JP2010213514A - Device for switching power supply - Google Patents

Device for switching power supply Download PDF

Info

Publication number
JP2010213514A
JP2010213514A JP2009058866A JP2009058866A JP2010213514A JP 2010213514 A JP2010213514 A JP 2010213514A JP 2009058866 A JP2009058866 A JP 2009058866A JP 2009058866 A JP2009058866 A JP 2009058866A JP 2010213514 A JP2010213514 A JP 2010213514A
Authority
JP
Japan
Prior art keywords
voltage
voltage source
bidirectional switch
current
commutation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009058866A
Other languages
Japanese (ja)
Inventor
Yoichi Omori
洋一 大森
Motoi Sato
基 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Electric Manufacturing Ltd
Original Assignee
Toyo Electric Manufacturing Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Electric Manufacturing Ltd filed Critical Toyo Electric Manufacturing Ltd
Priority to JP2009058866A priority Critical patent/JP2010213514A/en
Publication of JP2010213514A publication Critical patent/JP2010213514A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To completely remove a voltage fluctuation by a dead time without correcting a commutation signal in a device for switching a power supply. <P>SOLUTION: The device for switching the power supply is composed of a current-polarity detector detecting the polarity of a load current, a current commutation-signal generator using an output from the current-polarity detector, a voltage comparator detecting the magnitude of the voltage of a voltage source and a voltage commutation-signal generator using the output from the voltage comparator. The device for switching the power supply is further composed of a sharing appliance selecting the output from the current commutation-signal generator and the output from the voltage commutation-signal generator so as to reach the same ratio within a predetermined time and for output to a bidirectional switch. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、例えばマトリックスコンバータのように複数の電圧源を切り替えて負荷に接続することで負荷の入力電圧を自由に制御できるようにした装置に関するものである。   The present invention relates to a device that can freely control an input voltage of a load by switching a plurality of voltage sources and connecting to a load, such as a matrix converter.

マトリックスコンバータは、3相電圧源と3相負荷とを9つの双方向スイッチで接続した構成であり、その双方向スイッチを制御することで任意の電圧を3相負荷に印加することが可能なだけでなく、電力回生や3相電圧源に流れる電流を力率1の正弦波とすることも容易に実現できる電力変換装置である。   The matrix converter has a configuration in which a three-phase voltage source and a three-phase load are connected by nine bidirectional switches, and an arbitrary voltage can be applied to the three-phase load by controlling the bidirectional switches. In addition, the power conversion device can easily realize power regeneration and a current flowing through the three-phase voltage source as a sine wave having a power factor of 1.

マトリックスコンバータは双方向スイッチで負荷に接続する電圧源を切り替えることで負荷に印加する平均電圧を制御しているが、その切り替え(以下は転流と呼ぶ)時に、スイッチの動作遅れなどで切り替え対象の両電圧源を短絡したり負荷を開放しないようにするために、双方向スイッチを所定遅延時間だけ遅らせて順次オン・オフさせている。   The matrix converter controls the average voltage applied to the load by switching the voltage source connected to the load with a bidirectional switch, but when switching (hereinafter referred to as commutation), the switching target is due to the switch operating delay, etc. In order to prevent the two voltage sources from being short-circuited or to open the load, the bidirectional switch is sequentially turned on / off with a predetermined delay time.

図2は、その転流動作を説明するための回路図であり、2つの電圧源31と32と、それらにそれぞれ接続された双方向スイッチ(逆導通スイッチから成る双方向スイッチ)1と2と、それら双方向スイッチの他方に接続された負荷4と、負過電流ILの極性を検出する電流極性検出器5と、その電流極性検出器の出力と転流指令Sとを入力して双方向スイッチの制御信号を出力する電流転流信号生成器8で構成されている。逆導通スイッチから成る双方向スイッチ1は逆導通スイッチ11と12が逆方向に直列に接続された構成であり、逆導通スイッチ11と12をそれぞれ制御する2つの制御信号Ga1とGa2を入力している。逆導通スイッチから成る双方向スイッチ2も同様にその逆導通スイッチ21と22をそれぞれ制御する2つの制御信号Gb1とGb2を入力している。   FIG. 2 is a circuit diagram for explaining the commutation operation. Two voltage sources 31 and 32, and bidirectional switches (bidirectional switches composed of reverse conducting switches) 1 and 2 connected thereto, respectively. The load 4 connected to the other of the bidirectional switches, the current polarity detector 5 for detecting the polarity of the negative overcurrent IL, and the output of the current polarity detector and the commutation command S are input bidirectionally. The current commutation signal generator 8 outputs a switch control signal. The bidirectional switch 1 composed of a reverse conduction switch has a configuration in which reverse conduction switches 11 and 12 are connected in series in the reverse direction, and two control signals Ga1 and Ga2 for controlling the reverse conduction switches 11 and 12 respectively are inputted. Yes. Similarly, the bidirectional switch 2 composed of reverse conduction switches also receives two control signals Gb1 and Gb2 for controlling the reverse conduction switches 21 and 22, respectively.

図5は、図2の回路において、負荷4に接続する電圧源を電圧Vaの電圧源31から電圧Vbの電圧源32に切り替える際の転流シーケンスを表しており、電流転流信号生成器8で生成される各スイッチの制御信号の変化を表している。t1時点以前では転流信号S=Saで逆導通スイッチから成る双方向スイッチ1をオンとし、逆導通スイッチから成る双方向スイッチ2をオフとする状態となっているため、逆導通スイッチから成る双方向スイッチ1の逆導通スイッチ11と12のそれぞれの制御信号Ga1とGa2はともにオン状態であり、逆導通スイッチから成る双方向スイッチ2のそれら制御信号Gb1とGb2はともにオフ状態であり、負荷4の電圧VLは電圧源31の電圧Vaとなっている。t1時点で転流信号S=Sbと変化することで転流シーケンスが始まる。負過電流ILが正の場合は、図5の左側に示されるように、t1時点でまずGa1がオフとなり、デッドタイムtd経過後のt2時点でGb2がオンし、td経過後のt3時点でGa2がオフし、td経過後のt4時点でGb1がオンすることで転流完了となる。このようにデッドタイムtdを設けて順次オン・オフさせるのは、スイッチの動作遅れなどにより電圧源が短絡したり負荷が開放したりしないようにするためである。負荷の電圧が実際に切り替わるのはVa>Vbの場合にt3時点であり、Va<Vbの場合はt2時点となる。   FIG. 5 shows a commutation sequence when the voltage source connected to the load 4 is switched from the voltage source 31 of the voltage Va to the voltage source 32 of the voltage Vb in the circuit of FIG. The change of the control signal of each switch produced | generated is shown. Before the time t1, the commutation signal S = Sa is in a state in which the bidirectional switch 1 comprising the reverse conducting switch is turned on and the bidirectional switch 2 comprising the reverse conducting switch is turned off. The control signals Ga1 and Ga2 of the reverse conduction switches 11 and 12 of the directional switch 1 are both on, and the control signals Gb1 and Gb2 of the bidirectional switch 2 comprising the reverse conduction switches are both off and the load 4 The voltage VL is the voltage Va of the voltage source 31. The commutation sequence starts by changing to a commutation signal S = Sb at time t1. When the negative overcurrent IL is positive, as shown on the left side of FIG. 5, Ga1 is first turned off at time t1, Gb2 is turned on at time t2 after the lapse of dead time td, and at time t3 after the lapse of time td. When Ga2 is turned off and Gb1 is turned on at time t4 after elapse of td, commutation is completed. The reason for setting the dead time td in this manner and sequentially turning on and off is to prevent the voltage source from being short-circuited or the load from being released due to a delay in the operation of the switch. The load voltage is actually switched at time t3 when Va> Vb, and at time t2 when Va <Vb.

負荷電流ILが負の場合は、図5右側に示された転流シーケンスとなり、負荷の電圧が実際に切り替わるのはVa>Vbの場合にt2時点であり、Va<Vbの場合はt3時点となる。   When the load current IL is negative, the commutation sequence shown on the right side of FIG. 5 is performed, and the load voltage is actually switched at time t2 when Va> Vb, and at time t3 when Va <Vb. Become.

つまり、t2からt3までの間の負荷電圧は負荷電流の極性に依存して、IL>0の場合は高い方の電圧源電圧となり、IL<0の場合は低い方の電圧源電圧となる。   That is, depending on the polarity of the load current, the load voltage between t2 and t3 is a higher voltage source voltage when IL> 0, and a lower voltage source voltage when IL <0.

図3は、図2とは異なる方法による転流動作を説明するための回路図である。図2と異なる点は、電流極性検出器5の代わりに電圧源31の電圧Vaと電圧源32の電圧Vbとの大小関係を検知して出力する電圧比較器6となり、電流転流信号生成器8の代わりに電圧比較器6の出力と転流指令Sとを入力して双方向スイッチの制御信号を出力する電圧転流信号生成器7となっている点である。   FIG. 3 is a circuit diagram for explaining a commutation operation by a method different from that in FIG. The difference from FIG. 2 is that instead of the current polarity detector 5, the voltage comparator 6 detects and outputs the magnitude relationship between the voltage Va of the voltage source 31 and the voltage Vb of the voltage source 32, and the current commutation signal generator The voltage commutation signal generator 7 outputs the control signal of the bidirectional switch by inputting the output of the voltage comparator 6 and the commutation command S instead of 8.

図6は、図3の回路において、負荷4に接続する電圧源を電圧Vaの電圧源31から電圧Vbの電圧源32に切り替える際の転流シーケンスを表しており、電圧転流信号生成器7で生成される各スイッチの制御信号の変化を表している。t1時点以前では転流信号S=Saで双方向スイッチ1をオンとし双方向スイッチ2をオフとする状態となっているため、双方向スイッチ1の逆導通スイッチ11と12のそれぞれの制御信号Ga1とGa2はともにオン状態であり、双方向スイッチ2のそれら制御信号Gb1とGb2はともにオフ状態であり、負荷4の電圧VLは電圧源31の電圧Vaとなっている。t1時点で転流信号S=Sbと変化することで転流シーケンスが始まる。Va>Vbの場合は、図6の左側に示されるように、t1時点でまずGb2がオンとなり、デッドタイムtd経過後のt2時点でGa2がオフし、td経過後のt3時点でGb1がオンし、td経過後のt4時点でGa1がオフすることで転流完了となる。このようにデッドタイムtdを設けて順次オン・オフさせるのは、スイッチの動作遅れなどにより電圧源が短絡したり負荷が開放したりしないようにするためである。負荷の電圧が実際に切り替わるのはIL>0の場合にt2時点であり、IL<0の場合はt3時点となる。   FIG. 6 shows a commutation sequence when the voltage source connected to the load 4 is switched from the voltage source 31 of the voltage Va to the voltage source 32 of the voltage Vb in the circuit of FIG. The change of the control signal of each switch produced | generated is shown. Before the time t1, since the commutation signal S = Sa is in a state in which the bidirectional switch 1 is turned on and the bidirectional switch 2 is turned off, the control signals Ga1 of the reverse conducting switches 11 and 12 of the bidirectional switch 1 are set. And Ga2 are both in the on state, the control signals Gb1 and Gb2 of the bidirectional switch 2 are both in the off state, and the voltage VL of the load 4 is the voltage Va of the voltage source 31. The commutation sequence starts by changing to a commutation signal S = Sb at time t1. When Va> Vb, as shown on the left side of FIG. 6, Gb2 is first turned on at time t1, Ga2 is turned off at time t2 after elapse of the dead time td, and Gb1 is turned on at time t3 after elapse of td. Then, when Ga1 is turned off at time t4 after td has elapsed, commutation is completed. The reason for setting the dead time td in this manner and sequentially turning on and off is to prevent the voltage source from being short-circuited or the load from being released due to a delay in the operation of the switch. The load voltage is actually switched at time t2 when IL> 0, and at time t3 when IL <0.

Va<Vbの場合は、図6右側に示された転流シーケンスとなり、負荷の電圧が実際に切り替わるのはIL>0の場合にt3時点であり、IL<0の場合はt2時点となる。   When Va <Vb, the commutation sequence shown on the right side of FIG. 6 is performed, and the load voltage is actually switched at time t3 when IL> 0 and at time t2 when IL <0.

つまり、t2からt3までの間の負荷電圧は負荷電流の極性に依存して、IL<0の場合は高い方の電圧源電圧となり、IL>0の場合は低い方の電圧源電圧となる。   That is, depending on the polarity of the load current, the load voltage between t2 and t3 is a higher voltage source voltage when IL <0, and a lower voltage source voltage when IL> 0.

図2に示した負荷電流の極性に依存した電流転流信号生成器を使用した場合でも、図3に示した電源電圧の大小関係による電圧転流信号生成器を使用した場合でも、負荷電流の極性に応じて転流時のデッドタイムだけ負荷電圧が左右されることから、負荷電流の極性に応じて前もってデッドタイムによる負荷の電圧変動分を補正した転流信号Sを生成して、負荷に所望の電圧が印加されるようにする手法が提案されている。   Even when the current commutation signal generator depending on the polarity of the load current shown in FIG. 2 is used or when the voltage commutation signal generator based on the magnitude relation of the power supply voltage shown in FIG. Since the load voltage depends only on the dead time at the time of commutation according to the polarity, a commutation signal S in which the voltage fluctuation of the load due to the dead time is corrected in advance according to the polarity of the load current is generated, A technique for applying a desired voltage has been proposed.

特開2005−20799号公報JP 2005-20799 A

解決しようとする問題点は、デッドタイムによる負荷電圧変動分を転流信号タイミングを修正することで補正できるが、その為には正確なデッドタイムを知る必要がある。しかし、実際のデッドタイムは信号を絶縁伝達するフォトカプラやスイッチング素子の動作遅延時間に応じて変化するため、正確に把握することは困難である。   The problem to be solved can be corrected by correcting the commutation signal timing for the load voltage fluctuation due to the dead time. For this purpose, it is necessary to know the accurate dead time. However, since the actual dead time changes according to the operation delay time of the photocoupler and the switching element that insulate and transmit the signal, it is difficult to accurately grasp the dead time.

請求項1の発明によれば、単方向の電流をスイッチングできるスイッチング素子と該スイッチング素子に逆並列接続されたダイオードとからなる逆導通スイッチを2個逆向きに直列接続して構成される複数の双方向スイッチと、該双方向スイッチのそれぞれの一方の端子にはそれぞれの電圧源が接続され、前記双方向スイッチのそれぞれの端子で該電圧源に接続されていない方は全て短絡され負荷に接続された構成であって、前記双方向スイッチの中で異なるスイッチング動作を行う2つの双方向スイッチをそれぞれ双方向スイッチAと双方向スイッチBとし、該双方向スイッチAに接続されている前記電圧源を電圧源Aとし、該双方向スイッチBに接続されている前記電圧源を電圧源Bとし、該負荷に流れる電流の極性を検出する電流極性検出器と、該電流極性検出器の出力を入力して前記電圧源Aと電圧源Bとが短絡することがなく前記負荷が前記電圧源Aと前記電圧源Bのどちらかに接続された状態を維持するように前記双方向スイッチAの2つのスイッチング素子を制御する信号と前記双方向スイッチBの2つのスイッチング素子を制御する信号とを生成して出力する電流転流信号生成器と、前記電圧源Aと前記電圧源Bの電圧の大小関係を検知する電圧比較器と、該電圧比較器の出力を入力して前記電圧源Aと前記電圧源Bとが短絡することがなく前記負荷が前記電圧源Aと前記電圧源Bのどちらかに接続された状態を維持するように前記双方向スイッチAの2つのスイッチング素子を制御する信号と前記双方向スイッチBの2つのスイッチング素子を制御する信号とを生成して出力する電圧転流信号生成器とからなる電源切替装置において、
該電流転流信号生成器の出力と該電圧転流信号生成器の出力とを所定時間内で同じ割合となるように選択して前記双方向スイッチAと前記双方向スイッチBとに出力する分担器を具備することを特徴とする電源切替装置である。
According to the first aspect of the present invention, a plurality of reverse conducting switches each composed of two reverse conducting switches each composed of a switching element capable of switching a unidirectional current and a diode connected in reverse parallel to the switching element are connected in series in a reverse direction. A voltage source is connected to each terminal of the bidirectional switch and the bidirectional switch, and all the terminals of the bidirectional switch not connected to the voltage source are short-circuited and connected to the load. The two bidirectional switches that perform different switching operations in the bidirectional switch are defined as a bidirectional switch A and a bidirectional switch B, respectively, and the voltage source connected to the bidirectional switch A Is the voltage source A, the voltage source connected to the bidirectional switch B is the voltage source B, and the current polarity for detecting the polarity of the current flowing through the load A state in which the load is connected to either the voltage source A or the voltage source B without short-circuiting the voltage source A and the voltage source B by inputting the output of the output device and the current polarity detector A current commutation signal generator for generating and outputting a signal for controlling the two switching elements of the bidirectional switch A and a signal for controlling the two switching elements of the bidirectional switch B so as to maintain A voltage comparator that detects the magnitude relationship between the voltages of the voltage source A and the voltage source B, and an output of the voltage comparator are input so that the voltage source A and the voltage source B are not short-circuited. A signal for controlling the two switching elements of the bidirectional switch A and the two switching elements of the bidirectional switch B are controlled so as to maintain a state of being connected to either the voltage source A or the voltage source B. Signal In the power switching device comprising a voltage commutation signal generator to form an output,
Sharing the output of the current commutation signal generator and the output of the voltage commutation signal generator so as to have the same ratio within a predetermined time and outputting them to the bidirectional switch A and the bidirectional switch B It is a power supply switching device characterized by comprising a device.

請求項2の発明によれば、単方向の電流をスイッチングできて逆方向の電流は阻止する逆阻止スイッチを2個逆並列に接続して構成される双方向スイッチとした請求項1記載の電源切替装置である。   According to the invention of claim 2, the power supply according to claim 1, wherein the power supply is a bidirectional switch configured by connecting two reverse blocking switches that can switch a unidirectional current and block a reverse current in antiparallel. It is a switching device.

すなわち、本発明は、前記問題点を解決するために、デッドタイムによる負荷電圧変動分を転流信号タイミングを修正することで補正するのではなく、電流転流信号生成器の出力と電圧転流信号生成器の出力とを所定時間内で同じ割合となるように選択して各双方向スイッチに出力する分担器を具備することを特徴とする。   That is, in order to solve the above problem, the present invention does not correct the load voltage fluctuation due to dead time by correcting the commutation signal timing, but the output of the current commutation signal generator and the voltage commutation. It is characterized by comprising a divider that selects the output of the signal generator to be the same ratio within a predetermined time and outputs it to each bidirectional switch.

本発明では、転流信号タイミングを修正することでデッドタイムによる負荷電圧変動分を補正しないので、その修正に必要な実際のデッドタイムを必要としないという利点がある。   In the present invention, since the load voltage fluctuation due to the dead time is not corrected by correcting the commutation signal timing, there is an advantage that the actual dead time required for the correction is not required.

本発明の転流動作を示した説明図である。(実施例1)It is explanatory drawing which showed the commutation operation | movement of this invention. (Example 1) 電流転流信号生成器を用いた転流動作を説明するための回路図である。It is a circuit diagram for demonstrating the commutation operation | movement using a current commutation signal generator. 電圧転流信号生成器を用いた転流動作を説明するための回路図である。It is a circuit diagram for demonstrating the commutation operation | movement using a voltage commutation signal generator. 逆阻止スイッチによる双方向スイッチを示した説明図である。It is explanatory drawing which showed the bidirectional | two-way switch by a reverse blocking switch. 図2の回路において、負荷4に接続する電圧源を電圧Vaの電圧源31から電圧Vbの電圧源32に切り替える際の転流シーケンスを示した説明図である。3 is an explanatory diagram showing a commutation sequence when a voltage source connected to a load 4 is switched from a voltage source 31 having a voltage Va to a voltage source 32 having a voltage Vb in the circuit of FIG. 図3の回路において、負荷4に接続する電圧源を電圧Vaの電圧源31から電圧Vbの電圧源32に切り替える際の転流シーケンスを示した説明図である。4 is an explanatory diagram showing a commutation sequence when a voltage source connected to a load 4 is switched from a voltage source 31 having a voltage Va to a voltage source 32 having a voltage Vb in the circuit of FIG.

以下、本発明の実施の形態について説明する。図2に示した電流転流信号生成器と図3に示した電圧転流信号生成器は、従来技術においてはどちらか一方のみしか必要としなかったが、本発明では両方を具備し、両方の出力を所定時間内で同じ割合となるように選択して出力する分担器を具備する。   Embodiments of the present invention will be described below. The current commutation signal generator shown in FIG. 2 and the voltage commutation signal generator shown in FIG. 3 were only required in the prior art, but the present invention includes both, There is provided a divider for selecting and outputting the output so as to have the same ratio within a predetermined time.

図1は、本発明の1実施例の回路図であって、電流極性検出器5と電流転流信号生成器8と電圧比較器6と電圧転流信号生成器7とを同時に具備し、電流転流信号生成器8の出力のスイッチング信号Ga1i、Ga2i、Gb1i、Gb2iと電圧転流信号生成器7とを同時に具備し、電流転流信号生成器8の出力のスイッチング信号Ga1v、Ga2v、Gb1v、Gb2vとを選択して双方向スイッチ1と2に出力する分担器9とで構成されている。   FIG. 1 is a circuit diagram of one embodiment of the present invention, which comprises a current polarity detector 5, a current commutation signal generator 8, a voltage comparator 6, and a voltage commutation signal generator 7 at the same time. The switching signal Ga1i, Ga2i, Gb1i, Gb2i output from the commutation signal generator 8 and the voltage commutation signal generator 7 are provided at the same time. The switching signals Ga1v, Ga2v, Gb1v, output from the current commutation signal generator 8 are provided. It consists of a divider 9 that selects Gb2v and outputs it to the bidirectional switches 1 and 2.

前述したように転流時のデッドタイム期間における負荷電圧は、電流転流信号生成器8の出力信号を用いた転流では、IL>0の場合は高い方の電圧源電圧となり、IL<0の場合は低い方の電圧源電圧となる。一方、電圧転流信号生成器7の出力信号を用いた転流では、転流時のデッドタイム期間における負荷電圧は、IL<0の場合は高い方の電圧源電圧となり、IL>0の場合は低い方の電圧源電圧となる。つまり、電流転流信号生成器8の場合と電圧転流信号生成器7の場合では完全に逆の特性となることから、分担器9により両者の信号を例えば交互に使用することで、負荷電圧の変動分をキャンセルすることが可能となる。分担器9は、完全に交互に選択する必要はなく、出力電流の極性や電源電圧の大小関係が変化せずに出力電圧変動の影響がないくらいの短い時間内において、両者の選択割合を等しくするようにすればよい。   As described above, the load voltage in the dead time period during commutation is the higher voltage source voltage when IL> 0 in the commutation using the output signal of the current commutation signal generator 8, and IL <0. In this case, the lower voltage source voltage is obtained. On the other hand, in the commutation using the output signal of the voltage commutation signal generator 7, the load voltage in the dead time period during commutation is the higher voltage source voltage when IL <0, and when IL> 0. Is the lower voltage source voltage. In other words, since the current commutation signal generator 8 and the voltage commutation signal generator 7 have completely opposite characteristics, the load voltage can be obtained by alternately using both signals by the divider 9, for example. It is possible to cancel the fluctuation amount. The divider 9 does not need to select completely alternately, and the selection ratio between the two is equal within a short period of time so that the polarity of the output current and the magnitude relation of the power supply voltage do not change and there is no influence of the output voltage fluctuation. You just have to do it.

本発明は、図1に示された逆導通スイッチ11、12、21、22を用いた逆導通スイッチから成る双方向スイッチ1、2の代わりに、図4に示されている逆阻止スイッチ401、402を逆並列に接続した構成の双方向スイッチ(逆阻止スイッチから成る双方向スイッチ)40を用いた回路でも同様に適用できる。   The present invention is directed to a reverse blocking switch 401 shown in FIG. 4 in place of the bidirectional switches 1 and 2 consisting of reverse conducting switches using the reverse conducting switches 11, 12, 21, and 22 shown in FIG. The present invention can be similarly applied to a circuit using a bidirectional switch (bidirectional switch composed of reverse blocking switches) 40 having a configuration in which 402 is connected in antiparallel.

正確に把握することは困難なデッドタイムを用いて転流信号を補正することなく完全にデッドタイム期間による負荷電圧変動を抑制することが可能となり、負荷電圧を正確に制御することができるようになり、より高精度な電力変換器を得ることができる。   It is possible to completely control the load voltage fluctuation due to the dead time period without correcting the commutation signal using the dead time which is difficult to grasp accurately, so that the load voltage can be controlled accurately. Thus, a more accurate power converter can be obtained.

1、2 逆導通スイッチから成る双方向スイッチ
31、32 電圧源
11、12、21、22 逆導通スイッチ
4 負荷
5 電流極性検出器
6 電圧比較器
7 電圧転流信号生成器
8 電流転流信号生成器
9 分担器
40 逆阻止スイッチから成る双方向スイッチ
401、402 逆阻止スイッチ
DESCRIPTION OF SYMBOLS 1, 2 Bidirectional switch which consists of reverse conduction switches 31, 32 Voltage source 11, 12, 21, 22 Reverse conduction switch 4 Load 5 Current polarity detector 6 Voltage comparator 7 Voltage commutation signal generator 8 Current commutation signal generation Unit 9 sharing device 40 bidirectional switch 401, 402 reverse blocking switch comprising reverse blocking switch

Claims (2)

単方向の電流をスイッチングできるスイッチング素子と該スイッチング素子に逆並列接続されたダイオードとからなる逆導通スイッチを2個逆向きに直列接続して構成される複数の双方向スイッチと、該双方向スイッチのそれぞれの一方の端子にはそれぞれの電圧源が接続され、前記双方向スイッチのそれぞれの端子で該電圧源に接続されていない方は全て短絡され負荷に接続された構成であって、前記双方向スイッチの中で異なるスイッチング動作を行う2つの双方向スイッチをそれぞれ双方向スイッチAと双方向スイッチBとし、該双方向スイッチAに接続されている前記電圧源を電圧源Aとし、該双方向スイッチBに接続されている前記電圧源を電圧源Bとし、該負荷に流れる電流の極性を検出する電流極性検出器と、該電流極性検出器の出力を入力して前記電圧源Aと電圧源Bとが短絡することがなく前記負荷が前記電圧源Aと前記電圧源Bのどちらかに接続された状態を維持するように前記双方向スイッチAの2つのスイッチング素子を制御する信号と前記双方向スイッチBの2つのスイッチング素子を制御する信号とを生成して出力する電流転流信号生成器と、前記電圧源Aと前記電圧源Bの電圧の大小関係を検知する電圧比較器と、該電圧比較器の出力を入力して前記電圧源Aと前記電圧源Bとが短絡することがなく前記負荷が前記電圧源Aと前記電圧源Bのどちらかに接続された状態を維持するように前記双方向スイッチAの2つのスイッチング素子を制御する信号と前記双方向スイッチBの2つのスイッチング素子を制御する信号とを生成して出力する電圧転流信号生成器とからなる電源切替装置において、該電流転流信号生成器の出力と該電圧転流信号生成器の出力とを所定時間内で同じ割合となるように選択して前記双方向スイッチAと前記双方向スイッチBとに出力する分担器を具備することを特徴とする電源切替装置。   A plurality of bidirectional switches configured by connecting two reverse conducting switches each composed of a switching element capable of switching a unidirectional current and a diode connected in reverse parallel to the switching element in series, and the bidirectional switch Each voltage source is connected to one of the terminals, and all the terminals of the bidirectional switch that are not connected to the voltage source are short-circuited and connected to a load, Two bidirectional switches performing different switching operations in the bidirectional switch are defined as bidirectional switch A and bidirectional switch B, respectively, and the voltage source connected to the bidirectional switch A is defined as voltage source A. The voltage source connected to the switch B is the voltage source B, and a current polarity detector that detects the polarity of the current flowing through the load, and the current polarity detection The bidirectional switch so that the voltage source A and the voltage source B are not short-circuited and the load is connected to either the voltage source A or the voltage source B without being short-circuited. A current commutation signal generator for generating and outputting a signal for controlling the two switching elements of A and a signal for controlling the two switching elements of the bidirectional switch B; and the voltage source A and the voltage source B A voltage comparator for detecting the magnitude relation of the voltage, and an output of the voltage comparator are inputted to the voltage source A and the voltage source B without short-circuiting the voltage source A and the voltage source B. A voltage for generating and outputting a signal for controlling the two switching elements of the bidirectional switch A and a signal for controlling the two switching elements of the bidirectional switch B so as to maintain the state of being connected to either Commutation In the power supply switching device comprising a signal generator, the bidirectional switch A is selected by selecting the output of the current commutation signal generator and the output of the voltage commutation signal generator to be the same ratio within a predetermined time. And a power divider that outputs to the bidirectional switch B. 単方向の電流をスイッチングできて逆方向の電流は阻止する逆阻止スイッチを2個逆並列に接続して構成される双方向スイッチとした請求項1記載の電源切替装置。
The power supply switching device according to claim 1, wherein the switch is a bidirectional switch configured by connecting two reverse blocking switches that can switch a unidirectional current and block a reverse current.
JP2009058866A 2009-03-12 2009-03-12 Device for switching power supply Pending JP2010213514A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009058866A JP2010213514A (en) 2009-03-12 2009-03-12 Device for switching power supply

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009058866A JP2010213514A (en) 2009-03-12 2009-03-12 Device for switching power supply

Publications (1)

Publication Number Publication Date
JP2010213514A true JP2010213514A (en) 2010-09-24

Family

ID=42973081

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009058866A Pending JP2010213514A (en) 2009-03-12 2009-03-12 Device for switching power supply

Country Status (1)

Country Link
JP (1) JP2010213514A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104201905A (en) * 2014-08-30 2014-12-10 龚秋声 Two-way AC chopper control circuit

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104201905A (en) * 2014-08-30 2014-12-10 龚秋声 Two-way AC chopper control circuit

Similar Documents

Publication Publication Date Title
US8929111B2 (en) System and method for common-mode elimination in a multi-level converter
JP6192114B2 (en) Test method and apparatus for transducer
JP5480919B2 (en) Power converter
WO2013091675A1 (en) Black start of a modular multilevel voltage source converter
JP5250818B1 (en) Full bridge power converter
JP5610107B1 (en) Inverter device
US20130286699A1 (en) Power supplying apparatus, method of operating the same, and solar power generation system including the same
JP2018023195A5 (en)
JP2015149857A (en) Power conversion device
JP5652454B2 (en) Power converter
JP4968465B2 (en) Power converter
JP2010213514A (en) Device for switching power supply
JP2016100988A (en) Electric power conversion system
JP5737268B2 (en) Power converter
JP2016178812A5 (en)
RU154310U1 (en) STEP-BY-STEP SWITCH MANAGEMENT SYSTEM OF A PHASE-TURNING DEVICE SHUNT TRANSFORMER
JP2013215029A (en) Control device and power conversion circuit control device
JP5850182B2 (en) Power converter
JP2017212770A (en) Abnormality detection device and power supply device
JP5823248B2 (en) AC / DC inverter device and control method of AC / DC inverter device
KR102407688B1 (en) Phase angle control of piezo actuators
JP2015136267A (en) Power supply device
JP2004536548A (en) Energy conversion device
JP2015220792A (en) Power supply device and power supply device for welding
KR101645398B1 (en) Apparatus for testing power conversion device