JP2010212216A - Fuel cell - Google Patents

Fuel cell Download PDF

Info

Publication number
JP2010212216A
JP2010212216A JP2009060173A JP2009060173A JP2010212216A JP 2010212216 A JP2010212216 A JP 2010212216A JP 2009060173 A JP2009060173 A JP 2009060173A JP 2009060173 A JP2009060173 A JP 2009060173A JP 2010212216 A JP2010212216 A JP 2010212216A
Authority
JP
Japan
Prior art keywords
cell
electrode assembly
separator
membrane electrode
anode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009060173A
Other languages
Japanese (ja)
Inventor
Junro Nonoyama
順朗 野々山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2009060173A priority Critical patent/JP2010212216A/en
Publication of JP2010212216A publication Critical patent/JP2010212216A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

<P>PROBLEM TO BE SOLVED: To provide a fuel cell in which deterioration of power generation performance can be suppressed by improving a problem that the cooling condition of two MEA(s) becomes uneven in a structure of 2-cell 1-cooling type. <P>SOLUTION: The fuel cell has a 2-cell 1-cooling type structure in which separators 302, 304, a left-hand side unit cell 10, an intermediate separator 306, a right-hand side unit cell 110, and separators 308, 310 are laminated in this order, and the concave depth D<SB>1</SB>of the separator 304 is made shallower than the concave depth D<SB>2</SB>of the intermediate separator 306. Thereby, the total cross-section area of passage of the outside separator 304 is made smaller than the total cross-section area of the passage of the intermediate separator 306, and the wet condition in the anode side face of the second membrane electrode assembly 110 is kept excellently, and deterioration of the power generation performance can be suppressed. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、燃料電池に関する。   The present invention relates to a fuel cell.

従来、例えば、特開2004−87311号公報に開示されているように、2セル1冷却型の燃料電池が知られている。「2セル1冷却型の燃料電池」とは、特開2004−87311号公報の図1や図8に例示されるように、2つのMEA(Membrane Electrode Assembly:膜電極接合体)と1つの冷媒流路が交互に積層された構成の燃料電池を指す。   2. Description of the Related Art Conventionally, as disclosed in, for example, Japanese Patent Application Laid-Open No. 2004-87311, a two-cell, one-cooled fuel cell is known. “Two-cell one-cooled fuel cell” means two MEAs (Membrane Electrode Assembly) and one refrigerant as illustrated in FIG. 1 and FIG. 8 of JP-A-2004-87311. It refers to a fuel cell having a structure in which flow paths are alternately stacked.

特開2004−87311号公報JP 2004-87311 A 特開2000−208153号公報JP 2000-208153 A

2セル1冷却型燃料電池では、2つのMEAの冷却状態が不均一になる。具体的には、2つのMEAのうち片方のMEAではアノード側が積極的に冷却されもう片方のMEAではカソード側が積極的に冷却される。2セル1冷却型燃料電池では、このような冷却具合の相違に起因して特有の問題が発生する。その結果、燃料電池の発電性能低下を招くおそれがある。   In the 2-cell 1-cooled fuel cell, the cooling state of the two MEAs becomes uneven. Specifically, the anode side is actively cooled in one of the two MEAs, and the cathode side is actively cooled in the other MEA. In the 2-cell 1-cooled fuel cell, a specific problem occurs due to such a difference in the cooling conditions. As a result, the power generation performance of the fuel cell may be reduced.

本発明は、上記のような課題を解決するためになされたもので、2セル1冷却型の構成において全体構成の改善を図り、発電性能の低下を抑制することができる燃料電池を提供することを目的とする。   The present invention has been made to solve the above-described problems, and provides a fuel cell capable of improving the overall configuration in a two-cell, one-cooled configuration and suppressing a decrease in power generation performance. With the goal.

第1の発明は、上記の目的を達成するため、燃料電池であって、
電解質膜と、該電解質膜の一方の面に備えられたアノード電極触媒層と、該電解質膜の他方の面に備えられたカソード電極触媒層と、を備えた第1の膜電極接合体と、
前記第1の膜電極接合体の前記カソード電極触媒層側に配置され、電解質膜と、該電解質膜の前記第1の膜電極接合体側の面に備えられたアノード電極触媒層と、該電解質膜の他方の面に備えられたカソード電極触媒層と、を備えた第2の膜電極接合体と、
前記第1、2の膜電極接合体の間に介在し、複数の凹と、該複数の凹が合流する合流部とを、前記第1、2の膜電極接合体のそれぞれの側の面に備えた中間セパレータと、
前記第1の膜電極接合体の前記アノード触媒層側に配置され、複数の凹と、該複数の凹が合流する合流部とを、該第1の膜電極接合体側の該アノード触媒層側を向く面に備えた外側セパレータと、
前記第1の膜電極接合体、前記中間セパレータ、および前記第2の膜電極接合体を挟むように位置する冷媒流路と、
を備え、
前記外側セパレータの前記凹の流路総断面積<前記中間セパレータの前記第2の膜電極接合体側の前記凹の流路総断面積、という構成と、
前記外側セパレータの前記合流部の流路断面積<前記中間セパレータの前記第2の膜電極接合体側の前記合流部の流路断面積、という構成と、
のうち少なくとも一方の構成を備えることを特徴とする。
In order to achieve the above object, a first invention is a fuel cell,
A first membrane electrode assembly comprising: an electrolyte membrane; an anode electrode catalyst layer provided on one surface of the electrolyte membrane; and a cathode electrode catalyst layer provided on the other surface of the electrolyte membrane;
An electrolyte membrane disposed on the cathode electrode catalyst layer side of the first membrane electrode assembly, an anode electrode catalyst layer provided on a surface of the electrolyte membrane on the first membrane electrode assembly side, and the electrolyte membrane A cathode electrode catalyst layer provided on the other surface of the second membrane electrode assembly,
A plurality of recesses interposed between the first and second membrane electrode assemblies, and a merging portion where the plurality of recesses merge are provided on the respective surfaces of the first and second membrane electrode assemblies. An intermediate separator provided,
The first membrane electrode assembly is disposed on the anode catalyst layer side, and a plurality of recesses and a junction where the plurality of recesses merge together are connected to the anode catalyst layer side on the first membrane electrode assembly side. An outer separator provided on the facing surface;
A coolant channel positioned so as to sandwich the first membrane electrode assembly, the intermediate separator, and the second membrane electrode assembly;
With
The concave channel total cross-sectional area of the outer separator <the concave channel total cross-sectional area of the intermediate separator on the second membrane electrode assembly side; and
A configuration in which the flow path cross-sectional area of the merging portion of the outer separator <the flow channel cross-sectional area of the merging portion on the second membrane electrode assembly side of the intermediate separator;
It comprises at least one structure among these.

第1の発明によれば、外側セパレータの凹と中間セパレータの第2の膜電極接合体側の凹とにそれぞれ燃料ガスを流した場合に、第2の膜電極接合体のアノードの燃料ガスの流量を相対的に多くすることができる。これにより、第2の膜電極接合体のアノード側面内における水分の搬送能力を向上させることができる。結果、第2の膜電極接合体のアノード側面内の湿潤状態を良好に保ち、発電性能の低下を抑制することができる。   According to the first aspect of the present invention, when the fuel gas is caused to flow through the recess of the outer separator and the recess of the intermediate separator on the second membrane electrode assembly side, the flow rate of fuel gas at the anode of the second membrane electrode assembly Can be relatively increased. Thereby, the capability of transporting moisture in the anode side surface of the second membrane electrode assembly can be improved. As a result, the wet state in the anode side surface of the second membrane electrode assembly can be kept good, and the decrease in power generation performance can be suppressed.

本発明の実施の形態1にかかる燃料電池の構成を示す断面図である。It is sectional drawing which shows the structure of the fuel cell concerning Embodiment 1 of this invention. 本願発明者が行った温度特性試験シュミレーションの結果を示す図である。It is a figure which shows the result of the temperature characteristic test simulation which this inventor performed. 特定のセル温度におけるアノードガス流量とセル電圧との関係を示す図である。It is a figure which shows the relationship between the anode gas flow volume and cell voltage in specific cell temperature. 本発明の実施の形態2にかかる燃料電池の構成を示す分解斜視図である。It is a disassembled perspective view which shows the structure of the fuel cell concerning Embodiment 2 of this invention. 本発明の実施の形態3にかかる燃料電池の構成を示す図である。It is a figure which shows the structure of the fuel cell concerning Embodiment 3 of this invention.

実施の形態1.
[実施の形態1の構成]
図1は、本発明の実施の形態1にかかる燃料電池の構成を示す断面図である。図1に示すように、実施の形態1の燃料電池は、セパレータ302、304、単位セル10(以下、説明の便宜上「左側単位セル10」とも称す)、中間セパレータ306、単位セル110(以下、説明の便宜上、「右側単位セル110」とも称す)、セパレータ308、310の順に積み重なった2セル1冷却型の構成を備える。図示しないが、実施の形態1では、この2セル1冷却型の構成が繰り返し数百枚単位で積み重ねられることにより、1つの燃料電池スタックが形成されている。左側単位セル10および右側単位セル110は、それぞれ、紙面左側にアノードの構成を備え、紙面右側にカソードの構成を備える。各セパレータは凹凸形状である。
Embodiment 1 FIG.
[Configuration of Embodiment 1]
FIG. 1 is a cross-sectional view showing a configuration of a fuel cell according to Embodiment 1 of the present invention. As shown in FIG. 1, the fuel cell of Embodiment 1 includes separators 302 and 304, unit cells 10 (hereinafter, also referred to as “left unit cell 10” for convenience of explanation), intermediate separators 306, unit cells 110 (hereinafter, For convenience of explanation, it is also referred to as “right unit cell 110”), and a two-cell, one-cooled configuration in which separators 308 and 310 are stacked in this order. Although not shown, in the first embodiment, one fuel cell stack is formed by repeatedly stacking this two-cell, one-cooled configuration in units of several hundreds. Each of the left unit cell 10 and the right unit cell 110 has an anode configuration on the left side of the paper and a cathode configuration on the right side of the paper. Each separator has an uneven shape.

左側単位セル10は、固体高分子電解質膜12の各面に電極触媒層14、20が積層されたMEA(Membrane Electrode Assembly:膜電極接合体)、およびカーボンシート等からなるガス拡散層16、22を備える。セパレータ304のガス拡散層16側に開いた複数の凹は、それぞれ水素を流すためのガス流路18として機能する。中間セパレータ306のガス拡散層122側に開いた複数の凹は、それぞれ空気を流すためのガス流路24として機能する。中間セパレータ306は、表面と裏面とで凹凸が反転した凹凸形状を備える。右側単位セル110も、左側単位セル10と同様に、固体高分子電解質膜112の各面に電極触媒層114、120が積層されたMEA、およびガス拡散層116、122を備える。水素用の複数のガス流路118、空気用の複数のガス流路124も同様に備えられる。また、セパレータ302、304の間には複数の冷却液流路300が、セパレータ308、310の間には複数の冷却液流路312が、それぞれ形成されている。   The left unit cell 10 includes an MEA (Membrane Electrode Assembly) in which electrode catalyst layers 14 and 20 are laminated on each surface of the solid polymer electrolyte membrane 12, and gas diffusion layers 16 and 22 made of carbon sheets or the like. Is provided. The plurality of recesses opened on the gas diffusion layer 16 side of the separator 304 each function as a gas flow path 18 for flowing hydrogen. The plurality of recesses opened on the gas diffusion layer 122 side of the intermediate separator 306 function as gas flow paths 24 for flowing air. The intermediate separator 306 has an uneven shape in which the unevenness is inverted between the front surface and the back surface. Similarly to the left unit cell 10, the right unit cell 110 also includes an MEA in which electrode catalyst layers 114 and 120 are laminated on each surface of the solid polymer electrolyte membrane 112, and gas diffusion layers 116 and 122. Similarly, a plurality of gas flow paths 118 for hydrogen and a plurality of gas flow paths 124 for air are provided. A plurality of coolant flow paths 300 are formed between the separators 302 and 304, and a plurality of coolant flow paths 312 are formed between the separators 308 and 310, respectively.

ガス流路18、24、118、124および冷却液流路300、312は、それぞれ、図1の紙面貫通方向に伸びている。各流路は、それぞれ、図1紙面手前側と、図1紙面奥側とに、それぞれの合流部を備えている。それらの合流部のうち、片方の合流部がガスや冷却液の入口に、もう片方の合流部がガスや冷却液の出口に接続する。なお、図示しないが、ガスの入口やガスの出口は、燃料電池スタック内を延びるアノードマニホールドまたはカソードマニホールドに接続している。また、実施の形態1の燃料電池は、水素と空気の流れがMEAの面内で対向する燃料電池(いわゆるカウンターフロー型の燃料電池)であるものとする。   The gas flow paths 18, 24, 118, 124 and the coolant flow paths 300, 312 respectively extend in the paper surface penetration direction in FIG. 1. Each flow path includes a merging portion on the front side in FIG. 1 and the back side in FIG. Of these merging portions, one merging portion is connected to an inlet for gas or cooling liquid, and the other merging portion is connected to an outlet for gas or cooling liquid. Although not shown, the gas inlet and the gas outlet are connected to an anode manifold or a cathode manifold extending in the fuel cell stack. The fuel cell of Embodiment 1 is assumed to be a fuel cell (so-called counter flow type fuel cell) in which the flow of hydrogen and air are opposed in the plane of the MEA.

図1に示すように、実施の形態1は、セパレータ304の凹深さDを、中間セパレータ306の凹深さDよりも浅くする(D<D)。これにより、左側単位セル10のアノードの水素の圧力損失を、右側単位セル110のアノードの水素の圧力損失よりも高くすることができる。これにより、左側単位セル10のアノードの水素の流量(ガス流路18の水素流量)に比して、右側単位セル110のアノードの水素の流量(ガス流路118の水素流量)を多くすることができる。なお、実施の形態1では、D:D=1.0:1.1の比率にする。これにより、流量比で1.1:1.0≒1.2:1.0となり、ストイキ比で1.44:1.2が達成できる。 As shown in FIG. 1, in the first embodiment, the concave depth D 1 of the separator 304 is made shallower than the concave depth D 2 of the intermediate separator 306 (D 1 <D 2 ). Thereby, the pressure loss of hydrogen at the anode of the left unit cell 10 can be made higher than the pressure loss of hydrogen at the anode of the right unit cell 110. Accordingly, the hydrogen flow rate of the anode of the right unit cell 110 (hydrogen flow rate of the gas flow channel 118) is increased as compared with the flow rate of hydrogen of the anode of the left unit cell 10 (hydrogen flow rate of the gas flow channel 18). Can do. In the first embodiment, the ratio is D 1 : D 2 = 1.0: 1.1. As a result, the flow rate ratio becomes 1.1 2 : 1.0 2 ≈1.2: 1.0, and the stoichiometric ratio can be 1.44: 1.2.

[実施の形態1の作用効果]
以下、実施の形態1の作用効果について説明する。実施の形態1によれば、ガス流路18とガス流路24に水素ガスが流れる。右側単位セル110のアノード側は、中間セパレータ306と面しており冷却液流路300、312とは離れている。逆に、左側単位セル10のアノード側は冷却液流路300に隣接しており、冷却されやすい。その結果、右側単位セル110のアノード側は、左側単位セル10のアノード側に比べて、発電中の温度が高い。このような冷却具合の不均一がある場合に、仮に単位セル10、110のガス流路構成を同一にした場合(つまりセパレータ304の凹深さDと中間セパレータ306の凹深さDとを同一にした場合)、右側単位セル110のアノード側、特に水素流れの下流側部分で、水分が不足するおそれがある。この点、実施の形態1によれば、右側単位セル110のアノードの水素の流量を相対的に多くすることができる。その結果、水の搬送能力を高め、右側単位セル110のアノード側面内に水分を行き渡らせることができる。結果、発電性能の低下を抑制することができる。なお、アノードとカソードとで出入口が対向している燃料電池の場合(特にカウンターフロー型の燃料電池の場合)、アノードのガス入口側には電解質膜を介したカソードからの水分移動があるため良好な湿潤を保ち易いが、逆に、アノードのガス出口側は乾燥しやすいカソードのガス入口側と対向しているため水分が不足しやすい。実施の形態1は特にこのような場合に適している。
[Effects of First Embodiment]
Hereinafter, the function and effect of the first embodiment will be described. According to the first embodiment, hydrogen gas flows through the gas flow path 18 and the gas flow path 24. The anode side of the right unit cell 110 faces the intermediate separator 306 and is separated from the coolant flow paths 300 and 312. Conversely, the anode side of the left unit cell 10 is adjacent to the coolant channel 300 and is easily cooled. As a result, the temperature during power generation is higher on the anode side of the right unit cell 110 than on the anode side of the left unit cell 10. If there is unevenness of such a cooling condition, if the凹深of D 2 of凹深of D 1 and the intermediate separator 306 in the case where the gas flow path structure of the unit cells 10, 110 in the same (i.e. separator 304 ) In the right unit cell 110, there is a risk of moisture shortage on the anode side, particularly on the downstream side of the hydrogen flow. In this regard, according to the first embodiment, the hydrogen flow rate of the anode of the right unit cell 110 can be relatively increased. As a result, it is possible to increase the water carrying capacity and spread the moisture into the anode side surface of the right unit cell 110. As a result, a decrease in power generation performance can be suppressed. In the case of a fuel cell in which the inlet and outlet are opposed to each other at the anode and the cathode (especially in the case of a counter flow type fuel cell), there is moisture transfer from the cathode through the electrolyte membrane on the gas inlet side of the anode. On the contrary, the gas outlet side of the anode faces the gas inlet side of the cathode, which is easy to dry, and therefore moisture tends to be insufficient. The first embodiment is particularly suitable for such a case.

図2は、本願発明者が行った温度特性試験シュミレーションの結果を示す。2セル1冷却型の燃料電池では、カソード側、アノード側それぞれ片面のみに冷媒流路がある。これに起因して、2セル1冷却型の燃料電池で内部構成を同一(具体的には、水素と空気のガス流路を同じ形状や流路断面積)のものとすると、図2に示すように発電性能の乖離が大きくなる。図2のうち、Normalは1セル1冷却型燃料電池(つまり各MEAの間に1つずつ冷媒流路がある構成)の特性を示す。Leftは2セル1冷却型の構成のうちアノードが冷やされるセルの特性に、Rightは2セル1冷却型の構成のうちカソードが冷やされるセルの特性に、それぞれ相当する。カソード側のみが冷却されるRightのセルでは、電圧低下が62℃付近から起こる。一方、アノード側のみが冷却されるLeftのセルでは、67℃付近まで電圧が高く維持されている。   FIG. 2 shows the results of a temperature characteristic test simulation conducted by the present inventors. In a two-cell, one-cooled fuel cell, there are refrigerant channels only on one side of each of the cathode side and the anode side. As a result, if the internal configuration of the 2-cell 1-cooled fuel cell is the same (specifically, the hydrogen and air gas flow paths have the same shape and cross-sectional area), FIG. As shown in FIG. In FIG. 2, Normal indicates the characteristics of a one-cell, one-cooled fuel cell (that is, a configuration in which one refrigerant channel is provided between each MEA). Left corresponds to the characteristics of the cell in which the anode is cooled in the 2-cell 1-cooled configuration, and Right corresponds to the characteristics of the cell in which the cathode is cooled in the 2-cell 1-cooled configuration. In the Right cell in which only the cathode side is cooled, the voltage drop starts from around 62 ° C. On the other hand, in the Left cell in which only the anode side is cooled, the voltage is kept high up to around 67 ° C.

図3は、セル温度66℃におけるアノードガス流量とセル電圧との関係を示す。アノードガス流量とセル電圧との相関を調べた結果、図3に示すように、Rightのセル(破線)とLeftのセル(実線)とでは異なる特性を示す。図3からわかるように、Leftのセルは、ストイキを上げるほど(水素ガスを多く流すほど)、電圧が低下する。逆に、Rightのセルは、水素ガスのストイキを下げるほど(水素ガスを少なく流すほど)、電圧が低下する。つまり、両方のセルの性能を向上させるには、Leftのセルのストイキを下げ、Rightのセルのストイキを上げればよい。実施の形態1の燃料電池の構成にはこの傾向が反映されている。   FIG. 3 shows the relationship between the anode gas flow rate and the cell voltage at a cell temperature of 66 ° C. As a result of examining the correlation between the anode gas flow rate and the cell voltage, as shown in FIG. 3, the Right cell (broken line) and the Left cell (solid line) show different characteristics. As can be seen from FIG. 3, the voltage of the Left cell decreases as the stoichiometry increases (the more hydrogen gas flows). On the other hand, the voltage of the Right cell decreases as the stoichiometry of hydrogen gas decreases (the more hydrogen gas flows). In other words, in order to improve the performance of both cells, the left cell stoichiometry may be lowered and the right cell stoichiometry may be raised. This tendency is reflected in the configuration of the fuel cell of the first embodiment.

尚、上述した実施の形態1では、左側単位セル10のMEA(つまり、固体高分子電解質膜12および電極触媒層14、20)が、前記第1の発明における「第1の膜電極接合体」に、右側単位セル110のMEA(つまり、固体高分子電解質膜112および電極触媒層114、120)が、前記第1の発明における「第2の膜電極接合体」に、中間セパレータ306が、前記第1の発明における「中間セパレータ」に、セパレータ304が、前記第1の発明における「外側セパレータ」に、冷却液流路300、312が、前記第1の発明における「冷媒流路」に、それぞれ相当している。そして、実施の形態1では、セパレータ304の凹深さDを、中間セパレータ306の凹深さDよりも浅くする構成が、前記第1の発明における「前記外側セパレータの前記凹の流路断面積<前記中間セパレータの前記第2の膜電極接合体側の前記凹の流路断面積」という関係を成立させている。 In the first embodiment described above, the MEA (that is, the solid polymer electrolyte membrane 12 and the electrode catalyst layers 14 and 20) of the left unit cell 10 is the “first membrane electrode assembly” in the first invention. In addition, the MEA of the right unit cell 110 (that is, the solid polymer electrolyte membrane 112 and the electrode catalyst layers 114 and 120) is the “second membrane electrode assembly” in the first invention, and the intermediate separator 306 is the In the “intermediate separator” in the first invention, the separator 304 is in the “outer separator” in the first invention, and the cooling liquid channels 300 and 312 are in the “refrigerant channel” in the first invention. It corresponds. Then, in the first embodiment, the凹深of D 1 of the separator 304, configured to shallower than凹深of D 2 of the intermediate separator 306, the concave of the flow path of "the outer separator in the first aspect of the present invention The relationship that the cross-sectional area <the cross-sectional area of the concave channel on the second membrane electrode assembly side of the intermediate separator ”is established.

なお、実施の形態1では、D:D=1.0:1.1の比率にしたが、本発明はこれに限られない。本願発明者の知見では、D:D=1.0:1.2程度まで差を大きくしてもよいと考えられる。流量比で言えば、1.1倍から1.3倍程度の差がつくようにするとよいと考えられる。また、セパレータ304、306では凹の断面形状がともに台形であるが、凹の断面形状をセパレータ304、306で非対称にしてもよい。断面積や断面形状を異ならしめることにより、圧損ひいては流量に差をつけることができる。 In Embodiment 1, the ratio of D 1 : D 2 = 1.0: 1.1 is used, but the present invention is not limited to this. According to the knowledge of the present inventor, it is considered that the difference may be increased up to about D 1 : D 2 = 1.0: 1.2. In terms of the flow rate ratio, it is considered that a difference of about 1.1 to 1.3 times should be obtained. The separators 304 and 306 both have a trapezoidal concave cross-sectional shape, but the concave cross-sectional shape may be asymmetrical with the separators 304 and 306. By making the cross-sectional area and cross-sectional shape different, the pressure loss and thus the flow rate can be made different.

実施の形態2.
図4は、実施の形態2の燃料電池の構成を示す分解斜視図である。図1と同一の構成には同一の符号を付す。この斜視図では、各セパレータに矩形の貫通穴がある。これらの貫通穴が単位セル積層方向に繋がることで、水素用、空気用、冷却液用のマニホールドがそれぞれ形成される。
Embodiment 2. FIG.
FIG. 4 is an exploded perspective view showing the configuration of the fuel cell of the second embodiment. The same components as those in FIG. 1 are denoted by the same reference numerals. In this perspective view, each separator has a rectangular through hole. By connecting these through holes in the unit cell stacking direction, manifolds for hydrogen, air, and coolant are formed.

実施の形態2では、左側単位セル10のアノードの水素のマニホールド出入口部の圧力損失が、右側単位セル110のアノードの水素のマニホールド出入口部の圧力損失よりも高くなるように、マニホールド入口側、出口側のガス流路の大きさを異ならしめる。すなわち、セパレータ304におけるマニホールドと凹(ガス流路18)との合流部305の開口断面積を、セパレータ306におけるマニホールドと凹(ガス流路118)との合流部307の開口断面積よりも、小さく(狭く)する。これにより、実施の形態1と同様に、ガス流路18は相対的にガス流量が少なく、ガス流路118は相対的にガス流量が多くなる。その結果、実施の形態1と異なる手法で、左側単位セル10に比して、右側単位セル110のアノードの水素の流量を相対的に多くすることができる。   In the second embodiment, the pressure at the anode hydrogen manifold inlet / outlet portion of the left unit cell 10 is higher than the pressure loss at the anode hydrogen manifold inlet / outlet portion of the right unit cell 110, so that Change the size of the gas flow path on the side. That is, the opening cross-sectional area of the joining portion 305 between the manifold and the recess (gas flow path 18) in the separator 304 is smaller than the opening cross-sectional area of the joining portion 307 between the manifold and the recess (the gas flow path 118) in the separator 306. (Narrow). Thereby, similarly to Embodiment 1, the gas flow path 18 has a relatively small gas flow rate, and the gas flow path 118 has a relatively high gas flow rate. As a result, the flow rate of hydrogen at the anode of the right unit cell 110 can be relatively increased as compared with the left unit cell 10 by a method different from that of the first embodiment.

なお、開口断面積は、合流部305、307の深さ、幅、形状のいずれかを変更して異ならしめることができる。また、合流部305のガス流量を合流部307のガス流量よりも絞るように、合流部305を全体的に或いは部分的に狭くしてもよい。また、マニホールドの出口側の合流部と入口側の合流部とのうち両方を対象としても片方のみを対象としても良い。なお、実施の形態2は実施の形態1のセパレータ構成(D<D)も備えるが、本発明はこれに限られない。つまり、各単位セルのアノード、カソードのガス流路が同一断面積、同一断面形状の燃料電池に対して(つまりセパレータの凹凸の断面形状が同一である燃料電池に対して)、実施の形態2にかかるマニホールド出入口の構成を適用しても良い。この場合にも、2セル1冷却型セルのうち片方のセルのアノードの水素の流量を、相対的に多くすることができる。 Note that the opening cross-sectional area can be made different by changing any of the depth, width, and shape of the merging portions 305 and 307. In addition, the merging portion 305 may be narrowed entirely or partially so that the gas flow rate of the merging portion 305 is reduced more than the gas flow rate of the merging portion 307. Moreover, it is good also considering only either one among the merge part on the exit side of the manifold and the merge part on the inlet side. Although the second embodiment also includes the separator configuration (D 1 <D 2 ) of the first embodiment, the present invention is not limited to this. That is, for the fuel cell having the same cross-sectional area and the same cross-sectional shape in the gas flow path of the anode and cathode of each unit cell (that is, for the fuel cell having the same cross-sectional shape of the unevenness of the separator) The manifold inlet / outlet configuration may be applied. Also in this case, the flow rate of hydrogen in the anode of one of the two cells and one cooling type cell can be relatively increased.

尚、上述した実施の形態2では、合流部305の開口断面積を合流部307の開口断面積よりも狭くする構成が、前記第1の発明における「前記外側セパレータの前記合流部の流路断面積<前記中間セパレータの前記第2の膜電極接合体側の前記合流部の流路断面積」の関係を成立させている。   In the second embodiment described above, the configuration in which the opening cross-sectional area of the merging portion 305 is made narrower than the opening cross-sectional area of the merging portion 307 is “the flow path disconnection of the merging portion of the outer separator” in the first invention. The relationship of “area <flow path cross-sectional area of the merging portion on the second membrane electrode assembly side of the intermediate separator” is established.

実施の形態3.
図5は、本発明の実施の形態3にかかる燃料電池の構成を示す。実施の形態3は、図5のように凹の幅の関係をW<W、具体的には、幅Wと幅Wの比をW:W=1.0:1.1とする。これにより、実施の形態1でD:D=1.0:1.1としたのと同様に、ガス流路18の水素流量に比して、ガス流路118の水素流量を多くすることができる。なお、上記の幅Wと幅Wの比率は一例であり、実施の形態1で述べたのと同様に各種の比率を適用できる。
Embodiment 3 FIG.
FIG. 5 shows a configuration of a fuel cell according to Embodiment 3 of the present invention. In the third embodiment, as shown in FIG. 5, the concave width relationship is W 1 <W 2 , specifically, the ratio of the width W 1 to the width W 2 is W 1 : W 2 = 1.0: 1. Set to 1. As a result, the hydrogen flow rate in the gas flow path 118 is increased as compared with the hydrogen flow rate in the gas flow path 18 as in the case of D 1 : D 2 = 1.0: 1.1 in the first embodiment. be able to. The ratio of the width W 1 and the width W 2 of the above is an example, it can be applied similarly to various ratios of as described in the first embodiment.

実施の形態4.
なお、溝の本数を変える(相違させる)構成によって、実施の形態1〜3の構成と同様の機能、つまり流量等を異ならしめる機能を実現してもよい。
Embodiment 4 FIG.
It should be noted that a function similar to that of the first to third embodiments, that is, a function of changing the flow rate or the like, may be realized by changing (differentiating) the number of grooves.

10 左側単位セル
110 右側単位セル
12、112 固体高分子電解質膜
14、20、114、120 電極触媒層
16、22、116、122 ガス拡散層
18、24、118、124 ガス流路
300、312 冷却液流路
306 中間セパレータ
302、304、308、310 セパレータ
305、307 合流部
10 Left unit cell 110 Right unit cell 12, 112 Solid polymer electrolyte membrane 14, 20, 114, 120 Electrocatalyst layer 16, 22, 116, 122 Gas diffusion layer 18, 24, 118, 124 Gas flow path 300, 312 Cooling Liquid channel 306 Intermediate separators 302, 304, 308, 310 Separator 305, 307

Claims (1)

電解質膜と、該電解質膜の一方の面に備えられたアノード電極触媒層と、該電解質膜の他方の面に備えられたカソード電極触媒層と、を備えた第1の膜電極接合体と、
前記第1の膜電極接合体の前記カソード電極触媒層側に配置され、電解質膜と、該電解質膜の前記第1の膜電極接合体側の面に備えられたアノード電極触媒層と、該電解質膜の他方の面に備えられたカソード電極触媒層と、を備えた第2の膜電極接合体と、
前記第1、2の膜電極接合体の間に介在し、複数の凹と、該複数の凹が合流する合流部とを、前記第1、2の膜電極接合体のそれぞれの側の面に備えた中間セパレータと、
前記第1の膜電極接合体の前記アノード触媒層側に配置され、複数の凹と、該複数の凹が合流する合流部とを、該第1の膜電極接合体側の該アノード触媒層側を向く面に備えた外側セパレータと、
前記第1の膜電極接合体、前記中間セパレータ、および前記第2の膜電極接合体を挟むように位置する冷媒流路と、
を備え、
前記外側セパレータの前記凹の流路総断面積<前記中間セパレータの前記第2の膜電極接合体側の前記凹の流路総断面積、という構成と、
前記外側セパレータの前記合流部の流路断面積<前記中間セパレータの前記第2の膜電極接合体側の前記合流部の流路断面積、という構成と、
のうち少なくとも一方の構成を備えることを特徴とする燃料電池。
A first membrane electrode assembly comprising: an electrolyte membrane; an anode electrode catalyst layer provided on one surface of the electrolyte membrane; and a cathode electrode catalyst layer provided on the other surface of the electrolyte membrane;
An electrolyte membrane disposed on the cathode electrode catalyst layer side of the first membrane electrode assembly, an anode electrode catalyst layer provided on a surface of the electrolyte membrane on the first membrane electrode assembly side, and the electrolyte membrane A cathode electrode catalyst layer provided on the other surface of the second membrane electrode assembly,
A plurality of recesses interposed between the first and second membrane electrode assemblies, and a merging portion where the plurality of recesses merge are provided on the respective surfaces of the first and second membrane electrode assemblies. An intermediate separator provided,
The first membrane electrode assembly is disposed on the anode catalyst layer side, and a plurality of recesses and a junction where the plurality of recesses merge together are connected to the anode catalyst layer side on the first membrane electrode assembly side. An outer separator provided on the facing surface;
A coolant channel positioned so as to sandwich the first membrane electrode assembly, the intermediate separator, and the second membrane electrode assembly;
With
The concave channel total cross-sectional area of the outer separator <the concave channel total cross-sectional area of the intermediate separator on the second membrane electrode assembly side; and
A configuration in which the flow path cross-sectional area of the merging portion of the outer separator <the flow channel cross-sectional area of the merging portion on the second membrane electrode assembly side of the intermediate separator;
A fuel cell comprising at least one of the configurations.
JP2009060173A 2009-03-12 2009-03-12 Fuel cell Pending JP2010212216A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009060173A JP2010212216A (en) 2009-03-12 2009-03-12 Fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009060173A JP2010212216A (en) 2009-03-12 2009-03-12 Fuel cell

Publications (1)

Publication Number Publication Date
JP2010212216A true JP2010212216A (en) 2010-09-24

Family

ID=42972155

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009060173A Pending JP2010212216A (en) 2009-03-12 2009-03-12 Fuel cell

Country Status (1)

Country Link
JP (1) JP2010212216A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020073735A (en) * 2020-02-12 2020-05-14 株式会社東芝 Electrochemical reaction apparatus

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000251913A (en) * 1999-02-25 2000-09-14 Toyota Central Res & Dev Lab Inc Operating method for layered fuel cell, layered fuel cell and layered fuel cell system
JP2002260709A (en) * 2001-03-06 2002-09-13 Honda Motor Co Ltd Solid polymer cell assembly, fuel cell stack and operation method of fuel cell
JP2002260710A (en) * 2001-03-06 2002-09-13 Honda Motor Co Ltd Solid polymer cell assembly, fuel cell stack and supply method of reactive gas for fuel cell
JP2002260689A (en) * 2001-03-06 2002-09-13 Honda Motor Co Ltd Solid high polymer cell assembly, fuel cell stack and reaction gas supply method of the fuel cell
JP2004087190A (en) * 2002-08-23 2004-03-18 Honda Motor Co Ltd Solid polymer cell assembly

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000251913A (en) * 1999-02-25 2000-09-14 Toyota Central Res & Dev Lab Inc Operating method for layered fuel cell, layered fuel cell and layered fuel cell system
JP2002260709A (en) * 2001-03-06 2002-09-13 Honda Motor Co Ltd Solid polymer cell assembly, fuel cell stack and operation method of fuel cell
JP2002260710A (en) * 2001-03-06 2002-09-13 Honda Motor Co Ltd Solid polymer cell assembly, fuel cell stack and supply method of reactive gas for fuel cell
JP2002260689A (en) * 2001-03-06 2002-09-13 Honda Motor Co Ltd Solid high polymer cell assembly, fuel cell stack and reaction gas supply method of the fuel cell
JP2004087190A (en) * 2002-08-23 2004-03-18 Honda Motor Co Ltd Solid polymer cell assembly

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020073735A (en) * 2020-02-12 2020-05-14 株式会社東芝 Electrochemical reaction apparatus

Similar Documents

Publication Publication Date Title
US9905880B2 (en) Fuel cell stack
KR100549683B1 (en) Solid polymer electrolyte fuel cell assembly, fuel cell stack, and method of supplying reaction gas in fuel cell
JP4753599B2 (en) Fuel cell
JP4344484B2 (en) Solid polymer cell assembly
JP4598287B2 (en) FUEL CELL STACK AND METHOD OF OPERATING FUEL CELL STACK
JP2000012051A5 (en)
US20070298311A1 (en) Fuel cell separator
CA2840020C (en) Fuel cell including a separator having concave and convex shapes
JP2011054404A (en) Fuel cell
KR101755937B1 (en) Separator for fuel cell
US8153325B2 (en) Fuel cell
US20180198153A1 (en) Separator, and fuel cell stack comprising the same
JP5491231B2 (en) Fuel cell
JP2005085626A (en) Fuel cell
JP4578997B2 (en) Fuel cell separator and fuel cell
JP2008293835A (en) Fuel cell
JP5872995B2 (en) Fuel cell stack
KR101261948B1 (en) Fuel cell stack
JP2010212216A (en) Fuel cell
JP4516630B2 (en) Solid polymer cell assembly
JP4572252B2 (en) Fuel cell stack
JP5123824B2 (en) FUEL CELL STACK AND METHOD OF OPERATING FUEL CELL STACK
JP5730708B2 (en) Fuel cell
JP2020107397A (en) Fuel battery cell
JP2010212215A (en) Fuel cell

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111221

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130515

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130521

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130924