JP2010216883A - Method for leading out and evaluating non-linear fracture mechanics parameter - Google Patents

Method for leading out and evaluating non-linear fracture mechanics parameter Download PDF

Info

Publication number
JP2010216883A
JP2010216883A JP2009061783A JP2009061783A JP2010216883A JP 2010216883 A JP2010216883 A JP 2010216883A JP 2009061783 A JP2009061783 A JP 2009061783A JP 2009061783 A JP2009061783 A JP 2009061783A JP 2010216883 A JP2010216883 A JP 2010216883A
Authority
JP
Japan
Prior art keywords
fracture mechanics
mechanics parameter
load
test piece
crack growth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009061783A
Other languages
Japanese (ja)
Other versions
JP5187243B2 (en
Inventor
Takehisa Yamada
剛久 山田
Yoichi Yamashita
洋一 山下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp filed Critical IHI Corp
Priority to JP2009061783A priority Critical patent/JP5187243B2/en
Publication of JP2010216883A publication Critical patent/JP2010216883A/en
Application granted granted Critical
Publication of JP5187243B2 publication Critical patent/JP5187243B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for leading out a high-accuracy non-linear fracture mechanics parameter, even when elastic deformation quantity is large. <P>SOLUTION: In a method for calculating the non-linear fracture mechanics parameter using a simple formula given at every test piece, on the basis of the load-displacement curve calculated from the result of a fatigue crack developing test performed using a predetermined tension governing type test piece, the test piece is a central notched flat plate or both-sided pierced and notched flat plate; and the non-linear fracture mechanics parameter ΔJ is calculated on the basis of the load-displacement curve, by using the simple formula represented by the formula (1) (where ΔKeff is an effective stress intensity range equal to or larger than a crack opening point, E is the Young's modulus, B is plate thickness, W is the width of the test piece and 2a is crack length). <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、非線形破壊力学パラメータの導出方法及び評価方法に関するものである。   The present invention relates to a method for deriving and evaluating a nonlinear fracture mechanics parameter.

近年、LNG(Liquefied Natural Gas;液化天然ガス)タンク設備(タンク屋根やタンク底隅肉隅角部)、原子力発電設備、ボイラ設備、海洋構造物等の大型構造物において、欠陥許容基準(維持管理基準)が緩和されてきたことに伴い、構造物の構造健全性を評価する健全性評価制度が導入されてきている。   In recent years, NG (Liquefied Natural Gas) tank facilities (tank roofs and tank bottom fillet corners), nuclear power generation facilities, boiler facilities, marine structures and other large structures such as defect tolerance standards (maintenance management) As the standard has been relaxed, a soundness evaluation system for evaluating the structural soundness of structures has been introduced.

構造物の構造健全性を評価する際は、定期的な検査を行い、目視あるいは特殊な計測機器を用いて構造物の傷やき裂等の欠陥を調べると共に、欠陥が発見された構造物が、その後も継続して運転可能か否かを判断する。   When evaluating the structural integrity of the structure, perform periodic inspections and examine defects such as scratches and cracks in the structure using visual or special measurement equipment. Thereafter, it is determined whether or not it is possible to continue driving.

より具体的には、欠陥が発見された構造物についてき裂進展解析を実施し、当該構造物の構造健全性がその後どの程度の期間まで保証されるか、あるいは、次の点検までの運用時間を考慮した場合に、欠陥が存在したまま運用しても破壊力学上問題がないか否かを判断(余寿命評価)する。問題がある場合、補修もしくは運用停止などの措置をとり、欠陥が存在したまま構造物を運用しても健全性が保たれると判断されれば、補修などの措置をとらずにそのまま運用する。   More specifically, a crack growth analysis is performed on the structure where the defect is found, and to what extent the structural integrity of the structure is guaranteed thereafter, or the operation time until the next inspection In consideration of the above, it is determined whether there is no problem in fracture mechanics even if the operation is performed with defects (remaining life evaluation). If there is a problem, take measures such as repair or stop operation, and if it is judged that the soundness can be maintained even if the structure is operated with defects, it will be used without taking any measures such as repairs. .

き裂進展解析では、き裂(欠陥)が進展する速度(疲労き裂進展速度)と、その疲労き裂進展速度を決定付ける破壊力学パラメータとの関係を用いて解析を行う。したがって、構造物の健全性を精度よく評価するためには、疲労き裂進展速度と破壊力学パラメータの関係を精度よく取得することが重要となる。   In crack growth analysis, analysis is performed using the relationship between the rate at which cracks (defects) propagate (fatigue crack growth rate) and the fracture mechanics parameters that determine the fatigue crack growth rate. Therefore, in order to accurately evaluate the soundness of the structure, it is important to accurately acquire the relationship between the fatigue crack growth rate and the fracture mechanics parameter.

き裂進展解析に用いる破壊力学パラメータとしては、従来、線形破壊力学に基づく線形破壊力学パラメータ(応力拡大係数範囲ΔK)を用いていた。しかし、この線形破壊力学パラメータは小規模降伏状態においてのみ有効であるため、例えば、大地震のように変形規模が大きくなり、大きな塑性変形を伴うような場合、線形破壊力学パラメータの妥当性は失われ、用いることができない。   As a fracture mechanics parameter used for crack propagation analysis, a linear fracture mechanics parameter (stress intensity factor range ΔK) based on linear fracture mechanics has been conventionally used. However, since this linear fracture mechanics parameter is effective only in a small-scale yield state, the validity of the linear fracture mechanics parameter is lost when the scale of deformation becomes large and a large plastic deformation occurs, for example, in a large earthquake. I cannot use it.

そのため、地震等の大きな荷重が加わる場合を想定した構造健全性評価では、非線形破壊力学パラメータの導入が必要になる。   Therefore, it is necessary to introduce non-linear fracture mechanics parameters in the structural soundness evaluation assuming a case where a large load such as an earthquake is applied.

非線形破壊力学パラメータは、各種試験片に応じて簡易式が提案されている。試験片として中央切欠き平板、あるいは両側貫通切欠き平板を用いた場合、非線形破壊力学パラメータΔJの簡易式は[数1]に示す式(2)で表される(例えば、非特許文献1参照)。   As the nonlinear fracture mechanics parameters, simplified formulas have been proposed according to various test pieces. When a central notch flat plate or a both-side through-cut flat plate is used as the test piece, a simple expression of the nonlinear fracture mechanics parameter ΔJ is expressed by the equation (2) shown in [Equation 1] (for example, see Non-Patent Document 1). ).

Figure 2010216883
Figure 2010216883

式(2)において、S*は荷重−変位曲線(荷重−荷重線変位曲線、P−V曲線)より求まるエネルギを表し、図13に示すP−V曲線では斜線で示す面積となる。 In Expression (2), S * represents energy obtained from a load-displacement curve (load-load line displacement curve, PV curve), and has an area indicated by oblique lines in the PV curve shown in FIG.

星出敏彦、田中啓介、仲田摩智、「弾性,弾塑性および全面降伏条件下での疲労き裂伝ぱ則の実験的検討」、日本材料学会会誌「材料」、日本材料学会、1982年6月、第31巻、第345号、pp.566−572Toshihiko Hoshide, Keisuke Tanaka, Masatoshi Nakata, “Experimental Study of Fatigue Crack Propagation under Elastic, Elastic-Plastic and Fully Yield Conditions”, Journal of the Society of Materials Science, “Materials”, Society of Materials Science, June 1982 , Vol. 31, No. 345, pp. 566-572

しかしながら、上述の式(2)に示す簡易式は、弾性変形量が塑性変形量に比べて十分小さいときに、非線形破壊力学パラメータΔJが近似的に与えられるものであった。   However, the simple equation shown in the above equation (2) is such that the nonlinear fracture mechanics parameter ΔJ is approximately given when the amount of elastic deformation is sufficiently smaller than the amount of plastic deformation.

したがって、弾性変形量が大きい場合には、この近似が適用できなくなり、疲労き裂進展速度を評価し得る非線形破壊力学パラメータΔJを導出することができないという問題がある。   Therefore, when the amount of elastic deformation is large, this approximation cannot be applied, and there is a problem that the nonlinear fracture mechanics parameter ΔJ that can evaluate the fatigue crack growth rate cannot be derived.

そこで、本発明の目的は、上記課題を解決し、弾性変形量が大きい場合でも、非線形破壊力学パラメータを精度よく導出することが可能な非線形破壊力学パラメータの導出方法及び評価方法を提供することにある。   Therefore, an object of the present invention is to provide a method for deriving and evaluating a nonlinear fracture mechanics parameter capable of accurately deriving a nonlinear fracture mechanics parameter even when the elastic deformation is large, in order to solve the above-described problems. is there.

本発明は上記目的を達成するために創案されたものであり、引張支配型の所定の試験片を用いて疲労き裂進展試験を行い、該疲労き裂進展試験の結果から荷重−変位曲線を求め、求めた荷重−変位曲線を基に、前記試験片ごとに与えられている簡易式を用いて非線形破壊力学パラメータを求める非線形破壊力学パラメータの導出方法において、前記試験片が中央切欠き平板あるいは両側貫通切欠き平板であり、前記荷重−変位曲線を基に、[数2]に示す式(1)   The present invention was devised to achieve the above object. A fatigue crack growth test was performed using a predetermined tensile-dominated test piece, and a load-displacement curve was obtained from the results of the fatigue crack growth test. In the method for deriving a nonlinear fracture mechanics parameter using a simplified formula given for each test piece based on the obtained load-displacement curve, the test piece is a central notch flat plate or Both sides are notched flat plates, and based on the load-displacement curve, the formula (1) shown in [Expression 2]

Figure 2010216883
Figure 2010216883

で表される簡易式を用いて、非線形破壊力学パラメータΔJを求める非線形破壊力学パラメータの導出方法である。 Is a method of deriving a nonlinear fracture mechanics parameter to obtain a nonlinear fracture mechanics parameter ΔJ using a simple formula expressed by

前記試験片における荷重線変位がある所定値を繰り返すように、繰返し荷重を作用させて前記疲労き裂進展試験を行い、該疲労き裂進展試験の結果から前記荷重−変位曲線を求めてもよい。   The fatigue crack growth test may be performed by applying a repeated load so that the load line displacement in the test piece repeats a predetermined value, and the load-displacement curve may be obtained from the result of the fatigue crack growth test. .

また、本発明は、上述の非線形破壊力学パラメータの導出方法により求めた非線形破壊力学パラメータΔJと、前記疲労き裂進展試験で得られた疲労き裂進展速度とに基づき、非線形破壊力学パラメータΔJと疲労き裂進展速度との関係式を求め、該関係式を用いて構造体の健全性を評価する評価方法である。   Further, the present invention is based on the nonlinear fracture mechanics parameter ΔJ obtained by the above-described method for deriving the nonlinear fracture mechanics parameter and the fatigue crack growth rate obtained in the fatigue crack growth test, and the nonlinear fracture mechanics parameter ΔJ and This is an evaluation method for obtaining a relational expression with the fatigue crack growth rate and evaluating the soundness of the structure using the relational expression.

本発明によれば、弾性変形量が大きい場合でも、非線形破壊力学パラメータを精度よく導出することが可能な非線形破壊力学パラメータの導出方法及び評価方法を提供できる。   According to the present invention, it is possible to provide a method for deriving and evaluating a nonlinear fracture mechanics parameter that can accurately derive a nonlinear fracture mechanics parameter even when the amount of elastic deformation is large.

本発明の非線形破壊力学パラメータの導出方法に用いるパラメータ導出装置の概略図である。It is the schematic of the parameter derivation device used for the derivation method of the nonlinear fracture mechanics parameter of the present invention. 本発明の非線形破壊力学パラメータの導出方法のフローチャートである。It is a flowchart of the derivation method of the nonlinear fracture mechanics parameter of the present invention. 図3(a)は中央切欠き平板の斜視図であり、図3(b)は両側貫通切欠き平板の斜視図である。FIG. 3A is a perspective view of the central cut-out flat plate, and FIG. 3B is a perspective view of the both-side through cut-out flat plate. 図4(a),(b)は、本発明の非線形破壊力学パラメータの導出方法における変位の測定方法を説明する図である。4 (a) and 4 (b) are diagrams for explaining a displacement measuring method in the method for deriving the nonlinear fracture mechanics parameter of the present invention. 本発明の非線形破壊力学パラメータの導出方法で求める荷重−変位曲線(P−V曲線)の一例を示す図である。It is a figure which shows an example of the load-displacement curve (PV curve) calculated | required with the derivation | leading-out method of the nonlinear fracture mechanics parameter of this invention. 本発明の評価方法で求める疲労き裂進展速度と非線形破壊力学パラメータの関係の一例を示す図である。It is a figure which shows an example of the relationship between the fatigue crack growth rate calculated | required with the evaluation method of this invention, and a nonlinear fracture mechanics parameter. P−V曲線における弾性変形領域と塑性変形領域を説明する図である。It is a figure explaining the elastic deformation area | region and plastic deformation area | region in a PV curve. 従来用いていた簡易式におけるエネルギを説明する図である。It is a figure explaining the energy in the simple type used conventionally. 従来用いていた簡易式が、弾性変形が大きくなると適用できないことを説明する図である。It is a figure explaining that the simple type used conventionally cannot be applied when elastic deformation becomes large. 本発明の非線形破壊力学パラメータの導出方法で用いる簡易式におけるエネルギを説明する図である。It is a figure explaining the energy in the simple formula used with the derivation | leading-out method of the nonlinear fracture mechanics parameter of this invention. 図11(a)は、従来用いていた簡易式で求めた非線形破壊力学パラメータと疲労き裂進展速度の関係を示す図であり、図11(b)は、本発明により求めた非線形破壊力学パラメータと疲労き裂進展速度の関係を示す図である。FIG. 11A is a diagram showing a relationship between a nonlinear fracture mechanics parameter obtained by a conventional simple formula and a fatigue crack growth rate, and FIG. 11B is a diagram showing a nonlinear fracture mechanics parameter obtained by the present invention. It is a figure which shows the relationship between a fatigue crack growth rate. 図12(a)はCT試験片の斜視図であり、図12(b)は3点曲げ試験片の平面図である。FIG. 12A is a perspective view of a CT test piece, and FIG. 12B is a plan view of a three-point bending test piece. 従来用いていた簡易式におけるエネルギを説明する図である。It is a figure explaining the energy in the simple type used conventionally.

以下、本発明の好適な実施の形態を添付図面にしたがって説明する。   Preferred embodiments of the present invention will be described below with reference to the accompanying drawings.

本発明の非線形破壊力学パラメータの導出方法は、欠陥が存在したままでも継続運転可能な機器および大型構造物(例えば、LNGタンク屋根、タンク底隅肉隅角部、原子力発電設備、ボイラ設備、海洋構造物など)の構造健全性を評価する前段階として、試験片に中央切欠き平板、あるいは両側貫通切欠き平板を用いた場合の非線形破壊力学パラメータΔJを導出する方法である。   The method for deriving the nonlinear fracture mechanics parameter of the present invention is a device and a large structure (for example, an LNG tank roof, a tank bottom fillet corner, a nuclear power generation facility, a boiler facility, an ocean, etc.) that can be operated continuously even if defects exist. This is a method for deriving a non-linear fracture mechanics parameter ΔJ when a central notch flat plate or a bilateral through notch flat plate is used as a test piece as a pre-stage for evaluating the structural soundness of a structure or the like).

まず、本実施形態に係る非線形破壊力学パラメータの導出方法に用いるパラメータ導出装置について説明する。   First, a parameter derivation device used in the method for deriving nonlinear fracture mechanics parameters according to this embodiment will be described.

図1に示すように、パラメータ導出装置1は、引張支配型の所定の試験片を用いた疲労き裂進展試験の結果(実験データ)を入力する実験データ入力部2と、試験片に用いた材料データを記憶する材料データ記憶部3と、解析条件を記憶する解析条件記憶部4と、実験データ入力部2に入力された実験データ、材料データ記憶部3に記憶された材料データ、および解析条件記憶部4に記憶された解析条件を基に解析を行う解析部5と、解析部5での解析結果を記憶する解析結果記憶部6と、解析結果記憶部6に記憶された解析結果を出力する出力部7とを主に備える。   As shown in FIG. 1, the parameter derivation device 1 is used for an experimental data input unit 2 for inputting a result (experimental data) of a fatigue crack growth test using a predetermined tensile-dominated test piece, and the test piece. Material data storage unit 3 for storing material data, analysis condition storage unit 4 for storing analysis conditions, experimental data input to experiment data input unit 2, material data stored in material data storage unit 3, and analysis The analysis unit 5 that performs analysis based on the analysis conditions stored in the condition storage unit 4, the analysis result storage unit 6 that stores the analysis result in the analysis unit 5, and the analysis result stored in the analysis result storage unit 6 An output unit 7 for outputting is mainly provided.

これら実験データ入力部2、材料データ記憶部3、解析条件記憶部4、解析部5、解析結果記憶部6、および出力部7は、インターフェイス、メモリ、CPU、ソフトウェアなどを適宜組み合わせて実現される。   These experimental data input unit 2, material data storage unit 3, analysis condition storage unit 4, analysis unit 5, analysis result storage unit 6, and output unit 7 are realized by appropriately combining an interface, a memory, a CPU, software, and the like. .

解析部5は、実験データ入力部2から入力された実験データを基に、荷重−変位曲線(P−V曲線)を作成するP−V曲線作成部8と、P−V曲線作成部8で作成されたP−V曲線、実験データ入力部2から入力された実験データ、材料データ記憶部3に記憶された材料データ、および解析条件記憶部4に記憶された解析条件を基に非線形破壊力学パラメータΔJを算出するΔJ算出部9と、ΔJ算出部9で算出した非線形破壊力学パラメータΔJ、実験データ入力部2で入力された実験データ、および解析条件記憶部4に記憶された解析条件を基に、疲労き裂進展速度da/dNと非線形破壊力学パラメータΔJの関係式を求める関係式導出部10とを備える。   The analysis unit 5 includes a PV curve creation unit 8 that creates a load-displacement curve (PV curve) based on the experiment data input from the experiment data input unit 2, and a PV curve creation unit 8. Nonlinear fracture mechanics based on the created PV curve, the experimental data input from the experimental data input unit 2, the material data stored in the material data storage unit 3, and the analysis conditions stored in the analysis condition storage unit 4 Based on the ΔJ calculation unit 9 for calculating the parameter ΔJ, the nonlinear fracture mechanics parameter ΔJ calculated by the ΔJ calculation unit 9, the experimental data input by the experimental data input unit 2, and the analysis conditions stored in the analysis condition storage unit 4 And a relational expression deriving unit 10 for obtaining a relational expression between the fatigue crack growth rate da / dN and the nonlinear fracture mechanics parameter ΔJ.

次に、本実施形態に係る非線形破壊力学パラメータの導出方法を、パラメータ導出装置1の動作と共に説明する。   Next, a method for deriving a nonlinear fracture mechanics parameter according to this embodiment will be described together with the operation of the parameter deriving device 1.

図2に示すように、本実施形態に係る非線形破壊力学パラメータの導出方法では、まず、試験片の作製を行う(ステップS1)。   As shown in FIG. 2, in the method for deriving the nonlinear fracture mechanics parameter according to this embodiment, first, a test piece is prepared (step S1).

図3(a)に示すように、本実施形態では、試験片として、幅W、厚さBの板状部材32の中央部に、板状部材32を貫通する欠陥(き裂)33を形成した中央切欠き平板31を用いる。欠陥33の初期の高さはV0、初期の欠陥長さ(幅)は2a0とする。本実施形態では、試験片として中央切欠き平板31を用いたが、試験片としては、図3(b)に示すように、板状部材32の両側端部に初期の高さV0、初期の欠陥長さa0の欠陥34をそれぞれ形成した両側貫通切欠き平板35を用いてもよい。 As shown in FIG. 3A, in this embodiment, a defect (crack) 33 that penetrates the plate-like member 32 is formed as a test piece at the center of the plate-like member 32 having a width W and a thickness B. The center cutout flat plate 31 is used. The initial height of the defect 33 is V 0 , and the initial defect length (width) is 2a 0 . In the present embodiment, the central notch flat plate 31 is used as the test piece. However, as shown in FIG. 3B, the test piece has an initial height V 0 at the both end portions of the plate-like member 32 and an initial height. Alternatively, both-side through-cut flat plates 35 each having the defect 34 having the defect length a 0 may be used.

ステップS1で中央切欠き平板31を作製した後、作製した中央切欠き平板31を用いて疲労き裂進展試験を行う(ステップS2)。   After producing the central notch flat plate 31 in step S1, a fatigue crack growth test is performed using the produced central notch flat plate 31 (step S2).

疲労き裂進展試験は、変位制御や荷重制御により行う。具体的には、例えば、中央切欠き平板31の上下に荷重Pを加え、その荷重線における変位(荷重線変位)Vが0(基準値、すなわち初期の高さV0)と所定値を繰り返すように、繰返し荷重を作用させて疲労き裂進展試験を行う。 The fatigue crack growth test is performed by displacement control and load control. Specifically, for example, a load P is applied to the upper and lower sides of the central notch flat plate 31, and the displacement (load line displacement) V in the load line is 0 (reference value, that is, the initial height V 0 ) and repeats a predetermined value. As described above, a fatigue crack growth test is performed by applying a repeated load.

荷重線における変位の計測は、例えば、図4(a)に示すように、欠陥33近傍の荷重線に沿った位置に、先端にエッジ部を有するナイフエッジ部材41を、その先端が欠陥33側に向くように取り付け、両ナイフエッジ部材41のエッジ部間の距離を計測することにより行うとよい。ナイフエッジ部材41は、ネジ止め、あるいは接着剤を用いるなど、任意の方法で中央切欠き平板31に固定するとよい。   For example, as shown in FIG. 4A, the displacement of the load line is measured by using a knife edge member 41 having an edge at the tip at a position along the load line in the vicinity of the defect 33, and the tip at the defect 33 side. It is good to carry out by attaching so that it may face, and measuring the distance between the edge parts of both the knife edge members 41. FIG. The knife edge member 41 may be fixed to the central notch flat plate 31 by any method such as screwing or using an adhesive.

ナイフエッジ部材41のエッジ部間の距離を計測する際は、図4(b)に示すように、両ナイフエッジ部材41のエッジ部に変位計測器42のプローブ43をそれぞれ接触させ、プローブ43が基準となる位置から移動した距離を計測することにより行うとよい。   When measuring the distance between the edge portions of the knife edge member 41, as shown in FIG. 4B, the probes 43 of the displacement measuring device 42 are brought into contact with the edge portions of both knife edge members 41, respectively. It may be performed by measuring the distance moved from the reference position.

疲労き裂進展試験では、荷重Pに対する変位(欠陥33の高さ、荷重線変位、欠陥開口変位)Vを計測すると共に、繰返し荷重を与えた回数Nに対する欠陥33の欠陥長さ2aの変化を計測し、疲労き裂進展速度da/dNを求めておく。変位Vについては、欠陥33の初期の高さV0(ここではナイフエッジ部材41のエッジ部間の距離)を基準値0とする。また、P−V曲線の荷重範囲を用いて、き裂開口点以上の有効応力拡大係数範囲ΔKeffを求めておく。 In the fatigue crack growth test, the displacement (height of the defect 33, load line displacement, defect opening displacement) V with respect to the load P is measured, and the change in the defect length 2a of the defect 33 with respect to the number N of repeated loads is measured. Measure and obtain fatigue crack growth rate da / dN. For the displacement V, the initial height V 0 of the defect 33 (here, the distance between the edge portions of the knife edge member 41) is set to a reference value 0. Further, the effective stress intensity factor range ΔK eff above the crack opening point is obtained using the load range of the PV curve.

ステップS2で疲労き裂進展試験を行った後、疲労き裂進展試験で得た実験データを基にP−V曲線を作成する(ステップS3)。   After performing the fatigue crack growth test in step S2, a PV curve is created based on the experimental data obtained in the fatigue crack growth test (step S3).

疲労き裂進展試験で得た荷重Pに対する変位(欠陥33の高さ)Vの実験データを、パラメータ導出装置1の実験データ入力部2に入力し、この実験データを基に、解析部5のP−V曲線作成部8にてP−V曲線を作成する。作成したP−V曲線の一例を図5に示す。   The experimental data of the displacement (height of the defect 33) V with respect to the load P obtained in the fatigue crack growth test is input to the experimental data input unit 2 of the parameter derivation device 1, and based on this experimental data, the analysis unit 5 The PV curve creating unit 8 creates a PV curve. An example of the created PV curve is shown in FIG.

ステップ3でP−V曲線を作成した後、これを基に非線形破壊力学パラメータΔJを算出する(ステップS4)。   After the PV curve is created in step 3, the nonlinear fracture mechanics parameter ΔJ is calculated based on this (step S4).

解析部5のΔJ算出部9は、P−V曲線作成部8で作成したP−V曲線、実験データ入力部2から入力された実験データ(き裂開口点以上の有効応力拡大係数範囲ΔKeff、欠陥長さ2a)、材料データ記憶部3に予め記憶された試験片に用いた材料の材料データ(ヤング率E)、および解析条件記憶部4に記憶された解析条件(板厚B、試験片幅W)を基に、[数3]に示す式(1)で表される簡易式を用いて、非線形破壊力学パラメータΔJを求める。 The ΔJ calculation unit 9 of the analysis unit 5 includes a PV curve created by the PV curve creation unit 8 and experimental data input from the experimental data input unit 2 (effective stress intensity factor range ΔK eff above the crack opening point). , Defect length 2a), material data (Young's modulus E) of the material used for the test piece stored in advance in the material data storage unit 3, and analysis conditions (plate thickness B, test) stored in the analysis condition storage unit 4 Based on the half width W), the nonlinear fracture mechanics parameter ΔJ is obtained using a simple formula expressed by the formula (1) shown in [Equation 3].

Figure 2010216883
Figure 2010216883

ステップ4で求めた非線形破壊力学パラメータΔJは、繰返し回数Nと対応づけて解析結果記憶部6に記憶される。   The nonlinear fracture mechanics parameter ΔJ obtained in step 4 is stored in the analysis result storage unit 6 in association with the number of repetitions N.

ステップ4で非線形破壊力学パラメータΔJを求めた後、これを基に疲労き裂進展速度da/dNと非線形破壊力学パラメータΔJの関係式を求める(ステップS5)。   After obtaining the nonlinear fracture mechanics parameter ΔJ in step 4, a relational expression between the fatigue crack growth rate da / dN and the nonlinear fracture mechanics parameter ΔJ is obtained based on this (step S5).

解析部5の関係式導出部10は、ΔJ算出部9で求めた非線形破壊力学パラメータΔJと、実験データ入力部2で入力された疲労き裂進展速度da/dNの関係をプロットし、解析条件記憶部4に記憶された解析条件に基づき、疲労き裂進展速度da/dNと非線形破壊力学パラメータΔJの関係式を求める。   The relational expression derivation unit 10 of the analysis unit 5 plots the relationship between the nonlinear fracture mechanics parameter ΔJ obtained by the ΔJ calculation unit 9 and the fatigue crack growth rate da / dN input by the experimental data input unit 2, and analyzes conditions Based on the analysis conditions stored in the storage unit 4, a relational expression between the fatigue crack growth rate da / dN and the nonlinear fracture mechanics parameter ΔJ is obtained.

図6に示すように、疲労き裂進展速度da/dNと非線形破壊力学パラメータΔJは両対数にて直線関係となり、これらの関係式は下式(3)で表される。   As shown in FIG. 6, the fatigue crack growth rate da / dN and the non-linear fracture mechanics parameter ΔJ have a logarithmic logarithmic relationship, and these relational expressions are expressed by the following expression (3).

da/dN=Cj(ΔJ)mj …(3)
式(3)において、Cj,mjは定数である。関係式導出部10は、解析条件記憶部4に記憶された解析条件(例えば、最小二乗法など)に基づき、プロットされたデータを用いて定数Cj,mjの最適値を算出し、式(3)の関係式を導出する。
da / dN = C j (ΔJ) mj (3)
In Expression (3), C j and m j are constants. The relational expression deriving unit 10 calculates the optimum values of the constants C j and m j using the plotted data based on the analysis conditions (for example, the least square method) stored in the analysis condition storage unit 4. The relational expression (3) is derived.

疲労き裂進展速度da/dNと非線形破壊力学パラメータΔJの関係式は、解析結果記憶部6に記憶され、出力部7を介して外部のモニターなどに出力される。   The relational expression between the fatigue crack growth rate da / dN and the nonlinear fracture mechanics parameter ΔJ is stored in the analysis result storage unit 6 and output to an external monitor or the like via the output unit 7.

以上により、疲労き裂進展速度da/dNと非線形破壊力学パラメータΔJの関係式が得られる。この常微分方程式で表される式(3)の関係式を用い、数値計算により、逐次、非線形破壊力学パラメータΔJと欠陥長さを更新しながら計算する手法を用いることで、構造物の余寿命を評価することが可能となる。   Thus, a relational expression between the fatigue crack growth rate da / dN and the nonlinear fracture mechanics parameter ΔJ is obtained. By using the relational expression of the equation (3) expressed by this ordinary differential equation and using a method of calculating while updating the nonlinear fracture mechanics parameter ΔJ and the defect length sequentially by numerical calculation, the remaining life of the structure Can be evaluated.

ここで、非線形破壊力学パラメータΔJの簡易式として式(1)を用いる理由について説明する。   Here, the reason why Expression (1) is used as a simple expression of the nonlinear fracture mechanics parameter ΔJ will be described.

本実施形態では、非線形破壊力学パラメータΔJの簡易式として[数4]に示す式(1)を用いている。   In the present embodiment, Expression (1) shown in [Expression 4] is used as a simple expression of the nonlinear fracture mechanics parameter ΔJ.

Figure 2010216883
Figure 2010216883

これに対して、従来方法では、非線形破壊力学パラメータΔJの簡易式として[数5]に示す式(2)を用いている。   On the other hand, in the conventional method, Expression (2) shown in [Equation 5] is used as a simple expression of the nonlinear fracture mechanics parameter ΔJ.

Figure 2010216883
Figure 2010216883

式(1)および式(2)において、右辺の第1項は、弾性変形による非線形破壊力学パラメータΔJへの寄与を表すものであり、弾性項(線形項)と呼ばれる。また、右辺の第2項は、塑性変形による非線形破壊力学パラメータΔJへの寄与を表すものであり、塑性項(非線形項)と呼ばれる。   In Expressions (1) and (2), the first term on the right side represents the contribution to the nonlinear fracture mechanics parameter ΔJ due to elastic deformation, and is called an elastic term (linear term). The second term on the right side represents the contribution of the plastic deformation to the nonlinear fracture mechanics parameter ΔJ and is called a plastic term (nonlinear term).

式(1)と式(2)とを比較すると、弾性項は全く同じであり、塑性項におけるエネルギS*に対応する部分が異なっている。この理由について以下に述べる。 Comparing equation (1) and equation (2), the elastic term is exactly the same, and the portion corresponding to the energy S * in the plastic term is different. The reason for this will be described below.

図7は、ある繰返し回数NにおけるP−V曲線である。図7に示すように、このP−V曲線の下側の曲線を延長することで、変位量の基準点となる開始点(opening point)Oが決定される。また、図7のP−V曲線において、荷重Pおよび変位Vが最大となる点を最大点Zという。   FIG. 7 is a PV curve at a certain number of repetitions N. FIG. As shown in FIG. 7, by extending the lower curve of the PV curve, an opening point O serving as a reference point for the displacement amount is determined. Further, in the PV curve of FIG. 7, a point where the load P and the displacement V are maximum is referred to as a maximum point Z.

P−V曲線における全変位量(開始点Oから最大点Zまでの合計の変位量)は、弾性変位量δelと塑性変位量δplの合計値で表すことができる。 The total displacement amount (total displacement amount from the starting point O to the maximum point Z) in the PV curve can be represented by the total value of the elastic displacement amount δ el and the plastic displacement amount δ pl .

弾性変形では荷重Pと変位Vが直線関係になることを考慮すると、最大点ZからP−V曲線に沿った接線を引き、この接線と開始点Oから水平(X軸に平行)に引いた直線との交点Xより右側の変位量、すなわち交点Xから最大点Zまでの変位量が弾性変位量δelであると考えられる。よって、残りの開始点Oから交点Xまでの変位量が塑性変位量δplとなる。 In consideration of the fact that the load P and the displacement V have a linear relationship in elastic deformation, a tangent along the PV curve is drawn from the maximum point Z, and is drawn horizontally (parallel to the X axis) from this tangent and the starting point O. The amount of displacement on the right side of the intersection X with the straight line, that is, the amount of displacement from the intersection X to the maximum point Z is considered to be the elastic displacement δ el . Therefore, the amount of displacement from the remaining start point O to the intersection point X becomes the plastic displacement amount δ pl .

さらに、荷重Pが大きくなるにしたがい弾性変形から塑性変形に移行することを考慮すると、開始点Oからの変位量が弾性変位量δelと等しくなるまでの領域(図示左の領域)Aは弾性変形領域となり、そこから最大点Zまでの領域(図示右の領域)Bが塑性変形領域となる。 Further, in consideration of the transition from elastic deformation to plastic deformation as the load P increases, the region A (the region on the left in the drawing) A until the displacement amount from the starting point O becomes equal to the elastic displacement amount δ el is elastic. A deformation region, and a region B (region on the right in the figure) B from there to the maximum point Z becomes a plastic deformation region.

従来用いていた式(2)で表される簡易式では、エネルギS*を、図8にハッチングで示した面積としている。この面積は、荷重Pを開始点Oから最大点Zまで積分した面積(図示右斜め下斜線部分)から、1/2・P・(δpl+δel)で表される三角形の面積(図示左斜め下斜線部分)を引くことで求められる。 In the simple expression represented by Expression (2) used conventionally, the energy S * is the area indicated by hatching in FIG. This area is the area of a triangle represented by ½ · P · (δ pl + δ el ) (the left side in the figure) from the area obtained by integrating the load P from the starting point O to the maximum point Z (the diagonally lower diagonal line in the figure). It can be obtained by subtracting the diagonally slanted part.

このように、従来用いていた簡易式では、弾性変形領域と塑性変形領域とを含む全変形領域を考慮して、エネルギS*を求めている。そのため、その塑性項には、塑性項であるにもかかわらず弾性成分が寄与することとなる。よって、弾性変形量が大きい場合、精度よく非線形破壊力学パラメータΔJを求めることができなかった。 Thus, in the conventional simple expression, the energy S * is obtained in consideration of the entire deformation region including the elastic deformation region and the plastic deformation region. Therefore, an elastic component contributes to the plastic term, although it is a plastic term. Therefore, when the amount of elastic deformation is large, the nonlinear fracture mechanics parameter ΔJ cannot be obtained with high accuracy.

つまり、従来用いていた簡易式は、図9に破線で示すように弾性変位量δelが小さい場合、すなわち弾性変形が無視できる場合には有効であるが、図9に実線で示すように弾性変位量δelが大きい場合、塑性項における誤差が大きくなり、精度よく非線形破壊力学パラメータΔJを求めることができない。 In other words, the conventional simple expression is effective when the elastic displacement amount δ el is small as shown by the broken line in FIG. 9, that is, when the elastic deformation can be ignored, but the elastic expression as shown by the solid line in FIG. When the displacement amount δ el is large, an error in the plastic term becomes large, and the nonlinear fracture mechanics parameter ΔJ cannot be obtained with high accuracy.

これに対して、本実施形態で用いる簡易式では、塑性項において考慮するエネルギを、図10にハッチングで示した面積としている。この面積は、塑性変形領域において荷重Pを積分した面積(図示右斜め下斜線部分)から、1/2・P・δplで表される三角形の面積(図示左斜め下斜線部分)を引くことで求められる。 On the other hand, in the simplified formula used in the present embodiment, the energy considered in the plastic term is the area shown by hatching in FIG. This area is obtained by subtracting the area of the triangle represented by 1/2 · P · δ pl (the left oblique lower oblique line portion in the figure) from the area obtained by integrating the load P in the plastic deformation region (the oblique lower right oblique line portion in the figure). Is required.

すなわち、本実施形態で用いる簡易式では、弾性変形領域を除き、塑性変形領域のみを考慮している。そのため、塑性項に弾性成分が寄与することがなくなり、弾性変位量δelが大きい場合でも、精度よく非線形破壊力学パラメータΔJを求めることが可能となる。 That is, in the simple formula used in this embodiment, only the plastic deformation region is considered except for the elastic deformation region. Therefore, the elastic component does not contribute to the plastic term, and the nonlinear fracture mechanics parameter ΔJ can be accurately obtained even when the elastic displacement amount δ el is large.

図11(a)に、従来の簡易式を用いて求めた非線形破壊力学パラメータΔJと疲労き裂進展速度da/dNの関係を示す。また、図11(b)に本実施形態で求めた非線形破壊力学パラメータΔJと疲労き裂進展速度da/dNの関係を示す。   FIG. 11A shows the relationship between the nonlinear fracture mechanics parameter ΔJ obtained using a conventional simple formula and the fatigue crack growth rate da / dN. FIG. 11B shows the relationship between the nonlinear fracture mechanics parameter ΔJ obtained in the present embodiment and the fatigue crack growth rate da / dN.

図11(a)、(b)において、図示左側の群集団は試験片に与える変形量を小さく(荷重Pを小さく)した場合の実験結果であり、図示右側の群集団は変形量を大きく(荷重Pを大きく)した場合の実験結果である。また、丸のプロットと四角のプロットでは、試験片の板厚Bが異なる。   11 (a) and 11 (b), the group population on the left side of the figure shows the experimental results when the deformation amount applied to the test piece is small (load P is small), and the group group on the right side of the figure shows a large deformation amount ( It is an experimental result in the case of increasing the load P). Further, the thickness B of the test piece is different between the round plot and the square plot.

図11(a)に示すように、従来の簡易式を用いて求めた非線形破壊力学パラメータΔJと疲労き裂進展速度da/dNの関係は、変形量の大小により別の直線(図示破線で示す直線)で表され、変形量ごとに別の関係式となってしまうため、統一的に評価できないことがわかる。これは、変形量の大小により弾性変位量δelが変化するため、弾性成分の寄与による誤差が影響を及ぼしているためであると考えられる。 As shown in FIG. 11 (a), the relationship between the nonlinear fracture mechanics parameter ΔJ and the fatigue crack growth rate da / dN obtained by using the conventional simple formula is different from the straight line (shown by the broken line in the figure) depending on the amount of deformation. It can be seen that it cannot be evaluated in a unified manner because it is expressed by a straight line) and becomes a different relational expression for each deformation amount. This is presumably because the error due to the contribution of the elastic component has an effect because the elastic displacement amount δel changes depending on the amount of deformation.

したがって、従来の簡易式を用いた場合、安全側の判断とするために、全てのデータを包含するように、図11(a)に実線で示すような関係式とする必要があり、過度に安全側の判断となっていた。   Therefore, when using the conventional simple formula, it is necessary to use a relational formula as shown by a solid line in FIG. 11 (a) so as to include all data in order to make a judgment on the safe side. It was a safety decision.

これに対して、式(1)の簡易式を用いた本実施形態では、弾性成分の寄与による誤差がないため、図11(b)に示すように、試験片の板厚Bや変形量の大小にかかわらず、疲労き裂進展速度da/dNと非線形破壊力学パラメータΔJを一つの関係式で表すことが可能となり、統一的な評価が可能である。   On the other hand, in the present embodiment using the simplified expression of Expression (1), there is no error due to the contribution of the elastic component. Therefore, as shown in FIG. Regardless of the size, the fatigue crack growth rate da / dN and the non-linear fracture mechanics parameter ΔJ can be expressed by one relational expression, and unified evaluation is possible.

以上説明したように、本実施形態に係る非線形破壊力学パラメータの導出方法では、疲労き裂進展試験で得た実験データを用いて作成したP−V曲線を基に、[数6]に示す式(1)   As described above, in the method for deriving the nonlinear fracture mechanics parameter according to the present embodiment, the equation shown in [Expression 6] is based on the PV curve created using the experimental data obtained in the fatigue crack growth test. (1)

Figure 2010216883
Figure 2010216883

で表される簡易式を用いて、非線形破壊力学パラメータΔJを求めている。 The nonlinear fracture mechanics parameter ΔJ is obtained using a simple expression represented by

これにより、欠陥が進展するにつられて大きくなる弾性変位量δelの増分や、それによる塑性変位量δplの変化を考慮し、塑性項における弾性成分の寄与を排除できるため、弾性変位量δelが大きい場合であっても、精度よく非線形破壊力学パラメータΔJを求めることが可能となる。換言すれば、塑性変位量δplの大小にかかわらず、非線形破壊力学パラメータΔJを精度よく導出することができる。 As a result, it is possible to eliminate the contribution of the elastic component in the plastic term in consideration of the increment of the elastic displacement amount δ el that becomes larger as the defect progresses and the change in the plastic displacement amount δ pl due to the increase. Even when el is large, the nonlinear fracture mechanics parameter ΔJ can be obtained with high accuracy. In other words, the nonlinear fracture mechanics parameter ΔJ can be accurately derived regardless of the plastic displacement amount δ pl .

また、非線形破壊力学パラメータΔJを精度よく導出できるため、疲労き裂進展速度da/dNと非線形破壊力学パラメータΔJとの関係式も精度よく求めることが可能となり、この関係式を用いることで、構造体の健全性(余寿命)を精度よく評価することが可能となる。つまり、余寿命評価に必要な疲労き裂進展速度da/dNと非線形破壊力学パラメータΔJの関係を実験的に取得可能となる。   Further, since the nonlinear fracture mechanics parameter ΔJ can be derived with high accuracy, the relational expression between the fatigue crack growth rate da / dN and the nonlinear fracture mechanics parameter ΔJ can be obtained with high precision. It becomes possible to accurately evaluate the health (remaining life) of the body. That is, the relationship between the fatigue crack growth rate da / dN and the nonlinear fracture mechanics parameter ΔJ necessary for the remaining life evaluation can be obtained experimentally.

本実施形態では、試験片として、中央切欠き平板31あるいは両側貫通切欠き平板35を用いた場合を説明したが、例えば、図12(a)に示すCT試験片120や、図12(b)に示す3点曲げ試験片121など、他の形状の試験片にも本発明を適用することが可能である。つまり、CT試験片120や3点曲げ試験片121では、試験片の形状ごとに弾性変位量を無視した簡易式が提案されているが、弾性変位量δelが大きくなるような場合には、本発明と同様に、弾性変位量δelの増分を考慮する(塑性項において弾性変形による寄与を排除する)ようにすればよい。 In the present embodiment, the case where the central notch flat plate 31 or the both side through-cut flat plate 35 is used as the test piece has been described. For example, the CT test piece 120 shown in FIG. 12A or FIG. The present invention can also be applied to test pieces of other shapes such as the three-point bending test piece 121 shown in FIG. That is, in the CT test piece 120 and the three-point bending test piece 121, a simple formula ignoring the elastic displacement amount is proposed for each shape of the test piece, but when the elastic displacement amount δ el is large, Similar to the present invention, the increment of the elastic displacement amount δ el may be taken into consideration (contribution due to elastic deformation is excluded in the plastic term).

1 パラメータ導出装置
2 実験データ入力部
3 材料データ記憶部
4 解析条件記憶部
5 解析部
6 解析結果記憶部
7 出力部
8 P−V曲線作成部
9 ΔJ算出部
10 関係式導出部
DESCRIPTION OF SYMBOLS 1 Parameter derivation apparatus 2 Experimental data input part 3 Material data storage part 4 Analysis condition storage part 5 Analysis part 6 Analysis result storage part 7 Output part 8 PV curve creation part 9 ΔJ calculation part 10 Relational expression derivation part

Claims (3)

引張支配型の所定の試験片を用いて疲労き裂進展試験を行い、該疲労き裂進展試験の結果から荷重−変位曲線を求め、求めた荷重−変位曲線を基に、前記試験片ごとに与えられている簡易式を用いて非線形破壊力学パラメータを求める非線形破壊力学パラメータの導出方法において、
前記試験片が中央切欠き平板あるいは両側貫通切欠き平板であり、前記荷重−変位曲線を基に、[数1]に示す式(1)
Figure 2010216883
で表される簡易式を用いて、非線形破壊力学パラメータΔJを求めることを特徴とする非線形破壊力学パラメータの導出方法。
A fatigue crack growth test is performed using a predetermined tensile-dominated test piece, a load-displacement curve is obtained from the result of the fatigue crack growth test, and each test piece is determined based on the obtained load-displacement curve. In the method of deriving nonlinear fracture mechanics parameters using the simple formula given,
The test piece is a center notched flat plate or a both-side through-cut flat plate, and based on the load-displacement curve, the formula (1) shown in [Expression 1]
Figure 2010216883
A non-linear fracture mechanics parameter derivation method characterized in that a non-linear fracture mechanics parameter ΔJ is obtained using a simple formula expressed by:
前記試験片における荷重線変位がある所定値を繰り返すように、繰返し荷重を作用させて前記疲労き裂進展試験を行い、該疲労き裂進展試験の結果から前記荷重−変位曲線を求める請求項1記載の非線形破壊力学パラメータの導出方法。   The load-displacement curve is obtained from a result of the fatigue crack propagation test by applying a repeated load so that the load line displacement in the test piece repeats a predetermined value. Derivation method of the described nonlinear fracture mechanics parameters. 請求項1または2記載の非線形破壊力学パラメータの導出方法により求めた非線形破壊力学パラメータΔJと、前記疲労き裂進展試験で得られた疲労き裂進展速度とに基づき、非線形破壊力学パラメータΔJと疲労き裂進展速度との関係式を求め、該関係式を用いて構造体の健全性を評価することを特徴とする評価方法。   The nonlinear fracture mechanics parameter ΔJ and the fatigue based on the nonlinear fracture mechanics parameter ΔJ obtained by the method for deriving the nonlinear fracture mechanics parameter according to claim 1 and 2 and the fatigue crack growth rate obtained in the fatigue crack growth test. An evaluation method characterized by obtaining a relational expression with a crack growth rate and evaluating the soundness of the structure using the relational expression.
JP2009061783A 2009-03-13 2009-03-13 Method for deriving and evaluating nonlinear fracture mechanics parameters Expired - Fee Related JP5187243B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009061783A JP5187243B2 (en) 2009-03-13 2009-03-13 Method for deriving and evaluating nonlinear fracture mechanics parameters

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009061783A JP5187243B2 (en) 2009-03-13 2009-03-13 Method for deriving and evaluating nonlinear fracture mechanics parameters

Publications (2)

Publication Number Publication Date
JP2010216883A true JP2010216883A (en) 2010-09-30
JP5187243B2 JP5187243B2 (en) 2013-04-24

Family

ID=42975900

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009061783A Expired - Fee Related JP5187243B2 (en) 2009-03-13 2009-03-13 Method for deriving and evaluating nonlinear fracture mechanics parameters

Country Status (1)

Country Link
JP (1) JP5187243B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102183411A (en) * 2011-02-15 2011-09-14 中国水电顾问集团华东勘测设计研究院 Prediction method for fracture mode of brittle rocks under long-term steady load function
CN102519812A (en) * 2011-12-16 2012-06-27 长沙理工大学 Method for evaluating high-temperature stability of asphalt pavement structure or asphalt mixture
JP2015017927A (en) * 2013-07-12 2015-01-29 Jfeスチール株式会社 Tensile and compression test method and device
CN105067457A (en) * 2015-07-06 2015-11-18 北京航空航天大学 Corrosion crack expansibility characterization and life estimation method
CN112945769A (en) * 2021-02-03 2021-06-11 西安交通大学 Method for evaluating weak micro-area of low-cycle fatigue crack propagation performance of welded joint
CN116577190A (en) * 2023-07-13 2023-08-11 南京华建检测技术有限公司 Intelligent detection method for T-shaped experimental test block
WO2024013878A1 (en) * 2022-07-13 2024-01-18 三菱電機株式会社 Crack inspection device, crack monitoring system, and crack inspection method

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108918298B (en) * 2018-08-10 2020-03-06 西南交通大学 Three-dimensional crack tip constraint effect and characterization method of three-dimensional crack tip equivalent stress field

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03128431A (en) * 1989-04-10 1991-05-31 Hitachi Ltd Method for evaluating life of soldering connection of electronic component
JP2002286606A (en) * 2001-03-26 2002-10-03 Sumitomo Metal Ind Ltd Method of evaluating fatigue crack developing speed of steel product
JP2008185450A (en) * 2007-01-30 2008-08-14 Ihi Corp Calculation and evaluation method of non-linear fracture mechanical parameter
JP2008224351A (en) * 2007-03-12 2008-09-25 Ihi Corp Method of calculating and evaluating non-linear breaking dynamic parameter

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03128431A (en) * 1989-04-10 1991-05-31 Hitachi Ltd Method for evaluating life of soldering connection of electronic component
JP2002286606A (en) * 2001-03-26 2002-10-03 Sumitomo Metal Ind Ltd Method of evaluating fatigue crack developing speed of steel product
JP2008185450A (en) * 2007-01-30 2008-08-14 Ihi Corp Calculation and evaluation method of non-linear fracture mechanical parameter
JP2008224351A (en) * 2007-03-12 2008-09-25 Ihi Corp Method of calculating and evaluating non-linear breaking dynamic parameter

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
JPN6012067368; 山田剛久, 山下洋一: '繰返し大変形下の疲労き裂進展評価法に関する研究' 日本機械学会論文集 A編 Vol.74, No.745, 20080925, Page.1263-1270 *
JPN6012067370; 山田剛久, 山下洋一: 'CT試験片における応力三軸度を考慮した低サイクル疲労き裂進展特性に関する研究' 日本機械学会年次大会講演論文集 Vol.2007, No.Vol.1, 20070907, Page.355-356 *
JPN6012067372; 山田剛久, 山下洋一, 鳥越雅喜, 大竹泰弘: 'CT試験片を用いた繰返し大変形下の疲労き裂進展評価法に関する研究' 日本機械学会材料力学部門講演会講演論文集 Vol.2006, 20060803, Page.225-226 *

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102183411A (en) * 2011-02-15 2011-09-14 中国水电顾问集团华东勘测设计研究院 Prediction method for fracture mode of brittle rocks under long-term steady load function
CN102519812A (en) * 2011-12-16 2012-06-27 长沙理工大学 Method for evaluating high-temperature stability of asphalt pavement structure or asphalt mixture
JP2015017927A (en) * 2013-07-12 2015-01-29 Jfeスチール株式会社 Tensile and compression test method and device
CN105067457A (en) * 2015-07-06 2015-11-18 北京航空航天大学 Corrosion crack expansibility characterization and life estimation method
CN105067457B (en) * 2015-07-06 2017-09-15 北京航空航天大学 A kind of corrosion cracking scalability characterizes the method with life estimate
CN112945769A (en) * 2021-02-03 2021-06-11 西安交通大学 Method for evaluating weak micro-area of low-cycle fatigue crack propagation performance of welded joint
CN112945769B (en) * 2021-02-03 2024-03-29 西安交通大学 Evaluation method for weak micro-area of low cycle fatigue crack propagation performance of welded joint
WO2024013878A1 (en) * 2022-07-13 2024-01-18 三菱電機株式会社 Crack inspection device, crack monitoring system, and crack inspection method
JP7466798B1 (en) 2022-07-13 2024-04-12 三菱電機株式会社 CRACK INSPECTION DEVICE, CRACK MONITORING SYSTEM, AND CRACK INSPECTION METHOD
CN116577190A (en) * 2023-07-13 2023-08-11 南京华建检测技术有限公司 Intelligent detection method for T-shaped experimental test block
CN116577190B (en) * 2023-07-13 2023-11-28 南京华建检测技术有限公司 Intelligent detection method for T-shaped experimental test block

Also Published As

Publication number Publication date
JP5187243B2 (en) 2013-04-24

Similar Documents

Publication Publication Date Title
JP5187243B2 (en) Method for deriving and evaluating nonlinear fracture mechanics parameters
Withers et al. Recent advances in residual stress measurement
Krejsa et al. Probabilistic prediction of fatigue damage based on linear fracture mechanics
JP2014071053A (en) Creep damage assessment method and creep damage assessment system for high-temperature members
JP4867679B2 (en) Nonlinear fracture mechanics parameter calculation method and evaluation method
JP5276723B2 (en) Health evaluation system for nuclear power plants
Chung Fatigue reliability and optimal inspection strategies for steel bridges
Dong et al. Improved effective notch strain approach for fatigue reliability assessment of load-carrying fillet welded cruciform joints in low and high cycle fatigue
JP2011169745A (en) Method for measuring brittle crack stopping fracture toughness
Livieri et al. Fatigue limit evaluation of notches, small cracks and defects: an engineering approach
EP2653829A1 (en) Evaluation of a wrinkle defect
Kardak et al. Stress concentration factors for ASTM E8/E8M-15a plate-type specimens for tension testing
JP2009236540A (en) Fracture performance evaluation method of welded structure, and database apparatus
Dowling et al. Local approach modelling of constraint contributions to the ductile to brittle transition
JP2012032333A (en) Method for evaluating generation of ductile crack and device for the same
Hugaas et al. Estimating SN curves for local fiber dominated fatigue failure in ring specimens representing filament wound pressure vessels with damage
Polies Asmaro Identification of concrete fracture parameters using digital image correlation and inverse analysis
Walker et al. Improved test method and analytical modelling for fatigue crack growth in coarse‐grain titanium alloy with rough fatigue surfaces
Gill et al. A Method for Investigating Multi-Axial Fatigue in a PWR Environment
Budden et al. The R6 defect assessment procedure: status and key recent developments
Zou et al. A risk-informed decision support tool for holistic management of fatigue design, inspection and maintenance
Hack et al. Progress in developing a standard for dynamic strain analysis
Riddle III Development of reliability program for risk assessment of composite structures treating defects as uncertainty variables
Li Fatigue test and prognosis study of welded tubular joints in signal support structures
Hasegawa et al. Proximity factor on transformation from subsurface to surface flaw

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120126

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121218

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121225

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130107

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160201

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160201

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees