内側に配置され、該コイルセクションの上記コイル導体と同電位の電界緩和装置とを備えた静止誘導機器において、
上記電界緩和装置が、上記コイルセクションのうちの電圧印加コイルセクションに対して軸方向に隣接するコイルセクションについてだけ設けられていることを特徴とする静止誘導機器。
A plurality of disk-shaped coil sections composed of coil conductors, connected in series, and stacked in the axial direction;
A spacer device for forming a refrigerant flow path between the coil sections;
In the static induction device that is disposed on the innermost side of the coil section and includes an electric field relaxation device having the same potential as the coil conductor of the coil section,
The static induction device according to claim 1, wherein the electric field relaxation device is provided only in a coil section adjacent to the voltage applying coil section in the axial direction in the coil section.
上記電界緩和装置が、上記電圧印加コイルセクションの最内側のコイル導体に軸方向に対応する位置に設けられていることを特徴とする請求項1に記載の静止誘導機器。   The stationary induction device according to claim 1, wherein the electric field relaxation device is provided at a position corresponding to an axial direction of the innermost coil conductor of the voltage application coil section. 上記電界緩和装置が、上記隣接するコイルセクションの最内側の上記コイル導体の位置に一ターン分巻き込んで配置されていることを特徴とする請求項1あるいは2に記載の静止誘導機器。   The static induction device according to claim 1 or 2, wherein the electric field relaxation device is disposed by being wound by one turn at the position of the innermost coil conductor of the adjacent coil section. 上記電界緩和装置が、シールド導体と誘電体とを備えたことを特徴とする請求項1〜3のいずれか一項に記載の静止誘導機器。   The static induction device according to any one of claims 1 to 3, wherein the electric field relaxation device includes a shield conductor and a dielectric. 上記電界緩和装置が、上記隣接するコイルセクションと上記最内側のコイル導体との間を充填する電界緩和樹脂モールドを備えたことを特徴とする請求項1〜4のいずれか一項に記載の静止誘導機器。   The static electric field relaxation device according to any one of claims 1 to 4, wherein the electric field relaxation device includes an electric field relaxation resin mold that fills a space between the adjacent coil section and the innermost coil conductor. Induction equipment. 上記電界緩和装置の径方向寸法が、上記コイル導体の径方向寸法と等しいことを特徴とする請求項1〜5のいずれか一項に記載の静止誘導機器。   The stationary induction device according to any one of claims 1 to 5, wherein a radial dimension of the electric field relaxation device is equal to a radial dimension of the coil conductor. 上記電界緩和装置の軸方向寸法が、上記コイル導体の軸方向寸法と等しいことを特徴とする請求項1〜6のいずれか一項に記載の静止誘導機器。   The stationary induction device according to any one of claims 1 to 6, wherein an axial dimension of the electric field relaxation device is equal to an axial dimension of the coil conductor.
JP2009064953A 2009-03-17 2009-03-17 Stationary induction apparatus Pending JP2010219338A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009064953A JP2010219338A (en) 2009-03-17 2009-03-17 Stationary induction apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009064953A JP2010219338A (en) 2009-03-17 2009-03-17 Stationary induction apparatus

Publications (1)

Publication Number Publication Date
JP2010219338A true JP2010219338A (en) 2010-09-30

Family

ID=42977849

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009064953A Pending JP2010219338A (en) 2009-03-17 2009-03-17 Stationary induction apparatus

Country Status (1)

Country Link
JP (1) JP2010219338A (en)

Similar Documents

Publication Publication Date Title
EP2586044B2 (en) Coil and electric shielding arrangement and transformer comprising the arrangement
US11063488B2 (en) Stator for electric rotating machine
US11217377B2 (en) Low inter-winding capacitance coil form
US10090095B2 (en) Stationary induction electrical apparatus
JP2010219338A (en) Stationary induction apparatus
JP6656187B2 (en) Stationary inductor
JP5697918B2 (en) Cable connection
JP2010251543A (en) Resin molded coil
US2368506A (en) Electric apparatus and winding therefor
EP3327737B1 (en) Stationary induction apparatus
US9449755B2 (en) Arrangement having at least two coils which are arranged axially one above the other on a common core limb
JPH0742959U (en) Multi-step board winding
US4510475A (en) Disk coil winding of interwound single or double coils
JP5317930B2 (en) Static induction machine
JP2728162B2 (en) Transformer for DC transmission
US11282635B2 (en) Stationary induction electric apparatus
JP2007149944A (en) Mold coil
JP2013038334A (en) Superconducting fault current limiter
WO2018173604A1 (en) Stationary induction apparatus
JP2014007298A (en) Oil-filled stationary induction electrical apparatus
JPS6138171Y2 (en)
JP2002125339A (en) Coil of high-voltage dynamoelectric machine
JP2020188201A (en) Stationary induction apparatus
JP2018160644A (en) Stationary induction machine
JP2015035528A (en) Oil-immersed stationary induction apparatus