JP2010217473A - Lighting system and microscope including the same - Google Patents

Lighting system and microscope including the same Download PDF

Info

Publication number
JP2010217473A
JP2010217473A JP2009063906A JP2009063906A JP2010217473A JP 2010217473 A JP2010217473 A JP 2010217473A JP 2009063906 A JP2009063906 A JP 2009063906A JP 2009063906 A JP2009063906 A JP 2009063906A JP 2010217473 A JP2010217473 A JP 2010217473A
Authority
JP
Japan
Prior art keywords
illumination
light source
sample surface
semiconductor light
reflecting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009063906A
Other languages
Japanese (ja)
Inventor
Hiroaki Nakayama
浩明 中山
Masahiro Mizuta
正宏 水田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP2009063906A priority Critical patent/JP2010217473A/en
Publication of JP2010217473A publication Critical patent/JP2010217473A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a lighting system and a microscope equipped with the same having sufficient brightness and a wide irradiation field and allowing at least one of dark field illumination and focal illumination while achieving miniaturization of the system. <P>SOLUTION: A dark field illumination apparatus 10 includes a light source 11, which consists of a plurality of light emitting diodes located in the hollow heptagonal shape around the observation optical axis X perpendicular to a specimen face 31a, and a reflection member 12, which consists of mirrors 12a-12g reflecting illumination light emitted from the light source 11, below the specimen face 31a. The illumination light is radiated from the diagonal lower side of the specimen face 31a via the reflection member 12 at least once. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、暗視野照明及び偏斜照明のうち少なくとも一方が可能な照明装置及びこれを備える顕微鏡に関する。   The present invention relates to an illumination device capable of at least one of dark field illumination and oblique illumination, and a microscope including the illumination device.

従来、実体顕微鏡などに用いられる照明装置には、生物標本を生きたまま観察したり、あるいは半導体デバイス工程での検査などを行ったりするのに、透過照明が多く用いられている。また、このような照明装置は、用途によって明視野観察用や暗視野観察用として使い分けられており、これらに用いられる照明光源も多岐にわたっている。   2. Description of the Related Art Conventionally, in a lighting apparatus used for a stereomicroscope or the like, transmitted illumination is often used for observing a living specimen alive or performing an inspection in a semiconductor device process. Such illumination devices are selectively used for bright field observation and dark field observation depending on applications, and there are a wide variety of illumination light sources used for these.

例えば、照明光源としてハロゲンやタングステンなどのランプを用いて、レンズやリフレクタを通して実体顕微鏡の視野内の照明を行っているものがある。この場合、ランプを実体顕微鏡本体と対向する標本の真下に配置したり、あるいは、標本の直下にミラーを配置し、ランプからの光線をミラーにより折り曲げられた光軸上に配置したりするようにしている。また、ランプからの光の導入に、光ファイバを用いたものもある。   For example, there is one that uses a lamp such as halogen or tungsten as an illumination light source and performs illumination within the field of view of the stereomicroscope through a lens or a reflector. In this case, place the lamp directly under the specimen facing the stereomicroscope body, or place a mirror directly under the specimen and place the light from the lamp on the optical axis bent by the mirror. ing. In addition, there is an optical fiber used for introducing light from a lamp.

ところが、一般に、実体顕微鏡の倍率は、通常の顕微鏡のそれに比べて低く、観察できる視野も広いため、照明する範囲を広くしなければならない。このため、ランプを標本の真下に配置した場合、リフレクタやレンズで必要な視野の照明を行うと、机上から標本までの距離が大きくなってしまい、また、ミラーを用いて光軸を折り返した場合も同様で、必要な光束径を大きくするため、机上から標本までの距離が大きくなってしまう。このことは、標本が机上面より高い所に位置されるため、例えば、標本の載せ換えの際には、机上面とステージの間で観察者の手の移動を上下に大きくしなければならず、標本観察をしながらの作業が行いにくいという問題があった。また、照明光源として用いられるハロゲンやタングステンなどのランプは、発熱量や消費電力も大きく、さらに寿命も短いという問題があった。   However, in general, the magnification of a stereomicroscope is lower than that of an ordinary microscope and the field of view is wide, so the illumination range must be widened. For this reason, when the lamp is placed directly under the specimen, if the illumination of the required field of view is performed with a reflector or lens, the distance from the desk to the specimen increases, and the optical axis is folded using a mirror. Similarly, since the required beam diameter is increased, the distance from the desk to the sample is increased. This is because the specimen is positioned higher than the desk surface. For example, when changing the specimen, the movement of the observer's hand must be increased up and down between the desk surface and the stage. There was a problem that it was difficult to perform the work while observing the specimen. In addition, lamps such as halogen and tungsten used as an illumination light source have a problem that they generate a large amount of heat and consume power and have a short life.

そこで、このようなランプを用いたことによる問題を解決する手段として、光源に複数の発光ダイオードを用いた方法がある(例えば、特許文献1及び特許文献2を参照)。   Therefore, as a means for solving the problem caused by using such a lamp, there is a method using a plurality of light emitting diodes as a light source (see, for example, Patent Document 1 and Patent Document 2).

特開2003−75725号公報JP 2003-75725 A 特開2006−209035号公報JP 2006-209035 A

しかしながら、光源に用いた発光ダイオード(以下、LEDと称する)から発せられる光束の広がり角は限られている。したがって、従来の照明装置では、LEDの照射範囲を広げるためには、光源と標本面までの光路長をできるだけ長くとる必要があり、照明装置の大型化(特に厚さ方向)に繋がってしまう。   However, the spread angle of a light beam emitted from a light emitting diode (hereinafter referred to as LED) used as a light source is limited. Therefore, in the conventional illumination device, in order to widen the irradiation range of the LED, it is necessary to make the optical path length to the light source and the specimen surface as long as possible, which leads to an increase in the size of the illumination device (particularly in the thickness direction).

また、特許文献1に記載の照明装置では、暗視野照明に用いるLEDによって標本面が照明される角度が一定である。したがって、開口数の大きな対物レンズを用いた場合には、直接光が対物レンズに入射して、フレアを生じさせるおそれがある。一方、このような現象を防ぐために照明角度を大きくすると、ステージガラスで光が反射される割合が高くなるので、開口数の小さな対物レンズを用いる場合には、照明が必要以上に暗くなってしまう。   Moreover, in the illuminating device described in Patent Document 1, the angle at which the sample surface is illuminated by the LED used for dark field illumination is constant. Therefore, when an objective lens having a large numerical aperture is used, direct light may enter the objective lens and cause flare. On the other hand, if the illumination angle is increased in order to prevent such a phenomenon, the rate at which light is reflected by the stage glass increases. Therefore, when an objective lens having a small numerical aperture is used, the illumination becomes darker than necessary. .

また、特許文献2に記載の照明装置では、照明角度を可変とすることで、上記の課題を解消しているものの、個々のLEDをそれぞれ別々の基板に配置する必要があり、コストが掛かってしまう。フレキシブル基板を用いれば、一つの基板に複数のLEDを配置することも可能であるが、やはりコスト増は避けられない。   Moreover, in the illuminating device described in Patent Document 2, although the above-mentioned problem has been solved by making the illumination angle variable, it is necessary to arrange each LED on a separate substrate, which is costly. End up. If a flexible substrate is used, a plurality of LEDs can be arranged on one substrate, but an increase in cost is unavoidable.

また、特許文献2の実施例9に記載の照明装置では、試料面と直交する観察光軸と平行に試料面の方へ、光源からの光束を向けるように個々のLEDを円周状に配置し、各LEDからの光束をミラーで反射して試料面を照明している。この場合、複数のLEDを円周状に1つの基板に配置することは可能であるが、試料面からLEDまでの距離が長くなり、照明装置の厚みが増してしまう。そこで、観察光軸とLEDの光軸との距離を短くすれば装置の厚みを抑えることは可能であるが、LEDを配置する円周の長さが短くなるため、配置可能なLEDの数が減少して照明が暗くなってしまう。   Further, in the illumination device described in Example 9 of Patent Document 2, individual LEDs are arranged circumferentially so as to direct the light beam from the light source toward the sample surface parallel to the observation optical axis orthogonal to the sample surface. Then, the sample surface is illuminated by reflecting the light flux from each LED with a mirror. In this case, it is possible to arrange a plurality of LEDs circumferentially on one substrate, but the distance from the sample surface to the LEDs becomes longer, and the thickness of the illumination device increases. Therefore, if the distance between the observation optical axis and the optical axis of the LED is shortened, the thickness of the apparatus can be suppressed. However, since the circumference of the LED is shortened, the number of LEDs that can be arranged is small. Decreases and the lighting becomes dark.

また、特許文献2に記載の照明装置では、照明角度を変更した際に、光源から試料面までの距離が最適化されておらず、照明角度を小さくすると試料の中心部が暗くなり、逆に照明角度を大きくすると照野が小さくなってしまう。   In the illumination device described in Patent Document 2, when the illumination angle is changed, the distance from the light source to the sample surface is not optimized, and if the illumination angle is reduced, the center of the sample becomes darker. When the illumination angle is increased, the illumination field becomes smaller.

本発明は、このような問題に鑑みてなされたものであり、装置の小型化を図りつつ、十分な明るさと広い照野を持ち、暗視野照明及び偏斜照明のうち少なくとも一方が可能な照明装置及びこれを備える顕微鏡を提供することを目的とする。   The present invention has been made in view of such a problem, and has a sufficient brightness and a wide illumination field, and can perform at least one of dark field illumination and oblique illumination while reducing the size of the apparatus. An object is to provide an apparatus and a microscope including the same.

このような目的を達成するため、本発明は、暗視野照明及び偏斜照明のうち少なくとも一方が可能な顕微鏡の照明装置であって、試料面の下方に、前記試料面に垂直な観察光軸を中心として、その周囲に配置された複数の半導体光源と、前記複数の半導体光源から射出された照明光を反射する複数の反射部材とを備え、前記反射部材を少なくとも1回介した前記照明光を、前記試料面の斜め下方から照射する。   In order to achieve such an object, the present invention provides an illumination device for a microscope capable of at least one of dark field illumination and oblique illumination, wherein an observation optical axis perpendicular to the sample surface is provided below the sample surface. And a plurality of semiconductor light sources disposed around the semiconductor light source, and a plurality of reflecting members that reflect illumination light emitted from the plurality of semiconductor light sources, and the illumination light having passed through the reflecting member at least once Are irradiated obliquely from below the sample surface.

なお、前記反射部材は、回転可能に設けられ、前記試料面に対する反射面の傾きが変更可能であることが好ましい。   In addition, it is preferable that the said reflection member is rotatably provided and the inclination of the reflective surface with respect to the said sample surface is changeable.

また、前記複数の半導体光源の光軸は、それぞれ前記試料面に垂直であることが好ましい。   The optical axes of the plurality of semiconductor light sources are preferably perpendicular to the sample surface.

また、前記暗視野照明時には、前記反射部材の反射面と前記試料面とのなす角をθとし、前記複数の半導体光源の広がり角をαとし、前記顕微鏡に設けられた対物レンズの開口数をNAとしたとき、次式θ>(NA+α)/2の条件を満足することが好ましい。   In the dark field illumination, the angle formed by the reflecting surface of the reflecting member and the sample surface is θ, the spread angle of the plurality of semiconductor light sources is α, and the numerical aperture of the objective lens provided in the microscope is When NA is satisfied, it is preferable to satisfy the condition of the following formula θ> (NA + α) / 2.

また、前記偏斜照明時には、前記反射部材の反射面と前記試料面とのなす角をθとし、前記複数の半導体光源の広がり角をαとし、前記顕微鏡に設けられた対物レンズの開口数をNAとしたとき、次式θ<(NA+α)/2の条件を満足することが好ましい。   Further, during the oblique illumination, the angle formed between the reflecting surface of the reflecting member and the sample surface is θ, the spread angle of the plurality of semiconductor light sources is α, and the numerical aperture of the objective lens provided in the microscope is When NA is satisfied, it is preferable to satisfy the condition of the following formula θ <(NA + α) / 2.

また、前記反射部材は、前記反射面の傾きに応じて、上下方向に移動可能であることが好ましい。   Moreover, it is preferable that the said reflection member is movable to an up-down direction according to the inclination of the said reflective surface.

また、前記反射部材の反射面と前記試料面とのなす角をθとし、前記半導体光源の広がり角をαとし、前記半導体光源の光軸と前記反射部材の反射面の交点から前記試料面までの距離をdとし、前記半導体光源の光軸と前記反射部材の反射面の交点から前記半導体光源までの距離をd’とし、前記半導体光源の光軸から前記対物レンズの光軸までの距離をLとしたとき、次式(d+d’cos2θ)tan(2θ-α)−d’sin2θ<L<(d+d’cos2θ)tan(2θ+α)−d’sin2θの条件を満足することが好ましい。   In addition, an angle formed between the reflection surface of the reflection member and the sample surface is θ, a spread angle of the semiconductor light source is α, and from the intersection of the optical axis of the semiconductor light source and the reflection surface of the reflection member to the sample surface Is the distance from the intersection of the optical axis of the semiconductor light source and the reflecting surface of the reflecting member to the semiconductor light source, and d is the distance from the optical axis of the semiconductor light source to the optical axis of the objective lens. When L, the following equation (d + d'cos2θ) tan (2θ-α) -d'sin2θ <L <(d + d'cos2θ) tan (2θ + α) -d'sin2θ must be satisfied Is preferred.

また、前記反射部材は、シリンドリカルミラーであることが好ましい。   Moreover, it is preferable that the said reflection member is a cylindrical mirror.

また、本発明に係る顕微鏡は、上記いずれかの照明装置を備えることが好ましい。   In addition, the microscope according to the present invention preferably includes any one of the above illumination devices.

本発明によれば、装置の小型化を図りつつ、十分な明るさと広い照野を持ち、暗視野照明及び偏斜照明のうち少なくとも一方が可能な照明装置及びこれを備える顕微鏡を提供することができる。   According to the present invention, it is possible to provide an illuminating device having sufficient brightness and a wide illumination field and capable of at least one of dark field illumination and oblique illumination, and a microscope including the same, while reducing the size of the device. it can.

第1実施形態に係る顕微鏡の構成概略図である。1 is a schematic configuration diagram of a microscope according to a first embodiment. 第1実施形態に係る照明装置を対物レンズの光軸方向から見た図である。It is the figure which looked at the illuminating device which concerns on 1st Embodiment from the optical axis direction of the objective lens. 第2実施形態に係る顕微鏡の構成概略図である。It is a block schematic diagram of the microscope concerning a 2nd embodiment. 第2実施形態に係る照明装置を対物レンズの光軸方向から見た図である。It is the figure which looked at the illuminating device which concerns on 2nd Embodiment from the optical axis direction of the objective lens. 第2実施形態に係る照明装置の構成図であり、図5(a)は高NAの対物レンズを用いた際の暗視野観察時について、図5(b)は低NAの対物レンズを用いた際の暗視野観察時についてそれぞれ示す。It is a block diagram of the illuminating device which concerns on 2nd Embodiment, Fig.5 (a) is the time of dark field observation at the time of using a high NA objective lens, FIG.5 (b) used the low NA objective lens. This is shown for each dark field observation. 第2実施形態に係る照明装置の構成図であり、図6(a)は暗視野照明を行う際について、図6(b)は偏斜照明を行う際についてそれぞれ示す。It is a block diagram of the illuminating device which concerns on 2nd Embodiment, FIG. 6 (a) shows at the time of performing dark field illumination, FIG.6 (b) shows each at the time of performing oblique illumination. 条件式(1),(2)の効果を説明するための図である。It is a figure for demonstrating the effect of conditional expression (1), (2). 条件式(3)の効果を説明するための図である。It is a figure for demonstrating the effect of conditional expression (3). 第3実施形態に係る顕微鏡の構成概略図である。It is a block schematic diagram of the microscope concerning a 3rd embodiment.

以下、本発明に係る各実施形態について、図面を用いて説明する。
(第1実施形態)
本実施形態に係る顕微鏡MS1は、図1に示すように、暗視野照明装置10と、明視野照明装置20と、ステージガラス31と、対物レンズ32と、結像レンズ33と、接眼レンズ34とを有する。
Embodiments according to the present invention will be described below with reference to the drawings.
(First embodiment)
As shown in FIG. 1, the microscope MS1 according to the present embodiment includes a dark field illumination device 10, a bright field illumination device 20, a stage glass 31, an objective lens 32, an imaging lens 33, and an eyepiece lens 34. Have

暗視野照明装置10は、光源11と、ミラー12とからなる。   The dark field illumination device 10 includes a light source 11 and a mirror 12.

光源11は、複数のLEDからなり、試料30を載置するステージガラス31の下面に取り付けられたベース部材35に保持されている。そして、光源11は、このベース部材35に対して、試料面(すなわち、ステージガラス31における試料30の載置面)31aに垂直な観察光軸Xを中心とする中空七角形状に配置されている(図2参照)。なお、光源11を構成するLEDの各光軸は、試料面31aに対して垂直となるように構成されている。   The light source 11 includes a plurality of LEDs and is held by a base member 35 attached to the lower surface of the stage glass 31 on which the sample 30 is placed. The light source 11 is arranged in a hollow heptagon shape with the observation optical axis X perpendicular to the sample surface (that is, the mounting surface of the sample 30 on the stage glass 31) 31a as a center with respect to the base member 35. (See FIG. 2). In addition, each optical axis of LED which comprises the light source 11 is comprised so that it may become perpendicular | vertical with respect to the sample surface 31a.

ミラー12は、7枚の平面ミラー12a〜12gからなり、光源11の下方に、観察光軸Xを中心として中空七角形を描くように設けられ、試料面31aを斜め下方から照明するように、光源11から射出された照明光を反射する。   The mirror 12 is composed of seven plane mirrors 12a to 12g. The mirror 12 is provided below the light source 11 so as to draw a hollow heptagon around the observation optical axis X, and illuminates the sample surface 31a from obliquely below. The illumination light emitted from the light source 11 is reflected.

図2は、暗視野照明装置10を対物レンズ32の光軸方向から見た図である。図2に示すように、光源11とミラー12はそれぞれ、ステージガラス31を通る観察光軸X上に載置された試料30を中心とする中空多角形を描くように、複数のLEDとミラー12a〜12gが配置されている。本実施形態において、光源11とミラー12は、ともに七角形状に配置されているが、角数をさらに増やせば照明の方向性を低減させることが可能となる。逆に、角数を減らせば、構成をより単純にして、製造コストを抑えることも可能となる。   FIG. 2 is a view of the dark field illumination device 10 as seen from the optical axis direction of the objective lens 32. As shown in FIG. 2, each of the light source 11 and the mirror 12 has a plurality of LEDs and a mirror 12a so as to draw a hollow polygon centered on the sample 30 placed on the observation optical axis X passing through the stage glass 31. ~ 12g is arranged. In the present embodiment, the light source 11 and the mirror 12 are both arranged in a heptagon shape, but if the number of corners is further increased, the directionality of illumination can be reduced. Conversely, if the number of corners is reduced, the configuration can be made simpler and the manufacturing cost can be reduced.

このような構成の暗視野照明装置10において、光源11から試料面31aと逆方向(本実施形態では鉛直下方)に発せられた照明光は、ミラー12により反射され、(対物レンズ32に直接光が入らないように)試料面31aを斜め下方から照明する。これにより、暗視野照明が達成される。   In the dark field illumination device 10 having such a configuration, the illumination light emitted from the light source 11 in the direction opposite to the sample surface 31a (vertically below in the present embodiment) is reflected by the mirror 12 and is directly incident on the objective lens 32. The sample surface 31a is illuminated obliquely from below. Thereby, dark field illumination is achieved.

さらに、試料30に照射された照明光の一部は、試料30によって回折されたり散乱されたり光のみが対物レンズ32に入射し、結像レンズ33によって像36が形成される。観察者37は像36(ここでは暗視野像)を接眼レンズ34を介して観察する。このように、顕微鏡MS1によって、試料30の暗視野観察が可能となる。   Further, part of the illumination light irradiated on the sample 30 is diffracted or scattered by the sample 30, and only the light enters the objective lens 32, and an image 36 is formed by the imaging lens 33. The observer 37 observes the image 36 (here, a dark field image) through the eyepiece lens 34. As described above, the dark field observation of the sample 30 can be performed by the microscope MS1.

明視野照明装置20は、光源21と、コレクタレンズ22と、リレーレンズ23と、ミラー24と、コンデンサレンズ25とからなり、光源21から射出された照明光が、コレクタレンズ22により平行光束となった後、リレーレンズ23により収束光となり、ミラー24により反射された後に対物レンズ32の瞳と共役な面に集光され、コンデンサレンズ25により平行光束となり、試料30を照明するように構成されている。試料30を照明した光は、対物レンズ32を経て、結像レンズ33によって結像される。観察者37は像36(ここでは明視野像)を接眼レンズ34を介して観察する。このように顕微鏡MS1によって、試料30の明視野観察が可能となる。但し、明視野照明装置20については代表例であり、明視野照明が可能であれば、この構成に限らない。   The bright field illumination device 20 includes a light source 21, a collector lens 22, a relay lens 23, a mirror 24, and a condenser lens 25, and the illumination light emitted from the light source 21 is converted into a parallel light beam by the collector lens 22. After that, the light is converged by the relay lens 23, reflected by the mirror 24, condensed on a surface conjugate with the pupil of the objective lens 32, and converted into a parallel light beam by the condenser lens 25, so as to illuminate the sample 30. Yes. The light illuminating the sample 30 is imaged by the imaging lens 33 via the objective lens 32. The observer 37 observes the image 36 (here, a bright field image) through the eyepiece lens 34. Thus, the bright field observation of the sample 30 becomes possible by the microscope MS1. However, the bright field illumination device 20 is a representative example, and is not limited to this configuration as long as bright field illumination is possible.

上記構成を有する顕微鏡MS1においては、観察者は暗視野照明用の光源11と、明視野照明用の光源21とを必要に応じて切り換えることで、暗視野観察と明視野観察の両方が可能である。   In the microscope MS1 having the above configuration, the observer can perform both dark field observation and bright field observation by switching between the light source 11 for dark field illumination and the light source 21 for bright field illumination as necessary. is there.

以上のように、本実施形態においては、試料面31aとは逆方向に(試料面31aから離れる方向に)光束を発するように光源11を設置し、その光束をミラー12で反射して試料30を照明するという構成から成り立っている。これにより、暗視野照明装置10の薄型化を図りながらも、光源11と試料面31aまでの光路長を延ばすことができ、広がり角が制限された光源11から発せられる光束を十分に広げ、広い照野を確保することが可能となる。   As described above, in this embodiment, the light source 11 is installed so as to emit a light beam in a direction opposite to the sample surface 31a (in a direction away from the sample surface 31a), and the light beam 11 is reflected by the mirror 12 to be sample 30. It consists of the construction of lighting up. Accordingly, the optical path length between the light source 11 and the sample surface 31a can be extended while reducing the thickness of the dark field illumination device 10, and the luminous flux emitted from the light source 11 with a limited divergence angle is sufficiently widened to be wide. It becomes possible to secure Teruno.

なお、本実施形態は、上記に限定されるものではなく、本発明に係る要旨を逸脱しない範囲であれば適宜改良可能である。例えば、本実施形態に係る暗視野照明装置10では、照明光が直接対物レンズ32に入射しないようにミラー12の角度が設定されているが、ミラー12の角度を調整して照明光が直接対物レンズ31に入射するように構成することで、偏斜照明装置として使用することも可能である。これにより、通常の明視野観察では見ることのできない、透明な位相試料を観察することが可能となる。   Note that the present embodiment is not limited to the above, and can be appropriately improved as long as it does not depart from the gist of the present invention. For example, in the dark field illumination device 10 according to the present embodiment, the angle of the mirror 12 is set so that the illumination light does not directly enter the objective lens 32. However, the angle of the mirror 12 is adjusted so that the illumination light is directly objective. By being configured to enter the lens 31, it can be used as a declination illumination device. This makes it possible to observe a transparent phase sample that cannot be seen in normal bright field observation.

(第2実施形態)
第2実施形態に係る顕微鏡MS2について、図3〜図8を用いて説明する。なお、本実施形態において、上記の第1実施形態と同じ構成、機能を有するものについては、同じ符号を用いて適宜説明を省略する。
(Second Embodiment)
A microscope MS2 according to the second embodiment will be described with reference to FIGS. In addition, in this embodiment, about the thing which has the same structure and function as said 1st Embodiment, description is abbreviate | omitted suitably using the same code | symbol.

本実施形態に係る顕微鏡MS2は、図3に示すように、暗視野照明装置210と、明視野照明装置20と、試料30を載置するステージガラス31と、対物レンズ32と、結像レンズ33と、接眼レンズ34とを有する。   As shown in FIG. 3, the microscope MS2 according to the present embodiment includes a dark field illumination device 210, a bright field illumination device 20, a stage glass 31 on which a sample 30 is placed, an objective lens 32, and an imaging lens 33. And an eyepiece lens 34.

第2実施形態では、暗視野照明装置210を構成するミラー212が、回転可能に設けられ、試料面31aに対する反射面の傾きが変更可能である点、及び、前記反射面の傾きに応じて上下方向に移動可能である点が、第1実施形態とは異なる。   In the second embodiment, the mirror 212 constituting the dark field illumination device 210 is rotatably provided, and the tilt of the reflecting surface with respect to the sample surface 31a can be changed, and the upper and lower sides according to the tilt of the reflecting surface. The point which can move to a direction differs from 1st Embodiment.

すなわち、本実施形態の暗視野照明装置210においては、ミラー212が、図4に示すように、観察光軸Xを中心として七角形状に配置された、7枚の平面ミラー212a〜212gからなり、それぞれが回転可能に設けられている。さらに、ミラー212は、反射面の傾きに応じて上下方向にも移動可能であり、光源11とミラー212との間隔を調整できるようになっている。   That is, in the dark field illumination device 210 of the present embodiment, the mirror 212 includes seven plane mirrors 212a to 212g arranged in a heptagon shape with the observation optical axis X as the center, as shown in FIG. Each is provided rotatably. Further, the mirror 212 can be moved in the vertical direction according to the inclination of the reflection surface, and the distance between the light source 11 and the mirror 212 can be adjusted.

図5(a)及び(b)は、それぞれ高NAの対物レンズ(以下、対物レンズ32H)及び低NAの対物レンズ(以下、対物レンズ32L)を用いて暗視野観察を行う際の暗視野照明装置210の構成図である。図5(a)に示すように、暗視野照明装置210において高NAの対物レンズ32Hを用いる際には、ミラー212の角度を立てることで照明角度を大きくし、直接照明光が対物レンズ32Hに入射することを防ぐ。また同時に、(ミラー212の傾きに応じて)ミラー212を上下方向に移動させ、(下記低NAの対物レンズ32Lの使用時と比べて相対的に短くなるように)光源11とミラー212との間隔を調整することで、視野全体をムラなく照明することが可能となる。逆に、図5(b)に示すように、暗視野照明装置210において低NAの対物レンズ32Lを用いる際には、ミラー212の角度を寝かせることで照明角度を小さくし、ステージガラス31での反射を少なくし、試料30を明るく照明することが可能となる。また同時に、(ミラー212の傾きに応じて)ミラー212を上下方向に移動させ、(上記高NAの対物レンズ32Hの使用時と比べて相対的に長くなるように)光源11とミラー212との間隔を調整することで、視野全体をムラなく照明することが可能となる。   FIGS. 5A and 5B show dark field illumination when performing dark field observation using a high NA objective lens (hereinafter, objective lens 32H) and a low NA objective lens (hereinafter, objective lens 32L), respectively. 2 is a configuration diagram of a device 210. FIG. As shown in FIG. 5A, when the high NA objective lens 32H is used in the dark field illumination device 210, the illumination angle is increased by raising the angle of the mirror 212, and the direct illumination light enters the objective lens 32H. Prevents incidence. At the same time, the mirror 212 is moved up and down (according to the tilt of the mirror 212), and the light source 11 and the mirror 212 are moved relative to each other (so as to be relatively shorter than when the low NA objective lens 32L is used). By adjusting the interval, the entire field of view can be illuminated uniformly. Conversely, as shown in FIG. 5B, when using the low NA objective lens 32L in the dark field illumination device 210, the angle of the mirror 212 is lowered to reduce the illumination angle. It is possible to reduce reflection and illuminate the sample 30 brightly. At the same time, the mirror 212 is moved up and down (according to the tilt of the mirror 212), and the light source 11 and the mirror 212 are moved to be relatively longer than when the high NA objective lens 32H is used. By adjusting the interval, the entire field of view can be illuminated uniformly.

図6(a)及び(b)は、それぞれ暗視野照明及び偏斜照明を行う際の暗視野照明装置210の構成図である。図6(a)に示すように、暗視野照明装置210において暗視野照明を行う際には、ミラー212の角度を立てることで照明角度を大きくし、直接照明光が対物レンズ32に入射しないように構成する。また同時に、(ミラー212の傾きに応じて)ミラー212を上下方向に移動させ、(下記偏斜照明時と比べて相対的に短くなるように)光源11とミラー212との間隔を調整することで、視野全体をムラなく照明することが可能となる。逆に、図6(b)に示すように、暗視野照明装置210において偏斜照明を行う際には、ミラー212の角度を寝かせることで照明角度を小さくし、直接照明光が対物レンズ32に入射するように構成する。また同時に、(ミラー212の傾きに応じて)ミラー212を上下方向に移動させ、(上記暗視野照明時と比べて相対的に長くなるように)光源11とミラー212との間隔を調整することで、視野全体を明るく照明することが可能となる。   6A and 6B are configuration diagrams of the dark field illumination device 210 when performing dark field illumination and oblique illumination, respectively. As shown in FIG. 6A, when performing dark field illumination in the dark field illumination device 210, the angle of the mirror 212 is increased to increase the illumination angle so that the illumination light does not directly enter the objective lens 32. Configure. At the same time, the mirror 212 is moved up and down (according to the inclination of the mirror 212), and the distance between the light source 11 and the mirror 212 is adjusted (so as to be relatively shorter than that in the case of the oblique illumination described below). Thus, it becomes possible to illuminate the entire field of view without unevenness. Conversely, as shown in FIG. 6B, when performing oblique illumination in the dark field illumination device 210, the illumination angle is reduced by laying down the angle of the mirror 212, and the direct illumination light is directed to the objective lens 32. Configure to be incident. At the same time, the mirror 212 is moved up and down (in accordance with the tilt of the mirror 212), and the distance between the light source 11 and the mirror 212 is adjusted (so that it is relatively longer than in the dark field illumination). Thus, the entire field of view can be illuminated brightly.

なお、本実施形態においては、ミラー212の反射面と試料面31aとのなす角をθとし、光源11の広がり角をαとし、顕微鏡MS2に設けられた対物レンズ32の開口数をNAとしたとき、暗視野照明時には条件式(1)を満足し、偏斜照明時には条件式(2)を満足することが好ましい。   In the present embodiment, the angle formed by the reflecting surface of the mirror 212 and the sample surface 31a is θ, the spread angle of the light source 11 is α, and the numerical aperture of the objective lens 32 provided in the microscope MS2 is NA. It is preferable that conditional expression (1) is satisfied during dark field illumination and conditional expression (2) is satisfied during oblique illumination.

θ>(NA+α)/2 … (1)
θ<(NA+α)/2 … (2)
θ> (NA + α) / 2 (1)
θ <(NA + α) / 2 (2)

上記の式(1)及び(2)の作用について、図7を用いて説明する。暗視野照明装置210を構成する光源11は、試料面31aに対して鉛直下向きに広がり角αを持つ光束(照明光)を発する。そして、その光束は、試料面31aと角度θをなすミラー212の反射面によって反射され、試料面31aを照明する。このとき、対物レンズ32の光軸Xとなす角度が最も小さい光線(照明光)の角度は(2θ−α)となる。暗視野照明を行う際には、この光線の角度が対物レンズ32のNAより大きい、すなわち条件式(4)が満たされる必要がある。   The effect | action of said Formula (1) and (2) is demonstrated using FIG. The light source 11 constituting the dark field illumination device 210 emits a light beam (illumination light) having an angle α spread vertically downward with respect to the sample surface 31a. Then, the luminous flux is reflected by the reflecting surface of the mirror 212 that forms an angle θ with the sample surface 31a, and illuminates the sample surface 31a. At this time, the angle of the light beam (illumination light) having the smallest angle with the optical axis X of the objective lens 32 is (2θ−α). When performing dark field illumination, it is necessary that the angle of the light beam is larger than the NA of the objective lens 32, that is, conditional expression (4) must be satisfied.

2θ−α > NA … (4)   2θ−α> NA (4)

なお、条件式(4)は、条件式(1)と等価である。逆に、偏斜照明を行う際には、この光線の角度(2θ−α)が対物レンズ32のNAより小さい、すなわち条件式(5)が満たされる必要がある。   Conditional expression (4) is equivalent to conditional expression (1). Conversely, when performing oblique illumination, it is necessary that the angle (2θ−α) of this light beam is smaller than the NA of the objective lens 32, that is, conditional expression (5) must be satisfied.

2θ−α < NA …(5)   2θ−α <NA (5)

なお、条件式(5)は、条件式(2)と等価である。   Conditional expression (5) is equivalent to conditional expression (2).

また、本実施形態においては、ミラー212の反射面と試料面31aとのなす角をθとし、光源11の広がり角をαとし、光源11の光軸とミラー212の反射面の交点から記試料面31aまでの距離をdとし、光源11の光軸とミラー212の反射面の交点から光源11までの距離をd’とし、光源11の光軸から対物レンズ32の光軸までの距離をLとしたとき、次式(3)の条件を満足することが好ましい。   In this embodiment, the angle formed between the reflection surface of the mirror 212 and the sample surface 31 a is θ, the spread angle of the light source 11 is α, and the sample is recorded from the intersection of the optical axis of the light source 11 and the reflection surface of the mirror 212. The distance to the surface 31a is d, the distance from the intersection of the optical axis of the light source 11 and the reflecting surface of the mirror 212 to the light source 11 is d ', and the distance from the optical axis of the light source 11 to the optical axis of the objective lens 32 is L. It is preferable that the condition of the following formula (3) is satisfied.

(d+d’cos2θ)tan(2θ-α)−d’sin2θ < L
< (d+d’cos2θ)tan(2θ+α)−d’sin2θ …(3)
(d + d'cos2θ) tan (2θ-α) −d'sin2θ <L
<(d + d'cos2θ) tan (2θ + α) −d'sin2θ (3)

上記条件式(3)の作用について、図8を用いて説明する。光源11は試料面31aと鉛直下向きに広がり角αを持つ光束(照明光)を発する。そして、その光束は、試料面31aと角度θをなすミラー212の反射面によって反射され、試料面31aを照明する。このとき、試料面31aを中抜けすることなく一様に照明するためには、光源11の光軸と対物レンズ32の光軸の距離Lは、光源11から広がり角αで発せられた光線と試料面31aとの交点a、bから光源11の光軸までの距離をそれぞれLa、Lbとしたとき(La<Lb)、次式(6)を満足する必要がある。   The operation of the conditional expression (3) will be described with reference to FIG. The light source 11 emits a light beam (illumination light) having an angle α that extends vertically downward from the sample surface 31a. Then, the luminous flux is reflected by the reflecting surface of the mirror 212 that forms an angle θ with the sample surface 31a, and illuminates the sample surface 31a. At this time, in order to uniformly illuminate the sample surface 31a without passing through the sample surface 31a, the distance L between the optical axis of the light source 11 and the optical axis of the objective lens 32 is set to a light beam emitted from the light source 11 with a spread angle α. When the distances from the intersection points a and b with the sample surface 31a to the optical axis of the light source 11 are La and Lb (La <Lb), it is necessary to satisfy the following expression (6).

La< L < Lb …(6)   La <L <Lb (6)

上記La、Lbは、それぞれ幾何学計算から以下の式のように表される。
La=(d+d’cos2θ)tan(2θ−α)−d’sin2θ …(7)
Lb=(d+d’cos2θ)tan(2θ+α)−d’sin2θ …(8)
The above La and Lb are each expressed by the following formula from geometric calculation.
La = (d + d′ cos2θ) tan (2θ−α) −d′sin2θ (7)
Lb = (d + d′ cos2θ) tan (2θ + α) −d′sin2θ (8)

上記条件式(6)に、式(7)及び(8)を代入すると、上記の条件式(3)が導かれる。   When the expressions (7) and (8) are substituted into the conditional expression (6), the conditional expression (3) is derived.

以上のように、第2実施形態において、ミラー212の反射面の角度を変化させて、照明光の照射角度を調整すれば、対物レンズ32の開口数に合わせて最適な明るさで、かつフレアの少ない暗視野照明が可能となる。また、暗視野照明装置210において、照明光が直接対物レンズ32に入射するように、ミラー212を傾けて照明光の照射角度を調整すれば、暗視野照明から偏斜照明へと容易に切り換えることが可能となる。また、ミラー212の傾きの変化に連動して、該ミラー212を上下方向に移動させ、光源11とミラー212との間隔を調整すれば、視野全体の照度ムラを減らすことが可能となる。   As described above, in the second embodiment, by changing the angle of the reflecting surface of the mirror 212 and adjusting the irradiation angle of the illumination light, it is possible to obtain optimum brightness and flare according to the numerical aperture of the objective lens 32. Dark-field illumination with less is possible. Further, in the dark field illumination device 210, if the illumination angle of the illumination light is adjusted by tilting the mirror 212 so that the illumination light is directly incident on the objective lens 32, the dark field illumination can be easily switched to the oblique illumination. Is possible. In addition, if the mirror 212 is moved in the vertical direction in conjunction with the change in the tilt of the mirror 212 and the distance between the light source 11 and the mirror 212 is adjusted, the illuminance unevenness of the entire visual field can be reduced.

さらに、本実施形態においては発散光で試料30を照明するので、より広い領域を照明することが可能となる。したがって、低倍の対物レンズ32で観察する際にも、視野周辺までムラなく照明することが可能となる。   Furthermore, since the sample 30 is illuminated with divergent light in the present embodiment, a wider area can be illuminated. Therefore, even when observing with the low-magnification objective lens 32, it is possible to illuminate the periphery of the visual field without unevenness.

(第3実施形態)
第3実施形態に係る顕微鏡MS3について、図9を用いて説明する。なお、本実施形態において、上記の第1実施形態と同じ構成、機能を有するものについては、同じ符号を用いて適宜説明を省略する。
(Third embodiment)
A microscope MS3 according to the third embodiment will be described with reference to FIG. In addition, in this embodiment, about the thing which has the same structure and function as said 1st Embodiment, description is abbreviate | omitted suitably using the same code | symbol.

本実施形態に係る顕微鏡MS3は、図9に示すように、暗視野照明装置310と、明視野照明装置20と、試料30を載置するステージガラス31と、対物レンズ32と、結像レンズ33と、接眼レンズ34とを有する。   As shown in FIG. 9, the microscope MS3 according to the present embodiment includes a dark field illumination device 310, a bright field illumination device 20, a stage glass 31 on which a sample 30 is placed, an objective lens 32, and an imaging lens 33. And an eyepiece lens 34.

なお、第3実施形態では、暗視野照明装置310を構成するミラー312が、シリンドリカルミラー(いわゆる凹面鏡)である点、及び、(第2実施形態と同様に)回転可能に設けられて試料面31aに対する反射面の傾きが変更可能であるとともに、これに連動して上下方向にも移動可能である点が、第1実施形態とは異なる。   In the third embodiment, the mirror 312 constituting the dark field illumination device 310 is a cylindrical mirror (so-called concave mirror), and the sample surface 31a is provided so as to be rotatable (similar to the second embodiment). The first embodiment is different from the first embodiment in that the inclination of the reflection surface with respect to can be changed, and the reflection surface can also be moved in the vertical direction in conjunction with this.

このような構成の第3実施形態によれば、光源11から発せられる発散光(照明光)は、シリンドリカルミラー312で反射し、タンジェンシャル面内ではおよそ平行もしくは収束する光束となって試料30を照明する。このとき、試料面31aへの照明光の照射角度を制限されるため、対物レンズ32への直接光の入射を防ぐことが可能となる。したがって、比較的開口数の大きな対物レンズ32を用いてもフレアが少なく、良好な暗視野観察が可能となる。   According to the third embodiment having such a configuration, the divergent light (illumination light) emitted from the light source 11 is reflected by the cylindrical mirror 312 and becomes a light beam that is approximately parallel or converged within the tangential plane, thereby causing the sample 30 to pass through. Illuminate. At this time, since the irradiation angle of the illumination light to the sample surface 31a is limited, it is possible to prevent the direct light from entering the objective lens 32. Therefore, even when the objective lens 32 having a relatively large numerical aperture is used, flare is small and good dark field observation is possible.

また、本実施形態によれば、対物レンズ32の開口数に合わせて、ミラー312の傾き角度を変更するとともに、これに連動してミラー312を上下方向に移動させることで、光源11とミラー312との間隔を適切に調整し、明るく、フレアが少ない暗視野照明が可能となる。   Further, according to the present embodiment, the light source 11 and the mirror 312 are changed by changing the tilt angle of the mirror 312 according to the numerical aperture of the objective lens 32 and moving the mirror 312 in the vertical direction in conjunction with this. It is possible to adjust the distance between and dark field illumination brightly and with little flare.

なお、以上のような本発明は、上記実施形態に限定されるものではなく、本発明に係る要旨を逸脱しない範囲であれば適宜改良可能である。   The present invention as described above is not limited to the above-described embodiment, and can be appropriately improved as long as it does not depart from the gist of the present invention.

MS1〜MS3 顕微鏡
10、210、310 暗視野照明装置(照明装置)
11 光源(半導体光源)
12,212,312 ミラー(反射部材)
20 明視野照明装置
30 試料
31 ステージガラス
31a 試料面
32 対物レンズ
33 結像レンズ
34 接眼レンズ
MS1 to MS3 Microscope 10, 210, 310 Dark field illumination device (illumination device)
11 Light source (semiconductor light source)
12, 212, 312 Mirror (reflective member)
20 Bright field illumination device 30 Sample 31 Stage glass 31a Sample surface 32 Objective lens 33 Imaging lens 34 Eyepiece

Claims (9)

暗視野照明及び偏斜照明のうち少なくとも一方が可能な顕微鏡の照明装置であって、
試料面の下方に、前記試料面に垂直な観察光軸を中心として、その周囲に配置された複数の半導体光源と、
前記複数の半導体光源から射出された照明光を反射する複数の反射部材とを備え、
前記反射部材を少なくとも1回介した前記照明光を、前記試料面の斜め下方から照射することを特徴とする照明装置。
A microscope illumination device capable of at least one of dark field illumination and oblique illumination,
A plurality of semiconductor light sources arranged around the observation optical axis perpendicular to the sample surface below the sample surface,
A plurality of reflecting members that reflect illumination light emitted from the plurality of semiconductor light sources,
An illumination apparatus, wherein the illumination light that has passed through the reflection member at least once is irradiated from an obliquely lower side of the sample surface.
前記反射部材は、回転可能に設けられ、前記試料面に対する反射面の傾きが変更可能であることを特徴とする請求項1に記載の照明装置。   The illumination device according to claim 1, wherein the reflection member is rotatably provided, and an inclination of the reflection surface with respect to the sample surface can be changed. 前記複数の半導体光源の光軸は、それぞれ前記試料面に垂直であることを特徴とする請求項1又は2に記載の照明装置。   3. The illumination device according to claim 1, wherein optical axes of the plurality of semiconductor light sources are each perpendicular to the sample surface. 前記暗視野照明時には、
前記反射部材の反射面と前記試料面とのなす角をθとし、前記複数の半導体光源の広がり角をαとし、前記顕微鏡に設けられた対物レンズの開口数をNAとしたとき、次式
θ>(NA+α)/2
の条件を満足することを特徴とする請求項3に記載の照明装置。
During the dark field illumination,
When the angle formed by the reflecting surface of the reflecting member and the sample surface is θ, the spread angle of the plurality of semiconductor light sources is α, and the numerical aperture of the objective lens provided in the microscope is NA, the following equation θ > (NA + α) / 2
The lighting device according to claim 3, wherein the following condition is satisfied.
前記偏斜照明時には、
前記反射部材の反射面と前記試料面とのなす角をθとし、前記複数の半導体光源の広がり角をαとし、前記顕微鏡に設けられた対物レンズの開口数をNAとしたとき、次式
θ<(NA+α)/2
の条件を満足することを特徴とする請求項3又は4に記載の照明装置。
During the oblique illumination,
When the angle formed by the reflecting surface of the reflecting member and the sample surface is θ, the spread angle of the plurality of semiconductor light sources is α, and the numerical aperture of the objective lens provided in the microscope is NA, the following equation θ <(NA + α) / 2
The lighting device according to claim 3, wherein the following condition is satisfied.
前記反射部材は、前記反射面の傾きに応じて、上下方向に移動可能であることを特徴とする請求項2〜5のいずれか一項に記載の照明装置。   The lighting device according to claim 2, wherein the reflecting member is movable in the vertical direction according to the inclination of the reflecting surface. 前記反射部材の反射面と前記試料面とのなす角をθとし、前記半導体光源の広がり角をαとし、前記半導体光源の光軸と前記反射部材の反射面の交点から前記試料面までの距離をdとし、前記半導体光源の光軸と前記反射部材の反射面の交点から前記半導体光源までの距離をd’とし、前記半導体光源の光軸から前記対物レンズの光軸までの距離をLとしたとき、次式
(d+d’cos2θ)tan(2θ-α)−d’sin2θ<L<(d+d’cos2θ)tan(2θ+α)−d’sin2θ
の条件を満足することを特徴とする請求項3〜6のいずれか一項に記載の照明装置。
The angle between the reflecting surface of the reflecting member and the sample surface is θ, the spread angle of the semiconductor light source is α, and the distance from the intersection of the optical axis of the semiconductor light source and the reflecting surface of the reflecting member to the sample surface Is d, the distance from the intersection of the optical axis of the semiconductor light source and the reflecting surface of the reflecting member to the semiconductor light source is d ′, and the distance from the optical axis of the semiconductor light source to the optical axis of the objective lens is L. When
(d + d'cos2θ) tan (2θ-α) -d'sin2θ <L <(d + d'cos2θ) tan (2θ + α) -d'sin2θ
The lighting device according to claim 3, wherein the following condition is satisfied.
前記反射部材は、シリンドリカルミラーであることを特徴とする請求項1〜7のいずれか一項に記載の照明装置。   The lighting device according to claim 1, wherein the reflecting member is a cylindrical mirror. 請求項1〜8のいずれか一項に記載の照明装置を備えることを特徴とする顕微鏡。

A microscope comprising the illumination device according to any one of claims 1 to 8.

JP2009063906A 2009-03-17 2009-03-17 Lighting system and microscope including the same Pending JP2010217473A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009063906A JP2010217473A (en) 2009-03-17 2009-03-17 Lighting system and microscope including the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009063906A JP2010217473A (en) 2009-03-17 2009-03-17 Lighting system and microscope including the same

Publications (1)

Publication Number Publication Date
JP2010217473A true JP2010217473A (en) 2010-09-30

Family

ID=42976410

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009063906A Pending JP2010217473A (en) 2009-03-17 2009-03-17 Lighting system and microscope including the same

Country Status (1)

Country Link
JP (1) JP2010217473A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102628983A (en) * 2011-02-03 2012-08-08 徕卡显微系统(瑞士)股份公司 Transillumination device for a microscope
JP2014059413A (en) * 2012-09-14 2014-04-03 Olympus Corp Microscope
JP2014119448A (en) * 2012-12-17 2014-06-30 Advantest Corp Light beam incident device and reflected light measuring apparatus
CN104698581A (en) * 2015-03-20 2015-06-10 麦克奥迪实业集团有限公司 Lighting device, stereoscopic microscope and lighting method for stereoscopic microscope
JP2016525229A (en) * 2013-07-10 2016-08-22 カール ツァイス マイクロスコピー ゲーエムベーハーCarl Zeiss Microscopy Gmbh Equipment for optical sheet microscopy
WO2019176056A1 (en) * 2018-03-15 2019-09-19 オリンパス株式会社 Observation device
CN114354627A (en) * 2022-01-04 2022-04-15 浙江大学 Annular uniform collimation lighting device and method for surface defect detection

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102628983A (en) * 2011-02-03 2012-08-08 徕卡显微系统(瑞士)股份公司 Transillumination device for a microscope
JP2012163957A (en) * 2011-02-03 2012-08-30 Leica Microsystems (Schweiz) Ag Transmission illumination device for microscope
JP2014059413A (en) * 2012-09-14 2014-04-03 Olympus Corp Microscope
JP2014119448A (en) * 2012-12-17 2014-06-30 Advantest Corp Light beam incident device and reflected light measuring apparatus
US9568422B2 (en) 2012-12-17 2017-02-14 Advantest Corporation Light beam incident device and reflected light measurement device
JP2016525229A (en) * 2013-07-10 2016-08-22 カール ツァイス マイクロスコピー ゲーエムベーハーCarl Zeiss Microscopy Gmbh Equipment for optical sheet microscopy
CN104698581A (en) * 2015-03-20 2015-06-10 麦克奥迪实业集团有限公司 Lighting device, stereoscopic microscope and lighting method for stereoscopic microscope
CN104698581B (en) * 2015-03-20 2017-09-15 麦克奥迪实业集团有限公司 Lighting device and stereomicroscope
WO2019176056A1 (en) * 2018-03-15 2019-09-19 オリンパス株式会社 Observation device
JPWO2019176056A1 (en) * 2018-03-15 2021-02-25 オリンパス株式会社 Observation device
CN114354627A (en) * 2022-01-04 2022-04-15 浙江大学 Annular uniform collimation lighting device and method for surface defect detection

Similar Documents

Publication Publication Date Title
JP2010217473A (en) Lighting system and microscope including the same
JP4360808B2 (en) Measuring device with illumination device and method for illumination of an object
CN1908721B (en) Stereo microscope system with incident illumination device
JP2003075725A (en) Transmitted illumination device
CN104698581B (en) Lighting device and stereomicroscope
US8284485B2 (en) Illumination optical system and fluorescent microscope
JP2000019412A (en) Dark-field illuminator and dark-field illuminating method
WO2014036120A1 (en) Multi directional illumination for a microscope and microscope
JP6105805B2 (en) Microscope with transmitted light illuminator for critical illumination
JP6140407B2 (en) Microscope with transmitted light illuminator for critical illumination
JP6288617B2 (en) Illumination device, optical inspection device, and optical microscope
JP4579554B2 (en) Microscope illumination system
JP4988538B2 (en) Spotlight
JP5465123B2 (en) High-incidence angle variable irradiation device for image measurement device
US20130335976A1 (en) Dark field illumination method and a dark field illuminator
JP4361931B2 (en) Lighting device
US7667210B2 (en) Wide-area fluorescence detection system for multi-photon microscopy
JP2011053716A (en) Transmission illuminator for microscope
JP2002023061A (en) Device and method for illuminating dark field of microscope
US8023184B2 (en) Device and method for high-intensity uniform illumination with minimal light reflection for use in microscopes
JP2019195000A (en) Lighting device
JP6482894B2 (en) Microscope illumination device and microscope
JP2002277749A (en) Microscope device
JP2005234279A (en) Dark field illumination device
JP2007127816A (en) Illuminator and microscope