JP2010215723A - Method of manufacturing base material of gas oil - Google Patents

Method of manufacturing base material of gas oil Download PDF

Info

Publication number
JP2010215723A
JP2010215723A JP2009061788A JP2009061788A JP2010215723A JP 2010215723 A JP2010215723 A JP 2010215723A JP 2009061788 A JP2009061788 A JP 2009061788A JP 2009061788 A JP2009061788 A JP 2009061788A JP 2010215723 A JP2010215723 A JP 2010215723A
Authority
JP
Japan
Prior art keywords
light oil
base material
oil base
mass
naphthene
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009061788A
Other languages
Japanese (ja)
Inventor
Kazuhiro Kajima
一浩 鹿嶋
Tomoaki Hirano
智章 平野
Shigeari Kagami
成存 各務
Yuei Matsumoto
裕詠 松本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Idemitsu Kosan Co Ltd
Japan Petroleum Energy Center JPEC
Original Assignee
Petroleum Energy Center PEC
Idemitsu Kosan Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Petroleum Energy Center PEC, Idemitsu Kosan Co Ltd filed Critical Petroleum Energy Center PEC
Priority to JP2009061788A priority Critical patent/JP2010215723A/en
Publication of JP2010215723A publication Critical patent/JP2010215723A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of manufacturing a base material of gas oil having a cetane index of at least 50 from a gas oil fraction of a synthetic crude oil manufactured from an unconventional crude oil, such as oil sand bitumen, which has been heretofore difficult in effective use as a base material of gas oil. <P>SOLUTION: The method of manufacturing the base material of gas oil includes hydrocracking the gas oil fraction containing at least 50 mass% of an aromatic component and/or an aromatic component at least a part of which is nucleus hydrogenated and having a cetane index of less than 50 to thereby convert a bicyclic naphthene in the gas oil fraction into at least a monocyclic naphthene to manufacture the base material of gas oil having a cetane index of at least 50. <P>COPYRIGHT: (C)2010,JPO&amp;INPIT

Description

本発明はオイルサンドビチューメン等の非従来型原油から得られる低品位な軽油留分から、セタン指数50以上の軽油基材を製造する方法に関する。   The present invention relates to a method for producing a light oil base material having a cetane index of 50 or more from a low-grade light oil fraction obtained from unconventional crude oil such as oil sand bitumen.

オイルサンドビチューメン等の非従来型原油から製造された合成原油の軽油留分は、主に多環芳香族分およびその水素化物で構成されているために、セタン指数が低く、軽油基材としての活用が困難である。
上記軽油留分等の、例えば、コーカー熱分解装置から得られる軽油留分については、これを直留軽油に15〜40容量%混合した後、水素化処理して硫黄分10質量ppm以下、セタン指数50以上の軽油基材を製造する技術が提案されている(特許文献1)。このように、従来の水素化処理技術では、コーカー熱分解装置からの軽油留分はセタン指数が高い直留軽油と混合しなければ軽油基材として活用が困難であった。
The light oil fraction of synthetic crude oil produced from non-conventional crude oil such as oil sand bitumen is mainly composed of polycyclic aromatics and hydrides thereof, so it has a low cetane index and is used as a light oil base. It is difficult to use.
For example, a gas oil fraction obtained from a coker pyrolysis apparatus, such as the above gas oil fraction, is mixed with straight-run gas oil in an amount of 15 to 40% by volume and then hydrotreated to have a sulfur content of 10 mass ppm or less, cetane. A technique for producing a light oil base having an index of 50 or more has been proposed (Patent Document 1). Thus, in the conventional hydrotreating technology, it was difficult to use the light oil fraction from the coker pyrolysis apparatus as a light oil base material unless it was mixed with straight-run gas oil having a high cetane index.

特開2008−248175号公報JP 2008-248175 A

従って、コーカー熱分解装置と水素化処理技術の組合せで製造されるオイルサンドビチューメン等の非従来型原油の合成原油中の軽油留分についても同様またはそれ以上に直留軽油との混合比率が制限され軽油基材としての活用が困難であるという問題があった。
本発明は、これまで軽油基材としての活用が困難であったオイルサンドビチューメン等の非在来型原油から製造した合成原油の軽油留分等のセタン指数50未満の低品位の軽油留分から、セタン指数50以上の軽油基材を製造する方法を提供する。
Therefore, the mixing ratio with straight-run gas oil is also limited for diesel oil fractions in synthetic crude oil of non-conventional crude oil such as oil sand bitumen produced by a combination of coker pyrolysis equipment and hydrotreating technology. However, there is a problem that it is difficult to utilize as a light oil base material.
The present invention is a low-grade gas oil fraction having a cetane index of less than 50, such as a gas oil fraction of synthetic crude oil produced from unconventional crude oil such as oil sand bitumen, which has been difficult to use as a gas oil base until now, A method for producing a light oil base material having a cetane index of 50 or more is provided.

オイルサンドビチューメン等の非従来型原油から製造される合成原油の軽油留分のセタン指数が低いのは、該軽油留分が、2環以上の多環芳香族分が水素化されてなる成分により主として構成されているためであり、水素化処理で芳香族環を完全核水添しても、デカリンに代表される2環ナフテンまでの水素化に留まるため、セタン指数は40程度までしか向上しない。従って、セタン指数50以上に改質するためには、更に水素化分解処理を施し、2環ナフテンを開環し、アルキル基を有する1環ナフテンへの転換を行うことが必要であり、また更にパラフィンへの転換を行うことが好ましい。   The low cetane index of the light oil fraction of synthetic crude oil produced from unconventional crude oil such as oil sand bitumen is due to the fact that the gas oil fraction is a hydrogenated component of two or more polycyclic aromatics. This is because it is mainly composed, and even if the aromatic ring is completely hydrogenated by hydrogenation treatment, the hydrogenation is limited to bicyclic naphthene typified by decalin, so the cetane index only improves to about 40. . Therefore, in order to improve the cetane index to 50 or more, it is necessary to further perform a hydrocracking treatment, open the bicyclic naphthene, and convert it to a monocyclic naphthene having an alkyl group. Conversion to paraffin is preferred.

本発明は、
[1]芳香族成分及び/又は芳香族成分の少なくとも一部が核水添されてなる成分を50質量%以上含有する、セタン指数が50未満の軽油留分を水素化分解して、前記軽油留分中の2環ナフテンを少なくとも1環ナフテンに転換させて、セタン指数50以上の軽油基材を製造する、軽油基材の製造方法、
[2]前記1環ナフテンをパラフィンに転換する工程を含む、上記[1]記載の軽油基材の製造方法、
[3]前記軽油留分が、オイルサンドビチューメンから製造された合成原油を蒸留して得られる軽油留分である、上記[1]又は[2]に記載の軽油基材の製造方法、
[4]前記軽油留分が、炭化水素を熱分解装置で処理して得られる軽油留分である、上記[1]又は[2]に記載の軽油基材の製造方法、
[5]前記軽油留分の水素化分解処理に用いられる触媒が、長周期型周期律表の第6族及び第8〜10族に属する金属から選ばれる少なくとも1種、及び結晶アルミノシリケートを含有する水素化分解触媒である、上記[1]〜[4]のいずれかに記載の軽油基材の製造方法、
The present invention
[1] The gas oil is obtained by hydrocracking a gas oil fraction containing 50% by mass or more of an aromatic component and / or a component obtained by hydrogenating at least a part of the aromatic component and having a cetane index of less than 50, A method for producing a light oil base material, wherein a bicyclic naphthene in the fraction is converted into at least one ring naphthene to produce a light oil base material having a cetane index of 50 or more,
[2] The method for producing a light oil base material according to the above [1], comprising a step of converting the monocyclic naphthene into paraffin.
[3] The method for producing a light oil base material according to the above [1] or [2], wherein the light oil fraction is a light oil fraction obtained by distilling synthetic crude oil produced from oil sand bitumen.
[4] The method for producing a light oil base material according to the above [1] or [2], wherein the light oil fraction is a light oil fraction obtained by treating a hydrocarbon with a thermal cracking device,
[5] The catalyst used for hydrocracking of the gas oil fraction contains at least one selected from metals belonging to Group 6 and Groups 8 to 10 of the long-period periodic table, and crystalline aluminosilicate. A method for producing a light oil base material according to any one of the above [1] to [4], which is a hydrocracking catalyst

[6]前記水素化分解触媒中における結晶アルミノシリケートの含有量が10〜70質量%である、上記[5]記載の軽油基材の製造方法、
[7]前記結晶アルミノシリケートが超安定化Y型ゼオライトである、上記[5]又は[6]に記載の軽油基材の製造方法、
[8]軽油基材中におけるパラフィンの1環ナフテンに対する割合(パラフィン/1環ナフテン)を質量比で1.0以下とする、上記[2]〜[7]のいずれかに記載の軽油基材の製造方法、
[9]前記軽油留分を、水素化脱硫処理した後に前記水素化分解を行う、上記[1]〜[8]のいずれかに記載の軽油基材の製造方法、及び
[10]芳香族成分及び/又は芳香族成分の少なくとも一部が核水添されてなる成分を50質量%以上含有する、セタン指数が50未満の軽油留分から、上記[1]〜[9]のいずれかに記載の製造方法により得られる、セタン指数50以上の軽油基材、
に関する。
[6] The method for producing a light oil base according to the above [5], wherein the content of the crystalline aluminosilicate in the hydrocracking catalyst is 10 to 70% by mass,
[7] The method for producing a light oil base material according to the above [5] or [6], wherein the crystalline aluminosilicate is an ultrastabilized Y-type zeolite,
[8] The light oil base according to any one of the above [2] to [7], wherein the ratio of paraffin to monocyclic naphthene in the light oil base (paraffin / 1-ring naphthene) is 1.0 or less by mass ratio. Manufacturing method,
[9] The method for producing a light oil base material according to any one of the above [1] to [8], wherein the hydrocracking is performed after the gas oil fraction is hydrodesulfurized, and [10] an aromatic component. And / or a gas oil fraction having a cetane index of less than 50, containing 50% by mass or more of a component obtained by nuclear hydrogenation of at least a part of the aromatic component, according to any one of [1] to [9] above. A light oil base material having a cetane index of 50 or more obtained by a production method;
About.

本発明によれば、これまで軽油基材としての活用が困難だったオイルサンドビチューメン等の非在来型原油から製造した合成原油の軽油留分等のセタン指数50未満の低品位の軽油留分から、セタン指数50以上の軽油基材を製造する方法を提供することができる。
また、本発明の製造方法により、直留軽油等と混合することなく軽油基材として使用することができる、セタン指数50以上の軽油基材を提供することができる。
According to the present invention, from a low-grade light oil fraction having a cetane index of less than 50, such as a light oil fraction of synthetic crude oil produced from unconventional crude oil such as oil sand bitumen, which has been difficult to use as a light oil base material until now. A method for producing a light oil base material having a cetane index of 50 or more can be provided.
In addition, the production method of the present invention can provide a light oil base material having a cetane index of 50 or more that can be used as a light oil base material without being mixed with straight-run light oil or the like.

[軽油基材の製造方法]
本発明の軽油基材の製造方法は、芳香族成分及び/又は芳香族成分の少なくとも一部が核水添されてなる成分を50質量%以上含有する、セタン指数が50未満の軽油留分を水素化分解して、前記軽油留分中の2環ナフテンを少なくとも1環ナフテンに転換させて、セタン指数50以上の軽油基材を製造するものである。
[Method for producing light oil base]
The method for producing a gas oil base of the present invention comprises a gas oil fraction having a cetane index of less than 50, containing 50% by mass or more of an aromatic component and / or a component obtained by hydrogenating at least a part of the aromatic component. A gas oil base having a cetane index of 50 or more is produced by hydrocracking to convert at least one ring naphthene in the gas oil fraction into one ring naphthene.

(セタン指数50未満の軽油留分)
本発明の製造方法においては、芳香族成分及び/又は芳香族成分の少なくとも一部が核水添されてなる成分を50質量%以上含有する、セタン指数が50未満の軽油留分を原料として用いる。
芳香族成分及び芳香族成分の少なくとも一部が核水添されてなる成分の芳香族成分としては、芳香族環を1以上有する芳香族化合物、例えば、アルキルベンゼン、2環あるいは3環の芳香族化合物が挙げられる。
(Diesel oil fraction with a cetane index of less than 50)
In the production method of the present invention, a gas oil fraction having a cetane index of less than 50 and containing 50% by mass or more of an aromatic component and / or a component obtained by hydrogenating at least a part of the aromatic component is used as a raw material. .
The aromatic component and the aromatic component in which at least a part of the aromatic component is nuclear hydrogenated include aromatic compounds having one or more aromatic rings, such as alkylbenzene, bicyclic or tricyclic aromatic compounds Is mentioned.

前記軽油留分は、上記芳香族成分の少なくとも一部が核水添されてなる成分を含有するが、上記ものとしては、1環、2環、3環等の芳香族分のそれぞれの環数に相当する環状ナフテン、または、2環芳香族の2環のうち1の芳香族環が核水添されたテトラリンが挙げられ、そのうち、2環ナフテンを含有するものが本発明の効果が有効に得られる点で好ましい。上記成分は、芳香族成分の少なくとも一部を核水添して得られるが、最終的に原料としての軽油留分が、そのような成分及び芳香族成分を50質量%以上含むように核水添して得られたものであればよい。この観点及び本発明の効果の点から、上記核水添は、好ましくは芳香族成分の30〜100容量%、より好ましくは50〜100容量%について行う。水添処理方法としては、軽油留分の水添に用いられる通常の水素化処理をいずれも採用することができる。   The gas oil fraction contains a component obtained by nuclear hydrogenation of at least a part of the aromatic component. Examples of the above include the number of aromatic rings such as one ring, two rings, and three rings. Or a tetralin in which one aromatic ring out of two bicyclic aromatic rings is nuclear hydrogenated, and those containing bicyclic naphthene are effective in the effect of the present invention. It is preferable at the point obtained. The above component is obtained by nuclear hydrogenation of at least a part of the aromatic component, but finally the nuclear water is used so that the light oil fraction as a raw material contains 50% by mass or more of such component and aromatic component. What is necessary is just to be obtained. From this viewpoint and the effect of the present invention, the nuclear hydrogenation is preferably performed for 30 to 100% by volume, more preferably 50 to 100% by volume of the aromatic component. As the hydrogenation treatment method, any of the usual hydrogenation treatments used for hydrogenation of light oil fractions can be employed.

原料軽油留分には、上述のように、芳香族成分及び/又は芳香族成分の少なくとも一部が核水添されてなる成分を50質量%以上含むが、本発明を効果的に発揮するためには、60質量%以上含有することが好ましく、70質量%以上含有することが更に好ましい。その上限値は特に制限されない。上記の成分のうち、2環ナフテンは同様の観点から、軽油留分中に20〜60質量%含有されることが好ましく、40〜60質量%含有されることがより好ましい。また、上記2環ナフテンは上記飽和分中に、50〜80質量%含有されることが好ましく、60〜80質量%含有されることがより好ましい。   As described above, the raw gas oil fraction contains 50% by mass or more of an aromatic component and / or a component obtained by nuclear hydrogenation of at least a part of the aromatic component, in order to exert the present invention effectively. Is preferably contained in an amount of 60% by mass or more, and more preferably 70% by mass or more. The upper limit is not particularly limited. Among the above components, the bicyclic naphthene is preferably contained in an amount of 20 to 60% by mass and more preferably 40 to 60% by mass in the light oil fraction from the same viewpoint. The bicyclic naphthene is preferably contained in the saturated content in an amount of 50 to 80% by mass, more preferably 60 to 80% by mass.

上記軽油留分は、そのセタン指数が50未満であるが、本発明は、そのようなセタン指数の軽油留分について、本発明の効果が十分に得られるものであり、この点で、セタン指数は、20〜50であるものが好ましく、35〜50であるものがより好ましい。
上述のような芳香族成分及び/又は芳香族成分の少なくとも一部が核水添されてなる成分を50質量%以上含有する、セタン指数が50未満の軽油留分以外の軽油留分については、これに本発明の製造方法を適用することは任意であるが、そのような軽油留分は、本来比較的パラフィン分や1環芳香族分が多いものであり、本発明の製造方法を適用することで、逆にそれらの分解が進み、本発明の製造方法が目的とする軽油基材の生成が少なくなることがある。
The gas oil fraction has a cetane index of less than 50. However, the present invention can sufficiently obtain the effects of the present invention for the gas oil fraction having such a cetane index. Is preferably 20-50, more preferably 35-50.
About the light oil fraction other than the light oil fraction having a cetane index of less than 50, containing 50% by mass or more of the aromatic component and / or the component obtained by nuclear hydrogenation of at least a part of the aromatic component as described above, Although it is optional to apply the production method of the present invention to this, such a light oil fraction is inherently relatively rich in paraffin and monocyclic aromatic components, and the production method of the present invention is applied. On the contrary, the decomposition thereof proceeds, and the production of the light oil base intended by the production method of the present invention may be reduced.

本発明において、「軽油留分」とは、90%留出温度が267℃を超え400℃以下の留分をいい、本発明において好ましく使用しうる軽油留分としては、例えば、カナダ産オイルサンドビチューメンから製造された合成原油を蒸留して得られる軽油留分;炭化水素を熱分解装置(コーカー)で処理して得られる軽油留分(所謂、コーカー軽油)、特に、オリノコ原油等の超重質原油等の炭化水素を熱分解装置にかけ熱分解して得られる軽油留分等が挙げられるが、本発明の課題、効果の点から、本発明の製造方法は、カナダ産オイルサンドビチューメン等の非在来型原油から製造された合成原油の軽油留分により好ましく適用できる。   In the present invention, the “light oil fraction” means a fraction having a 90% distillation temperature exceeding 267 ° C. and not more than 400 ° C. Examples of the light oil fraction that can be preferably used in the present invention include Canadian oil sands. A light oil fraction obtained by distilling synthetic crude oil produced from bitumen; a light oil fraction obtained by treating hydrocarbons with a pyrolyzer (coker) (so-called coker gas oil), especially ultra heavy oil such as Orinoco crude oil Examples include gas oil fractions obtained by pyrolyzing hydrocarbons such as crude oil in a pyrolysis apparatus. From the viewpoint of the problems and effects of the present invention, the production method of the present invention is not suitable for Canadian oil sand bitumen or the like. It can be preferably applied to a light oil fraction of synthetic crude oil produced from conventional crude oil.

軽油留分は、本発明の製造方法の原料として、前述の性状、組成を有するものであれば、その他の性状、組成については特に制限はないが、一般に以下のような性状であることが好ましい。以下、括弧内の値は好ましい範囲である。
流動点:−30〜−1℃(−20〜−10℃)
密度:0.86〜0.90g/cc(0.87〜0.89g/cc)
硫黄分:50〜1,500質量ppm(100〜1,000質量ppm)
蒸留性状 10%留出温度:250〜300℃(270〜300℃)
50%留出温度:270〜330℃(300〜330℃)
90%留出温度:300〜400℃(330〜380℃)
飽和分量:40〜70容量%(50〜70容量%)
芳香族分量:30〜60容量%(30〜50容量%)
1環芳香族分量:20〜40容量%(20〜30容量%)
多環芳香族分量:3〜20容量%(5〜15容量%)
The light oil fraction is not particularly limited as long as it has the above-described properties and composition as a raw material of the production method of the present invention, but generally has the following properties. . Hereinafter, the value in parentheses is a preferred range.
Pour point: -30 to -1 ° C (-20 to -10 ° C)
Density: 0.86-0.90 g / cc (0.87-0.89 g / cc)
Sulfur content: 50-1,500 mass ppm (100-1,000 mass ppm)
Distillation properties 10% distillation temperature: 250-300 ° C (270-300 ° C)
50% distillation temperature: 270-330 ° C (300-330 ° C)
90% distillation temperature: 300-400 ° C (330-380 ° C)
Saturation amount: 40 to 70% by volume (50 to 70% by volume)
Aromatic content: 30-60% by volume (30-50% by volume)
1-ring aromatic content: 20 to 40% by volume (20 to 30% by volume)
Polycyclic aromatic content: 3 to 20% by volume (5 to 15% by volume)

(セタン指数50以上の軽油基材の製造)
本発明の製造方法においては、前記原料軽油留分中の2環ナフテンを水素化分解して少なくとも1環ナフテンに転換させて、セタン指数50以上の軽油基材を製造する。本発明において、「少なくとも1環ナフテンに転換させ」とは、少なくとも2環ナフテンを1環ナフテンに転換する工程を有すればよいことを意味する。従って、更に、1環ナフテンをパラフィンに転換する工程を有する場合も、有しない場合も包含し、1環ナフテンからパラフィンへの1部転換も含むことができる。
すなわち、上記原料軽油留分は、既に水素化処理により充分に水添されたものであり、芳香族分の核水添はほぼ平衡に達しており、これ以上の核水添は困難であるとともに不経済であるにもかかわらず、そのセタン指数は、未だ50未満であり、軽油基材として活用するには十分ではない。本発明は、このような原料軽油留分中の2環ナフテンを更に水素化して開環させ、1環ナフテンに転換し、更に好ましくは、パラフィンに開環することで、セタン指数50以上の軽油基材を得ることができたものである。
(Manufacture of light oil base materials with a cetane index of 50 or more)
In the production method of the present invention, a bicyclic naphthene in the raw gas oil fraction is hydrocracked to be converted into at least one cyclic naphthene to produce a light oil base material having a cetane index of 50 or more. In the present invention, “converting to at least one-ring naphthene” means that it is sufficient to have a step of converting at least two-ring naphthene to one-ring naphthene. Therefore, it may include a case where it has a step of converting 1-ring naphthene to paraffin and a case where it does not have, and can also include 1-part conversion from 1-ring naphthene to paraffin.
That is, the above-mentioned raw gas oil fraction has been sufficiently hydrogenated by hydroprocessing, and the nuclear hydrogenation of the aromatics has almost reached equilibrium, and further nuclear hydrogenation is difficult. Despite being uneconomical, its cetane index is still less than 50, which is not sufficient for use as a light oil base. In the present invention, a gas oil having a cetane index of 50 or more is obtained by further hydrogenating the bicyclic naphthene in such a raw gas oil fraction, opening the ring, converting it to a monocyclic naphthene, and opening the paraffin more preferably. A substrate could be obtained.

前記軽油留分中の2環ナフテンの開環は、例えば、以下のように行われ、具体的には、水素化分解処理により行われる。

Figure 2010215723
Ring opening of the bicyclic naphthene in the light oil fraction is performed, for example, as follows, specifically, by hydrocracking.
Figure 2010215723

上記開環処理に用いられる触媒としては、反応性及び本発明の効果を有効に発揮させる点から、長周期型周期律表の第6族及び第8〜10族に属する金属から選ばれる少なくとも1種を耐火物性担体に担持した触媒が好ましい。長周期型周期律表の第6族及び第8〜10族に属する金属のうち、本発明においては、上記観点から、モリブデン、ニッケル、コバルト、タングステン等の金属が好ましく、より好ましくは、モリブデン、ニッケル、コバルトである。これらは、1種でも使用できるが、2種以上組み合わせて使用することが反応性及び本発明の効果を有効に発揮させる点で好ましい。   The catalyst used for the ring-opening treatment is at least one selected from metals belonging to Groups 6 and 8-10 of the long-period periodic table from the viewpoint of effectively exhibiting the reactivity and the effects of the present invention. A catalyst having a seed supported on a refractory support is preferred. Of the metals belonging to Group 6 and Groups 8 to 10 of the long-period periodic table, in the present invention, from the above viewpoint, metals such as molybdenum, nickel, cobalt, and tungsten are preferable, and molybdenum, Nickel and cobalt. These can be used singly or in combination of two or more, from the viewpoint of effectively exhibiting the reactivity and the effects of the present invention.

また、耐火物性担体としては、アルミナ、シリカアルミナ、ボリアアルミナ、シリカ、結晶性アルミノシリケート等を含有するものを用いることができ、2環ナフテンの開環反応を充分に進める点から、結晶性アルミノシリケート、シリカアルミナ、シリカ、が好ましく、より好ましくは結晶性アルミノシリケートである。これらは、1種でも使用できるが、2種以上組み合わせて使用することもできる。
本発明においては、上記触媒として、長周期型周期律表の第6族及び第8〜10族に属する金属から選ばれる少なくとも1種を含有し、かつ結晶アルミノシリケートを含有する水素化分解触媒が好ましく使用できる。
Further, as the refractory support, those containing alumina, silica alumina, boria alumina, silica, crystalline aluminosilicate, etc. can be used. From the point of sufficiently proceeding the ring-opening reaction of bicyclic naphthene, crystalline alumino Silicate, silica alumina, and silica are preferable, and crystalline aluminosilicate is more preferable. These can be used singly or in combination of two or more.
In the present invention, as the catalyst, a hydrocracking catalyst containing at least one selected from metals belonging to Group 6 and Groups 8 to 10 of the long-period periodic table and containing crystalline aluminosilicate is provided. It can be preferably used.

上記長周期型周期律表の第6族及び第8〜10族に属する金属は、2環ナフテンの開環反応を充分に進める点から、好ましくは触媒中に2〜25質量%含有され、より好ましくは5〜20質量%含有され、更に好ましくは10〜15質量%含有される。
また、結晶性アルミノシリケートを使用する場合は、その含有量は、2環ナフテンの開環反応を充分に進める点から、触媒中、10〜70質量%であることが好ましく、より好ましくは30〜70質量%であり、更に好ましくは40〜70質量%である。
The metals belonging to Groups 6 and 8 to 10 of the long periodic table are preferably contained in the catalyst in an amount of 2 to 25% by mass from the viewpoint of sufficiently proceeding with the ring-opening reaction of the bicyclic naphthene, and more Preferably it contains 5-20 mass%, More preferably, it contains 10-15 mass%.
Moreover, when using crystalline aluminosilicate, it is preferable that the content is 10-70 mass% in a catalyst from the point which advances the ring-opening reaction of bicyclic naphthene fully, More preferably, 30- It is 70 mass%, More preferably, it is 40-70 mass%.

結晶性アルミノシリケートとしては、Y型ゼオライト、β型ゼオライト、モルデナイトゼオライト等を用いることができるが、2環ナフテンの開環反応を充分に進める点から、超安定化Y型ゼオライトを用いることが好ましい。
上記結晶性アルミノシリケートは、本発明を効果的に発揮させる点から、そのシリカ/アルミナ(SiO2/Al23)質量比が、10〜70であることが好ましく、20〜55であることがより好ましい。また、その比表面積、細孔容積が、それぞれ、700〜900m2/g、0.2〜0.7cc/gであることが好ましく、それぞれ800〜850m2/g、0.3〜0.6cc/gであることがより好ましい。上記比表面積はBET法により、細孔容積は窒素吸着法により測定することができる。
As the crystalline aluminosilicate, Y-type zeolite, β-type zeolite, mordenite zeolite and the like can be used, but it is preferable to use super-stabilized Y-type zeolite from the viewpoint of sufficiently proceeding the ring-opening reaction of bicyclic naphthene. .
The crystalline aluminosilicate preferably has a silica / alumina (SiO 2 / Al 2 O 3 ) mass ratio of 10 to 70, preferably 20 to 55, in order to effectively exhibit the present invention. Is more preferable. Further, the specific surface area, pore volume, respectively, is preferably 700~900m 2 /g,0.2~0.7cc/g, respectively 800~850m 2 /g,0.3~0.6cc / G is more preferable. The specific surface area can be measured by the BET method, and the pore volume can be measured by the nitrogen adsorption method.

本発明においては、上記触媒の存在下、セタン指数が50未満の原料軽油留分から、水素化分解処理により、前記軽油留分中の2環ナフテンを開環させ、少なくとも1環ナフテンに転換させて、セタン指数50以上の軽油基材を製造する。その際の反応条件は、2環ナフテンの開環反応を充分に進める点から、以下のとおりである。
前記水素化分解触媒は原料油100ccに対し、好ましくは50〜500cc、より好ましくは63〜200cc使用する。また、水素分圧は3〜10MPaであることが好ましく、5〜7MPaであることがより好ましい。また、水素モル比としては、200〜2000Nm3/klであることが好ましく、1000〜2000Nm3/klであることがより好ましい。更に、反応温度としては、300〜400℃であることが好ましく、330〜380℃であることがより好ましい。また、液空間速度(LHSV)としては、0.2〜2.0h-1であることが好ましく、0.5〜1.6h-1であることがより好ましい。
In the present invention, in the presence of the above catalyst, a bicyclic naphthene in the gas oil fraction is opened from a raw gas oil fraction having a cetane index of less than 50 by hydrocracking, and converted into at least one ring naphthene. A light oil base material having a cetane index of 50 or more is produced. The reaction conditions at that time are as follows from the viewpoint of sufficiently proceeding with the ring-opening reaction of the bicyclic naphthene.
The hydrocracking catalyst is preferably used in an amount of 50 to 500 cc, more preferably 63 to 200 cc, based on 100 cc of the raw material oil. Moreover, it is preferable that hydrogen partial pressure is 3-10 Mpa, and it is more preferable that it is 5-7 Mpa. As the molar ratio of hydrogen is preferably 200 to 2000 nm 3 / kl, more preferably 1000 - 2000 nm 3 / kl. Furthermore, as reaction temperature, it is preferable that it is 300-400 degreeC, and it is more preferable that it is 330-380 degreeC. As the liquid hourly space velocity (LHSV), it is preferably 0.2~2.0H -1, and more preferably 0.5~1.6h -1.

本発明においては、上記反応において得られた1環ナフテン分を、パラフィンに転換することで、更にセタン指数を向上することができる。しかしながら、得られる軽油基材の流動点を考慮すると、低温流動性の観点から、上記反応を適度に制御することが好ましい。得られるパラフィンとしては、n−パラフィン、イソパラフィンのいずれであってもよいが、セタン指数向上の点から、イソパラフィンであることが好ましい。
1環ナフテンをパラフィンに転換する工程は、1工程で行っても良いが、2以上の工程で行うこともできる。例えば、触媒充填層を2つのゾーンにわけて、各ゾーンの反応条件を変えることで、一方のゾーン(第1触媒層)では主に、2環ナフテンを1環ナフテンに、他方のゾーン(第2触媒層)では主に、1環ナフテンをパラフィンに転換させて行うことができる。
この場合、各々の工程で用いる触媒としては前述した水素化分解触媒を用いることができる。
In the present invention, the cetane index can be further improved by converting the monocyclic naphthene obtained in the above reaction into paraffin. However, considering the pour point of the resulting light oil base, it is preferable to moderately control the reaction from the viewpoint of low temperature fluidity. The paraffin obtained may be either n-paraffin or isoparaffin, but isoparaffin is preferred from the viewpoint of improving the cetane index.
The step of converting monocyclic naphthene to paraffin may be performed in one step, but may be performed in two or more steps. For example, by dividing the catalyst packed bed into two zones and changing the reaction conditions of each zone, in one zone (first catalyst layer), mainly two-ring naphthene is changed to one-ring naphthene and the other zone (first The two-catalyst layer can be performed mainly by converting monocyclic naphthene into paraffin.
In this case, the aforementioned hydrocracking catalyst can be used as the catalyst used in each step.

原料油feed上流側のゾーンを第1触媒層とし、その水素分圧や温度を、下流側のゾーン(第2触媒層)より低くすることで前記目的を達成できる方向に反応が進む。例えば、第1触媒層は、反応温度を350〜360℃、圧力5〜7MPa、LHSVは1〜5h-1、第2触媒層は、反応温度:330〜340℃(前段より低温に設定する)、圧力:5〜7MPa、LHSV:1〜5h-1(前段より接触時間が長くなるように設定する)
本発明の軽油基材中における2環ナフテン、1環ナフテン及びパラフィンの含有量は、本発明の課題及び効果の点から、それぞれ10〜40質量%、20〜50質量%、10〜30質量%であることが好ましく、それぞれ10〜30質量%、30〜40質量%、20〜30質量%であることがより好ましい。
The zone on the upstream side of the feed oil feed is used as the first catalyst layer, and the reaction proceeds in a direction in which the above-mentioned purpose can be achieved by setting the hydrogen partial pressure and temperature lower than those on the downstream zone (second catalyst layer). For example, the first catalyst layer has a reaction temperature of 350 to 360 ° C., a pressure of 5 to 7 MPa, LHSV is 1 to 5 h −1 , and the second catalyst layer has a reaction temperature of 330 to 340 ° C. (set to a lower temperature than the previous stage). , Pressure: 5-7 MPa, LHSV: 1-5 h −1 (set so that the contact time is longer than the previous stage)
The contents of bicyclic naphthene, monocyclic naphthene and paraffin in the light oil base of the present invention are 10 to 40% by mass, 20 to 50% by mass and 10 to 30% by mass, respectively, from the viewpoints of the problems and effects of the present invention. It is preferable that it is 10-30 mass%, 30-40 mass%, and 20-30 mass%, respectively.

上記の点から、本発明においては、得られる軽油基材中における、1環ナフテンとパラフィンの合計含有量は、50〜70質量%であることが好ましく、55〜65質量%であることがより好ましい。
また、パラフィンの1環ナフテンに対する割合(パラフィン/1環ナフテン)は、質量比で1.0以下であることが好ましく、0.6〜0.9であることがより好ましく、0.6〜0.8であることが更に好ましい。1環ナフテンをパラフィンに転換する際の処理条件については、上記2環ナフテンの開環処理の条件の範囲内である。
From the above points, in the present invention, the total content of monocyclic naphthene and paraffin in the obtained light oil base material is preferably 50 to 70% by mass, and more preferably 55 to 65% by mass. preferable.
Further, the ratio of paraffin to monocyclic naphthene (paraffin / single-ring naphthene) is preferably 1.0 or less, more preferably 0.6 to 0.9, and more preferably 0.6 to 0 in terms of mass ratio. More preferably, it is .8. About the processing conditions at the time of converting 1-ring naphthene into paraffin, it exists in the range of the conditions of the said ring-opening processing of 2-ring naphthene.

上記のような適度な反応の制御は、前記触媒あるいは反応条件のうち、温度、水素分圧、水素モル比、LHSV等の条件を調整することで行うことができ、例えば、水素化分解後の油中にパラフィンが30質量%を超えており、これをいくらか低減したい場合は、温度、水素分圧等の条件を反応が進行する範囲で低く設定することで、水素化分解後の油中のパラフィン量を低減する方向で調整できる。水素化分解後の油中のパラフィン量を増大したい場合は、その逆の方法で行うことができる。
本発明においては、以上のような製造方法により、セタン指数が50以上の軽油基材を得ることができる。本発明の製造方法によれば、更にセタン指数が52以上の軽油基材、更には54以上の軽油基材の製造も可能であるが、その上限は、低温流動性を維持させる点から60程度であることが好ましい。
The above-mentioned moderate reaction control can be performed by adjusting the conditions such as temperature, hydrogen partial pressure, hydrogen molar ratio, LHSV among the catalyst or reaction conditions. If the amount of paraffin in the oil exceeds 30% by mass and you want to reduce this somewhat, set the conditions such as temperature and hydrogen partial pressure as low as possible within the reaction progress, so It can be adjusted in the direction of reducing the amount of paraffin. If it is desired to increase the amount of paraffin in the oil after hydrocracking, the reverse process can be used.
In the present invention, a light oil base having a cetane index of 50 or more can be obtained by the production method as described above. According to the production method of the present invention, it is also possible to produce a light oil base having a cetane index of 52 or more, and further a light oil base of 54 or more, but the upper limit is about 60 from the viewpoint of maintaining low temperature fluidity. It is preferable that

本発明の製造方法は、前記原料軽油留分を水素化分解して、軽油留分中の2環ナフテンを少なくとも1環ナフテンに転換させて、軽油基材を得るものであるが、上記水素化分解の前に、水素化脱硫処理を行うことが、2環ナフテン濃度を高くできることの点から好ましい。
水素化脱硫処理は、水素の存在下、水素化脱硫触媒を用い、例えば、水素分圧2〜13MPa、水素モル比100〜4000Nm3/kl、反応温度180〜480℃、液空間速度(LHSV)0.1〜3h-1等の条件で行なうことが好ましく、水素分圧3〜8Mpa、水素モル比100〜3000Nm3/kl、反応温度300〜380℃、LHSV0.3〜2h-1で行うことがより好ましい。
In the production method of the present invention, the raw gas oil fraction is hydrocracked to convert the 2-ring naphthene in the gas oil fraction into at least 1-ring naphthene to obtain a light oil base material. It is preferable to perform a hydrodesulfurization treatment before the decomposition from the viewpoint that the bicyclic naphthene concentration can be increased.
The hydrodesulfurization treatment uses a hydrodesulfurization catalyst in the presence of hydrogen. For example, the hydrogen partial pressure is 2 to 13 MPa, the hydrogen molar ratio is 100 to 4000 Nm 3 / kl, the reaction temperature is 180 to 480 ° C., and the liquid space velocity (LHSV) It is preferable to carry out under conditions such as 0.1 to 3 h −1, etc., with a hydrogen partial pressure of 3 to 8 Mpa, a hydrogen molar ratio of 100 to 3000 Nm 3 / kl, a reaction temperature of 300 to 380 ° C., and LHSV of 0.3 to 2 h −1. Is more preferable.

上記水素化脱硫処理に用いられる触媒としては、一般的な水素化脱硫用触媒を適用することができる。活性金属としては、通常、周期律表第6A族および第8族金属が好ましく用いられ、例えば、Co−Mo、Ni−Mo、Co−W、Ni−Wなどが挙げられる。担体としてはアルミナを主成分とした多孔質無機酸化物等が用いられる。その使用量は、原料油100ccに対し、50〜500ccが好ましい。
上記水素化脱硫処理後の軽油基材の硫黄分は、10質量ppm以下であること好ましい。
As the catalyst used for the hydrodesulfurization treatment, a general hydrodesulfurization catalyst can be applied. As the active metal, normally, Group 6A and Group 8 metals of the periodic table are preferably used, and examples thereof include Co—Mo, Ni—Mo, Co—W, and Ni—W. As the carrier, a porous inorganic oxide mainly composed of alumina is used. The amount used is preferably 50 to 500 cc with respect to 100 cc of the raw oil.
It is preferable that the sulfur content of the light oil base material after the said hydrodesulfurization process is 10 mass ppm or less.

[軽油基材]
本発明の軽油基材は、上記製造方法、すなわち、芳香族成分及び/又は芳香族成分の少なくとも一部が核水添されてなる成分を50質量%以上含有する、セタン指数が50未満の軽油留分を水素化分解して、前記軽油留分中の2環ナフテンを少なくとも1環ナフテンに転換させて得られるものである。
本発明の軽油基材は、そのセタン指数が50以上であり、好ましくは52以上、より好ましくは54以上である。また、その各組成は前述のとおりである。
[Light oil base]
The light oil base material of the present invention comprises the above-described production method, that is, a light oil having a cetane index of less than 50 and containing 50% by mass or more of an aromatic component and / or a component obtained by hydrogenating at least a part of the aromatic component. It is obtained by hydrocracking the fraction and converting the bicyclic naphthene in the gas oil fraction to at least a monocyclic naphthene.
The light oil base of the present invention has a cetane index of 50 or more, preferably 52 or more, more preferably 54 or more. Moreover, each composition is as above-mentioned.

本発明の軽油基材は、一般に軽油基材として使用しうるものであれば、その他の各性状には特に制限はないが、一般に以下のような性状であることが好ましい。
すなわち、その流動点は、低温流動性の点から、−20〜−7.5℃であることが好ましく、−20〜−10℃であることがより好ましい。その他の性状については以下のとおりである。以下、括弧内の値は好ましい範囲である。
密度:0.85〜0.89g/cc(0.86〜0.88g/cc)
硫黄分:0〜10質量ppm(0〜9質量ppm)
蒸留性状 10%留出温度:250〜300℃(270〜300℃)
50%留出温度:270〜330℃(280〜320℃)
90%留出温度:300〜360℃(330〜350℃)
飽和分量:60〜90容量%(75〜90容量%)
芳香族分量:10〜40容量%(10〜25容量%)
1環芳香族分量:5〜30容量%(5〜15容量%)
多環芳香族分量:5〜10容量%(5〜8容量%)
If the light oil base material of this invention can generally be used as a light oil base material, there will be no restriction | limiting in particular in each other property, However, Generally the following properties are preferable.
That is, the pour point is preferably −20 to −7.5 ° C., more preferably −20 to −10 ° C. from the viewpoint of low temperature fluidity. Other properties are as follows. Hereinafter, the value in parentheses is a preferred range.
Density: 0.85-0.89 g / cc (0.86-0.88 g / cc)
Sulfur content: 0-10 mass ppm (0-9 mass ppm)
Distillation properties 10% distillation temperature: 250-300 ° C (270-300 ° C)
50% distillation temperature: 270-330 ° C (280-320 ° C)
90% distillation temperature: 300-360 ° C (330-350 ° C)
Saturated content: 60 to 90% by volume (75 to 90% by volume)
Aromatic content: 10-40% by volume (10-25% by volume)
1-ring aromatic content: 5 to 30% by volume (5 to 15% by volume)
Polycyclic aromatic content: 5 to 10% by volume (5 to 8% by volume)

本発明の軽油基材は、これに必要に応じ、軽油に通常用いられる潤滑性向上剤、セタン価向上剤、清浄剤等を配合して、軽油組成物として使用することができる。また、本発明の軽油基材は、直留軽油等と混合することなく軽油として用いることができるものであるが、必要に応じ、本発明の軽油基材以外のその他の軽油留分、灯油留分、合成軽油及び合成灯油を配合して使用することもできる。本発明の軽油基材は、軽油組成物に60容量%以上含有され、愛用されることが好ましく、より好ましくは70容量%以上であり、更に好ましくは80容量%以上である。   The light oil base material of the present invention can be used as a light oil composition by blending a lubricity improver, a cetane number improver, a detergent and the like that are usually used for light oil, if necessary. Further, the light oil base material of the present invention can be used as light oil without mixing with straight-run light oil or the like, but if necessary, other light oil fractions other than the light oil base material of the present invention, kerosene distillate. Mineral, synthetic light oil and synthetic kerosene can also be used in combination. The gas oil base of the present invention is contained in the gas oil composition in an amount of 60% by volume or more, and is preferably used, more preferably 70% by volume or more, and still more preferably 80% by volume or more.

以下に実施例により本発明を具体的に説明するが、本発明はこれらの例によって何ら制限されるものではない。なお、軽油留分及び軽油基材の性状、組成及び性能は次の方法に従って求めた。   EXAMPLES The present invention will be specifically described below with reference to examples, but the present invention is not limited to these examples. The properties, composition and performance of the light oil fraction and the light oil base were determined according to the following method.

(1)密度
JIS K 2249に準拠して測定した。
(2)硫黄分
JIS K 2541−2に準拠して測定した。
(3)蒸留性状
JIS K 2254により測定した。
(1) Density Measured according to JIS K 2249.
(2) Sulfur content It measured based on JISK2541-2.
(3) Distillation property Measured according to JIS K 2254.

(4)セタン指数
JIS K 2280「石油製品−燃料油−オクタン価及びセタン価試験方法ならびにセタン指数算出方法」の「8.4変数方程式を用いたセタン指数の算出方法」により測定した。
(5)流動点
JIS K 2269に準じて、測定した。尚、JISでは2.5℃毎に測定するが試験精度向上のため1℃毎に測定した。
(4) Cetane index The cetane index was measured according to “Method for calculating cetane index using 8.4 variable equation” in JIS K 2280 “Petroleum products—fuel oil—octane number and cetane number test method and cetane index calculation method”.
(5) Pour point Measured according to JIS K 2269. In JIS, the measurement was made every 2.5 ° C., but the measurement was made every 1 ° C. to improve the test accuracy.

(6)各成分組成
社団法人石油学会により発行されている石油学会法JPI−5S−49−97「炭化水素タイプ試験方法−高速クロマトグラフ法」による測定で得た。特に、飽和分組成は、GERSTEL社の型式ZOEX−2006KTであるGC×GC装置を用いて、第1カラム:HP−5MS(30m×0.25mm,膜厚:0.25μm)、第2カラム:DB−17(2.0m×0.1mm,膜厚:0.1μm)、オーブン温度:50℃(0分)→(昇温:3℃/分)→280℃(10分保持)、注入口および検出器温度:280℃、注入量:0.1μL、MSにより定性を行い、FIDで定量を行った。
(6) Composition of each component Obtained by measurement according to the Petroleum Institute method JPI-5S-49-97 “Hydrocarbon type test method—high-speed chromatographic method” published by the Japan Petroleum Institute. In particular, the saturation composition was determined by using a GC × GC apparatus, model ZOEX-2006KT, manufactured by GERSTEL, with the first column: HP-5MS (30 m × 0.25 mm, film thickness: 0.25 μm), and the second column: DB-17 (2.0 m × 0.1 mm, film thickness: 0.1 μm), oven temperature: 50 ° C. (0 min) → (temperature rise: 3 ° C./min)→280° C. (10 min hold), inlet And the detector temperature: 280 ° C., injection amount: 0.1 μL, qualitatively performed by MS, and quantified by FID.

[触媒A(水素化脱硫触媒)の調製]
水素化脱硫触媒は、以下のように、アルミナ担体に、ニッケル、モリブデン、リンを含む金属溶液を含浸担持して調製した。
塩基性炭酸ニッケル(FLUKA:NiO2;62.3質量%)95g、三酸化モリブデン323g、正リン酸(純度80質量%)39gをイオン交換水1000ccに加えて、攪拌しながら80℃で溶解させ、80℃で濃縮後、室温に冷却、純水にて500ccに定容し、ニッケルモリブデンリン含浸液(S1)を調整した。
吸水率0.8cc/gのγ-アルミナ担体(A1)100gに、その吸水量に見合うようにヒドロキシカルボキシラトチタンアンモニウム溶液(T1)60ccを純水で希釈し、常圧にて含浸し、70℃で1時間真空にて乾燥後、120℃、3時間乾燥機にて乾燥させ、500℃で4時間焼成し担体(A2)を得た。
ニッケルモリブデンリン含浸液(S1)を50cc採取し、トリエチレングリコール6gを添加し、吸水率0.75cc/gの担体(A2)100gに、その吸水率に見合うように純水で容積を調整した溶液を、常圧下で含浸し、120℃で16時間乾燥させ、触媒A(水素化脱硫触媒)を調整した。
[Preparation of catalyst A (hydrodesulfurization catalyst)]
The hydrodesulfurization catalyst was prepared by impregnating and supporting a metal solution containing nickel, molybdenum and phosphorus on an alumina support as follows.
95 g of basic nickel carbonate (FLUKA: NiO 2 ; 62.3 mass%), 323 g of molybdenum trioxide and 39 g of normal phosphoric acid (purity 80 mass%) are added to 1000 cc of ion-exchanged water, and dissolved at 80 ° C. with stirring. After concentration at 80 ° C., the mixture was cooled to room temperature and adjusted to 500 cc with pure water to prepare a nickel molybdenum phosphorus impregnating solution (S1).
To 100 g of γ-alumina carrier (A1) having a water absorption rate of 0.8 cc / g, 60 cc of hydroxycarboxylatotitanium ammonium solution (T1) was diluted with pure water so as to match the amount of water absorption, and impregnated at normal pressure. After drying in vacuum at 1 ° C. for 1 hour, drying in a dryer at 120 ° C. for 3 hours and firing at 500 ° C. for 4 hours gave a carrier (A2).
50 cc of nickel-molybdenum phosphorus impregnation liquid (S1) was sampled, 6 g of triethylene glycol was added, and 100 g of carrier (A2) having a water absorption rate of 0.75 cc / g was adjusted with pure water to match the water absorption rate. The solution was impregnated under normal pressure and dried at 120 ° C. for 16 hours to prepare Catalyst A (hydrodesulfurization catalyst).

[触媒B(水素化分解触媒)の調製]
ナフテン開環触媒の調製は、以下のように、ニッケル・モリブデンを含む金属溶液をアルミナ担体に含浸担持して調製した。
合成Na−Yゼオライト(Na20含量:13.3質量%、SiO2/Al23のモル比:5.0)をアンモニウムイオン交換し、NH4−YゼオライトNa2O含量:1.3質量%)を得た。これを580℃でスチーミング処理してスチーミングゼオライトを得た。10kgのスチーミングゼオライトを純水115リットルに懸濁させた後、この懸濁液を75℃に昇温し30分間攪拌した。次いで、この懸濁液に10質量%硫酸溶液63.7kgを35分間で添加し、さらに濃度0.57mol/lの硫酸第二鉄溶液11.5kgを10分間で添加し、添加後さらに30分間攪拌した後、濾過、洗浄し、固形分濃度30.5質量%の鉄含有結晶性アルミノシリケートスラリーIを得た。この鉄含有結晶性アルミノシリケートスラリーIの一部をとり乾燥した後、細孔構造を測定した。細孔構造としては、600Å以下の細孔容積が0.5393cc/g、600Å以下の細孔容積に占める50〜300Åの細孔容積の割合が22.8%、さらに、100〜300Åの細孔容積の割合が15.6%であった。
[Preparation of catalyst B (hydrocracking catalyst)]
The naphthene ring-opening catalyst was prepared by impregnating and supporting a metal solution containing nickel / molybdenum on an alumina carrier as follows.
Synthetic Na—Y zeolite (Na 2 O content: 13.3 mass%, SiO 2 / Al 2 O 3 molar ratio: 5.0) was subjected to ammonium ion exchange, and NH 4 —Y zeolite Na 2 O content: 1. 3% by mass) was obtained. This was steamed at 580 ° C. to obtain a steamed zeolite. After 10 kg of steamed zeolite was suspended in 115 liters of pure water, the suspension was heated to 75 ° C. and stirred for 30 minutes. Next, 63.7 kg of 10 mass% sulfuric acid solution was added to this suspension over 35 minutes, and 11.5 kg of ferric sulfate solution having a concentration of 0.57 mol / l was added over 10 minutes. After stirring, filtration and washing were performed to obtain an iron-containing crystalline aluminosilicate slurry I having a solid content concentration of 30.5% by mass. A portion of this iron-containing crystalline aluminosilicate slurry I was taken and dried, and then the pore structure was measured. As the pore structure, the pore volume of 600 Å or less is 0.5393 cc / g, the proportion of the pore volume of 50 to 300 に in the pore volume of 600 Å or less is 22.8%, and the pore volume of 100 to 300 Å The volume ratio was 15.6%.

次に、アルミナスラリーの調整を行った。内容積200リットルのスチームジャケット付ステンレス容器に、アルミン酸ナトリウム溶液(Al23換算濃度:5.0質量%)80kgおよび50質量%のグルコン酸溶液240gを入れ、60℃に加熱した。次いで硫酸アルミニウム溶液(Al23換算濃度:2.5質量%)88kgを別容器に準備し、15分間でpH7.2になるようにこの希釈硫酸アルミニウム溶液を添加し、水酸化アルミニウムスラリー(調合スラリーI)を得た。
この調合スラリーIをさらに60℃に保ったまま、60分間熟成した。次いで、調合スラリー全量を平板フィルターにより脱水し、60℃の0.3質量%アンモニア水600リットルで洗浄し、アルミナケーキとした。このアルミナケーキの一部を純水と15質量%のアンモニア水を用い、アルミナ濃度12.0質量%、pH 0.5のスラリーを得た。このスラリーを還流器付のステンレス製熟成タンクに入れ攪拌しながら95℃で8時間熟成した。次いで、この熟成スラリーに純水を加え、アルミナ濃度9.0質量%に希釈した後、攪拌機付オートクレーブに移し、145℃で5時間熟成した。さらにAl23換算濃度で20質量%となるように加熱濃縮すると同時に脱アンモニアし、アルミナスラリーAを得た。
Next, the alumina slurry was adjusted. 80 kg of sodium aluminate solution (concentration of Al 2 O 3 : 5.0% by mass) and 240 g of 50% by mass of gluconic acid solution were placed in a stainless steel container with a steam jacket having an internal volume of 200 liters and heated to 60 ° C. Next, 88 kg of aluminum sulfate solution (concentration of Al 2 O 3 : 2.5% by mass) is prepared in a separate container, this diluted aluminum sulfate solution is added so that the pH becomes 7.2 in 15 minutes, and an aluminum hydroxide slurry ( Preparation slurry I) was obtained.
The blended slurry I was further aged for 60 minutes while maintaining the temperature at 60 ° C. Next, the total amount of the prepared slurry was dehydrated with a flat plate filter and washed with 600 liters of 0.3% by mass ammonia water at 60 ° C. to obtain an alumina cake. A part of this alumina cake was used pure water and 15% by mass of ammonia water to obtain a slurry having an alumina concentration of 12.0% by mass and a pH of 0.5. This slurry was placed in a stainless steel aging tank equipped with a refluxer and aged at 95 ° C. for 8 hours with stirring. Next, pure water was added to the aging slurry, diluted to an alumina concentration of 9.0% by mass, transferred to an autoclave equipped with a stirrer, and aged at 145 ° C. for 5 hours. Further, the mixture was heated and concentrated so that the concentration in terms of Al 2 O 3 was 20% by mass, and deammoniated at the same time to obtain alumina slurry A.

触媒の調整は、3200gの鉄含有結晶性アルミノシリケートスラリーI(30.5質量%濃度)と2625gのアルミナスラリーA(20質量%濃度)をニーダーに加え、加熱、攪拌しながら押し出し成形可能な濃度に濃縮した後、1/16インチサイズの三葉型ペレット状に押し出し成形した。次いで、110℃で16時間乾燥した後、550℃で3時間焼成し、鉄含有結晶性アルミノシリケート/アルミナ(固形分換算質量比)で50/50の担体A3を得た。
次に、三酸化モリブデンと炭酸ニッケルを純水に懸濁したものを90℃に加熱し、次いでりんご酸を加え溶解させた。この溶解液を担体A3にそれぞれ触媒全体に対してMoO3として10.0質量%、NiOとして4.25質量%になるように含浸し、乾燥させ、550℃で3時間焼成し、触媒B(水素化分解触媒)を得た。得られた触媒B中における、モリブデン含有量は6.7質量%、ニッケル含有量は3.3質量%、更に結晶性アルミノシリケート含有量は50質量%であった。また、得られた触媒Bの比表面積は455m2/g、細孔容は0.62cc/g、細孔径1000Å以上の細孔容積は0.13cc/gであった。
上記比表面積はBET法、細孔容積、細孔分布は水銀圧入法で測定したものである。
The catalyst was prepared by adding 3200 g of iron-containing crystalline aluminosilicate slurry I (30.5 mass% concentration) and 2625 g of alumina slurry A (20 mass% concentration) to a kneader and extruding while heating and stirring. And then extruded into a 1 / 16-inch size trilobal pellet. Subsequently, after drying at 110 degreeC for 16 hours, it baked at 550 degreeC for 3 hours, and obtained the support | carrier A3 of 50/50 by iron containing crystalline aluminosilicate / alumina (solid content conversion mass ratio).
Next, a suspension of molybdenum trioxide and nickel carbonate in pure water was heated to 90 ° C., and then malic acid was added and dissolved. The solution A3 was impregnated on the carrier A3 so that the total amount of the catalyst was 10.0% by mass as MoO 3 and 4.25% by mass as NiO, dried, calcined at 550 ° C. for 3 hours, and the catalyst B ( Hydrocracking catalyst) was obtained. In the obtained catalyst B, the molybdenum content was 6.7% by mass, the nickel content was 3.3% by mass, and the crystalline aluminosilicate content was 50% by mass. Further, the obtained catalyst B had a specific surface area of 455 m 2 / g, a pore volume of 0.62 cc / g, and a pore volume of 1000 mm or more in pore diameter of 0.13 cc / g.
The specific surface area was measured by the BET method, the pore volume, and the pore distribution were measured by the mercury intrusion method.

比較例1
触媒Aを原料油100ccに対して83ccの量で用いて、その存在下、下記反応条件で0.83時間反応させ、下記表1に記載の組成、性状のオイルサンドビチューメンから製造した合成原油の軽油留分を硫黄分10質量ppm以下に脱硫した。得られた軽油基材について各性状、組成を表1に示す。
水素分圧:7MPa
水素モル比:2000Nm3/kl
反応温度:345℃
LHSV:1.2h-1
Comparative Example 1
A catalyst A was used in an amount of 83 cc with respect to 100 cc of raw material oil, and reacted in the presence of 0.83 hours under the following reaction conditions, and a synthetic crude oil produced from an oil sand bitumen having the composition and properties shown in Table 1 below. The gas oil fraction was desulfurized to a sulfur content of 10 mass ppm or less. Table 1 shows the properties and composition of the obtained light oil base.
Hydrogen partial pressure: 7 MPa
Hydrogen molar ratio: 2000 Nm 3 / kl
Reaction temperature: 345 ° C
LHSV: 1.2h -1

実施例1
比較例1で得た軽油基材を、100ccに対して83ccの触媒Bの存在下、下記反応条件で0.83時間反応させ、セタン指数を向上させた軽油基材を得た。得られた軽油基材について各性状、組成を表1に示す。
水素分圧:7MPa
水素モル比:2000Nm3/kl
反応温度:355℃
LHSV:1.2h-1
Example 1
The light oil base material obtained in Comparative Example 1 was reacted for 0.83 hours under the following reaction conditions in the presence of 83 cc of Catalyst B with respect to 100 cc to obtain a light oil base material with improved cetane index. Table 1 shows the properties and composition of the obtained light oil base.
Hydrogen partial pressure: 7 MPa
Hydrogen molar ratio: 2000 Nm 3 / kl
Reaction temperature: 355 ° C
LHSV: 1.2h -1

実施例2
比較例1で得た軽油基材100ccに対して83ccの触媒Bの存在下、下記反応条件で0.83時間反応させ、セタン指数を向上させた軽油基材を得た。得られた軽油基材について各性状、組成を表1に示す。
水素分圧:5MPa
水素モル比:2000Nm3/kl
反応温度:355℃
LHSV:1.2h-1
Example 2
A light oil base material having an improved cetane index was obtained by reacting 100 cc of the light oil base material obtained in Comparative Example 1 in the presence of 83 cc of catalyst B under the following reaction conditions for 0.83 hours. Table 1 shows the properties and composition of the obtained light oil base.
Hydrogen partial pressure: 5 MPa
Hydrogen molar ratio: 2000 Nm 3 / kl
Reaction temperature: 355 ° C
LHSV: 1.2h -1

Figure 2010215723
Figure 2010215723

表1から、比較例1の水素化処理では若干の2環芳香族、3環芳香族への核水添が起こるだけでセタン指数はほとんど向上しない。一方、実施例1ではナフテン開環が起こり、飽和分が増加した。結果としてセタン指数は56まで向上した。また、流動点は−13℃という高い低温流動性を維持した。また、実施例2では水素分圧を既存の軽油超深度脱硫装置に近いものとしたが、それでも触媒の性能は充分に発揮され、セタン指数は54まで向上した。また、実施例1と同じく、流動点は−15℃という高い低温流動性を維持した。   From Table 1, in the hydrogenation treatment of Comparative Example 1, only a slight hydrogenation of the bicyclic aromatic and tricyclic aromatics occurs and the cetane index is hardly improved. On the other hand, in Example 1, naphthene ring opening occurred and the saturation content increased. As a result, the cetane index improved to 56. Further, the pour point maintained a high low temperature fluidity of −13 ° C. Further, in Example 2, the hydrogen partial pressure was set to be close to that of the existing light oil ultra-deep desulfurization apparatus, but the catalyst performance was still sufficiently exhibited and the cetane index was improved to 54. Further, as in Example 1, the pour point maintained a low temperature fluidity of −15 ° C.

本発明の製造方法によれば、これまで軽油基材としての活用が困難だったオイルサンドビチューメン等の非在来型原油から製造した合成原油の軽油留分のセタン指数を50以上とすることができることから、得られた軽油留分は、軽油基材として好適に使用することができる。   According to the production method of the present invention, the cetane index of a light oil fraction of synthetic crude oil produced from unconventional crude oil such as oil sand bitumen, which has been difficult to use as a light oil base material, is 50 or more. Since it can do, the obtained light oil fraction can be used conveniently as a light oil base material.

Claims (10)

芳香族成分及び/又は芳香族成分の少なくとも一部が核水添されてなる成分を50質量%以上含有する、セタン指数が50未満の軽油留分を水素化分解して、前記軽油留分中の2環ナフテンを少なくとも1環ナフテンに転換させて、セタン指数50以上の軽油基材を製造する、軽油基材の製造方法。   Hydrocracking a gas oil fraction having a cetane index of less than 50 containing 50% by mass or more of an aromatic component and / or a component obtained by nuclear hydrogenation of at least a part of the aromatic component, in the gas oil fraction A method for producing a light oil base material, wherein the dicyclic naphthene is converted into at least one ring naphthene to produce a light oil base material having a cetane index of 50 or more. 前記1環ナフテンをパラフィンに転換する工程を含む、請求項1記載の軽油基材の製造方法。   The manufacturing method of the light oil base material of Claim 1 including the process of converting the said 1-ring naphthene into a paraffin. 前記軽油留分が、オイルサンドビチューメンから製造された合成原油を蒸留して得られる軽油留分である、請求項1又は2に記載の軽油基材の製造方法。   The method for producing a light oil base material according to claim 1 or 2, wherein the light oil fraction is a light oil fraction obtained by distilling synthetic crude oil produced from oil sand bitumen. 前記軽油留分が、炭化水素を熱分解装置で処理して得られる軽油留分である、請求項1又は2に記載の軽油基材の製造方法。   The manufacturing method of the light oil base material of Claim 1 or 2 whose said light oil fraction is a light oil fraction obtained by processing a hydrocarbon with a thermal cracking apparatus. 前記軽油留分の水素化分解処理に用いられる触媒が、長周期型周期律表の第6族及び第8〜10族に属する金属から選ばれる少なくとも1種、及び結晶アルミノシリケートを含有する水素化分解触媒である、請求項1〜4のいずれかに記載の軽油基材の製造方法。   A hydrogenation in which the catalyst used for hydrocracking of the light oil fraction contains at least one selected from metals belonging to Group 6 and Groups 8 to 10 of the long-period periodic table, and crystalline aluminosilicate The manufacturing method of the light oil base material in any one of Claims 1-4 which is a cracking catalyst. 前記水素化分解触媒中における結晶アルミノシリケートの含有量が10〜70質量%である、請求項5に記載の軽油基材の製造方法。   The manufacturing method of the light oil base material of Claim 5 whose content of the crystalline aluminosilicate in the said hydrocracking catalyst is 10-70 mass%. 前記結晶アルミノシリケートが超安定化Y型ゼオライトである、請求項5または6に記載の軽油基材の製造方法。   The method for producing a light oil base material according to claim 5 or 6, wherein the crystalline aluminosilicate is ultra-stabilized Y-type zeolite. 軽油基材中におけるパラフィンの1環ナフテンに対する割合(パラフィン/1環ナフテン)を質量比で1.0以下とする、請求項2〜7のいずれかに記載の軽油基材の製造方法。   The manufacturing method of the light oil base material in any one of Claims 2-7 which makes the ratio (paraffin / 1-ring naphthene) with respect to monocyclic naphthene of the paraffin in a light oil base material 1.0 or less by mass ratio. 前記軽油留分を、水素化脱硫処理した後に前記水素化分解を行う、請求項1〜8のいずれかに記載の軽油基材の製造方法。   The method for producing a light oil base material according to any one of claims 1 to 8, wherein the hydrocracking is performed after hydrodesulfurization treatment of the light oil fraction. 芳香族成分及び/又は芳香族成分の少なくとも一部が核水添されてなる成分を50質量%以上含有する、セタン指数が50未満の軽油留分から、請求項1〜9のいずれかに記載の製造方法により得られる、セタン指数50以上の軽油基材。   A gas oil fraction having a cetane index of less than 50, comprising 50% by mass or more of an aromatic component and / or a component obtained by nuclear hydrogenation of at least a part of the aromatic component, according to any one of claims 1 to 9. A light oil base material having a cetane index of 50 or more obtained by a production method.
JP2009061788A 2009-03-13 2009-03-13 Method of manufacturing base material of gas oil Pending JP2010215723A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009061788A JP2010215723A (en) 2009-03-13 2009-03-13 Method of manufacturing base material of gas oil

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009061788A JP2010215723A (en) 2009-03-13 2009-03-13 Method of manufacturing base material of gas oil

Publications (1)

Publication Number Publication Date
JP2010215723A true JP2010215723A (en) 2010-09-30

Family

ID=42974895

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009061788A Pending JP2010215723A (en) 2009-03-13 2009-03-13 Method of manufacturing base material of gas oil

Country Status (1)

Country Link
JP (1) JP2010215723A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011122122A (en) * 2009-12-14 2011-06-23 Jx Nippon Oil & Energy Corp Hydrorefining method of hydrocarbon oil
JP2011122121A (en) * 2009-12-14 2011-06-23 Jx Nippon Oil & Energy Corp Hydrorefining method of hydrocarbon oil
JP2012246355A (en) * 2011-05-26 2012-12-13 Jx Nippon Oil & Energy Corp Light oil composition and method for producing the same
US10494579B2 (en) 2016-04-26 2019-12-03 Exxonmobil Research And Engineering Company Naphthene-containing distillate stream compositions and uses thereof
US10550335B2 (en) 2015-12-28 2020-02-04 Exxonmobil Research And Engineering Company Fluxed deasphalter rock fuel oil blend component oils
US10550341B2 (en) 2015-12-28 2020-02-04 Exxonmobil Research And Engineering Company Sequential deasphalting for base stock production
US10590360B2 (en) 2015-12-28 2020-03-17 Exxonmobil Research And Engineering Company Bright stock production from deasphalted oil

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002511516A (en) * 1998-04-09 2002-04-16 アンスティテュ フランセ デュ ペトロール How to improve the cetane number of gas oil fractions
JP2002534558A (en) * 1998-12-30 2002-10-15 モービル・オイル・コーポレイション Method for producing diesel fuel with increased cetane number
JP2006104271A (en) * 2004-10-01 2006-04-20 Nippon Oil Corp Method for producing hydrofined gas oil, hydrofined gas oil, and gas oil composition

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002511516A (en) * 1998-04-09 2002-04-16 アンスティテュ フランセ デュ ペトロール How to improve the cetane number of gas oil fractions
JP2002534558A (en) * 1998-12-30 2002-10-15 モービル・オイル・コーポレイション Method for producing diesel fuel with increased cetane number
JP2006104271A (en) * 2004-10-01 2006-04-20 Nippon Oil Corp Method for producing hydrofined gas oil, hydrofined gas oil, and gas oil composition

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011122122A (en) * 2009-12-14 2011-06-23 Jx Nippon Oil & Energy Corp Hydrorefining method of hydrocarbon oil
JP2011122121A (en) * 2009-12-14 2011-06-23 Jx Nippon Oil & Energy Corp Hydrorefining method of hydrocarbon oil
JP2012246355A (en) * 2011-05-26 2012-12-13 Jx Nippon Oil & Energy Corp Light oil composition and method for producing the same
US10550335B2 (en) 2015-12-28 2020-02-04 Exxonmobil Research And Engineering Company Fluxed deasphalter rock fuel oil blend component oils
US10550341B2 (en) 2015-12-28 2020-02-04 Exxonmobil Research And Engineering Company Sequential deasphalting for base stock production
US10590360B2 (en) 2015-12-28 2020-03-17 Exxonmobil Research And Engineering Company Bright stock production from deasphalted oil
US10647925B2 (en) 2015-12-28 2020-05-12 Exxonmobil Research And Engineering Company Fuel components from hydroprocessed deasphalted oils
US10808185B2 (en) 2015-12-28 2020-10-20 Exxonmobil Research And Engineering Company Bright stock production from low severity resid deasphalting
US10947464B2 (en) 2015-12-28 2021-03-16 Exxonmobil Research And Engineering Company Integrated resid deasphalting and gasification
US10494579B2 (en) 2016-04-26 2019-12-03 Exxonmobil Research And Engineering Company Naphthene-containing distillate stream compositions and uses thereof

Similar Documents

Publication Publication Date Title
Ding et al. HDS, HDN, HDA, and hydrocracking of model compounds over Mo-Ni catalysts with various acidities
JP2010215723A (en) Method of manufacturing base material of gas oil
US9944863B2 (en) Middle distillate hydrocracking catalyst
TW201124202A (en) Process for producing a hydroprocessing catalyst, and method for hydroprocessing a hydrocarbon oil using said catalyst
EP1702682A1 (en) Hydrogenation desulfurization catalyst for petroleum hydrocarbon and method of hydrogenation desulfurization using the same
AU2022202785A1 (en) Middle distillate hydrocracking catalyst with a base extrudate having a high nanopore volume
CN102453534B (en) Method for producing gasoline and diesel oil through hydrogenation of coal tar
JPWO2006054447A1 (en) Iron-containing crystalline aluminosilicate, hydrocracking catalyst containing the aluminosilicate, and hydrocracking method using the catalyst
Isoda et al. Reactivity and selectivity for the hydrocracking of vacuum gas oil over metal-loaded and dealuminated Y-zeolites
JP2020182947A (en) Middle distillate hydrocracking catalyst highly containing stabilized y zeolite with enhanced acid site distribution
JP2022141714A (en) Middle distillate hydrocracking catalyst containing highly nanoporous stabilized y zeolite
JP5420826B2 (en) Method for producing ultra-low sulfur fuel oil
CN103773488A (en) Hydrogenation method for reducing condensation point of diesel
JP2005342693A (en) Hydrogenation catalyst of hydrocarbon oil and hydrogenation method using the catalyst
Shimada et al. Design and development of Ti-modified zeolite-based catalyst for hydrocracking heavy petroleum
WO2010103838A1 (en) Process for producing low-sulfur gas-oil base, and low-sulfur gas oil
JP5480680B2 (en) Method for producing gasoline base material using highly aromatic hydrocarbon oil as raw material
CN100558862C (en) The method of white oil is produced in a kind of hydrofining
JP6038708B2 (en) Production method of petroleum products
JP5364438B2 (en) Heavy oil composition
US20150306582A1 (en) Middle distillate hydrocracking catalyst with a base extrudate having a low particle density
RU2342994C1 (en) Catalyst, method of its preparation (versions) and process of hydrodesulphurisation of diesel fractions
JP2008297436A (en) Manufacturing method of ultralow-sulfur fuel oil and manufacturing apparatus therefor
US20150306581A1 (en) Middle distillate hydrocracking catalyst with a base extrudate having a high total nanopore volume
US20150306584A1 (en) Middle distillate hydrocracking catalyst manufactured using a high nanopore volume amorphous silica-alumina support

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111024

A977 Report on retrieval

Effective date: 20130121

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130212

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130702