JP2010210105A - Heat exchanger and heat exchange device - Google Patents

Heat exchanger and heat exchange device Download PDF

Info

Publication number
JP2010210105A
JP2010210105A JP2009053643A JP2009053643A JP2010210105A JP 2010210105 A JP2010210105 A JP 2010210105A JP 2009053643 A JP2009053643 A JP 2009053643A JP 2009053643 A JP2009053643 A JP 2009053643A JP 2010210105 A JP2010210105 A JP 2010210105A
Authority
JP
Japan
Prior art keywords
air
heat
heat transfer
fan
heat exchanger
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009053643A
Other languages
Japanese (ja)
Inventor
Takesuke Tashiro
雄亮 田代
Fumitake Unezaki
史武 畝崎
Mamoru Hamada
守 濱田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2009053643A priority Critical patent/JP2010210105A/en
Publication of JP2010210105A publication Critical patent/JP2010210105A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F13/00Arrangements for modifying heat-transfer, e.g. increasing, decreasing
    • F28F13/06Arrangements for modifying heat-transfer, e.g. increasing, decreasing by affecting the pattern of flow of the heat-exchange media
    • F28F13/10Arrangements for modifying heat-transfer, e.g. increasing, decreasing by affecting the pattern of flow of the heat-exchange media by imparting a pulsating motion to the flow, e.g. by sonic vibration
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/12Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element
    • F28F1/24Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending transversely
    • F28F1/32Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending transversely the means having portions engaging further tubular elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F13/00Arrangements for modifying heat-transfer, e.g. increasing, decreasing
    • F28F13/02Arrangements for modifying heat-transfer, e.g. increasing, decreasing by influencing fluid boundary
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D2021/0019Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for
    • F28D2021/0068Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for for refrigerant cycles

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Geometry (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To improve heat transfer performance of a heat exchanger by suppressing development of a temperature boundary layer on the surface of a heat exchanger fin or peeling or thinning the temperature boundary layer, so as to save energy and the size. <P>SOLUTION: Heat transfer faces which are faces of a heat exchanger performing heat exchange with air or various types of other heat transfer faces require thinning or peeling or suppressing the generation of the temperature boundary layers formed on the heat transfer faces. By further thinning or peeling or suppressing the generation of the temperature boundary layer generated on the heat transfer face by vibration of air, the heat transfer performance of this device can be improved and the size of the device can be reduced. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

この発明は、空調機、低温機器、給湯機器等に配備されている、空気と熱交換を行う熱交換器のフィン、あるいは各種の伝熱面を介して空気と熱交換を行う装置の伝熱面表面において、これらの面上に形成される温度境界層を剥離若しくは発達を抑制させて伝熱性能を向上させる技術に関するものである。 The present invention relates to heat transfer of heat exchanger fins that exchange heat with air or devices that exchange heat with air via various heat transfer surfaces, which are provided in air conditioners, low-temperature equipment, hot water supply equipment, etc. The present invention relates to a technique for improving heat transfer performance by suppressing separation or development of a temperature boundary layer formed on these surfaces on the surface.

冷凍サイクルシステムでは、空気と熱交換を行う伝熱フィンに対して表面に形成される温度境界層を剥離若しくは発達を抑制させることで伝熱性能の向上が見込まれる。伝熱性能が向上されれば、装置全体の効率向上、そして熱交換器のコンパクト化にもつながる。 In the refrigeration cycle system, the heat transfer performance is expected to be improved by suppressing the separation or development of the temperature boundary layer formed on the surface of the heat transfer fin that exchanges heat with air. If the heat transfer performance is improved, the efficiency of the entire apparatus will be improved, and the heat exchanger will be made more compact.

上記温度境界層は、空気の流れ方向にフィン先端部から下流に向けて厚くなる構造を持っているが、下流に向けての発達を抑制するため、例えば熱交換器フィンにスリット構造をもたせることで発達を防いだり(例えば、特許文献1参照)、またこの温度境界層に対して、フィンを振動させフィン間の空気の流れを乱すことで温度境界層を薄く若しくは剥離を狙った例はある(例えば、特許文献2参照)。 The temperature boundary layer has a structure that thickens from the fin tip toward the downstream in the air flow direction, but in order to suppress the development toward the downstream, for example, a heat exchanger fin has a slit structure There is an example in which the development of the temperature boundary layer is prevented (for example, see Patent Document 1), and the temperature boundary layer is thinned or peeled off by vibrating the fins and disturbing the air flow between the fins. (For example, refer to Patent Document 2).

特開平8−327270号公報(図1)JP-A-8-327270 (FIG. 1) 特開昭48−38555号公報(図1)Japanese Patent Laid-Open No. 48-38555 (FIG. 1)

従来の手法ではフィンにスリット等の加工を加えるためフィン作成コストが高くなり、またフィンを振動させるため熱交換器全体に振動が伝わり騒音が生じ、フィンを振動させるため強力な振動素子が必要となっていた。 In the conventional method, fins are processed by adding slits, etc., to the fins, and the fins are vibrated. In addition, vibrations are transmitted to the entire heat exchanger to generate noise, and strong vibration elements are required to vibrate the fins. It was.

この発明は、伝熱面間の隙間を流れる空気を振動させる、あるいは、送風機から熱交換器へ送風される空気を乱して伝熱面の表面上の温度境界層を薄く、または剥離させる若しくは発達を抑制させ、伝熱性能を向上させることを目的とし、装置の性能向上、そして小型化につなげるものである。 This invention vibrates the air flowing through the gap between the heat transfer surfaces, or disturbs the air blown from the blower to the heat exchanger to thin or exfoliate the temperature boundary layer on the surface of the heat transfer surface. The purpose is to suppress the development and improve the heat transfer performance, leading to the improvement of the performance of the device and the miniaturization.

本発明に係る伝熱面は空気と熱交換を行う熱交換器、あるいはその他の各種伝熱面であって上記伝熱面に形成される温度境界層を薄く、または剥離させる若しくは発達を抑制させる必要がある面を対象とし、上記伝熱面上に生成する温度境界層を空気の振動により薄く、または剥離させる若しくは発達を抑制させて装置の伝熱性能の向上及び装置の小型化を可能とするものである。 The heat transfer surface according to the present invention is a heat exchanger for exchanging heat with air, or other various heat transfer surfaces, and the temperature boundary layer formed on the heat transfer surface is thinned or peeled off or development is suppressed. Targeting the necessary surface, the thermal boundary layer generated on the heat transfer surface is made thin by the vibration of air, or it is possible to improve the heat transfer performance of the device and reduce the size of the device by peeling or suppressing the development. To do.

この発明により、伝熱面に生じる温度境界層が空気振動により薄く、または剥離させる若しくは発達が抑制され、伝熱性能が向上し機器の性能を上げることができ省エネにつながる。 According to the present invention, the temperature boundary layer generated on the heat transfer surface is thinned by air vibration, or peeled off or development is suppressed, heat transfer performance is improved, and the performance of the device can be improved, leading to energy saving.

この発明の実施の形態1を示す空調機の構成図である。It is a block diagram of the air conditioning machine which shows Embodiment 1 of this invention. この発明の実施の形態1を示すフィンに当たる風方向とフィン表面に生じる温度境界層を表した図である。It is a figure showing the temperature boundary layer which arises in the wind direction and fin surface which hit the fin which shows Embodiment 1 of this invention. この発明の実施の形態1を示す音波発生装置と反射板を持つ熱交換器を示した図である。It is the figure which showed the heat exchanger which has the sound wave generator which shows Embodiment 1 of this invention, and a reflecting plate. この発明の実施の形態1に示すdとd´の関係を表わすグラフである。It is a graph showing the relationship between d and d 'shown in Embodiment 1 of this invention. この発明の実施の形態2に示すファンとフィンチューブ式熱交換器を示した図である。It is the figure which showed the fan and fin tube type heat exchanger which are shown in Embodiment 2 of this invention. この発明の実施の形態2に示す複数のファンとフィンチューブ式熱交換器、風洞を用いた複数のファンを示した図である。It is the figure which showed the several fan using the several fan shown in Embodiment 2 of this invention, a fin tube type heat exchanger, and a wind tunnel. この発明の実施の形態2に示すファンと、ファンとフィンチューブ式熱交換器の間にある回転体と、フィンチューブ式熱交換器を示した図である。It is the figure which showed the fan shown in Embodiment 2 of this invention, the rotary body between a fan and a fin tube type heat exchanger, and a fin tube type heat exchanger. この発明の実施の形態2に示すファンと、ファンとフィンチューブ式熱交換器の間にある通風ガイドと、フィンチューブ式熱交換器を示した図である。It is the figure which showed the fan shown in Embodiment 2 of this invention, the ventilation guide between a fan and a fin tube type heat exchanger, and a fin tube type heat exchanger.

実施の形態1.
この発明の実施の形態1の構成について、冷凍装置や空調機の蒸発器に広く利用されているフィンチューブ式の熱交換器を用いて説明する。図1は、フィンチューブ式の熱交換器を示した。フィンチューブ式の熱交換器は主として複数の熱交換フィン11と複数の伝熱管12とで構成されている。このフィン11は所定の間隔で複数枚積層されており、各フィン11に設けた貫通穴を貫通するように、伝熱管12が設けられている。例えば蒸気圧縮式の空調機では、装置内の冷媒が圧縮機で圧縮され、高温高圧となって凝縮器へと流れ込む。冷媒は凝縮器で放熱し液冷媒となり、その後、膨張手段により膨張され気液二相の冷媒となる。気液二相になった冷媒が図1のフィンチューブ式熱交換器の伝熱管12に流れ込み、伝熱管12内で冷媒が気化することでフィン11を介して周囲空気から吸熱を行い動作する。
Embodiment 1.
The structure of Embodiment 1 of this invention is demonstrated using the fin tube type heat exchanger currently widely utilized for the evaporator of a freezing apparatus or an air conditioner. FIG. 1 shows a fin-tube heat exchanger. The fin tube type heat exchanger mainly includes a plurality of heat exchange fins 11 and a plurality of heat transfer tubes 12. A plurality of fins 11 are laminated at a predetermined interval, and heat transfer tubes 12 are provided so as to penetrate through holes provided in the fins 11. For example, in a vapor compression type air conditioner, the refrigerant in the apparatus is compressed by the compressor and flows into the condenser at high temperature and pressure. The refrigerant dissipates heat in the condenser to become liquid refrigerant, and then expands by the expansion means to become a gas-liquid two-phase refrigerant. The refrigerant in the gas-liquid two-phase flows into the heat transfer tube 12 of the finned tube heat exchanger shown in FIG. 1, and the refrigerant is vaporized in the heat transfer tube 12, so that heat is absorbed from the surrounding air through the fins 11.

上記装置では、空気とフィン11との熱交換を効率的に行うため、フィン11に向かって略平行に蒸発器ファンにより空気が送り込まれる。なおこの説明では1次冷媒として伝熱管12内を冷凍サイクルで圧縮機などにて循環させられるフロン系や炭酸ガスなどの自然冷媒にて熱源から温冷熱が供給され、2次冷媒である空気へ熱を放出または吸入する構成を説明するが、各冷媒は水やアンモニアなどであっても良い。さらにまた熱交換器としてフィンチューブ式であるチューブに嵌合された平板状のフィンにて空気と伝熱する熱交換器の構造で説明するが、フィンが無くチューブそのものを並行な伝熱面としたり、フィンとしてコルゲートフィンなど各種構成にても本発明の効果を生ずることは当然である。 In the above apparatus, in order to efficiently exchange heat between the air and the fins 11, the air is sent to the fins 11 by the evaporator fan substantially in parallel. In this description, hot and cold heat is supplied from a heat source by a natural refrigerant such as a chlorofluorocarbon system or carbon dioxide gas that is circulated in the heat transfer tube 12 by a compressor or the like in a refrigeration cycle as a primary refrigerant, and into the air that is a secondary refrigerant. Although a configuration for releasing or sucking heat will be described, each refrigerant may be water or ammonia. Furthermore, as a heat exchanger, we will explain the structure of a heat exchanger that transfers heat with air using flat fins fitted to a tube that is a fin tube type, but there is no fin and the tube itself is a parallel heat transfer surface. Naturally, the effects of the present invention can be produced even in various configurations such as corrugated fins.

熱交換器に対向して設けられた送風機により送り込まれた空気とチューブ内の冷媒とがフィンを介して熱交換を行うが、その際にフィン表面上に生じる温度境界層を図2に示す。なお簡略化のため、フィン21は平板としスリット等の加工もないが、スリットを設けているものでも本発明の効果が得られることは当然である。図2の(イ)は熱交換器のフィン構造を斜めに見た図、(ロ)はフィン平面図、(ハ)は空気の流れによりフィンに層流が生ずる説明図を示す。 FIG. 2 shows a temperature boundary layer generated on the fin surface during the heat exchange between the air sent by the blower provided facing the heat exchanger and the refrigerant in the tube through the fin. For simplicity, the fin 21 is a flat plate and does not have a slit or the like, but it is natural that the effect of the present invention can be obtained even if a slit is provided. 2A is a view of the fin structure of the heat exchanger as viewed obliquely, FIG. 2B is a plan view of the fin, and FIG. 2C is an explanatory view in which a laminar flow is generated in the fin by the flow of air.

フィンから十分に離れた位置ではフィン21と熱交換できないが、フィン21近傍の空気22はフィン21と熱交換が可能となる。熱交換できる範囲が温度境界層23であり、その厚みは風速、空気温度、フィン温度等によるが、一般的な空調機で用いられる風速(〜1.0m/s)では層流の温度境界層が形成される。 Although heat cannot be exchanged with the fins 21 at positions sufficiently away from the fins, the air 22 near the fins 21 can exchange heat with the fins 21. The range in which heat can be exchanged is the temperature boundary layer 23, and the thickness depends on the wind speed, air temperature, fin temperature, etc., but at the wind speed (up to 1.0 m / s) used in general air conditioners, the temperature boundary layer of laminar flow is It is formed.

層流の温度境界層の厚みdは空気のレイノルズ数Reを用いて以下の式で与えられ、図2に示すように下流に向けて距離xが進むにつれて大きくなる。 The thickness d of the temperature boundary layer of the laminar flow is given by the following equation using the Reynolds number Re of air, and increases as the distance x progresses downstream as shown in FIG.

Figure 2010210105
Figure 2010210105

空調機ではReは200〜300程度であり、先端から10mm程度の位置では温度境界層は0.5mm程度である。 In the air conditioner, Re is about 200 to 300, and the temperature boundary layer is about 0.5 mm at a position about 10 mm from the tip.

このように形成される温度境界層内では熱伝導による熱流が支配的となっており、フィンから空気への熱流は温度境界層内の温度勾配(Ts-Ta)/dに比例する。ここでTsはフィン表面温度、Taは温度境界層外側の空気温度である。 In the temperature boundary layer formed in this way, the heat flow by heat conduction is dominant, and the heat flow from the fin to the air is proportional to the temperature gradient (Ts-Ta) / d in the temperature boundary layer. Here, Ts is the fin surface temperature, and Ta is the air temperature outside the temperature boundary layer.

つまり、層流の境界層が形成されているときは温度境界層内の温度勾配が大きいほど熱交換量は大きくなり、そのためには温度境界層を薄く(dを小さく)することが重要となる。 In other words, when a laminar boundary layer is formed, the larger the temperature gradient in the temperature boundary layer, the larger the heat exchange amount. For that purpose, it is important to make the temperature boundary layer thinner (d smaller). .

例えば図2(ハ)に示すように上流のフィン先端部分24は下流部に比べて温度境界層は薄い。そのためフィン表面温度がフィン全体で均一とすると、先端部分24は下流部に比べて熱交換量が多くなる。この効果はフィン前縁効果と呼ばれている。 For example, as shown in FIG. 2C, the upstream fin tip portion 24 has a thinner temperature boundary layer than the downstream portion. Therefore, if the fin surface temperature is uniform throughout the fin, the tip portion 24 has a larger amount of heat exchange than the downstream portion. This effect is called the fin leading edge effect.

この前縁効果をフィン上でより多く獲得するため、フィンに切り起こしなどの形状変化を与えて温度境界層の発達を抑制させ、各切り起こしの先端箇所で前縁効果を持たせて熱交換器全体の熱交換量の増加を狙っている。 In order to acquire this leading edge effect more on the fins, the fins are subjected to shape changes such as cutting and raising to suppress the development of the temperature boundary layer, and the leading edge effect is provided at the tip of each cutting and raising to exchange heat. The aim is to increase the amount of heat exchange in the entire vessel.

以上のことから、フィン表面に形成される温度境界層の発達の抑制若しくは薄く、または剥離させることで熱交換器の性能向上が期待できる。以下に空気振動を利用した温度境界層の発達の抑制若しくは薄く、または剥離させる手法について述べる。 From the above, the performance improvement of the heat exchanger can be expected by suppressing or thinning the development of the temperature boundary layer formed on the fin surface or by peeling it. In the following, a method for suppressing or thinning the temperature boundary layer using air vibration, or making it peel off will be described.

図3は本発明の原理を説明する図であって、フィン表面の空気に振動を与える手法として音波発生装置を用いた概念図である。図3(イ)で示すように熱交換器に対して送風機のファンからの流れである風方向に垂直に、かつ熱交換器をはさんで音波発生装置31と音波を全反射する金属製の反射板32を設け、フィン上の空気に対して音波を用いて振動を与えている。 FIG. 3 is a diagram for explaining the principle of the present invention, and is a conceptual diagram using a sound wave generator as a technique for applying vibration to the air on the fin surface. As shown in FIG. 3 (a), the heat exchanger is made of a metal that totally reflects the sound wave with the sound wave generator 31 perpendicular to the wind direction that flows from the fan of the blower and across the heat exchanger. A reflection plate 32 is provided to vibrate the air on the fins using sound waves.

音波発生装置31をある周波数で駆動すると装置31からフィン33に向かって空気振動が伝播する。そしてフィン表面の空気はファンから送り込まれる一様流れに加えて振動される。図3(ロ)は正面図、(ハ)は側面図であって、並行に設けられた伝熱面であるフィンの間を通る空気に対して音波により振動を加えている。 When the sound wave generator 31 is driven at a certain frequency, air vibrations propagate from the device 31 toward the fins 33. The air on the fin surface is vibrated in addition to the uniform flow sent from the fan. 3B is a front view, and FIG. 3C is a side view in which vibration is applied to the air passing between the fins, which are heat transfer surfaces provided in parallel, by sound waves.

フィン表面の空気は振動されることで、フィン表面に形成される温度境界層に乱れが生じ、下流に向けての温度境界層の発達に影響を与える。 When the air on the fin surface is vibrated, the temperature boundary layer formed on the fin surface is disturbed and affects the downstream development of the temperature boundary layer.

この効果は音源から発生する振動エネルギーに比例すると考えられるので、音源からより強力な音波を発生させることが重要となる。そのために反射板32を用い、音波発生装置31と反射板32との距離をあらかじめ測定し、その距離から想定される共鳴周波数で音源を駆動させることで、大振幅の振動をフィン33表面の空気に与えることができる。なお通常のフィンチューブ式熱交換器は筐体に入っているため、反射板を省略し筐体を反射板の代わりとしても良い。剛性の大きな筐体は音波を反射するだけで、音波を受けて振動して騒音を発生することはない。 Since this effect is considered to be proportional to the vibration energy generated from the sound source, it is important to generate a stronger sound wave from the sound source. For this purpose, the reflection plate 32 is used, the distance between the sound wave generator 31 and the reflection plate 32 is measured in advance, and the sound source is driven at the resonance frequency assumed from the distance, so that large amplitude vibrations are generated on the air on the surface of the fin 33. Can be given to. In addition, since the normal fin tube type heat exchanger is contained in the housing, the reflecting plate may be omitted and the housing may be used instead of the reflecting plate. A rigid housing simply reflects sound waves and does not vibrate and generate noise.

与える周波数は単一周波数ではなく例えば所定の範囲の連続周波数を用いても境界層の発達の抑制には効果が期待できる。すなわち中心周波数の上下の周波数に渡り連続してずらし反射板にて反射する音波とともに伝熱面間の隙間の空気を振動させる。 Even if a given frequency is not a single frequency but a continuous frequency in a predetermined range is used, for example, an effect can be expected to suppress the development of the boundary layer. In other words, the air in the gap between the heat transfer surfaces is vibrated together with the sound wave that is continuously shifted over the upper and lower frequencies of the center frequency and reflected by the reflecting plate.

また振動によって生じる温度境界層d'は空気の熱拡散係数aと角振動数wを用いて下の式で与えられ、振動数に反比例する。 The temperature boundary layer d ′ generated by vibration is given by the following equation using the thermal diffusion coefficient a of air and the angular frequency w, and is inversely proportional to the frequency.

Figure 2010210105
Figure 2010210105

d'とdの関係を図4に示す。但しRe=300,x=5 mmを用いてd=0.28 mmとした。またaは空気の20℃での値a=22.1 mm2/sを用いた。 The relationship between d ′ and d is shown in FIG. However, using Re = 300 and x = 5 mm, d = 0.28 mm. Further, a is a value of air at 20 ° C. a = 22.1 mm 2 / s.

図4から100Hz以下の周波数ではd'がdより大きくなり、振動を与えることで逆に熱交換量が減少する可能性がある。100Hz以上であればd'がdより小さくなり、振動を与えることで熱交換量を増加させることができる。つまり100Hz以上の周波数が望ましいといえる。 From FIG. 4, d ′ becomes larger than d at a frequency of 100 Hz or less, and there is a possibility that the amount of heat exchange is reduced by applying vibration. If it is 100 Hz or more, d 'becomes smaller than d, and the amount of heat exchange can be increased by applying vibration. In other words, a frequency of 100 Hz or higher is desirable.

但し、振動の伝播による減衰量は振動数に比例するため、振動数が高すぎるとフィン全体に流れる空気へ加える振動が伝播せず、上記効果がフィン全体で得られない。音波発生装置の周波数を最適にすることで上記効果が最大となる。 However, since the attenuation due to the propagation of vibration is proportional to the frequency, if the frequency is too high, the vibration applied to the air flowing through the entire fin does not propagate and the above effect cannot be obtained over the entire fin. The above effect is maximized by optimizing the frequency of the sound wave generator.

上記効果を効率的に得るための音波発生装置の位置は、フィン上の空気が振動すればよいので、必ずしもフィンに対して真下に位置する必要はなく、例えば斜め方向から振動を与えても上記効果は得られる。空気は熱交換器の複数のフィンが形成する例えば上下方向に配置した伝熱面の間の隙間を流れる場合、超音波装置は空気の流れる方向と直角方向であってフィンにより邪魔をされない方向である上下方向に設けることになる。 The position of the sound wave generating device for efficiently obtaining the above effect is not necessarily required to be located directly below the fin because the air on the fin needs to vibrate. The effect is obtained. When the air flows through the gap between the heat transfer surfaces arranged in the vertical direction formed by a plurality of fins of the heat exchanger, the ultrasonic device is perpendicular to the direction of air flow and is not obstructed by the fins. It will be provided in a certain vertical direction.

また音波発生装置としてはランジュバン型の超音波発生器があげられる。この発生器は指向性の高い発生器で、広い振動板を用いれば、均一に広い範囲に音波を発生することができる。いずれの発生装置でもフィン上の空気が振動されれば本発明には有効である。また音波発生装置は伝熱フィンを振動させるのではなく、伝熱面間の空気を振動させるため、熱交換器に振動が伝わることはなく騒音を抑えられる。また音波発生装置は筐体に防振ゴムのような弾性体で支持することで騒音を抑えられる。又平板状のフィン以外では、例えばコルゲート式フィンを使用する場合、フィンに振動与える場合は山と谷の両方を伝熱管に接触させているためフィンに振動を伝えることが難しいが、伝熱面間を流れる空気を振動させる本発明の構造では支障なく行える。また水中に設けた伝熱管に1次冷媒を流してこの冷媒を水である2次冷媒により冷却するような装置の場合は水の流れを振動させれば良いので、熱交換器の吸入側水中に加振装置を設ければよい。 An example of the sound wave generator is a Langevin type ultrasonic wave generator. This generator is a highly directional generator, and can generate sound waves uniformly over a wide range by using a wide diaphragm. Any generator is effective for the present invention if the air on the fins is vibrated. Further, since the sound wave generator vibrates the air between the heat transfer surfaces rather than vibrating the heat transfer fins, vibration is not transmitted to the heat exchanger and noise can be suppressed. In addition, the sound wave generator can suppress noise by supporting the housing with an elastic body such as an anti-vibration rubber. In addition to flat fins, for example, when corrugated fins are used, it is difficult to transmit vibrations to the fins because both the peaks and valleys are in contact with the heat transfer tubes when the fins are vibrated. The structure of the present invention that vibrates the air flowing between them can be performed without any trouble. In the case of an apparatus in which a primary refrigerant is passed through a heat transfer tube provided in water and the refrigerant is cooled by a secondary refrigerant that is water, the flow of water may be vibrated. It is sufficient to provide a vibration device.

また図4に示したように温度境界層は1 mm以下に抑えられるから、空調機のようにフィンピッチが狭い(通常の空調機ではフィンピッチは1.6 mm程度)熱交換器に対しても上記効果が期待できる。 Also, as shown in Fig. 4, the temperature boundary layer can be suppressed to 1 mm or less, so the fin pitch is as narrow as an air conditioner (the fin pitch is about 1.6 mm in a normal air conditioner). The effect can be expected.

実施の形態2.
この発明の実施の形態2の構成について、冷凍装置や空調機の蒸発器に広く利用されているフィンチューブ式の熱交換器を用いて説明する。フィンチューブ式熱交換器は空気とフィンとの熱交換を効率的に行うため送風機のファンを用いて空気をフィンへ送り込んでいる。
Embodiment 2.
The structure of Embodiment 2 of this invention is demonstrated using the fin tube type heat exchanger currently widely utilized for the evaporator of a freezing apparatus or an air conditioner. In order to efficiently perform heat exchange between air and fins, the fin-tube heat exchanger sends air to the fins using a fan of a blower.

スリット等の工夫がされていない熱交換器では、フィン間の空気流れは一般の空調機等では層流の流れである。流れが乱流になるとフィンと空気との熱交換はその形態を大きく変える。 In a heat exchanger that is not devised such as a slit, the air flow between the fins is a laminar flow in a general air conditioner or the like. When the flow becomes turbulent, the heat exchange between the fins and air greatly changes its form.

層流では熱交換は熱伝導が支配的で温度勾配がその大きさを決めている。一方乱流では乱流渦の不規則運動によって生じる熱流がフィンと空気との間に生じる。この効果によって乱流ではフィン近傍では熱伝導が支配的となり、フィンから遠ざかるにつれ風の流れの乱れが支配的となる。 In laminar flow, heat transfer is dominated by heat conduction and the temperature gradient determines its magnitude. On the other hand, in turbulent flow, heat flow generated by irregular motion of turbulent vortices is generated between fins and air. Due to this effect, in the turbulent flow, the heat conduction is dominant near the fin, and the turbulence of the wind is dominant as the distance from the fin increases.

以上のことから流れを乱流にする、つまり流れを乱しフィン表面空気を攪拌することで伝熱の促進できる。すなわち、空気の流れを脈動させ乱流にすることで層流の厚みを薄くできるとともに、流れを乱し攪拌することで熱伝達をさらに大きくすることができる。以下に蒸発器,凝縮器に取り付けられている送風機ファンを工夫して流れを乱す手法について述べる。 From the above, heat transfer can be promoted by making the flow turbulent, that is, by disturbing the flow and stirring the fin surface air. That is, the thickness of the laminar flow can be reduced by pulsating the air flow to make it turbulent, and the heat transfer can be further increased by disturbing the flow and stirring. The following describes how to disturb the flow by devising the blower fan attached to the evaporator and condenser.

図5に熱交換器とファンとの関係を示す。通常ファン51はモーター52にて駆動されファンモーターへの入力電圧と電流で与えられるファン仕事が一定となるように設定された回転数、例えば1000回転にて回転している。ここで任意の時間ごとにファンの回転数を例えばプラスマイナス100回転など、落とす若しくは上げることで変化させることで一様な空気流れに変化を与えることができる。設定された回転数になるようにモーター入力を制御する際に、間隔をおいてモーター制御装置53の半導体スイッチ回路の入力をオフすることで設定された回転数にする制御とともに風速と風量の変化を起こす際の省エネをも行うことができる。ファンの回転数を変化させる時間間隔は風速が小さい場合は短い間隔で、風速が大きな場合はゆっくりとした時間間隔であれば空気の流れに乱れを起こしやすい。 FIG. 5 shows the relationship between the heat exchanger and the fan. The normal fan 51 is driven by a motor 52 and rotates at a rotation speed set so that fan work given by input voltage and current to the fan motor is constant, for example, 1000 rotations. Here, it is possible to change the uniform air flow by changing the number of rotations of the fan by dropping or increasing the number of rotations of the fan every arbitrary time, for example, plus or minus 100 rotations. When controlling the motor input so as to achieve the set number of revolutions, a change in the wind speed and the amount of air is performed together with control to obtain the set number of revolutions by turning off the input of the semiconductor switch circuit of the motor control device 53 at intervals. Can also save energy when waking up. When the wind speed is low, the time interval for changing the rotation speed of the fan is short, and when the wind speed is high, the time interval is slow, and the air flow is likely to be disturbed.

これにより温度境界層の発達に影響を与え伝熱性能の向上が見込まれる。 This affects the development of the temperature boundary layer and is expected to improve heat transfer performance.

また図5(ハ)のように上下方向にファンからの風の向きを周期的に変化させるようファンの向きを小さな一定の角度をモーターにより変化させるファン方向回転装置54を取り付けることで、ファン回転によって空気流れに周期的な振動(脈動)を与えることができ、上記記載の伝熱促進効果を狙うことができる。このファン方向回転装置54はファンを下部から筐体に支持するファン脚部に水平方向の軸を軸受けにて回転可能に支持し、ファンとファン駆動用モーターの一体構造物をこの軸に固定した構造で、軸端部に設けた角度を例えば20度の範囲で変更するように設けたモーターにより軸を上下方向に回転させるものである。さらにファン方向回転装置54を左右に回転できるようにすることにより、上下左右にファンを動かすことができるので、さらに流れを乱し攪拌することで熱伝達をさらに大きくすることができる。 In addition, as shown in FIG. 5 (c), fan rotation is performed by attaching a fan direction rotating device 54 that changes the direction of the fan by a small constant angle by a motor so as to periodically change the direction of the wind from the fan in the vertical direction. By this, periodic vibration (pulsation) can be given to the air flow, and the heat transfer promotion effect described above can be aimed at. The fan direction rotating device 54 supports a shaft in the horizontal direction rotatably on a fan leg that supports the fan from the lower part by a bearing, and an integrated structure of the fan and the motor for driving the fan is fixed to the shaft. In the structure, the shaft is rotated in the vertical direction by a motor provided so as to change the angle provided at the shaft end in a range of 20 degrees, for example. Furthermore, since the fan direction rotating device 54 can be rotated left and right, the fan can be moved up and down and left and right, and the heat transfer can be further increased by further disturbing the flow and stirring.

図6(イ)に示すように一つの熱交換器に対して複数個のファンを設ける構造にするとファンが小型化できるだけでなく、熱交換器全体に空気の流れを乱すことができていっそうの熱伝達特性を向上させることができる。たとえば各ファンモーター62をインバータ63で独立に制御し各ファンの回転数を異なるものとしたり、また各ファンから熱交換器への送風向きも変化させることで、各ファンからの空気の流れを熱交換器に対して脈動させて供給するだけでなく、相互に干渉させ伝熱面表面上の空気流れを乱し、さらに熱伝達率の向上を図ることができる。図6(ロ)のファンは相互に回転半径より離れた位置に設けられるとともに、それぞれのファンを仕切る風洞64が設けられファン相互間の風の干渉を互いに影響が無いように配置されている。ファンは風洞出口側に設けられ、風洞の吸入側はファンモーターを覆い隠すように長く伸ばすことにより並行に設けたそれぞれのファンの回転数が異なる場合でもひとつのファンの送風を別のファンが吸い込むなどの干渉を防ぎ、回転速度への悪影響を防止し、モーターの信頼性を高め寿命を延ばす構造としている。またこの並行に設けたファンの向きをお互いに遠ざける位置や一方が遠ざける場合他方のファンは一方のファン側へ近づけるなど相互に連動させる動きを制御装置にてファン方向回転装置を設定しても良い。ファンは熱交換器への空気分布を考えて2つ以上から選択する。なお、ファンモータのみならず本発明に使用するヒートポンプ装置の圧縮機なとの駆動装置のモーターは希土類磁石を一円に設けた構造や粉磁石を混合したプラスチックマグネットなどの永久磁石を利用したDCブラシレスモーターとし、インバータは半波または全波などで素子にSiCを使用するなど効率向上を図ることができる。 As shown in FIG. 6 (a), if a structure is provided in which a plurality of fans are provided for one heat exchanger, not only the fan can be miniaturized, but also the air flow can be disturbed throughout the heat exchanger. Heat transfer characteristics can be improved. For example, each fan motor 62 is independently controlled by an inverter 63 so that the rotational speed of each fan is different, or the direction of air flow from each fan to the heat exchanger is changed, so that the air flow from each fan is heated. In addition to supplying pulsation to the exchanger, the air flow on the surface of the heat transfer surface can be disturbed by interfering with each other to further improve the heat transfer coefficient. The fans shown in FIG. 6 (b) are provided at positions separated from each other by the radius of rotation, and a wind tunnel 64 for partitioning the fans is provided so that wind interference between the fans does not affect each other. The fan is installed on the exit side of the wind tunnel, and the suction side of the wind tunnel extends long so as to cover the fan motor. Even if the rotation speed of each fan is different, another fan sucks the air from one fan. The structure is designed to prevent interference and prevent adverse effects on the rotational speed, increase the reliability of the motor and extend its life. In addition, the fan direction rotating device may be set by the control device such that the direction of the fans provided in parallel is moved away from each other or the other fan is moved closer to the one fan side when the other fan is moved away. . The fan is selected from two or more considering the air distribution to the heat exchanger. In addition to the fan motor, the motor of the drive device such as the compressor of the heat pump apparatus used in the present invention is a DC using a structure in which rare earth magnets are provided in one circle, or a permanent magnet such as a plastic magnet mixed with powder magnets. A brushless motor is used, and the efficiency of the inverter can be improved by using SiC for the element in half wave or full wave.

また乱流生成手段の実施例として、図7に示すようにファン71と熱交換器72との間に回転体73を設けて、回転体73が空気流れで回転することでファンから熱交換器への流れを乱す手段について説明する。 As an embodiment of the turbulent flow generation means, a rotating body 73 is provided between a fan 71 and a heat exchanger 72 as shown in FIG. Means for disturbing the flow to the will be described.

例えば回転体73を三角形や多角形で織り交ぜることで同じように回転しても流れを乱すことができる。なお回転体73による通風抵抗、騒音を低減するよう回転体73を工夫する必要がある。例えば図7の回転体73は熱交換器の空気吸入側に近接して設けられ、熱交換器と並行して設けられた軸に取り付けられている。この回転体の回転はファンからの送風で行われ軸は固定されるとともに軸と回転体の間に設けられた軸受け、あるいは軸と回転体は固定され軸の両端に設けられ、筐体に支持された軸受けにより回転が可能になる。この軸受けは玉軸受け、メタル軸受けなどが使用される。 For example, the flow can be disturbed even if the rotating body 73 is rotated in the same manner by interweaving the rotating body 73 with a triangle or a polygon. In addition, it is necessary to devise the rotary body 73 so that the ventilation resistance and noise by the rotary body 73 may be reduced. For example, the rotating body 73 in FIG. 7 is provided close to the air suction side of the heat exchanger, and is attached to a shaft provided in parallel with the heat exchanger. The rotating body is rotated by air blown from the fan, the shaft is fixed and the bearing is provided between the shaft and the rotating body, or the shaft and the rotating body are fixed and provided at both ends of the shaft, and supported by the housing. Rotation is enabled by the bearings made. As this bearing, a ball bearing, a metal bearing, or the like is used.

またその他の乱流生成手段の実施例として、図8に示すようにファン81と熱交換器82との間に風方向を決める整風ガイド83を設け、この整風ガイドはせいぜい数ミリから数十ミリ以下の短い平板を熱交換器のフィンに並行に設け、かつ、この平板のピッチはフィンピッチと同程度以上でフィンピッチ数枚分程度までとし、ファンの送風範囲をカバーするものであれば風路損失の低下を抑えられる。ガイド83で超音波振動子84などにより周期的若しくは瞬間的に揺することで空気流れに変化を与え、フィン表面の空気流れを乱すことができる。 As another embodiment of the turbulent flow generation means, as shown in FIG. 8, a wind regulation guide 83 for determining the wind direction is provided between the fan 81 and the heat exchanger 82, and this wind regulation guide is at most several millimeters to several tens of millimeters. The following short flat plates are provided in parallel with the heat exchanger fins, and the pitch of the flat plates is equal to or greater than the fin pitch and up to several fin pitches. Reduces road loss. The air flow on the fin surface can be disturbed by changing the air flow by shaking the guide 83 periodically or instantaneously by the ultrasonic vibrator 84 or the like.

この発明により、伝熱フィン表面に生じる温度境界層の発達の抑制または温度境界層近傍空気を攪拌され、フィンと空気との熱交換量を増加させることができる。これにより装置の性能向上が見込まれ省エネが期待でき、また装置の小型化も可能となる。 According to the present invention, it is possible to suppress the development of the temperature boundary layer generated on the surface of the heat transfer fins or stir the air in the vicinity of the temperature boundary layer and increase the amount of heat exchange between the fins and the air. As a result, the performance of the apparatus is expected to be improved, energy saving can be expected, and the apparatus can be miniaturized.

本発明を利用することで、空気と熱交換を行う熱交換器、あるいは各種の伝熱面を介して空気と熱交換を行う装置の表面に形成される温度境界層の発達の抑制若しくは薄く、または剥離させる必要がある面の性能向上につながり装置の小型化が可能となる。 By utilizing the present invention, the development of a temperature boundary layer formed on the surface of a heat exchanger that exchanges heat with air, or a device that exchanges heat with air via various heat transfer surfaces, or thin, Alternatively, the performance of the surface that needs to be peeled off is improved, and the device can be downsized.

本発明の熱交換器は、熱源から熱が伝熱されるとともに略平行に設けられた間の空間に空気等の媒体を通過させて前記熱を前記媒体と熱交換する複数の伝熱面上に形成される温度境界層を剥離若しくは発達を抑制させるため、上記伝熱面上の空気を振動させるので、ヒートポンプを熱源とし、2次冷媒への熱伝達率を向上させるので効率の良い装置とすることができる。 The heat exchanger according to the present invention has a plurality of heat transfer surfaces on which heat is transferred from a heat source and a medium such as air passes through a space between the heat sources to exchange heat with the medium. Since the air on the heat transfer surface is vibrated to suppress separation or development of the temperature boundary layer that is formed, the heat pump is used as a heat source, and the heat transfer rate to the secondary refrigerant is improved, so that the apparatus is efficient. be able to.

本発明の熱交換器は、複数のフィンや伝熱管、1次冷媒流通部の表面の伝熱面の近傍に配置され複数の伝熱面の間に向けて音波を発生させる音波発生装置により、空気などの2次冷媒に振動を加えることができるので、安価に簡単な構造で効率を向上させることができる。 The heat exchanger of the present invention includes a plurality of fins and heat transfer tubes, a sound wave generator arranged near the heat transfer surface on the surface of the primary refrigerant circulation part, and generates sound waves between the plurality of heat transfer surfaces, Since vibration can be applied to a secondary refrigerant such as air, the efficiency can be improved with a simple structure at low cost.

本発明の熱交換器の送風ファンは、市販の扇風機のように連続的に回転させたり首振り動作をモータにより風向を若干変化させることができ、伝熱面に送風する空気等の媒体を脈動させ通過させるので、安価に簡単な構造で効率を向上させることができる。 The blower fan of the heat exchanger of the present invention can be continuously rotated like a commercially available fan or the direction of swinging can be slightly changed by a motor to pulsate a medium such as air blown to the heat transfer surface. Therefore, the efficiency can be improved with a simple structure at a low cost.

本発明のファンは、インバータにより入力電圧を変化させ伝熱面へ脈動させた空気を送風するので、簡単な構造で効率を大幅に向上させることができる。 The fan of the present invention blows air pulsated to the heat transfer surface by changing the input voltage by the inverter, so that the efficiency can be greatly improved with a simple structure.

本発明は、熱交換器の伝熱面に空気等の媒体を通過させるために配置されたファンの設置数若しくは設置角度または制御によって伝熱面へ送風する空気を乱すので、ファンの動力を無駄にせずに簡単な構造で効率を向上させることができる。 The present invention disturbs the air blown to the heat transfer surface by the number of fans or the installation angle or control of the fans arranged to allow a medium such as air to pass through the heat transfer surface of the heat exchanger. It is possible to improve the efficiency with a simple structure without the need to make it.

本発明は、伝熱面に空気等の媒体を通過させるために配置されたファンと伝熱面との間に回転体を設けて、回転体の構造を変化させ、伝熱面への媒体の流れを乱すことができるので、ファンの動力を無駄にせずに簡単な構造で効率を向上させることができる。 In the present invention, a rotating body is provided between a heat transfer surface and a fan arranged to allow a medium such as air to pass through the heat transfer surface, the structure of the rotating body is changed, and the medium to the heat transfer surface is changed. Since the flow can be disturbed, the efficiency can be improved with a simple structure without wasting the power of the fan.

本発明は、伝熱面に空気等の媒体を通過させるために配置されたファンと伝熱面との間に風の流れを整えるガイドを設け、ガイドを振動子により周期的若しくは間歇的に瞬間的に振動を与え、媒体の流れに連続して、あるいは、間歇的に乱れを発生させるので、ファンの動力を無駄にせずに簡単な構造で効率を向上させることができる。 The present invention provides a guide for adjusting the flow of air between a heat transfer surface and a fan arranged to allow a medium such as air to pass through the heat transfer surface, and the guide is periodically or intermittently provided by a vibrator. Therefore, the disturbance is generated continuously or intermittently in the flow of the medium, so that the efficiency can be improved with a simple structure without wasting the power of the fan.

この発明は、熱源から熱が伝熱されるとともに略平行に設けられた間の空間に空気等の媒体を通過させて熱を媒体と熱交換する複数の伝熱面上に形成される温度境界層を剥離若しくは発達を抑制させるため、伝熱面上の空気を振動させる熱交換器である。 The present invention relates to a temperature boundary layer formed on a plurality of heat transfer surfaces for transferring heat from a heat source and exchanging heat with the medium by passing a medium such as air through a space provided between the heat sources. It is a heat exchanger that vibrates the air on the heat transfer surface in order to suppress peeling or development.

この発明は、空気振動を伝熱面の近傍に配置され複数の伝熱面の間に向けて音波を発生させる音波発生装置により行う熱交換器である。 The present invention is a heat exchanger that performs air vibration by a sound wave generator that is disposed in the vicinity of a heat transfer surface and generates sound waves between a plurality of heat transfer surfaces.

この発明は、空気振動を前記伝熱面に空気等の媒体を通過させるために配置されたファンの動作を変化させる熱交換装置である。 The present invention is a heat exchange device that changes the operation of a fan arranged to allow air vibration to pass a medium such as air through the heat transfer surface.

この発明は、ファンの入力電圧を変化させファンの回転数を変えることで空気振動を行う熱交換装置である。 The present invention is a heat exchange device that performs air vibration by changing the fan input voltage and changing the rotation speed of the fan.

この発明は、空気振動を伝熱面に空気等の媒体を通過させるために配置されたファンの設置数若しくは設置角度または制御によって行う熱交換装置である。 The present invention is a heat exchanging apparatus that performs air vibration by the number of fans or the installation angle or control of fans arranged to allow a medium such as air to pass through a heat transfer surface.

この発明は、空気振動を伝熱面に空気等の媒体を通過させるために配置されたファンと伝熱面との間に回転体を設けて、前記回転体の構造を変化させる熱交換装置である。 The present invention is a heat exchange device in which a rotating body is provided between a fan and a heat transfer surface arranged to allow air vibration to pass a medium such as air through the heat transfer surface, and the structure of the rotating body is changed. is there.

この発明は、空気振動を伝熱面に空気等の媒体を通過させるために配置されたファンと伝熱面との間に風向きを示すガイドを設け、ガイドを振動子により周期的若しくは瞬間的に振動を与える熱交換装置である。 In the present invention, a guide indicating the wind direction is provided between a fan and a heat transfer surface arranged to allow air vibration to pass a medium such as air through the heat transfer surface, and the guide is periodically or instantaneously provided by a vibrator. It is a heat exchange device that gives vibration.

11 フィン、12 伝熱管、21 フィン、22 フィン表面近傍の空気、23 温度境界層、24 フィン先端部、31 音波発生装置、32 反射板、33 フィン、34 伝熱管、51 ファン、52 モーター、53 モーター制御装置、54 ファン方向回転装置、61 ファン、62 ファンモーター、63 ファン制御インバータ、64 風洞、71 ファン、72 熱交換器、73 回転体、81 ファン、82 熱交換器、83 整風ガイド、84 振動子。 11 Fin, 12 Heat transfer tube, 21 Fin, 22 Air near fin surface, 23 Temperature boundary layer, 24 Fin tip, 31 Sound wave generator, 32 Reflector, 33 Fin, 34 Heat transfer tube, 51 Fan, 52 Motor, 53 Motor control device, 54 Fan direction rotation device, 61 Fan, 62 Fan motor, 63 Fan control inverter, 64 Wind tunnel, 71 Fan, 72 Heat exchanger, 73 Rotating body, 81 Fan, 82 Heat exchanger, 83 Air conditioning guide, 84 Vibrator.

Claims (7)

熱源からの熱が伝熱されるとともに空気等の媒体を通過させて前記熱を前記媒体と熱交換する複数の伝熱面と、前記伝熱面の近傍に間隔をおいて配置され前記伝熱面間の空気を振動させる空気振動手段と、を備え、前記伝熱面に略垂直方向から空気振動させることを特徴とする熱交換器。 A plurality of heat transfer surfaces for transferring heat from the heat source and exchanging the heat with the medium by passing a medium such as air, and the heat transfer surfaces arranged at intervals in the vicinity of the heat transfer surface An air vibration means for vibrating the air between the heat transfer surfaces, wherein the air is vibrated from a direction substantially perpendicular to the heat transfer surface. 前記空気振動手段は、音波発生装置であることを特徴とする請求項1記載の熱交換器。 The heat exchanger according to claim 1, wherein the air vibration means is a sound wave generator. 前記空気振動手段の略反対側に前記伝熱面を挟んで空気振動の反射手段を備えたことを特徴とする請求項1または請求項2記載の熱交換器。 The heat exchanger according to claim 1 or 2, further comprising air vibration reflection means sandwiching the heat transfer surface on a substantially opposite side of the air vibration means. 前記伝熱面に送風するファンと、前記ファンを駆動するモーターと、前記モーターの回転数を制御するモーター制御手段と、を備えたことを特徴とする請求項1乃至3の何れかに記載の熱交換装置。 The fan according to any one of claims 1 to 3, further comprising: a fan that blows air to the heat transfer surface; a motor that drives the fan; and a motor control unit that controls a rotation speed of the motor. Heat exchange device. 熱源からの熱が伝熱されるとともに空気等の媒体を通過させて前記熱を前記媒体と熱交換する複数の伝熱面と、前記伝熱面に送風するファンと、前記ファンを駆動するモーターと、ファンの角度を変えるファン方向回転装置と、を備えたことを特徴とする熱交換装置。 A plurality of heat transfer surfaces for transferring heat from the heat source and allowing a medium such as air to pass through to exchange heat with the medium; a fan for blowing air to the heat transfer surface; and a motor for driving the fan; And a fan direction rotating device for changing the angle of the fan. 前記ファンが2つ以上であることを特徴とする請求項4または請求項5記載の熱交換装置。 6. The heat exchange apparatus according to claim 4, wherein the number of the fans is two or more. 前記伝熱面と、前記ファンと、前記伝熱面と前記ファンの間に乱流生成手段と、を備え、前記乱流生成手段により、前記ファンからの風を乱すことを特徴とする請求項1乃至6の何れかに記載の熱交換装置。 The turbulent flow generation means is provided between the heat transfer surface, the fan, and the heat transfer surface and the fan, and the wind from the fan is turbulent by the turbulent flow generation means. The heat exchange apparatus in any one of 1 thru | or 6.
JP2009053643A 2009-03-06 2009-03-06 Heat exchanger and heat exchange device Pending JP2010210105A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009053643A JP2010210105A (en) 2009-03-06 2009-03-06 Heat exchanger and heat exchange device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009053643A JP2010210105A (en) 2009-03-06 2009-03-06 Heat exchanger and heat exchange device

Publications (1)

Publication Number Publication Date
JP2010210105A true JP2010210105A (en) 2010-09-24

Family

ID=42970478

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009053643A Pending JP2010210105A (en) 2009-03-06 2009-03-06 Heat exchanger and heat exchange device

Country Status (1)

Country Link
JP (1) JP2010210105A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014003865A1 (en) * 2012-06-28 2014-01-03 Cooper-Standard Automotive, Inc. Heat exchanger
EP3810351A4 (en) * 2018-06-21 2021-05-19 Mats Olsson Method and system for cooling hot objects

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08327288A (en) * 1995-05-30 1996-12-13 Sharp Corp Heat exchanger
JPH0979790A (en) * 1995-09-12 1997-03-28 Sharp Corp Heat exchanger
JP2000333831A (en) * 1999-05-28 2000-12-05 Yanagiya:Kk Food steaming device
JP2006132841A (en) * 2004-11-05 2006-05-25 Mitsubishi Electric Corp Heat exchanger

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08327288A (en) * 1995-05-30 1996-12-13 Sharp Corp Heat exchanger
JPH0979790A (en) * 1995-09-12 1997-03-28 Sharp Corp Heat exchanger
JP2000333831A (en) * 1999-05-28 2000-12-05 Yanagiya:Kk Food steaming device
JP2006132841A (en) * 2004-11-05 2006-05-25 Mitsubishi Electric Corp Heat exchanger

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014003865A1 (en) * 2012-06-28 2014-01-03 Cooper-Standard Automotive, Inc. Heat exchanger
EP3810351A4 (en) * 2018-06-21 2021-05-19 Mats Olsson Method and system for cooling hot objects

Similar Documents

Publication Publication Date Title
US9532485B2 (en) Heat dissipating device and electronic apparatus
KR101472627B1 (en) Heat-dissipating module
US6600649B1 (en) Heat dissipating device
US20080112075A1 (en) Tempreature Control Apparatus for a Hard Disk Drive and a Method of Varying the Temperature of Hard Drive
US20130213730A1 (en) Acoustic ports aligned to create free convective airflow
JP2006242176A (en) Piezoelectric pump and cooling device using it
JP2018066548A (en) Heat exchanger and air conditioning unit
JP2010210105A (en) Heat exchanger and heat exchange device
TW201341742A (en) System and method for reducing noise within a refrigeration system
JP5375901B2 (en) Refrigerant circuit device
JP3746940B2 (en) Convection device, convection heat dissipation device and convection oven
JP2005024229A (en) Heat exchanger module, and outdoor machine and indoor machine for air conditioner
JP4501409B2 (en) Heat dissipation device and electronic device
JPWO2016170652A1 (en) Indoor unit and air conditioner
TW201212807A (en) Air jet active heat sink apparatus
JP2009081270A (en) Cooling device with piezoelectric fan
JP2013057428A (en) Indoor unit for air conditioner
JP4889747B2 (en) Heat exchanger and air conditioner equipped with the same
JP2014020641A (en) Cooling device, cooling system, and cooling heating system
CN110529935A (en) A kind of portable acoustic energy air-conditioning
JP2000286579A (en) Cooling device and electronic equipment
JPH08327288A (en) Heat exchanger
KR920004920Y1 (en) Heat exchanging device
JP2004146547A (en) Cooling device for electronic apparatus
JP6896066B2 (en) Motors, blowers, outdoor units, and air conditioners

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110617

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110628

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110825

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20111115