JP2010214255A - Separation membrane - Google Patents

Separation membrane Download PDF

Info

Publication number
JP2010214255A
JP2010214255A JP2009061860A JP2009061860A JP2010214255A JP 2010214255 A JP2010214255 A JP 2010214255A JP 2009061860 A JP2009061860 A JP 2009061860A JP 2009061860 A JP2009061860 A JP 2009061860A JP 2010214255 A JP2010214255 A JP 2010214255A
Authority
JP
Japan
Prior art keywords
separation membrane
coating layer
porous
membrane
porous body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2009061860A
Other languages
Japanese (ja)
Inventor
Keiichiro Tanabe
敬一朗 田辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP2009061860A priority Critical patent/JP2010214255A/en
Publication of JP2010214255A publication Critical patent/JP2010214255A/en
Withdrawn legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To prevent a decrease in permeation flow rate by increasing the hydrophilicity of the filtration surface in a separation membrane used for water treatment. <P>SOLUTION: The separation membrane 1 includes a coating layer 3 comprising a carbon film in which the hydrogen content is 1-80 vol.%, on the surface of a porous body 2 made of a resin such as a fluororesin and a polyolefin system resin to make the surface of the resin porous body 2 hydrophilic and also to fix firmly and integrally to the porous body 2 so as to be difficult to peel. Further, the coating layer 3 provided on the surface of the porous body 2 has strength, durability and chemical resistance. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は分離膜に関し、詳しくは、汚水、海水、油水等の水処理用の濾過膜、バイオ燃料製造用のゼオライト分離膜等として好適に用いられる多孔質の平膜や中空糸、あるいは不織布等からなる分離膜に関するものである。   The present invention relates to a separation membrane, and more specifically, a porous flat membrane or hollow fiber, a nonwoven fabric or the like suitably used as a filtration membrane for water treatment of sewage, seawater, oil water, etc., a zeolite separation membrane for biofuel production, etc. It is related with the separation membrane which consists of.

従来、多孔質樹脂膜が水浄化処理用の分離膜として用いられている。その中でも、フッ素系樹脂、特に、四弗化エチレン樹脂(以下、PTFEと称す)は耐久性、耐薬品性、耐熱性に優れ、かつ、薄膜化しても強度を保持する点から広範囲の分野で分離膜として汎用されている。
しかしながら、前記PTFE等のフッ素系樹脂を含め樹脂は一般的に疎水性、撥水性のものが多い。よって、処理精度を上げるために多孔質膜の空孔を微細孔とすると、透過性が低減する問題がある。そのため、従来より樹脂製多孔質膜の表面に種々の親水化処理がなされている。
Conventionally, a porous resin membrane has been used as a separation membrane for water purification treatment. Among them, fluorine-based resins, particularly tetrafluoroethylene resin (hereinafter referred to as PTFE) are excellent in durability, chemical resistance, and heat resistance, and have a wide range of fields because they retain strength even when thinned. Widely used as a separation membrane.
However, many resins including the fluororesin such as PTFE are generally hydrophobic and water repellent. Therefore, if the pores of the porous film are micropores in order to increase the processing accuracy, there is a problem that the permeability is reduced. For this reason, various hydrophilic treatments have been conventionally applied to the surface of the porous resin membrane.

例えば、特許第3809201号公報では、PTFEの表面にポリビニルアルコールの塗布層を設けて親水化処理がなされている。また、フッ素系樹脂の多孔質体の表面をプラズマ処理する場合もある。   For example, in Japanese Patent No. 3809201, a hydrophilic layer is applied by providing a coating layer of polyvinyl alcohol on the surface of PTFE. Further, the surface of the fluororesin porous body may be plasma-treated.

特許第3809201号公報Japanese Patent No. 3809201

前記特許文献1に記載のようにPTFEの表面にアルコール系被膜層を設けた場合、あるいはプラズマ処理した場合のいずれも、表面層を改質できる利点があるが、親水性官能基の劣化をより低減して、透過流速を長時間保持できるように改善することが好ましい。   As described in Patent Document 1, both the case where an alcohol-based coating layer is provided on the surface of PTFE or the case where plasma treatment is performed have an advantage that the surface layer can be modified, but the hydrophilic functional group is more deteriorated. It is preferable to reduce and improve so that the permeation | transmission flow rate can be hold | maintained for a long time.

本発明は前記問題に鑑みてなされたもので、樹脂製の多孔質体の表面を親水化できると共に、多孔質体と強固に固着一体化して剥離しにくく、かつ、強度、耐久性、耐薬品性を備えた被覆層を多孔質体の表面に設けた分離膜を提供することを課題としている。   The present invention has been made in view of the above problems, and can make the surface of a porous body made of resin hydrophilic, and is firmly fixed and integrated with the porous body to prevent peeling, and has strength, durability, and chemical resistance. It is an object of the present invention to provide a separation membrane in which a coating layer having properties is provided on the surface of a porous body.

前記課題を解決するため、本発明は、樹脂製の多孔質体の表面に、水素含有量が、1体積%から80体積%のカーボン膜からなる被覆層を備えていることを特徴とする分離膜を提供している。   In order to solve the above-mentioned problems, the present invention is characterized in that a separation layer is provided on the surface of a resin-made porous body, comprising a coating layer made of a carbon film having a hydrogen content of 1% by volume to 80% by volume. Providing a membrane.

前記被覆層は、カーボンに水素を1〜80体積%と多く含むアモルファス膜がメイン材質となるため、柔軟性、摺動性に富むと共に、カーボン膜であるため強度、耐薬品性、耐久性に優れたものとなる。かつ、樹脂とのなじみが良く、多孔質膜に強固に付着できる。よって、被膜層の剥離が発生しにくく、分離膜の親水性を確保でき、透過流速の低下が生じない。前記カーボンに含まれる水素は20体積%以上が好ましい。   The coating layer is mainly made of an amorphous film containing 1 to 80% by volume of hydrogen in carbon, so that it is rich in flexibility and slidability, and because it is a carbon film, it has high strength, chemical resistance and durability. It will be excellent. In addition, it is compatible with the resin and can adhere firmly to the porous membrane. Therefore, peeling of the coating layer hardly occurs, the hydrophilicity of the separation membrane can be ensured, and the permeation flow rate does not decrease. The hydrogen contained in the carbon is preferably 20% by volume or more.

前記被覆層はダイヤモンドライクカーボン(以下、DLCと称す)、フラーレンやナノチューブ、グラファイト、ダイヤモンド、結晶質炭素(グラファイト構造、ダイヤ構造、フラーレン構造、ナノチューブ構造)と非晶質炭素との混合質が好適に用いられる。
なかでも、DLCは水素基が親水性が高く、強度も強いため、特に好適に用いられる。 前記被覆層は、CVD(化学蒸着)、スパッタリング、アーク溶射、プラズマ溶射のPVD、塗布した後に焼結するいずれの方法で形成してもよい。
前記DLCを用いる場合は、120℃以下の低温プラズマで蒸着するCVD法でフッ素系樹脂等の多孔質体に強固に塗布することができため、好適に用いられる。
The coating layer is preferably a mixture of diamond-like carbon (hereinafter referred to as DLC), fullerene, nanotube, graphite, diamond, crystalline carbon (graphite structure, diamond structure, fullerene structure, nanotube structure) and amorphous carbon. Used for.
Among these, DLC is particularly preferably used because the hydrogen group has high hydrophilicity and high strength. The coating layer may be formed by any method of CVD (chemical vapor deposition), sputtering, arc spraying, plasma spraying PVD, and sintering after coating.
When the DLC is used, it is preferably used because it can be firmly applied to a porous material such as a fluororesin by a CVD method in which vapor deposition is performed at a low temperature plasma of 120 ° C. or lower.

前記被覆層の厚さは0.01μm〜100μm、好ましくは0.1〜10μmとし、さらに、0.1〜2μmとしていることが好ましい。
被覆層の厚さを0.01μm以上としているのは、0.01μm未満では表面の影響を受けやすく、膜にムラが生じやすく、密着性不足に起因する摩損が発生しやすいことに因る、一方、被覆層の厚さが100μmを越えると、樹脂との線膨張係数の違いや、熱膨張係数の影響を受け、内部応力を発生し、ソリが生じやすくなる。また、重量が増加しコスト高になる問題もある。
The coating layer has a thickness of 0.01 μm to 100 μm, preferably 0.1 to 10 μm, and more preferably 0.1 to 2 μm.
The reason why the thickness of the coating layer is 0.01 μm or more is that if it is less than 0.01 μm, it is easily affected by the surface, the film is likely to be uneven, and wear due to insufficient adhesion is likely to occur. On the other hand, when the thickness of the coating layer exceeds 100 μm, internal stress is generated due to the difference in linear expansion coefficient from the resin and the influence of the thermal expansion coefficient, and warpage is likely to occur. There is also a problem that the weight increases and the cost increases.

前記多孔質体は濾過用の多孔質シート、多孔質チューブの中空糸または不織布からなり、濾過用の分離膜として好適に用いられる。
このように濾過膜とする多孔質体の表面に前記被覆層を設け、例えば、汚泥処理に用いて目詰まりが発生した場合、薬剤洗浄しても被覆層が耐薬品性に優れているため、容易に目詰まりを解消でき、薬剤費のコストダウンを図ることができる。
かつ、被覆層で親水化されるため、微細な空孔への原水の透過性がよく、かつ、該被覆層は剥離しにくいため、透過流速の低下も防止できる。
The porous body is composed of a porous sheet for filtration, a hollow fiber of a porous tube or a nonwoven fabric, and is suitably used as a separation membrane for filtration.
Thus, the coating layer is provided on the surface of the porous body as a filtration membrane.For example, when clogging occurs in the sludge treatment, the coating layer is excellent in chemical resistance even after chemical cleaning. Clogging can be easily eliminated, and the cost of medicine can be reduced.
In addition, since the coating layer is hydrophilized, the permeability of raw water to fine pores is good, and the coating layer is difficult to peel off, so that a decrease in permeation flow rate can be prevented.

特に、前記DLCからなる被覆層は海水に対する耐食性に優れているため、海水処理用として好適に用いられ、例えば、バラスト水や油田随伴水が原水となる濾過処理用として用いることができる。   In particular, since the coating layer made of DLC is excellent in corrosion resistance to seawater, it is preferably used for seawater treatment, for example, for filtration treatment in which ballast water or oilfield-associated water becomes raw water.

また、前記多孔質体はゼオライト分離膜として用いられる多孔質シート、多孔質チューブの中空糸または不織布からなり、バイオ燃料製造用の脱水用分離膜としても好適に用いられる。   Further, the porous body is composed of a porous sheet used as a zeolite separation membrane, a hollow fiber of a porous tube or a nonwoven fabric, and is suitably used as a separation membrane for dehydration for biofuel production.

前記多孔質体は樹脂製であれば限定されないが、フッ素系樹脂あるいはポリオレフィン系樹脂は、微細孔を多数設けて気孔率を高めても強度を有する点で好適に用いられる。
フッ素系樹脂としては、PTFE、PVDF(ポリフッ化ビニリデン)、PFA、ETFE、PCTFE、PVF等が挙げられる。
また、ポリオレフィン系樹脂としては、PE、PP、エチレン−αオレフィン共重合体等が挙げられる。
特に、前記フッ素系樹脂の場合には、DLC被覆初期にFを含む原料ガスをアセチレンなどの炭素を含むガスや液体導入によるガスと、減圧CVD槽内に導入し反応させることにより、樹脂下地と密着性の向上、まわりこみ、つきまわりの向上を図ることができる。 このFの結合は、蒸着初期にはF/H濃度を高く、親水性の必要な蒸着後期の表面部分では低く制御していくことにより、傾斜的なF/H比を持たすこともできる。
The porous body is not limited as long as it is made of a resin, but a fluorine-based resin or a polyolefin-based resin is preferably used in that it has strength even when a large number of micropores are provided to increase the porosity.
Examples of the fluororesin include PTFE, PVDF (polyvinylidene fluoride), PFA, ETFE, PCTFE, and PVF.
Examples of the polyolefin resin include PE, PP, and ethylene-α olefin copolymer.
In particular, in the case of the fluorine-based resin, by introducing a raw material gas containing F at the initial stage of DLC coating into a reduced-pressure CVD tank and reacting with a gas containing carbon such as acetylene or a gas by introducing a liquid, It is possible to improve adhesion, entrainment, and throwing-in. This F bond can have a gradient F / H ratio by controlling the F / H concentration at the initial stage of vapor deposition to be high and low at the surface part in the latter stage of vapor deposition that requires hydrophilicity.

特に、PTFEは融点ピーク以上(327℃以上)でも比較的分解速度が遅く、耐久性、耐薬品性、強度等の点で最も好適に用いられる。なお、PTFE単体ではなく、PTFEが重量比80%以上とし、他のフッ素系樹脂を配合してもよい。   In particular, PTFE has a relatively slow decomposition rate even at a melting point peak or higher (327 ° C. or higher), and is most suitably used in terms of durability, chemical resistance, strength, and the like. Note that PTFE may be 80% or more by weight instead of PTFE alone, and other fluororesin may be blended.

さらに、本発明は、前記した分離膜を平膜とし、透過液流路をあけて対向配置すると共に前記透過液流路と連通する透過液流出口をあけて外周部を封止している平膜型分離膜エレメントを提供している。
また、前記平膜型分離膜エレメントを隙間をあけて複数個を組み付けている平膜型の分離膜モジュールを提供している。
Further, the present invention provides a flat membrane having the above-described separation membrane as a flat membrane, with a permeate flow channel provided therebetween and opposed to the permeate flow channel, and a permeate flow outlet communicating with the permeate flow channel. A membrane separation membrane element is provided.
The present invention also provides a flat membrane type separation membrane module in which a plurality of the flat membrane type separation membrane elements are assembled with a gap.

また、前記した分離膜を中空糸とし、複数の中空糸を隙間をあけて配置し、これら中空糸の長さ方向の両端を固定材で連結すると共に前記中空糸の透過液流出口を前記一端側の固定材に設けた集水部に連通している中空糸型の分離膜モジュールを提供している。   Further, the separation membrane described above is a hollow fiber, a plurality of hollow fibers are arranged with gaps, and both ends in the length direction of the hollow fibers are connected by a fixing material, and the permeate outlet of the hollow fiber is connected to the one end. A hollow fiber type separation membrane module is provided which communicates with a water collecting section provided on the side fixing member.

前記した平膜型分離膜モジュール、中空糸型分離膜モジュールは濾過用などの水処理装置に好適に用いられる。   The flat membrane type separation membrane module and the hollow fiber type separation membrane module described above are suitably used for water treatment apparatuses for filtration and the like.

前述したように、本発明の分離膜は、樹脂製の多孔質体の表面に水素を多く含むカーボンからなる被覆層を設けて、親水化を図っているため、分離膜の空孔への原水の透過性を改善できる。かつ、多孔質体とするフッ素系樹脂やポリオレフィン系樹脂等の樹脂とのなじみが良く強固に固着することができ、分離膜の透過流速を低下させない利点がある。
さらに、該被覆層自体が耐久性、耐薬品性、強度を備えるため、分離膜の薬品洗浄も可能となり、分離膜の目詰まりを低減でき、分離膜の稼働効率を上げることができる。
As described above, the separation membrane of the present invention is provided with a coating layer made of carbon containing a large amount of hydrogen on the surface of a porous resin body so as to make it hydrophilic, so that the raw water into the pores of the separation membrane Can improve the permeability. In addition, it has an advantage that it can be firmly and firmly fixed with a resin such as a fluororesin or a polyolefin resin as a porous body, and does not lower the permeation flow rate of the separation membrane.
Furthermore, since the coating layer itself has durability, chemical resistance, and strength, the separation membrane can be cleaned with chemicals, clogging of the separation membrane can be reduced, and the operation efficiency of the separation membrane can be increased.

本発明の第一実施形態の断面図である。It is sectional drawing of 1st embodiment of this invention. 第二実施形態の斜視図である。It is a perspective view of a second embodiment. 第三実施形態の断面図である。It is sectional drawing of 3rd embodiment. 第四実施形態を示し、(A)は斜視図、(B)は(A)のB−B線の断面形状を示す模式図、(C)は透過液流入側の一部拡大図、(D)は透過液流入側から透過液流出側の厚さ方向の断面を示す模式図である。(A) is a perspective view, (B) is a schematic diagram showing a cross-sectional shape of the BB line of (A), (C) is a partially enlarged view on the permeate inflow side, (D) ) Is a schematic diagram showing a cross section in the thickness direction from the permeate inflow side to the permeate outflow side.

以下、本発明の実施形態を図面を参照して説明する。
図1に示す第一実施形態の分離膜1は濾過用の平膜からなる。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
The separation membrane 1 of the first embodiment shown in FIG. 1 is a flat membrane for filtration.

分離膜1は延伸PTFE多孔質膜2(以下、多孔質膜2と略す)の表面にDLCを主体とする被覆層3を備えている。
多孔質膜2の平均膜厚は5〜200μm、被覆層3の平均厚さは0.1〜100μm、、被処理液側となる濾過側外面での空孔2aの面積占有率が40%〜85%、平均空孔径が0.01〜20μmとしている。前記多孔質膜2の濾過側外面に被覆層3を備えている。該被覆層3の厚さは多孔質膜2の厚さの1〜100%程度とし、多孔質膜2の空孔を囲む繊維状骨格の表面にのみ被覆し、よって、多孔質膜2の表面の空孔2aに連通した空孔3aを有するものである。
The separation membrane 1 includes a coating layer 3 mainly composed of DLC on the surface of an expanded PTFE porous membrane 2 (hereinafter abbreviated as a porous membrane 2).
The average thickness of the porous membrane 2 is 5 to 200 μm, the average thickness of the coating layer 3 is 0.1 to 100 μm, and the area occupation ratio of the pores 2a on the outer surface of the filtration side that is the liquid to be treated is 40% to It is 85% and the average pore diameter is 0.01 to 20 μm. A coating layer 3 is provided on the outer surface of the porous membrane 2 on the filtration side. The thickness of the coating layer 3 is about 1 to 100% of the thickness of the porous membrane 2 and covers only the surface of the fibrous skeleton surrounding the pores of the porous membrane 2, and thus the surface of the porous membrane 2. It has a hole 3a communicating with the hole 2a.

被覆層3は水素含有量が1体積%から80体積%のDLC膜からなる。該被覆層3は120℃以下の低温プラズマで蒸着するCVD法(化学蒸着法)で多孔質膜2の表面に強固に固着して多孔質膜2と一体化している。   The covering layer 3 is made of a DLC film having a hydrogen content of 1 to 80% by volume. The coating layer 3 is firmly fixed to the surface of the porous film 2 and integrated with the porous film 2 by a CVD method (chemical vapor deposition method) that is vapor-deposited at a low temperature plasma of 120 ° C. or lower.

前記多孔質延伸PTFEからなる多孔質膜2として、本実施形態では濾過層2Aと支持層2Bを積層した複層の多孔質膜を用いている。
濾過層2Aを被処理液側に配置し、外面の濾過面では空孔の面積占有率が40%〜85%とし、平均空孔径が0.01〜20μm、好ましくは0.01〜0.05μmとしている。支持層2Bは濾過層2Aよりも孔径が大きくかつ厚みを大きくしている。濾過層2A、支持層2BともPTFE未焼結粉末と液状潤滑剤のペースト押出によって得られる成形体を2軸延伸したのち、焼結一体化して製造している。
濾過層2Aは平均膜厚が5〜200μm、空孔を囲む繊維状骨格の平均最大長さを5μm以下とした、粒子径0.45μmの粒子捕捉率が90%以上としている。
支持層2Bは平均孔径が1〜15μm、平均膜厚が5〜195μm、空孔を囲む繊維状骨格の平均最大長さが15〜100μmのものを用いている。
前記積層体からなる多孔質膜2は、引張強度が10N/mm2以上の強度を有し、3質量%の硫酸、4質量%の水酸化ナトリウム水溶液、有効塩素濃度10%の次亜塩素酸ナトリウム水溶液の各々に温度50℃で10日間浸漬しても透過水量が低下せず、損傷されない優れた耐薬品性を備えている。
なお、前記平均孔径はPMI社製パームポロメーター(型番 CFP-1200A)により測定している。
前記濾過層2Aの外面に前記DLCの被覆層3を設けて親水処理している。
As the porous membrane 2 made of the porous expanded PTFE, in this embodiment, a multilayer porous membrane in which a filtration layer 2A and a support layer 2B are laminated is used.
The filtration layer 2A is arranged on the liquid to be treated side, the area occupation ratio of the pores is 40% to 85% on the outer filtration surface, and the average pore diameter is 0.01 to 20 μm, preferably 0.01 to 0.05 μm. It is said. The support layer 2B has a larger pore diameter and a larger thickness than the filtration layer 2A. Both the filtration layer 2A and the support layer 2B are manufactured by biaxially stretching a molded body obtained by extruding PTFE unsintered powder and a liquid lubricant and then sintering and integrating them.
The filtration layer 2A has an average film thickness of 5 to 200 μm, an average maximum length of a fibrous skeleton surrounding the pores of 5 μm or less, and a particle capture rate of 0.45 μm and a particle capture rate of 90% or more.
The support layer 2B has an average pore diameter of 1 to 15 μm, an average film thickness of 5 to 195 μm, and an average maximum length of a fibrous skeleton surrounding the pores of 15 to 100 μm.
The porous membrane 2 made of the laminate has a tensile strength of 10 N / mm 2 or more, 3 mass% sulfuric acid, 4 mass% sodium hydroxide aqueous solution, hypochlorous acid having an effective chlorine concentration of 10%. Even when immersed in each of the aqueous sodium solutions at a temperature of 50 ° C. for 10 days, the amount of permeated water does not decrease and has excellent chemical resistance that is not damaged.
The average pore diameter is measured by a palm porometer (model number CFP-1200A) manufactured by PMI.
The DLC coating layer 3 is provided on the outer surface of the filtration layer 2A for hydrophilic treatment.

前記分離膜1は透過液流路をあけて対向配置し、外周を封止した平膜エレメントとしている。多数枚の平膜エレメントを間隔をあけて配置した平膜型分離膜モジュールとし、濾過槽に吊り下げて使用している。   The separation membrane 1 is formed as a flat membrane element having a permeate flow path and opposingly arranged, and the outer periphery is sealed. A flat membrane type separation membrane module in which a large number of flat membrane elements are arranged at intervals is used by being suspended in a filtration tank.

前記構成とした濾過用平膜からなる分離膜1は、被処理液側の濾過面に親水性の被覆層3を備えているため水を透過し易く、透過流量を高めることができる。
かつ、被覆層3を多孔質膜2の表面に強固に固着して一体化しているため、経年使用しても剥離が発生せず、透過流量を低下させない。さらに、カーボン主体の被覆層3は強度、耐久性、耐薬品性に優れているため、同様な特性を有するPTFE製の多孔質膜2の特性と併せて、濾過膜として好適に用いることができる。特に、高濃度の酸化剤やアルカリ剤で洗浄することができるので、長期に渡り高い透過水量を得ることができる。
Since the separation membrane 1 composed of a flat membrane for filtration having the above-described configuration is provided with the hydrophilic coating layer 3 on the filtration surface on the liquid to be treated, it can easily permeate water and increase the permeation flow rate.
In addition, since the coating layer 3 is firmly fixed and integrated on the surface of the porous membrane 2, peeling does not occur even when used over time, and the permeation flow rate does not decrease. Furthermore, since the carbon-based coating layer 3 is excellent in strength, durability, and chemical resistance, it can be suitably used as a filtration membrane together with the properties of the porous membrane 2 made of PTFE having similar properties. . In particular, since it can be washed with a high concentration oxidizing agent or alkaline agent, a high permeated water amount can be obtained over a long period of time.

なお、多孔質膜2は前記積層体の構成に限定されず、被処理液側に緻密な濾過層となる緻密層を設け、反対側に向けて次第に空孔を大きくした単層でもよい。さらに、空孔を厚さ方向に略均等に設けた単層でもよい。   The porous film 2 is not limited to the structure of the laminate, and may be a single layer in which a dense layer serving as a dense filtration layer is provided on the liquid to be treated and the pores are gradually enlarged toward the opposite side. Furthermore, it may be a single layer in which pores are provided substantially uniformly in the thickness direction.

前記構成とした分離膜1からなる平膜を用いた濾過膜は、耐薬品性及び機械的強度に極めて優れているので、活性汚泥を含む排水からなる原水に対して、好適に用いることができる。なかでも、MLSS(混合液懸濁浮遊物質)が5,000〜20,000mg/Lである活性汚泥(被処理液)に対して、安定して使用することができる点で極めて優れている。
また、被覆層3は海水に対しても耐食性に優れているため、海水濾過用、例えば、バラスト水等の海水が原水となる濾過装置や、油田随伴水等の油水の濾過装置として好適に用いられる。
Since the filtration membrane using the flat membrane made of the separation membrane 1 having the above-described configuration is extremely excellent in chemical resistance and mechanical strength, it can be suitably used for raw water consisting of waste water containing activated sludge. . Especially, it is very excellent at the point which can be used stably with respect to activated sludge (to-be-processed liquid) whose MLSS (mixed-liquid suspension suspended substance) is 5,000-20,000 mg / L.
Moreover, since the coating layer 3 has excellent corrosion resistance against seawater, it is preferably used as a filtration device for seawater filtration, for example, a filtration device in which seawater such as ballast water becomes raw water, or an oily water filtration device such as oilfield-associated water. It is done.

「実施例」
延伸PTFE多孔質膜の平膜の表面に、低温プラズマCVD(120℃)でDLCを1.5μmの厚さで蒸着した。
前記DLC表面層を設けた実施例と、同一の平膜にDLC被覆層を設けていない比較例に対して、吸引濾過(0.5atm)で水を透過させた。
その結果、実施例は比較例よりも差圧が1/5であった。
また、汚泥排水1トンを原水として30分間透過させた。比較例では10分後に目詰まりが発生したが、実施例では30分後にしか目詰まりは発生しなかった。
"Example"
DLC was vapor-deposited with a thickness of 1.5 μm on the surface of the flat PTFE porous membrane by low-temperature plasma CVD (120 ° C.).
Water was permeated by suction filtration (0.5 atm) for the example in which the DLC surface layer was provided and the comparative example in which the DLC coating layer was not provided on the same flat membrane.
As a result, the differential pressure of the example was 1/5 that of the comparative example.
Further, 1 ton of sludge drainage was permeated for 30 minutes as raw water. In the comparative example, clogging occurred after 10 minutes, but in the example, clogging occurred only after 30 minutes.

図2は第二実施形態を示し、分離膜10は中空糸からなり、濾過用の中空糸膜として形成している。
分離膜10の多孔質膜11とする中空糸も、第一実施形態と同様に延伸PTFE多孔質体で形成している。該中空糸も平膜と同様に複数層でもよいし、単層でもよく、空孔径および気孔率は第一実施形態の平膜と同様としている。
具体的には、特開2006−7224号公報に記載の支持層と濾過層を備えた積層体からなる複数層の多孔質中空糸が好適に用いられる。
本実施形態では単層の中空糸と、外径1〜14mm、内径0.5〜12mm、肉厚0.2〜1.0mm、気孔率60〜80%の中空糸を多孔質膜11として用いている。
FIG. 2 shows a second embodiment, in which the separation membrane 10 is made of a hollow fiber and is formed as a hollow fiber membrane for filtration.
The hollow fiber used as the porous membrane 11 of the separation membrane 10 is also formed of an expanded PTFE porous body as in the first embodiment. The hollow fiber may be a plurality of layers as in the case of the flat membrane, or may be a single layer, and the pore diameter and the porosity are the same as those of the flat membrane of the first embodiment.
Specifically, a multi-layered porous hollow fiber made of a laminate provided with a support layer and a filtration layer described in JP-A-2006-7224 is preferably used.
In this embodiment, a single layer hollow fiber and a hollow fiber having an outer diameter of 1 to 14 mm, an inner diameter of 0.5 to 12 mm, a wall thickness of 0.2 to 1.0 mm, and a porosity of 60 to 80% are used as the porous membrane 11. ing.

前記中空糸からなる多孔質膜11の外周面に第一実施形態と同様なDLCからなる被覆層13を設けている。該被覆層13は中空糸の表面に塗布した後に焼結し、厚さ0.1〜2μmとしている。   A coating layer 13 made of DLC similar to the first embodiment is provided on the outer peripheral surface of the porous membrane 11 made of the hollow fiber. The coating layer 13 is applied to the surface of the hollow fiber and then sintered to have a thickness of 0.1 to 2 μm.

前記中空糸からなる分離膜10も多数本を集束して中空糸分離膜モジュールとし、該中空糸分離膜モジュールを濾過槽に吊り下げて水処理装置に使用している。
この中空糸からなる分離膜10も、外周面を被覆層13で親水処理しているため、前記のような微細な空孔への水透過性を改善でき、原水の透過流量を高めることでき、かつ、被覆層13は多孔質膜11から剥離しにくいため、透過流量が低下しない。
A large number of the separation membranes 10 made of hollow fibers are collected into a hollow fiber separation membrane module, and the hollow fiber separation membrane module is suspended in a filtration tank and used in a water treatment apparatus.
Since the separation membrane 10 made of this hollow fiber is also hydrophilically treated with the coating layer 13, the water permeability to the fine pores as described above can be improved, and the permeate flow rate of the raw water can be increased. And since the coating layer 13 is hard to peel from the porous film 11, a permeation | transmission flow rate does not fall.

図3に第三実施形態を示す。
第三実施形態の分離膜20では、多孔質膜21をポリオレフィン系樹脂の塩素化ポリエチレンからなる不織布で形成している。
該多孔質膜21の濾過側となる外面に、アモルファス状態のDLC膜マトリックス内に、ナノ状態にフラーレン粒子やチューブが分散する被覆層23を設けている。該被覆層23の厚さは5〜10μmとした。
該被覆層23を設けた分離膜20の作用効果は第一実施形態と同様であるため、説明を省略する。
前記第三実施形態の被覆層23とするとコスト的には30%程度アップするが、強度は被覆層23を設けていない場合と比較して50%向上させることができた。
FIG. 3 shows a third embodiment.
In the separation membrane 20 of the third embodiment, the porous membrane 21 is formed of a nonwoven fabric made of chlorinated polyethylene of polyolefin resin.
A coating layer 23 in which fullerene particles and tubes are dispersed in a nano state is provided in an amorphous DLC membrane matrix on the outer surface on the filtration side of the porous membrane 21. The coating layer 23 had a thickness of 5 to 10 μm.
Since the operation effect of the separation membrane 20 provided with the coating layer 23 is the same as that of the first embodiment, the description is omitted.
When the coating layer 23 of the third embodiment is used, the cost increases by about 30%, but the strength can be improved by 50% compared to the case where the coating layer 23 is not provided.

図4(A)〜(D)に第四実施形態を示す。
第四実施形態の分離膜30は水を脱水して、エタノールと水とを分離するゼオライト分離膜として用いている。
ゼオライト分離膜30は、延伸PTFE多孔質シートを多孔質膜31の支持体とし、多孔質膜31の表面に親水処理膜からなる被覆層34を一体的に設け、該被覆層34の表面にゼオライト結晶35を担持している。前記被覆層34を前記実施形態と同様にDLCの被覆層としている。多孔質膜31の空孔内面は架橋PVAで親水化して親水膜36を設けている。なお、多孔質膜31の空孔内面もDLCの被覆層を設けてもよい。
4A to 4D show a fourth embodiment.
The separation membrane 30 of the fourth embodiment is used as a zeolite separation membrane that dehydrates water and separates ethanol and water.
The zeolite separation membrane 30 uses an expanded PTFE porous sheet as a support for the porous membrane 31, and a coating layer 34 made of a hydrophilic treatment membrane is integrally provided on the surface of the porous membrane 31. The crystal 35 is supported. The coating layer 34 is a DLC coating layer as in the above embodiment. The pore inner surface of the porous film 31 is hydrophilized with crosslinked PVA to provide a hydrophilic film 36. The inner surface of the pores of the porous film 31 may also be provided with a DLC coating layer.

前記ゼオライト分離膜30では、多孔質膜31の一面(図4(B)〜(C)中の上面)を透過液流入面31xとし、他面(図4(B)〜(D)中で下面)を透過液流出面31yとしている。水とアルコールとに分離される発酵液は図4(A)に示すXからYへと矢印方向に透過する。
前記多孔質膜31は、柔軟な繊維が三次元網目状に連結された微細な繊維状組織及び結節からなる繊維状骨格33を備え、繊維状骨格33に囲まれた多数の空孔32が存在している。該空孔32は透過液流入面31xと透過液流出面31yまで三次元状に連通している。前記空孔32の空孔径は0.1〜5.0μmの範囲で相違させている。
In the zeolite separation membrane 30, one surface of the porous membrane 31 (upper surface in FIGS. 4B to 4C) is a permeate inflow surface 31x, and the other surface (lower surfaces in FIGS. 4B to 4D). ) Is the permeate outflow surface 31y. The fermentation broth separated into water and alcohol permeates in the direction of the arrow from X to Y shown in FIG.
The porous membrane 31 includes a fibrous skeleton 33 composed of fine fibrous structures and nodules in which flexible fibers are connected in a three-dimensional network, and there are a large number of pores 32 surrounded by the fibrous skeleton 33. is doing. The air holes 32 communicate in a three-dimensional manner up to the permeate inflow surface 31x and the permeate outflow surface 31y. The hole diameters of the holes 32 are different in the range of 0.1 to 5.0 μm.

図4(C)の模式図において、大きい空孔32aで透過液流入面31xと透過液流出面31yが連通されている流路を直線状の貫通穴45で示し、小さい空孔32bが多数存在し、繊維状骨格33が多い部分を隔壁部46として示している。
前記ゼオライト結晶35はA型としている。なお、PHI型、MER型、LTA型、A型、BEA型あるいはCDO型ゼオライトのいずれでも良いが、本実施形態では前記A型を用いている。
In the schematic diagram of FIG. 4C, a flow path in which the permeate inflow surface 31x and the permeate outflow surface 31y are communicated with each other by a large hole 32a is indicated by a straight through hole 45, and there are many small holes 32b. In addition, a portion where the fibrous skeleton 33 is large is shown as a partition wall portion 46.
The zeolite crystal 35 is A-type. Note that any of PHI type, MER type, LTA type, A type, BEA type or CDO type zeolite may be used, but the A type is used in this embodiment.

該ゼオライト結晶35は、図4(B)〜(D)に示すように、透過液流入側面の被覆層34の表面に担持されるゼオライト結晶膜35Aと、大きい空孔32aからなる貫通穴45の内周面に担持されるゼオライト結晶膜35Bと、隔壁部46に含まれる小さい空孔32bのうちで微細孔32cの内部に充填されるゼオライト結晶部35Cとからなる。
前記ゼオライト結晶部35Cは微細孔32cを目詰まり状態としている。
なお、小さい空孔32bは全て目詰まり状態とされているのではなく、空孔径に応じて繊維状骨格33の表面にゼオライト結晶膜が担持されている空孔と、ゼオライト結晶部35Cが充填された微細孔とがある。
As shown in FIGS. 4B to 4D, the zeolite crystal 35 includes a zeolite crystal film 35A supported on the surface of the coating layer 34 on the permeate inflow side and a through-hole 45 made up of a large hole 32a. It consists of a zeolite crystal film 35B carried on the inner peripheral surface and a zeolite crystal part 35C filled in the fine holes 32c among the small holes 32b included in the partition wall part 46.
The zeolite crystal part 35C has the fine holes 32c clogged.
The small holes 32b are not all clogged, but are filled with a hole in which the zeolite crystal film is supported on the surface of the fibrous skeleton 33 and the zeolite crystal part 35C according to the hole diameter. There are also fine pores.

また、図4(D)に示すように、ゼオライト結晶部35Cが充填されて目詰まり状態の微細孔32cは透過液流入側の領域に偏在し、透過液流出面31yに向けて次第に減少し、厚さ方向の中間位置より他面31yの間の領域には目詰まり状態の微細孔32cは存在していない。
延伸PTFE多孔質体からなる多孔質膜31は、厚み30〜1000μm、IPAバブルポイントを10〜200kPaとしている。被覆層34の厚さは0.1〜1μmとしている。
Further, as shown in FIG. 4D, the clogged fine holes 32c filled with the zeolite crystal part 35C are unevenly distributed in the permeate inflow side region and gradually decrease toward the permeate outflow surface 31y. The clogged fine holes 32c do not exist in the region between the intermediate position in the thickness direction and the other surface 31y.
The porous membrane 31 made of the expanded PTFE porous body has a thickness of 30 to 1000 μm and an IPA bubble point of 10 to 200 kPa. The thickness of the coating layer 34 is 0.1 to 1 μm.

前記構成としたゼオライト分離膜30は、多孔質膜31の表面にゼオライト微粒子及びゼオライト結晶と親和性を有する親水性の被覆層34を備えている。そのため、本来は親和性を有しないPTFE製の多孔質膜31とゼオライト結晶35が親和性を有し、ゼオライト結晶35の担持力を高めることができる。その結果、PTFEからなる多孔質膜31を支持体としながら、ゼオライト結晶が多孔質膜31から剥離したり、脱落したりすることがなく、耐久性に優れるものとすることができる。
PTFEからなる多孔質膜31は、かつ強度、曲げ特性、耐薬品性等の物性に極めて優れている上に、安価であるので、コスト的にも優れている。
The zeolite separation membrane 30 configured as described above includes a hydrophilic coating layer 34 having an affinity for zeolite fine particles and zeolite crystals on the surface of the porous membrane 31. Therefore, the porous membrane 31 made of PTFE which does not originally have affinity and the zeolite crystal 35 have affinity, and the supporting force of the zeolite crystal 35 can be increased. As a result, while the porous membrane 31 made of PTFE is used as a support, the zeolite crystals are not peeled off or dropped off from the porous membrane 31 and can be excellent in durability.
The porous membrane 31 made of PTFE is extremely excellent in physical properties such as strength, bending characteristics, chemical resistance, and the like, and is inexpensive, and therefore excellent in cost.

前記のように、ゼオライト分離膜は、支持体としては優れた物性を有するが、ゼオライトが剥離しやすいPTFE多孔質膜の支持体に、親水性を有する被覆層を設け、該被覆層でゼオライト結晶膜を担持しているため、ゼオライト結晶膜が容易に剥離しない。かつ、透過液流入側の空孔のうちで微小孔にはゼオライト結晶を圧入して目詰まり状態に充填しているため、ゼオライト微粒子は微小孔から離脱することはなく、担持機能を高めることができる。   As described above, the zeolite separation membrane has excellent physical properties as a support, but a hydrophilic coating layer is provided on a PTFE porous membrane support on which the zeolite is easily peeled, and the zeolite crystal is formed in the coating layer. Since the membrane is supported, the zeolite crystal membrane does not easily peel off. In addition, zeolite crystals are pressed into the micropores in the pores on the permeate inflow side and are packed in a clogged state, so that the zeolite fine particles are not separated from the micropores and can improve the supporting function. it can.

なお、前記ゼオライト分離膜は、エタノールに限らず、メタノール、ブタノール等からバイオ燃料を製造する場合にも好適に用いられる。   The zeolite separation membrane is suitably used not only for ethanol but also for producing biofuel from methanol, butanol or the like.

1 分離膜
2 多孔質膜
3 被覆層
1 Separation membrane 2 Porous membrane 3 Coating layer

Claims (12)

樹脂製の多孔質体の表面に、少なくとも水素含有量が1体積%から80体積%のカーボン膜からなる被覆層を備えていることを特徴とする分離膜。   A separation membrane comprising a coating layer made of a carbon membrane having a hydrogen content of at least 1% by volume to 80% by volume on the surface of a porous body made of resin. 前記被覆層は、ダイヤモンドライクカーボン、フラーレン、ナノチューブ、グラファイト、ダイヤモンド、グラファイト構造、ダイヤ構造、フラーレン構造、ナノチューブ構造の結晶質炭素と非晶質炭素との混合質のいずれか1種以上としている請求項1に記載の分離膜。   The coating layer is at least one of diamond-like carbon, fullerene, nanotube, graphite, diamond, graphite structure, diamond structure, fullerene structure, and a mixture of crystalline carbon and amorphous carbon of the nanotube structure. Item 2. The separation membrane according to Item 1. 前記被覆層はダイヤモンドライクカーボンを蒸着して設けている請求項1または請求項2に記載の分離膜。   The separation membrane according to claim 1, wherein the coating layer is provided by depositing diamond-like carbon. 前記被覆層の厚さは0.01μm以上100μm以下である請求項1乃至請求項3のいずれか1項に記載の分離膜。   The separation membrane according to any one of claims 1 to 3, wherein a thickness of the coating layer is 0.01 µm or more and 100 µm or less. 前記多孔質体は濾過用の多孔質シート、多孔質チューブの中空糸または不織布からなる請求項1乃至請求項4のいずれか1項に記載の分離膜。   The separation membrane according to any one of claims 1 to 4, wherein the porous body comprises a porous sheet for filtration, a hollow fiber of a porous tube, or a nonwoven fabric. 前記多孔質体はゼオライト分離膜として用いられる多孔質シート、多孔質チューブの中空糸または不織布からなる請求項1乃至請求項3のいずれか1項に記載の分離膜。   The separation membrane according to any one of claims 1 to 3, wherein the porous body is composed of a porous sheet used as a zeolite separation membrane, a hollow fiber of a porous tube, or a nonwoven fabric. 前記多孔質体はフッ素系樹脂またはポリオレフィン系樹脂からなる請求項1乃至請求項6のいずれか1項に記載の分離膜。   The separation membrane according to any one of claims 1 to 6, wherein the porous body is made of a fluorine resin or a polyolefin resin. 前記多孔質体は多孔質延伸四弗化エチレン樹脂からなる請求項1乃至請求項7のいずれか1項に記載の分離膜。   The separation membrane according to any one of claims 1 to 7, wherein the porous body is made of a porous stretched tetrafluoroethylene resin. 請求項1〜5、7、8のいずれか1項に記載の分離膜を平膜とし、透過液流路をあけて対向配置すると共に前記透過液流路と連通する透過液流出口をあけて外周部を封止している平膜型分離膜エレメント。   The separation membrane according to any one of claims 1 to 5, 7, and 8 is a flat membrane, and a permeate flow path is opened and arranged oppositely, and a permeate flow outlet that communicates with the permeate flow path is opened. A flat membrane separation membrane element that seals the outer periphery. 請求項9に記載の平膜型分離膜エレメントを隙間をあけて複数個を組み付けている分離膜モジュール。   A separation membrane module comprising a plurality of flat membrane separation membrane elements according to claim 9 assembled with a gap. 請求項1〜5、7、8のいずれか1項に記載の分離膜を中空糸とし、複数の中空糸を隙間をあけて配置し、これら中空糸の長さ方向の両端を固定材で連結すると共に前記中空糸の透過液流出口を前記一端側の固定材に設けた集水部に連通している分離膜モジュール。   The separation membrane according to any one of claims 1 to 5, 7, and 8 is a hollow fiber, a plurality of hollow fibers are arranged with gaps, and both ends in the length direction of the hollow fibers are connected by a fixing material. And a separation membrane module in which the permeate outlet of the hollow fiber communicates with a water collecting portion provided in the fixing member on the one end side. 請求項10または請求項11に記載の分離膜モジュールを備えた水処理装置。   The water treatment apparatus provided with the separation membrane module of Claim 10 or Claim 11.
JP2009061860A 2009-03-13 2009-03-13 Separation membrane Withdrawn JP2010214255A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009061860A JP2010214255A (en) 2009-03-13 2009-03-13 Separation membrane

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009061860A JP2010214255A (en) 2009-03-13 2009-03-13 Separation membrane

Publications (1)

Publication Number Publication Date
JP2010214255A true JP2010214255A (en) 2010-09-30

Family

ID=42973684

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009061860A Withdrawn JP2010214255A (en) 2009-03-13 2009-03-13 Separation membrane

Country Status (1)

Country Link
JP (1) JP2010214255A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013151147A1 (en) * 2012-04-05 2013-10-10 東京エレクトロン株式会社 Filtration filter
WO2014097890A1 (en) * 2012-12-21 2014-06-26 千代田化工建設株式会社 Method for treating water containing water-insoluble substance
CN103952853A (en) * 2014-05-19 2014-07-30 华东理工大学 X-shaped fiber weaving method suitable for oil-water separation
KR101441540B1 (en) 2011-10-14 2014-09-17 서울대학교산학협력단 Polymeric membrane for water treatment embedded with planar carbon-based oxide, and water treatment apparatus and process using the same
JP2016069562A (en) * 2014-09-30 2016-05-09 富士フイルム株式会社 Porous film and producing method thereof
JPWO2014148479A1 (en) * 2013-03-19 2017-02-16 太陽誘電ケミカルテクノロジー株式会社 Structure having amorphous carbon film for antifouling and method for forming amorphous carbon film for antifouling
JP2017510722A (en) * 2014-02-25 2017-04-13 コーロン ファッション マテリアル インコーポレイテッド Porous support, method for producing the same, and reinforced membrane including the same
JP2017512634A (en) * 2014-03-21 2017-05-25 ゼネラル・エレクトリック・カンパニイ Fouling resistant membrane for water treatment
CN109115601A (en) * 2017-06-26 2019-01-01 上海斯纳普膜分离科技有限公司 The detection method of plain filter membrane component weld strength
JP2019195767A (en) * 2018-05-09 2019-11-14 株式会社都ローラー工業 Fresh water generator
CN111648025A (en) * 2020-03-23 2020-09-11 东华大学 Micro-nano fiber warming flocculus with longitudinal variable density structure and preparation method thereof

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101441540B1 (en) 2011-10-14 2014-09-17 서울대학교산학협력단 Polymeric membrane for water treatment embedded with planar carbon-based oxide, and water treatment apparatus and process using the same
WO2013151147A1 (en) * 2012-04-05 2013-10-10 東京エレクトロン株式会社 Filtration filter
WO2014097890A1 (en) * 2012-12-21 2014-06-26 千代田化工建設株式会社 Method for treating water containing water-insoluble substance
JP2014121676A (en) * 2012-12-21 2014-07-03 Chiyoda Corp Method for treating water including water-insoluble substances
JPWO2014148479A1 (en) * 2013-03-19 2017-02-16 太陽誘電ケミカルテクノロジー株式会社 Structure having amorphous carbon film for antifouling and method for forming amorphous carbon film for antifouling
JP2017510722A (en) * 2014-02-25 2017-04-13 コーロン ファッション マテリアル インコーポレイテッド Porous support, method for producing the same, and reinforced membrane including the same
JP2017512634A (en) * 2014-03-21 2017-05-25 ゼネラル・エレクトリック・カンパニイ Fouling resistant membrane for water treatment
CN103952853A (en) * 2014-05-19 2014-07-30 华东理工大学 X-shaped fiber weaving method suitable for oil-water separation
JP2016069562A (en) * 2014-09-30 2016-05-09 富士フイルム株式会社 Porous film and producing method thereof
CN109115601A (en) * 2017-06-26 2019-01-01 上海斯纳普膜分离科技有限公司 The detection method of plain filter membrane component weld strength
JP2019195767A (en) * 2018-05-09 2019-11-14 株式会社都ローラー工業 Fresh water generator
CN111648025A (en) * 2020-03-23 2020-09-11 东华大学 Micro-nano fiber warming flocculus with longitudinal variable density structure and preparation method thereof
CN111648025B (en) * 2020-03-23 2021-10-26 东华大学 Micro-nano fiber warming flocculus with longitudinal variable density structure and preparation method thereof

Similar Documents

Publication Publication Date Title
JP2010214255A (en) Separation membrane
JP5407133B2 (en) Separation membrane element for filtration and membrane module for filtration
JP5369278B2 (en) Flat membrane element for filtration and flat membrane filtration module
KR0161292B1 (en) Spiral wound gas permeable membrane module and apparatus and method for using the same
JP4185509B2 (en) Method for producing porous multilayer hollow fiber
US7735660B2 (en) Porous multilayered hollow fiber and filtration module, and method of manufacturing porous multilayered hollow fiber
US7517454B2 (en) Method for treating wastewater containing active sludge
KR20120057579A (en) Flat membrane element for filtration, flat membrane type separation membrane module, and filtration device
JP2010042329A (en) Hollow fiber membrane module
JP5652901B2 (en) Separation membrane module for filtration and filtration apparatus using the separation membrane module
JP4200157B2 (en) Porous multilayer hollow fiber and filtration module provided with the porous multilayer hollow fiber
JP2017047417A (en) Separation membrane module, separation membrane element and telescope prevention sheet
JP2011031122A (en) Multilayered porous hollow fiber, hollow fiber membrane module, and filtration apparatus
JP5599566B2 (en) Microporous membranes and systems for desalination
JPH11114381A (en) Spiral type membrane element
JP2014240047A (en) Membrane filter element and membrane module for filtration
JP6374291B2 (en) Hollow fiber membrane module
JP2010253357A (en) Alcohol separator
CA2367547A1 (en) Porous membrane
JP4504858B2 (en) Water purifier
CN202343109U (en) Sintering pipe type ultra-filtering film
KR102409225B1 (en) Flexible membrane and manufacturing method thereof
CN214131098U (en) Durable hollow fiber ultrafiltration membrane
CN218608859U (en) Scale inhibition and bacterial inhibition type hydrophilic hollow fiber membrane
CN218307266U (en) Fluorinated polymer filter membrane

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20120605