JP2010210313A - Surface acoustic wave type vibration sensor - Google Patents

Surface acoustic wave type vibration sensor Download PDF

Info

Publication number
JP2010210313A
JP2010210313A JP2009054768A JP2009054768A JP2010210313A JP 2010210313 A JP2010210313 A JP 2010210313A JP 2009054768 A JP2009054768 A JP 2009054768A JP 2009054768 A JP2009054768 A JP 2009054768A JP 2010210313 A JP2010210313 A JP 2010210313A
Authority
JP
Japan
Prior art keywords
acoustic wave
surface acoustic
vibration sensor
vibration
wedge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009054768A
Other languages
Japanese (ja)
Inventor
Arinori Kakita
有紀 垣田
Junichi Hayasaka
淳一 早坂
Chieko Fujiwara
千恵子 藤原
Yuichi Togano
祐一 戸叶
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokin Corp
Original Assignee
NEC Tokin Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Tokin Corp filed Critical NEC Tokin Corp
Priority to JP2009054768A priority Critical patent/JP2010210313A/en
Publication of JP2010210313A publication Critical patent/JP2010210313A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To improve sensitivity of a surface acoustic wave type vibration sensor in a frequency domain other than a resonance frequency, and to elongate a radio-communicable distance. <P>SOLUTION: In this vibration sensor including SAW (Surface Acoustic Wave) electrodes 3, the shape of a piezoelectric material body 1 having a cantilever structure is a wedged shape corresponding to a desired frequency to be detected, and since a body thickness is changed gradually from a support part 2 toward a tip part of the body, vibration intensity of the SAW electrodes 3 when an external vibration is applied is enhanced by a weight effect generated by change of a distance between the fulcrum and the gravity center of the cantilever structure in comparison with a case of using a piezoelectric material having a rectangular parallelepiped shape, and sensor sensitivity can be improved, and the radio-communicable distance can be elongated. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、例えば、ガラスが破壊された時に発生するAE(Acoustic Emission)波を表面弾性波(SAW:Surface Acoustic Wave)型素子で検出する表面弾性波型振動センサの高感度化のための構造に関する。   The present invention provides, for example, a structure for increasing the sensitivity of a surface acoustic wave type vibration sensor that detects an AE (Acoustic Emission) wave generated when glass is broken by a surface acoustic wave (SAW) type element. About.

特許文献1には、建造物の耐震診断や防犯セキュリティ用のガラス破壊検知装置、或いは、設備や工作機械の異常振動検知に利用可能な、対象物の振動現象を検出する振動検知方法並びに振動センサ及び質問器を備えた振動検知システムが開示されている。   Patent Document 1 discloses a vibration detection method for detecting a vibration phenomenon of an object and a vibration sensor, which can be used for a glass breakage detection device for earthquake resistance diagnosis of buildings and security security, or for abnormal vibration detection of equipment and machine tools. And a vibration detection system including an interrogator is disclosed.

特許文献1に開示される技術は、振動センサの小型化を可能とする振動検知方法を提供するための解決手段として、シングルポートの表面弾性波(SAW)共振子を備えたバッテリレス振動センサを対象物に取付け、質問器からバッテリレス振動センサに対して連続搬送波を送出する一方で、質問器においてバッテリレス振動センサからの反射波を監視する。対象物において振動現象が生じると、それに伴ってバッテリレス振動センサに機械振動が与えられ、その結果、反射波に変化が生じるので、それに基づいて振動現象を検知するものである。   As a solution for providing a vibration detection method that enables downsizing of a vibration sensor, the technology disclosed in Patent Document 1 includes a batteryless vibration sensor including a single-port surface acoustic wave (SAW) resonator. It is attached to an object and sends a continuous carrier wave from the interrogator to the batteryless vibration sensor, while the interrogator monitors the reflected waves from the batteryless vibration sensor. When a vibration phenomenon occurs in the object, mechanical vibration is applied to the batteryless vibration sensor, and as a result, a change occurs in the reflected wave, and the vibration phenomenon is detected based on the change.

特許文献1の振動センサは、バッテリレスとなっており、振動検知の処理を質問器側で行うことから、振動センサから信号処理部を省略することができ、小型化が可能である。   The vibration sensor of Patent Document 1 is battery-less, and since the vibration detection process is performed on the interrogator side, the signal processing unit can be omitted from the vibration sensor, and the size can be reduced.

特開2007−232708号公報JP 2007-232708 A

特許文献1に開示される表面弾性波型振動センサすなわち表面弾性波(SAW)電極を主面上に有する圧電材料躯体は、支持部にSAW共振子の一方の端部を固定した片持ち梁構造をしており、固定される側と反対側の厚みが同じである直方体形状をしている。センサの感度は、基本的に、この片持ち梁構造の振動がどれだけ大きいか、すなわち振動の強度で決まる。   A surface acoustic wave type vibration sensor disclosed in Patent Document 1, that is, a piezoelectric material housing having a surface acoustic wave (SAW) electrode on a main surface has a cantilever structure in which one end of a SAW resonator is fixed to a support portion. It has a rectangular parallelepiped shape with the same thickness on the opposite side to the fixed side. The sensitivity of the sensor is basically determined by how much the vibration of the cantilever structure is large, that is, the intensity of the vibration.

特許文献1に開示される直方体の圧電材料躯体では、躯体形状で決まる共振周波数から外れると、その周波数に対して、SAW共振子の振動の強度は大きくならず、共振周波数から外れる振動のモードに対して感度の向上は見込めないという課題があった。   In the rectangular piezoelectric material housing disclosed in Patent Document 1, when the frequency deviates from the resonance frequency determined by the housing shape, the vibration intensity of the SAW resonator does not increase with respect to that frequency, and the vibration mode deviates from the resonance frequency. On the other hand, there was a problem that improvement in sensitivity could not be expected.

さらに、このSAW共振子を有するバッテリレス振動センサにおいては、圧電体上のSAW電極および反射器は、受動素子として、質問器から送信される搬送波を振動に基づいて変調された無線信号をバッテリレスで質問器に送信するため、感度が小さいということは、この際の送信出力も小さくなり、質問器との無線通信可能な距離も伸びないということが課題となっている。   Further, in the batteryless vibration sensor having the SAW resonator, the SAW electrode and the reflector on the piezoelectric body use, as passive elements, a radio signal modulated based on the vibration of the carrier wave transmitted from the interrogator. Therefore, the fact that the sensitivity is low, the transmission output at this time is also small, and the distance for wireless communication with the interrogator is not increased.

本願発明者等は、上記課題を解決するために、鋭意検討を重ねた結果、圧電材料の躯体形状から決まる共振周波数を検知したい所望の周波数としつつ、躯体形状を直方体ではなく、底面が略台形の四角柱形状すなわちくさび型形状とすることで振動の強度を大きくすることができ、もって、表面弾性波型振動センサの感度を向上させ得ることを見出し、本願発明をするに至った。   As a result of intensive investigations to solve the above-mentioned problems, the inventors of the present application have made the casing shape not a rectangular parallelepiped but a substantially trapezoidal shape while setting the resonance frequency determined from the casing shape of the piezoelectric material to a desired frequency. It was found that the intensity of vibration can be increased by adopting the quadrangular prism shape, that is, the wedge shape, and the sensitivity of the surface acoustic wave type vibration sensor can be improved, leading to the present invention.

本発明によれば、圧電材料から成る躯体の主面上に表面弾性波(SAW)電極および反射器を備え、躯体を底面が略台形の四角柱すなわちくさび型形状とし、くさびの端部を支持部とする片持ち梁構造とする表面弾性波型振動センサが得られる。   According to the present invention, a surface acoustic wave (SAW) electrode and a reflector are provided on the main surface of a housing made of piezoelectric material, and the housing has a substantially trapezoidal quadrangular prism, that is, a wedge shape, and supports the end of the wedge. A surface acoustic wave type vibration sensor having a cantilever structure as a part is obtained.

表面弾性波(SAW)電極および反射器は、櫛歯電極(IDT)で構成することができる。   The surface acoustic wave (SAW) electrode and the reflector can be composed of comb electrodes (IDT).

支持されるくさびの端部は、くさびの厚みが厚い側であっても良く、くさびの厚みの薄い側であっても良い。   The end of the wedge to be supported may be on the side where the wedge is thick or on the side where the wedge is thin.

SAW共振子および反射器は、くさびの支持される側の主面の支持部近傍にあることが望ましい。   The SAW resonator and the reflector are desirably in the vicinity of the support portion of the main surface on the side where the wedge is supported.

くさびの厚みの薄い側の端部の厚みをa、くさびの厚みの厚い側の端部の厚さをb、くさびの支持される側の主面の支持部から支持されない端部までの長さをLとして、
1<(b/a)≦5、L=1〜10mmとすることが望ましい。
The thickness of the end portion on the thin side of the wedge is a, the thickness of the end portion on the thick side of the wedge is b, and the length from the support portion of the main surface on the side where the wedge is supported to the unsupported end portion As L
It is desirable that 1 <(b / a) ≦ 5 and L = 1 to 10 mm.

SAW共振子を備え、片持ち梁構造となる圧電材料躯体の形状を、検知すべき周波数に応じつつ、くさび型形状とすることにより、躯体の支持部から先端部に行くに従って躯体の厚みが変化するために、片持ち梁構造の支点と重心の距離が、直方体形状の圧電材料を用いた場合に比較して、変わることによる重り効果で、外部振動が加わった際のSAW共振子の振動の強度が増大し、センサの感度を向上させることが出来る。   With a SAW resonator, the shape of the piezoelectric material housing that has a cantilever structure is wedge-shaped, depending on the frequency to be detected, so that the thickness of the housing changes from the support to the tip of the housing. Therefore, the distance between the fulcrum of the cantilever beam structure and the center of gravity is different from that when a rectangular parallelepiped piezoelectric material is used, and the weight effect caused by the change causes the vibration of the SAW resonator when external vibration is applied. The strength increases and the sensitivity of the sensor can be improved.

このことにより、バッテリレスガラス破壊センサにおいて、センサの感度が向上することにより、質問器への反射出力を大きくすることが出来、通信可能距離をのばすことが可能である。   Thus, in the batteryless glass breakage sensor, the sensitivity of the sensor is improved, so that the reflected output to the interrogator can be increased and the communicable distance can be increased.

本発明による表面弾性波型振動センサの概略図。図1(a)は、くさびの厚い側が支持部である場合の概略図、図1(b)は、くさびの薄い側が支持部である場合の概略図。1 is a schematic view of a surface acoustic wave type vibration sensor according to the present invention. FIG. 1A is a schematic view when the thick side of the wedge is a support portion, and FIG. 1B is a schematic view when the thin side of the wedge is a support portion. 実施の形態1における、くさびの先端側速度と支持部側速度の比の周波数特性。The frequency characteristic of the ratio of the front end side speed of a wedge, and the support part side speed in Embodiment 1. FIG.

以下に図面を参照しながら、本発明の実施の形態について説明する。   Embodiments of the present invention will be described below with reference to the drawings.

図1は、本発明による表面弾性波型振動センサの概略図であり、図1(a)は、くさびの厚い側が支持部である場合の概略図である。図1(b)は、くさびの薄い側が支持部である場合の概略図である。なお、質問器からの搬送波の送受信に寄与するアンテナは図示していない。   FIG. 1 is a schematic view of a surface acoustic wave type vibration sensor according to the present invention, and FIG. 1 (a) is a schematic view when the thick side of the wedge is a support portion. FIG. 1B is a schematic view when the thin side of the wedge is the support portion. An antenna that contributes to transmission / reception of a carrier wave from the interrogator is not shown.

図1(a)あるいは図1(b)に示す形状の圧電材料を躯体とする表面弾性波型振動子は、以下の作製手順および評価方法により、作製・評価される。   A surface acoustic wave vibrator having a piezoelectric material having the shape shown in FIG. 1A or FIG. 1B as a housing is manufactured and evaluated by the following manufacturing procedure and evaluation method.

(設計および構造について)
図1(a)および図1(b)のように定義されるa、bおよびLの値を、それぞれ、くさびの薄い側の端部の厚みa=0.05mm、くさびの厚い側の端部の厚みb=0.25mm、主面の長さ(=圧電材料躯体の長さ)L=2mmとしてみる。なお比較対象とする従来の直方体形状の圧電体材料躯体は、長さ2mm、幅1mm、厚みは0.25mmとしている。
(About design and structure)
The values of a, b, and L defined as in FIG. 1 (a) and FIG. 1 (b) are respectively set to the thickness a = 0.05 mm at the end on the thin side of the wedge and the end at the thick side of the wedge. Thickness b = 0.25 mm, the length of the main surface (= the length of the piezoelectric material housing) L = 2 mm. The conventional rectangular parallelepiped piezoelectric material housing to be compared has a length of 2 mm, a width of 1 mm, and a thickness of 0.25 mm.

圧電材料躯体1の長さLのうち、例えば、0.5mmは支持部2に固定する部分であるとすれば、実際に振動する部分の長さは1.5mmとなる。従来の直方体形状であれば、材料をBカットのLT(LiTaO3)とすれば、共振周波数は60kHzとなり、これは、ガラス破壊のモードとして検出したいAE波の周波数範囲に含まれている。 Of the length L of the piezoelectric material housing 1, for example, if 0.5 mm is a portion that is fixed to the support portion 2, the length of the portion that actually vibrates is 1.5 mm. If conventional rectangular parallelepiped, if a material B cut LT (LiTaO 3), the resonant frequency is 60kHz, and the which are included in the frequency range of the AE wave to be detected as the mode of the glass breaking.

ここで、前述の重り効果について、説明する。図1(a)のように、支持部側の厚みを先端部よりも厚くする構造にした場合、重心の位置が直方体形状に比較して、支持部側になり、基本振動モードの波長が短くなることから、共振周波数は直方体形状から計算される共振周波数60kHzよりも高周波側にずれることが理解されるであろう。一方、図1(b)のように、支持部側の厚みを先端部よりも薄くする構造の場合には、同様に重心位置が直方体形状に比較して先端部側になることから、共振周波数は低周波側にずれることとなる。なお、厚みaとbの値は、共振子自身の強度を考慮して決定する必要があり、正確な共振周波数は、計算および実測によるべきである。   Here, the above-described weight effect will be described. As shown in FIG. 1A, when the thickness on the support side is made thicker than the tip, the position of the center of gravity is on the support side compared to the rectangular parallelepiped shape, and the wavelength of the fundamental vibration mode is short. Therefore, it will be understood that the resonance frequency is shifted to a higher frequency side than the resonance frequency 60 kHz calculated from the rectangular parallelepiped shape. On the other hand, as shown in FIG. 1B, in the case of a structure in which the thickness on the support part side is thinner than the tip part, the center of gravity position is similarly on the tip part side compared to the rectangular parallelepiped shape, so that the resonance frequency Shifts to the low frequency side. Note that the values of the thicknesses a and b need to be determined in consideration of the strength of the resonator itself, and the accurate resonance frequency should be calculated and measured.

(作製手順について)
例えば、主面上にSAW電極3および反射器4となるそれぞれの櫛歯電極(IDT)を有する圧電材料を、図1(a)あるいは図1(b)の形状にダイサー等により切りだし、接着剤等により、支持される側を支持部であるパッケージケースの台座等に固定する。
(Production procedure)
For example, a piezoelectric material having respective comb-teeth electrodes (IDT) to be the SAW electrodes 3 and the reflectors 4 on the main surface is cut into the shape of FIG. 1A or FIG. The side to be supported is fixed to a pedestal or the like of the package case which is a support portion with an agent or the like.

さらに、レーザ光を反射させる、金等の高反射の金属膜を共振子表面に薄くコートしておけば、レーザドップラー振動計により振動を観察することが容易である。   Further, if a highly reflective metal film such as gold that reflects laser light is thinly coated on the surface of the resonator, it is easy to observe the vibration with a laser Doppler vibrometer.

(測定について)
加振機で強制振動を加えた場合の表面弾性波型振動子の振動強度、すなわち支持部側と先端部側の振動振幅の比である速度比を、レーザドップラー振動計を用いて測定することができる。
(About measurement)
Using a laser Doppler vibrometer, measure the vibration strength of the surface acoustic wave type vibrator when forced vibration is applied by a vibration exciter, that is, the speed ratio, which is the ratio of vibration amplitude between the support and tip sides. Can do.

実際に表面弾性波型振動センサを作製して、評価した結果、図2に示す実施の形態における、くさびの先端側速度と支持部側速度の比の周波数特性が得られた。   As a result of actually producing and evaluating a surface acoustic wave type vibration sensor, the frequency characteristic of the ratio between the speed at the front end side of the wedge and the speed at the support portion side in the embodiment shown in FIG. 2 was obtained.

本実施の形態によれば、圧電材料をBカットのLTとして、図1(a)の構造である場合、従来の直方体形状の構造と比較して、図2中の矢印で示される85kHz近傍の共振周波数付近で、先端側の速度と支持部側の速度の比で6倍ほどになることが分かった。この振動強度から、SAW電極3のIDTのインピーダンス変化量を見積もると、従来構造に比較して、25倍となる。さらに、バッテリレスでの無線通信可能な距離を算出すると、従来と比較して2.2倍となる。   According to the present embodiment, when the piezoelectric material is a B-cut LT and has the structure of FIG. 1A, compared to the conventional rectangular parallelepiped structure, the vicinity of 85 kHz indicated by the arrow in FIG. In the vicinity of the resonance frequency, it was found that the ratio of the speed on the tip side to the speed on the support part side was about 6 times. When the impedance change amount of the IDT of the SAW electrode 3 is estimated from this vibration intensity, it is 25 times that of the conventional structure. Furthermore, when the distance that can be wirelessly communicated without a battery is calculated, it is 2.2 times that of the conventional distance.

図1(b)のくさびの薄い側が支持部である場合、すなわち、低周波領域で用いる場合については、図2に一部見られるように、従来品より低周波の30kHz以下の領域で大変位が得られる。   In the case where the thin side of the wedge in FIG. 1B is a support portion, that is, in the case of using in the low frequency region, as shown in part in FIG. Is obtained.

上述の効果を期待するには、圧電材料躯体の寸法については、支持部強度および検知するAE波の周波数を考慮し、1<(b/a)≦5,L=1〜10mmの範囲が好適である。圧電材料としては、前述のLiTaO3の他に、温度特性に優れた水晶やランガサイト等の圧電単結晶や、PZT(ジルコン酸チタン酸鉛)等の焼結体等を用いても良く、その特性を考慮して、a、bおよびLの値を選ぶことが好ましい。 In order to expect the above effect, the size of the piezoelectric material housing is preferably in the range of 1 <(b / a) ≦ 5, L = 1 to 10 mm in consideration of the strength of the supporting portion and the frequency of the detected AE wave. It is. As the piezoelectric material, in addition to the above LiTaO 3 , a piezoelectric single crystal such as quartz or langasite having excellent temperature characteristics, or a sintered body such as PZT (lead zirconate titanate) may be used. It is preferable to select values of a, b and L in consideration of characteristics.

本発明は、ホームセキュリティやATM、店頭用などの防犯用ガラス破壊センサして利用可能である。   The present invention can be used as a glass breakage sensor for crime prevention such as home security, ATM, and shop front.

1 圧電材料躯体
2 支持部
3 SAW電極
4 反射器
DESCRIPTION OF SYMBOLS 1 Piezoelectric material housing 2 Support part 3 SAW electrode 4 Reflector

Claims (3)

圧電材料から成る躯体の主面上に表面弾性波電極および反射器を備え、躯体を底面が略台形の四角柱すなわちくさび型形状とし、くさびの端部を支持部とする片持ち梁構造とことを特徴とする表面弾性波型振動センサ。   A cantilever structure comprising a surface acoustic wave electrode and a reflector on the main surface of a housing made of piezoelectric material, the housing having a substantially trapezoidal square pillar, that is, a wedge shape, with the end of the wedge as a support. A surface acoustic wave type vibration sensor. 前記表面弾性波電極および反射器は、櫛歯電極であることを特徴とする請求項1に記載の表面弾性波型振動センサ。   The surface acoustic wave type vibration sensor according to claim 1, wherein the surface acoustic wave electrode and the reflector are comb electrodes. 前記くさびの厚みの薄い側の端部の厚みをa、くさびの厚みの厚い側の端部の厚さをb、くさびの支持される側の主面の支持部から支持されない端部までの長さをLとした場合、
1<(b/a)≦5、L=1〜10mm
となることを特徴とする請求項1ないし2のいずれか1項に記載の表面弾性波型振動センサ。
The thickness of the end portion on the thin side of the wedge is a, the thickness of the end portion on the thick side of the wedge is b, and the length from the support portion of the main surface on the side where the wedge is supported to the unsupported end portion If L is L,
1 <(b / a) ≦ 5, L = 1 to 10 mm
The surface acoustic wave type vibration sensor according to claim 1, wherein the surface acoustic wave type vibration sensor is provided.
JP2009054768A 2009-03-09 2009-03-09 Surface acoustic wave type vibration sensor Pending JP2010210313A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009054768A JP2010210313A (en) 2009-03-09 2009-03-09 Surface acoustic wave type vibration sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009054768A JP2010210313A (en) 2009-03-09 2009-03-09 Surface acoustic wave type vibration sensor

Publications (1)

Publication Number Publication Date
JP2010210313A true JP2010210313A (en) 2010-09-24

Family

ID=42970653

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009054768A Pending JP2010210313A (en) 2009-03-09 2009-03-09 Surface acoustic wave type vibration sensor

Country Status (1)

Country Link
JP (1) JP2010210313A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103424327A (en) * 2013-07-25 2013-12-04 大连理工大学 High-order mode micro-mass sensor based on variable-thickness girder structure and sensitivity improving method thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103424327A (en) * 2013-07-25 2013-12-04 大连理工大学 High-order mode micro-mass sensor based on variable-thickness girder structure and sensitivity improving method thereof
CN103424327B (en) * 2013-07-25 2015-06-17 大连理工大学 High-order mode micro-mass sensor based on variable-thickness girder structure and sensitivity improving method thereof

Similar Documents

Publication Publication Date Title
US8841817B2 (en) Surface acoustic wave sensor
JP4345984B2 (en) Vibration detection method, vibration detection system, batteryless vibration sensor, and interrogator
US9306148B2 (en) Oscillator device and electronic apparatus
EP2328359B1 (en) Sound reproducing apparatus
JP2008175678A (en) Dynamic quantity sensor system
JP2008232886A (en) Pressure sensor
JPH01119200A (en) Ultrasonic converter
CA2619996A1 (en) Piezoelectric vibrating beam force sensor
JP2009243981A (en) Surface acoustic wave sensor
JP5658061B2 (en) Mechanical quantity sensor
JP2010210313A (en) Surface acoustic wave type vibration sensor
US10648868B2 (en) Surface acoustic wave device
JP4134911B2 (en) Ultrasonic transducer and method for manufacturing the same
JP2017161397A (en) Wireless sensor and sensor system
JP6156387B2 (en) Electroacoustic transducer, manufacturing method thereof, and electronic apparatus using the electroacoustic transducer
JP2011095092A (en) Glass destruction detector
JP2011137637A (en) Surface acoustic wave resonator type vibration sensor
JP2012225819A (en) Vibration sensor and vibration detection apparatus
JP2001304952A (en) Ultrasonic sound pressure sensor
JP7351508B2 (en) Recognition signal generation element and element recognition system
JP5197717B2 (en) Thin plate inspection equipment
JP4598747B2 (en) Ranging sensor and equipment equipped with the same
JP2012078331A (en) Vibration sensor and vibration detection system
JP3742856B2 (en) Liquid level detector
CN111307232A (en) Measuring device for determining a fluid variable