JP2010209661A - Building structure capable of approximating vertical-directional cross-sectional shape by reverse catenary curve, and connecting material therefor - Google Patents

Building structure capable of approximating vertical-directional cross-sectional shape by reverse catenary curve, and connecting material therefor Download PDF

Info

Publication number
JP2010209661A
JP2010209661A JP2009083399A JP2009083399A JP2010209661A JP 2010209661 A JP2010209661 A JP 2010209661A JP 2009083399 A JP2009083399 A JP 2009083399A JP 2009083399 A JP2009083399 A JP 2009083399A JP 2010209661 A JP2010209661 A JP 2010209661A
Authority
JP
Japan
Prior art keywords
sectional shape
cross
catenary curve
building
building structure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009083399A
Other languages
Japanese (ja)
Other versions
JP5467211B2 (en
Inventor
勉 ▲高▼橋
Tsutomu Takahashi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2009083399A priority Critical patent/JP5467211B2/en
Publication of JP2010209661A publication Critical patent/JP2010209661A/en
Application granted granted Critical
Publication of JP5467211B2 publication Critical patent/JP5467211B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Rod-Shaped Construction Members (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a building structure having a shape with a compression force acting mainly on a principal structural member, in an arch-like or dome-like building, and constituted of a columnar or panel-like structural member, and a connecting material shape-specified to construct reasonably the building. <P>SOLUTION: A vertical-directional cross-sectional shape is constituted of connected rectangles in the arch-like or dome-like building, a connection face of the rectangles is inscribed or circumscribed with a reverse catenary curve, or includes the reverse catenary curve, and an inclination of a face contact with the adjacent rectangles is same to an inclination of a face perpendicular to a contact face of the reverse catenary curve in a corresponding position. <P>COPYRIGHT: (C)2010,JPO&amp;INPIT

Description

本発明は、アーチ状またはドーム状建築構造物に関するものであり、特にその垂直方向の断面形状が逆カテナリー曲線に外接または内接または逆カテナリー曲線を含む建築構造物に関するものである。さらにこの建築構造物を構成する連結材に関するものである。  The present invention relates to an arch-like or dome-like building structure, and more particularly to a building structure whose vertical cross-sectional shape includes a circumscribed, inscribed, or inverse catenary curve in a reverse catenary curve. Furthermore, it is related with the connection material which comprises this building structure.

アーチ状またはドーム状建築は大空間を造るのに適した構造であり、大競技場の屋根や広い空間を囲うのに有利な構造となっている(特開2003−301517号公報)。中でも、鎖の両端を固定して吊り下げた時にできる形はカテナリー曲線(以下で、懸垂曲線と呼ぶことがある)を示し、それを逆さまにした逆カテナリー曲線からなる建築物では、構造体を形成する構造材に圧縮力が主として作用する結果、少量の使用材料で構成でき構造物重量が軽くなるので、工業的に有利である。(文献1)  The arched or dome-shaped building is a structure suitable for building a large space, and is advantageous for enclosing a large stadium roof or a large space (Japanese Patent Laid-Open No. 2003-301517). Above all, the shape that can be formed when both ends of the chain are suspended is a catenary curve (hereinafter sometimes referred to as a suspension curve). As a result of compressive force mainly acting on the structural material to be formed, it can be constructed with a small amount of material used, and the weight of the structure is reduced, which is industrially advantageous. (Reference 1)

文献1には、逆カテナリー曲線からなるドームを平板の組み合わせで造形した実験的作品が示され、自然のなかにある美しさや合理性を再発見させる造形表現として紹介されている。また、逆カテナリー曲線からなる建築物として、エーロ・サーリネンが設計したエントランスアーチは最軽量で材料の無駄がなく大スパンの空間が得られる有効な構造体であると同時に、形状を最適化した建築物の持つ美しさを兼ね備えていると説明されている。  Reference 1 shows an experimental work in which a dome consisting of a reverse catenary curve is shaped using a combination of flat plates, and is introduced as a form of expression that rediscovers beauty and rationality in nature. In addition, the entrance arch designed by Aero Saarinen is an effective structure that can obtain a large-span space without waste of materials as an architecture consisting of inverse catenary curves, and at the same time, an architecture with optimized shape It is explained that it has the beauty of things.

文献2にはアーチ状またはドーム状建築構造物において円形アーチまたは円形ドーム構造の場合には、構造体を形成する各部分にはアーチまたはドームを外側に押し広げる力(以下、フープ力と呼ぶ)が作用することが述べられている。従って、構造体の各部分に圧縮力のみが作用することは、逆カテナリー曲線に特有の性質ということができる。  In Document 2, in the case of a circular arch or a circular dome structure in an arch-shaped or dome-shaped building structure, a force that pushes the arch or dome outward to each part forming the structure (hereinafter referred to as a hoop force). Is said to work. Therefore, it can be said that the fact that only the compressive force acts on each part of the structure is a property peculiar to the inverse catenary curve.

一方、アーチ状またはドーム状建築構造物では曲面を連結するために色々な方法が考案されている。特開2003−301517号公報には、丸パイプ材で構成した周辺枠フレームの枠面内に面内補強部材を配置することにより、壁体を構成する方法が提示されている。また、特開2006−322241号公報には、木質軸部材を接合ブロックと両者の隙間を埋める隙間充填部材とを使用して連結する方法が開示されている。  On the other hand, various methods have been devised for connecting curved surfaces in an arch-shaped or dome-shaped building structure. Japanese Patent Application Laid-Open No. 2003-301517 proposes a method of configuring a wall body by arranging an in-plane reinforcing member in a frame surface of a peripheral frame frame formed of a round pipe material. Japanese Patent Application Laid-Open No. 2006-322241 discloses a method of connecting a wood shaft member using a joining block and a gap filling member that fills the gap between the both.

連結部材を使用せずに、四角形の底板と対向する一対の台形状の直立板からなる構造ユニットを作成し、つぎにこの構造ユニットを四角形の底板が曲面を構成するように積み重ねてゆくことにより造られたドーム状建築構造物と、その建築方法については特開2002−227304号公報に開示されている。  By creating a structural unit consisting of a pair of trapezoidal upright plates facing a square bottom plate without using a connecting member, and then stacking this structural unit so that the square bottom plate forms a curved surface The constructed dome-shaped building structure and its building method are disclosed in Japanese Patent Laid-Open No. 2002-227304.

安全性を確保した上で効率的に建築物を構築することが可能であり、大幅に建築コストを低減できる工法が、特開2000−319996号公報に開示されている。この公報によれば、支柱の上にユニット屋根構造体を組み付け、他のユニットを水平方向に伸びるように組み付け、他方の仮設支柱で支持しながら順次ユニットを増しつつ仮設支柱を広げてゆく工法により、円弧状ドームが構築される。また、特開平11−280153には、断面形状が台形をなす複数のユニット部材を、その台形の長辺部がアーチの外周部であり短辺部がアーチの内周部となるように平行に並べて、隣り合うユニットは長辺側で接続され、その接続部は自由回転できるようにした構造物が開示されている。さらに、このユニットを連ねた連結構造物を組み上げ、端部を固定し他端に力を加えて連続構造物の中央部が高くなるように立ち上げることにより、アーチ状構造物を造る施工方法も開示されている。  Japanese Laid-Open Patent Publication No. 2000-319996 discloses a construction method that can efficiently construct a building while ensuring safety and can greatly reduce the construction cost. According to this publication, the unit roof structure is assembled on the support column, the other units are assembled so as to extend in the horizontal direction, and the temporary support column is expanded while sequentially increasing the unit while being supported by the other temporary support column. An arc-shaped dome is constructed. In JP-A-11-280153, a plurality of unit members having a trapezoidal cross-sectional shape are arranged in parallel so that the long side portion of the trapezoid is the outer peripheral portion of the arch and the short side portion is the inner peripheral portion of the arch. Side by side, adjacent units are connected on the long side, and a structure is disclosed in which the connecting portion can freely rotate. In addition, there is also a construction method for building an arched structure by assembling a connection structure with this unit connected, fixing the end and applying force to the other end so that the center of the continuous structure is raised. It is disclosed.

特開2000−17768号公報には、集成材梁からなるアーチ状または懸垂曲線状の屋根構造が開示され、ストランド材を集成材梁の内部に取り込むことにより、アーチ状屋根では屋根下空間を有効に利用でき、懸垂曲線状屋根では押さえケーブルが不要となるので、施工方法が簡便となり建設費を押さえることができるとされている。懸垂曲線状からなる構造物の場合には、構造材には主として引張り力のみが作用する。  Japanese Patent Application Laid-Open No. 2000-17768 discloses an arch-like or suspended-curved roof structure composed of laminated timber beams, and by incorporating strand material into the laminated timber beams, an arch-shaped roof effectively uses the space under the roof. It is said that the cable can be used for a suspended-curved roof, so that a holding cable is not required, so that the construction method is simplified and the construction cost can be reduced. In the case of a structure having a suspended curve shape, only a tensile force acts mainly on the structural material.

このように、従来の技術はその多くがアーチ状建築構造物に関する技術開示であった。文献1では逆カテナリー曲線からなるドーム状模型を平板の組み合わせでデサインしているが、アイディアのみであり実際の建築物を設計するために必要な設計に関する記述はない。特許文献1と3では具体的にアーチ構造を建築するための連結材または構造ユニットを開示しているが、逆カテナリー曲線の優位性については言及されていない。特許文献2では木質軸部材の軸方向に圧縮力が支配的に作用する構造において、接合ブロックを使用して木質軸部材を接合する際に、隙間充填部材を使用して隙間を無くし圧縮力を伝達する構造を開示しているが、施工時に隙間を充填する工法が述べられているのみで、どのような構造の場合に、木質構造材の軸方向に圧縮力が支配的に作用するかについては記載されていない。  As described above, most of the conventional techniques are technical disclosures related to arched building structures. In Document 1, a dome-shaped model consisting of a reverse catenary curve is designed with a combination of flat plates. However, there is no description about the design necessary for designing an actual building, only the idea. Patent Documents 1 and 3 disclose a connecting member or a structural unit for constructing an arch structure specifically, but do not mention the superiority of the reverse catenary curve. In Patent Document 2, in a structure in which compressive force acts predominantly in the axial direction of the wood shaft member, when joining the wood shaft member using the joining block, the gap filling member is used to eliminate the gap and reduce the compressive force. Although the structure to transmit is disclosed, only the construction method to fill the gap at the time of construction is described, and in what kind of structure the compressive force acts predominantly in the axial direction of the wooden structure material Is not listed.

特開2003−301517号公報JP 2003-301517 A 特開2006−322241号公報JP 2006-322241 A 特開2002−227304号公報JP 2002-227304 A 特開2000−319996号公報JP 2000-319996 A 特開平11−280153号公報JP 11-280153 A 特開2000−17768号公報JP 2000-17768 A

文献1Reference 1

www.wakayama−u.ac.jp/`motonari/study02.htmlwww. wakayama-u. ac. jp / ` motonari / study02. html

文献2Reference 2

天才建築家ブルネレスキ フィレンチェ・花のドームはいかにして建築されたか、ロス・キング/田辺希久子/東京書籍Genius architect Brunelleschi Florence, how the flower dome was built, Ross King / Kikuko Tanabe / Tokyo Books

本発明の課題は、アーチ状またはドーム状建築物において、主要構造部材に圧縮力が主として作用する形状を有し、柱状またはパネル状である構造部材から構成される建築物と、この建築物を合理的に建設するために形状が規格化された連結材を提供することにある。  An object of the present invention is an arched or dome-shaped building having a shape in which a compressive force mainly acts on a main structural member, and a building composed of a columnar or panel-shaped structural member, and this building It is to provide a connecting material having a standardized shape for rational construction.

本発明者らは鋭意検討した結果、本発明を見出した。即ち、本発明は以下の通りである.
(1)アーチ状またはドーム状建築物において、垂直方向の断面形状は連結された矩形から構成され、この矩形の連結面は逆カテナリー曲線に内接または外接または逆カテナリー曲線を含んでおり、隣り合う矩形の接する面の傾きが、対応する位置にある逆カテナリー曲線の接面に垂直な面の傾きと同じであることを特徴とする建築構造物。
(2)項(1)において、その垂直方向の断面形状が三角形状または多角形状の連結部を介して長方形が連なった形状であり、この断面形状が逆カテナリー曲線に内接または外接または逆カテナリー曲線を含むことを特徴とする建築構造物。
(3)項(2)において、長方形状断面は建築物を構成するパネル状構造材の断面であり、三角形状または多角形状状断面はこのパネルを連結する連結部の断面であることを特徴とする建築構造物。
(4)項(2)または(3)において、断面形状を形成する全ての長方形が実質的に合同であることを特徴とする建築構造物。
(5)項(2)、(3)または(4)の断面形状が三角形状または多角形状の連結材において、長方形と接する面の傾きが、建築構造物の垂直方向の断面形状が逆カテナリー曲線に内接または外接または逆カテナリー曲線を含むように、加工されたことを特徴とする断面形状が三角形または多角形の連結部。
As a result of intensive studies, the present inventors have found the present invention. That is, the present invention is as follows.
(1) In an arched or dome-shaped building, the cross-sectional shape in the vertical direction is composed of connected rectangles, and the connecting surfaces of the rectangles include inscribed or circumscribed or inverted catenary curves in the inverse catenary curve, and are adjacent to each other. The building structure characterized in that the inclination of the surface of the matching rectangle is the same as the inclination of the surface perpendicular to the contact surface of the inverse catenary curve at the corresponding position.
(2) In the item (1), the vertical cross-sectional shape is a shape in which rectangles are connected via a triangular or polygonal connecting portion, and the cross-sectional shape is inscribed, circumscribed, or inverse catenary to the inverse catenary curve. A building structure characterized by including a curve.
(3) In the item (2), the rectangular cross section is a cross section of the panel-like structural material constituting the building, and the triangular or polygonal cross section is a cross section of the connecting portion connecting the panels. Building structure to do.
(4) The building structure according to item (2) or (3), wherein all rectangles forming a cross-sectional shape are substantially congruent.
(5) In the connecting material in which the cross-sectional shape of the item (2), (3) or (4) is a triangular shape or a polygonal shape, the inclination of the surface in contact with the rectangle is the vertical cross-sectional shape of the building structure is the reverse catenary curve A connecting portion having a triangular or polygonal cross-sectional shape that is processed so as to include an inscribed, circumscribed, or inverse catenary curve.

本発明によれば、逆カテナリー曲線からなる構造であれば主要構造部材に圧縮力が主として作用するという特徴を維持しつつ、断面形状が単純な矩形で構成された建築構造物を造ることが出来る。加えて、この矩形を規格化された構造部材と連結部材との組み合わせとすることにより、工業的に安価に建築構造物を造ることが出来る。  According to the present invention, it is possible to produce a building structure having a simple cross-sectional shape with a rectangular shape, while maintaining the feature that compressive force mainly acts on the main structural member as long as it has a reverse catenary curve. . In addition, by making this rectangle a combination of a standardized structural member and a connecting member, a building structure can be manufactured industrially at a low cost.

直線状ロッドの組み合わせにより、逆カテナリー曲線を近似した場合の応力相関図。The stress correlation figure at the time of approximating a reverse catenary curve by the combination of a linear rod. 5つの矩形の組み合わせからなる構造物(右側のみ)が逆カテナリー曲線に内接した状態。隣り合う矩形が接する面の傾きを構造物19では一点鎖線、構造物20では二点鎖線で示す。A structure consisting of a combination of five rectangles (right side only) inscribed in the reverse catenary curve. The inclination of the surface where the adjacent rectangles contact is indicated by a one-dot chain line in the structure 19 and by a two-dot chain line in the structure 20. 5つの矩形を組み合わせた構造物19を例にとり、断面形状が長方形の構造材と断面形状が三角形または四角形の連結材とからなる建築構造物の断面図。(縦軸の目盛で最大値=10m、横軸の目盛(右側=0〜5m)Sectional drawing of the building structure which takes the structure 19 which combined five rectangles as an example, and consists of a structural material whose cross-sectional shape is a rectangle, and a connection material whose cross-sectional shape is a triangle or a quadrangle. (Maximum value on the vertical scale = 10 m, scale on the horizontal axis (right side = 0 to 5 m) 木質パネル25と29を連結材28で連結するために、夫々をボルトで固定した場合の仮想断面図。The virtual sectional view at the time of fixing each with the volt | bolt in order to connect the wood panels 25 and 29 with the connection material 28. FIG. 木質製パネルと木質製連結材からなる建築物の例。An example of a building consisting of wooden panels and wooden connecting materials.

以下、本発明を詳細に説明する。初めに、直線またはパネル状の構造部材の組み合わせよりなる建築構造物において、構造部材に圧縮力が主として作用するための関係式を示す。  Hereinafter, the present invention will be described in detail. First, a relational expression for compressive force mainly acting on a structural member in a building structure composed of a combination of straight or panel-shaped structural members will be shown.

直線状ロッドの組み合わせにより、逆カテナリー曲線を近似した場合の応力相関を図1に示す。この図でロッドの軸方向に圧縮力が主として作用する場合に、ロッドが満足すべき条件を求めた。まず、この直線状ロットを組み合わせた構造物について、以下の▲1▼〜▲3▼の条件を設定した。
▲1▼ロッドは剛直な線分で表現され、接合点でロッドは自由に回転できる。
▲2▼応力は隣り合うロッドの仮想の接触面に垂直に作用する。
▲3▼接触面の傾きは、隣り合うロッドが接合する位置での逆catenary曲線との接線に垂直な線分の傾きとする。
FIG. 1 shows the stress correlation when an inverse catenary curve is approximated by a combination of linear rods. In this figure, the conditions that the rod should satisfy when the compression force mainly acts in the axial direction of the rod were obtained. First, the following conditions (1) to (3) were set for the structure obtained by combining the linear lots.
(1) The rod is represented by a rigid line segment, and the rod can freely rotate at the joint point.
(2) The stress acts perpendicularly to the virtual contact surface of the adjacent rod.
(3) The inclination of the contact surface is the inclination of the line segment perpendicular to the tangent to the reverse catenary curve at the position where adjacent rods join.

この条件下で各ロッドに作用する両側のロッドからの応力の和と、隣接するロッド接点周りのモーメントの和が夫々零となる条件を求めた。図1の頂部のロッド10(計算の便宜上2つのロッドを一体と考える)に作用する応力は左右のロッドからの圧縮力1(σ)と圧縮力3(σ)とロッドの自重2(2w)である。y軸方向の応力バランスは式(1)で表せるので、σは式(2)で示される。
2σ・sinh(x/H)/(1+sinh(x/H))1/2−2w=0 (1)
(ここで、逆カテナリー曲線はy=−Hcosh(x/H)+V+Hで示され、Vは逆カテナリー曲線の高さ、Hはパラメータ、σはロッド10に作用するロッド11または対称位置にあるロッドからの応力であり、wはロッドの単位重量、xはロッド10とロッド11が接する位置に相当する逆カレナリー曲線のx座標である。)
σ=w・(sinh−2(x/H)+1)1/2 (2)
Under these conditions, a condition was obtained in which the sum of the stress from the rods on both sides acting on each rod and the sum of the moments around the adjacent rod contacts were each zero. The stress acting on the rod 10 at the top of FIG. 1 (considering the two rods as a single unit for convenience of calculation) is the compression force 1 (σ 1 ), the compression force 3 (σ 1 ) from the left and right rods, and the rod's own weight 2 ( 2w). Since the stress balance in the y-axis direction can be expressed by Expression (1), σ 1 is expressed by Expression (2).
1 · sinh (x 1 / H) / (1 + sinh 2 (x 1 / H)) 1/2 −2w = 0 (1)
(Here, the inverse catenary curve is represented by y = −H * cosh (x / H) + V + H, where V is the height of the inverse catenary curve, H is a parameter, σ 1 is the rod 11 acting on the rod 10 or a symmetrical position. Where w is the unit weight of the rod, and x 1 is the x coordinate of the inverse calendar curve corresponding to the position where the rod 10 and the rod 11 are in contact.)
σ 1 = w · (sinh −2 (x 1 / H) +1) 1/2 (2)

図1でのロッド11を1番目のロッドと表記して、このロッドに作用するロッド10からの反力をσ、ロッド12からの応力をσと記す。ロッド12は2番目となり、n番目のロッドに作用する反力と応力は夫々σとσn+1と表記される。σのy軸方向の応力(σとx軸方向の応力(σは夫々式(3)と式(4)で示される。
(σ=nw (3)
(σ=nwsinh(x/H)−1 (4)
(ここで、σはロッド点(x,y)での応力(添え字は夫々y成分、x成分)、nは自然数、wはロッドの単位重量、xは点(x,y)でのx座標、Hはパラメータである。)
n番目のロッドについての応力のバランス、即ち(σ−(σn+1=0と(σ−(σn+1−w=0の式を満足する条件は式(5)となる。式(5)を満足する場合に、構造力学モデルを構成する各ロッド長は等しくなる。
sinh(x/H)/sinh(xn−1/H)=n/(n−1) (5)
The rod 11 in FIG. 1 is referred to as a first rod, the reaction force from the rod 10 acting on this rod is denoted as σ 1 , and the stress from the rod 12 is denoted as σ 2 . The rod 12 is second, and the reaction force and stress acting on the nth rod are denoted as σ n and σ n + 1 , respectively. sigma n in the y-axis direction of the stress (sigma n) y and x-axis direction of the stress (sigma n) x is represented by respectively formula (3) and (4).
n ) y = nw (3)
n ) x = nwsinh (x n / H) −1 (4)
(Where σ n is the stress at the rod point (x n , y n ) (subscripts are the y component and x component, respectively), n is a natural number, w is the unit weight of the rod, and x n is the point (x n , x coordinate in y n ), H is a parameter.)
The stress balance for the n-th rod, that is, the condition that satisfies the equations (σ n ) x − (σ n + 1 ) x = 0 and (σ n ) y − (σ n + 1 ) y −w = 0 ) When the expression (5) is satisfied, the lengths of the rods constituting the structural dynamic model are equal.
sinh ( xn / H) / sinh ( xn-1 / H) = n / (n-1) (5)

上述の解析結果をまとめると、n番目のロッドについて応力がバランスするためには、次の▲1▼と▲2▼の条件を満足することが必要であり、ロッドの接点での式(6)
wx[−((2n−1)/2)(x−xn−1
+n(sinh(x/H))−1H(−cosh(xn−1/H)+cosh(x/H))] (6)
で示されるモーメントが零であれば、構造力学的に安定な構造が可能となりロッドに軸方向の応力が主として作用することになる。数値計算の結果実質的に零となることが確認された。以上の解析より本発明の建築構造物は、構造材の断面形状を構成する矩形をロッドと見なした時に、矩形は▲1▼と▲2▼の条件を満足することが証明された。
▲1▼矩形の接合面は対応する接合点での逆catenary曲線との接線に垂直である。
▲2▼catenary構造を構成する矩形の長さは同じ。
Summarizing the above analysis results, it is necessary to satisfy the following conditions (1) and (2) in order to balance the stress for the n-th rod.
wx [- ((2n-1 ) / 2) (x n -x n-1)
+ N (sinh ( xn / H)) - 1H (-cosh ( xn-1 / H) + cosh ( xn / H))] (6)
If the moment indicated by 0 is zero, a structurally stable structure is possible, and axial stress mainly acts on the rod. As a result of numerical calculation, it was confirmed that it was substantially zero. From the above analysis, it was proved that the building structure of the present invention satisfies the conditions (1) and (2) when the rectangle constituting the cross-sectional shape of the structural material is regarded as a rod.
(1) The rectangular joint surface is perpendicular to the tangent to the inverse catenary curve at the corresponding joint point.
(2) The lengths of the rectangles constituting the catenary structure are the same.

上述の構造力学的解析では、逆カテナリー曲線を分割する数には依存せず、任意の区間で分割数を変えても同じ解析結果となるので、その垂直方向の断面形状が逆カテナリー曲線に内接または外接または逆カテナリー曲線を含んでいれば、圧縮力は構造材の軸方向に主として作用することが容易に演繹できる。このことを建築構造物に置き換えて説明すると、アーチ状またはドーム状建築物において、垂直方向の断面形状は連結された矩形から構成され、この矩形が連結された構造物の断面形状は逆カテナリー曲線に内接または外接または逆カテナリー曲線を含んでおり、隣り合う矩形の接する面の傾きが、対応する位置にある逆カテナリー曲線の接面に垂直な面の傾きと同じである建築構造物となる。最も単純な例を図2にしめす。図2では、逆カテナリー曲線に内接する場合について、5つの矩形の組み合わせからなる構造物を示す。矩形が接する面の傾きを構造物19では一点鎖線、構造物20では二点鎖線で示した。  The structural mechanical analysis described above does not depend on the number of divisions of the inverse catenary curve, and the same analysis results are obtained even if the number of divisions is changed in an arbitrary section. Therefore, the vertical cross-sectional shape is included in the inverse catenary curve. If a tangent or circumscribed or inverse catenary curve is included, it can be easily deduced that the compressive force acts mainly in the axial direction of the structural material. When this is replaced with a building structure, in an arched or dome-shaped building, the vertical cross-sectional shape is composed of connected rectangles, and the cross-sectional shape of the structure to which the rectangles are connected is an inverted catenary curve. Includes an inscribed, circumscribed, or inverse catenary curve, and the slope of the adjacent rectangular contact surface is the same as the inclination of the surface perpendicular to the contact surface of the inverse catenary curve at the corresponding position. . The simplest example is shown in FIG. In FIG. 2, the structure which consists of a combination of five rectangles about the case where it inscribes to a reverse catenary curve is shown. The inclination of the surface in contact with the rectangle is indicated by a one-dot chain line in the structure 19 and a two-dot chain line in the structure 20.

断面形状が矩形となる構造部材としては、柱状、パネル状などであり、材質的にはプレストレスト鉄筋コンクリート製、鉄鋼製、集成材を含む木質製などを適用できるが、本発明はこれらに限定されるものではない。各構造部材の連結方法には本発明の背景技術の項で引用した技術を含めて、これらを適用することができる。この場合には、断面形状が矩形の構造部材の隣り合う面夫々について、全体の断面形状が逆カテナリー曲線に接するか、逆カテナリー曲線を含むように加工しなくてはならない。所定の大きさの逆カテナリー曲線からなる建築構造物に応じて、個々に矩形を組み合わせて造ることもできるが、大量生産にはあまり適していない。  The structural member having a rectangular cross-sectional shape is a columnar shape, a panel shape, etc., and the material can be made of prestressed reinforced concrete, steel, wood including laminated wood, etc., but the present invention is limited to these. It is not a thing. These can be applied to the connection methods of the structural members, including the techniques cited in the background section of the present invention. In this case, for each adjacent surface of the structural member having a rectangular cross-sectional shape, the entire cross-sectional shape must be in contact with or include the reverse catenary curve. Depending on the building structure consisting of reverse catenary curves of a predetermined size, it can be made by combining rectangles individually, but it is not very suitable for mass production.

本発明のアーチ状またはドーム状建築物において、その垂直方向の断面形状が三角形状または多角形状の連結部を介して長方形が連なった形状である建築構造物とすることができる。この断面形状が逆カテナリー曲線に内接または外接または逆カテナリー曲線を含むような構造とするには、断面形状が三角形状または多角形状の連結部が長方形と接する面の傾きが重要である。即ち、この面の傾きは、長方形の断面形状が逆カテナリー曲線と接するかこの曲線を内包するように決められる。この連結部材を共通部材として、両側に連結する断面形状が長方形である構造材の長さを変えることで、相似でサイズの異なるアーチ状またはドーム状の建築物を造ることが可能となる。図3では、5つの矩形を組み合わせた構造物19を例にとり、断面形状が長方形の構造材と断面形状が三角形または四角形の連結材とからなる建築構造物の断面形状を示した。  In the arch-shaped or dome-shaped building of the present invention, the building structure can be a building structure whose vertical cross-sectional shape is a shape in which rectangles are connected via a triangular or polygonal connecting portion. In order to obtain a structure in which the cross-sectional shape includes an inscribed or circumscribed or reverse catenary curve in the inverse catenary curve, the inclination of the surface where the cross-sectional shape is a triangular shape or a polygonal connecting portion contacts the rectangle is important. That is, the inclination of this surface is determined so that the rectangular cross-sectional shape is in contact with or contains the inverse catenary curve. By using this connecting member as a common member and changing the length of the structural member having a rectangular cross-sectional shape connected to both sides, it is possible to construct an arch-like or dome-like building of similar size. FIG. 3 shows a cross-sectional shape of a building structure composed of a structural material having a rectangular cross-sectional shape and a connecting material having a cross-sectional shape of a triangle or a quadrangle, taking as an example a structure 19 in which five rectangles are combined.

断面形状が長方形である全構造材の長きさを同じにすることにより、大量生産が可能となる。安定した品質の構造材を大量生産できるので、工業的に有利である。同じ大きさの主要構造材が使用できるだけでなく、連結材についても少ない種類で規格化が可能となる。具体的には図3に示すように、頂部は断面形状が三角形の連結材23により断面形状が長方形の構造材21と22結合され、他の連結材は断面形状が四角形である。図3の断面形状の原型は、図2の5つの矩形を組み合わせた構造物19である。この矩形の隣り合う部分を直角に切り取り、長方形21または22と三角形23と四角形24に分割したものである。矩形からなる構造部材を断面形状が長方形の部材と連結材に分割することで、連結材の形状を変えることなく、断面形状が長方形の構造部材の長さを変えるだけで、建築物全体の大きさを変えることが出来る。  By making the lengths of all the structural members having a rectangular cross-sectional shape the same, mass production becomes possible. Since it is possible to mass-produce stable quality structural materials, it is industrially advantageous. Not only main structural materials of the same size can be used, but also the number of types of connecting materials can be standardized. Specifically, as shown in FIG. 3, the top portion is connected to the structural member 21 having a rectangular cross-sectional shape by a connecting member 23 having a triangular cross-sectional shape, and the other connecting members have a quadrangular cross-sectional shape. 3 is a structure 19 in which the five rectangles of FIG. 2 are combined. Adjacent portions of this rectangle are cut at right angles and divided into rectangles 21 or 22, triangles 23, and rectangles 24. By dividing a rectangular structural member into a member with a rectangular cross-sectional shape and a connecting material, it is possible to change the length of a structural member with a rectangular cross-sectional shape without changing the shape of the connecting material. You can change that.

断面形状が長方形の構造材としては、柱状やパネル状の構造材を好適に用いることが出来るが、広い面積を効率的に覆うことができる観点からはパネル状構造材が望ましい。断面形状が三角形または四角形の連結材は、水平方向に所定の長さを有し、パネルを効率的に連結できる構造である。パネルも連結材も、建築構造物を組み立てる前に、所定の形状に加工しておくことが望ましい。これらのパネル状構造材と連結材の材質としては、プレストレスト鉄筋コンクリート製、鉄鋼製、集成材を含む木質製などを適用できるが、本発明はこれらに限定されるものではない。  As the structural material having a rectangular cross-sectional shape, a columnar or panel-shaped structural material can be suitably used, but a panel-shaped structural material is desirable from the viewpoint of efficiently covering a large area. The connecting member having a triangular or quadrangular cross-sectional shape has a predetermined length in the horizontal direction and has a structure that allows the panels to be connected efficiently. It is desirable that both the panel and the connecting material are processed into a predetermined shape before assembling the building structure. As the material of the panel-like structural material and the connecting material, prestressed reinforced concrete, steel, and wood including laminated material can be applied, but the present invention is not limited to these.

断面形状が矩形の構造材を連結する具体例を示すが本発明はこれらに限定されるものではない。構造材が鉄鋼材であれば溶接、高力ボルト、或いは併用する方法、プレストレストコンクリート材や集成材や木質パネルの場合には接着剤、継手金具、ボルト接合、或いは併用する方法などが挙げられる。必要に応じてストランド材などで補強することも可能である。また、特許文献5に準じて、アーチ状構造物の外側になる接合部分を回転自由とし、水平な地面で矩形の構造材を組み合わせて連結構造体としてから、連結構造体の端を固定して他端に力を加えて連続構造体の中央部が高くなるようにして持ち上げることにより、本発明のアーチ状建築構造物を、足場を用意しなくても、造ることができる。  Although the specific example which connects the structural material whose cross-sectional shape is a rectangle is shown, this invention is not limited to these. If the structural material is a steel material, welding, a high-strength bolt, or a method of using it together, and a prestressed concrete material, a laminated material, or a wood panel, an adhesive, a fitting, a bolt connection, or a method of using them together. If necessary, it can be reinforced with a strand material or the like. Further, according to Patent Document 5, the joint portion that becomes the outer side of the arch-like structure can be freely rotated, and a rectangular structure material is combined on a horizontal ground to form a connection structure, and then the end of the connection structure is fixed. By applying a force to the other end and lifting the central part of the continuous structure so as to be raised, the arched building structure of the present invention can be produced without preparing a scaffold.

断面形状が三角形または多角形の連結材に関しては、長方形と接する面の傾きを調整して、構造物全体の断面形状が逆カテナリー曲線に内接または外接または逆カテナリー曲線を含むように加工されることが最も重要であり、本発明の特徴となっている。連結材の断面構造の例を図4に示す。図4は木質パネル25と29を連結材28で連結するために、夫々をボルトで固定した場合の仮想断面図である。木質パネル25の表面は凸状部26があり、連結材側は対応する位置に凹部27があり、位置ズレを防止する構造となっている。図4に例示する連結材は、図3に示した左右夫々5枚ずつのパネルからなる建築構造物において、右側の頂部から3番目の連結材24に対応する。  For connecting materials with a triangular or polygonal cross-sectional shape, the slope of the surface in contact with the rectangle is adjusted so that the cross-sectional shape of the entire structure includes the inscribed or circumscribed or inverse catenary curve in the inverse catenary curve Is the most important and is a feature of the present invention. An example of the cross-sectional structure of the connecting material is shown in FIG. FIG. 4 is an imaginary cross-sectional view when the wood panels 25 and 29 are connected with the connecting material 28 and are fixed with bolts. The surface of the wood panel 25 has a convex portion 26, and the connecting material side has a concave portion 27 at a corresponding position, thereby preventing a positional shift. The connection material illustrated in FIG. 4 corresponds to the third connection material 24 from the top on the right side in the building structure including the left and right panels shown in FIG.

本発明で木質製パネルと木質製連結材からなる建築物の例を図5に示す。木質製パネルの種類としては、壁または屋根となるパネルと窓付きパネルなどに規格化して、連結材も図3に示すように6種類に統一すれば、少ない種類の部材で木造建築物を造ることができる。かつ、屋根と外壁を構成する構造材には圧縮力が主として作用することから、木材が一般的に曲げや剪断に弱いことを配慮すれば、少ない材料で建築することができるので、安価に製造できるなど工業的に有利となる。かつ簡便に造ることができるので、別荘や週末住宅などのゆとりある生活の場を提供するための建築構造物として最適である。  The example of the building which consists of a wooden panel and a wooden connection material by this invention is shown in FIG. As the types of wooden panels, if standardized to walls or roof panels and panels with windows, etc., and connecting materials are unified into six types as shown in FIG. 3, a wooden building is made with fewer types of members. be able to. In addition, because the compressive force mainly acts on the structural material that constitutes the roof and the outer wall, it can be built with less material if considering that wood is generally vulnerable to bending and shearing, so it is manufactured at a low cost. This is industrially advantageous. Since it can be easily constructed, it is ideal as a building structure to provide a comfortable place to live such as a villa or a weekend house.

1……ロッド10に作用する応力(σ)、
2……ロッド10の重力(2w)、
3……ロッド10に作用する応力(σ)、
4……ロッド11に作用する応力(ロッド10からの反力、σ)、
5……ロッド11の重力(w)、
6……ロッド11に作用する応力(σ)、
7……ロッド12に作用する応力(ロッド11からの反力、σ
8……ロッド12の重力(w)、
9……ロッド12に作用する応力(σ)、
10……一番上(頂部)のロッド(自重=2w)、
11……頂部を0番目とした時の頂部から1番目のロッド、
12……頂部から2番目のロッド、
13……ロッド10とロッド11との接面の傾き、
14……ロッド11とロッド12との接面の傾き、
15……ロッド12と頂部から4番目との接面の傾き、
16……ロッド10とロッド11との接点(x、y)、
17……ロッド11とロッド12との接点(x、y)、
18……ロッド12と頂部から4番目との接点(x、y)、
19……逆カテナリー曲線に内接する5つのロッドの組合せからなる構造物
(高さ9m、幅9m)、
20……逆カテナリー曲線に内接する5つのロッドの組合せからなる構造物
(高さ9m、幅12.6m)、
21……一番上(頂部)の断面形状が長方形の木質製パネル(左)、
22……一番上(頂部)の断面形状が長方形の木質製パネル(右)、
23……木質製連結材(断面形状が三角形)、
24……木質製連結材(断面形状が四角形)、
25……木質製パネル
26……木質製パネルの凸部
27……木質製連結材の凹部
28……木質製連結材
29……木質製パネル
1 …… Stress (σ 1 ) acting on the rod 10,
2 …… Gravity of rod 10 (2w),
3 ... Stress (σ 1 ) acting on the rod 10,
4 ... Stress acting on the rod 11 (reaction force from the rod 10, σ 1 ),
5: Gravity (w) of rod 11
6: Stress (σ 2 ) acting on the rod 11,
7: Stress acting on the rod 12 (reaction force from the rod 11, σ 2 )
8: Gravity (w) of the rod 12,
9: Stress acting on the rod 12 (σ 3 ),
10 …… Top (top) rod (self-weight = 2w),
11 …… The first rod from the top when the top is 0th,
12 ... The second rod from the top,
13: Tilt of contact surface between rod 10 and rod 11,
14: The inclination of the contact surface between the rod 11 and the rod 12,
15: Tilt of the contact surface between the rod 12 and the fourth from the top,
16: Contact points (x 1 , y 1 ) between the rod 10 and the rod 11,
17... Contact (x 2 , y 2 ) between the rod 11 and the rod 12
18... Contact (x 3 , y 3 ) between the rod 12 and the fourth from the top,
19: Structure consisting of a combination of five rods inscribed in the reverse catenary curve (height 9m, width 9m),
20. Structure consisting of a combination of five rods inscribed in the reverse catenary curve (height 9m, width 12.6m),
21 ...... The top (top) cross-sectional shape of a rectangular wooden panel (left),
22 ... The top (top) cross-sectional shape of a rectangular wooden panel (right),
23 …… Connecting material made of wood (cross-sectional shape is triangular),
24 …… wooden connecting material (cross-sectional shape is square),
25 …… Wood panel 26 …… Wood panel projection 27 …… Wood connection material recess 28 …… Wood connection material 29 …… Wood panel

Claims (5)

アーチ状またはドーム状建築物において、垂直方向の断面形状は連結された矩形から構成され、この矩形の連結面は逆カテナリー曲線に内接または外接または逆カテナリー曲線を含んでおり、隣り合う矩形の接する面の傾きが、対応する位置にある逆カテナリー曲線の接面に垂直な面の傾きと同じであることを特徴とする建築構造物。  In an arched or dome-shaped building, the vertical cross-sectional shape is composed of connected rectangles, the connecting surfaces of the rectangles include inscribed or circumscribed or inverted catenary curves in the inverse catenary curve, A building structure characterized in that the inclination of the tangent surface is the same as the inclination of the surface perpendicular to the tangent surface of the inverse catenary curve at the corresponding position. 請求項1において、その垂直方向の断面形状が三角形状または多角形状の連結部を介して長方形が連なった形状であり、この断面形状が逆カテナリー曲線に内接または外接または逆カテナリー曲線を含むことを特徴とする建築構造物。  In Claim 1, the vertical cross-sectional shape is a shape in which rectangles are connected via a triangular or polygonal connecting portion, and the cross-sectional shape includes an inscribed, circumscribed, or inverted catenary curve in the inverse catenary curve. A building structure characterized by 請求項2において、長方形状断面は建築物を構成するパネル状構造材の断面であり、三角形状または多角形状断面はこのパネルを連結する連結部の断面であることを特徴とする建築構造物。  3. The building structure according to claim 2, wherein the rectangular cross section is a cross section of a panel-like structural material constituting the building, and the triangular or polygonal cross section is a cross section of a connecting portion connecting the panels. 請求項2または3において、断面形状を形成する全ての長方形が実質的に合同であることを特徴とする建築構造物。  4. The building structure according to claim 2, wherein all the rectangles forming the cross-sectional shape are substantially congruent. 請求項2または3または4項の断面形状が三角形状または多角形状の連結材において、長方形と接する面の傾きが、建築構造物の垂直方向の断面形状が逆カテナリー曲線に内接または外接または逆カテナリー曲線を含むように、加工されたことを特徴とする断面形状が三角形または多角形の連結部。  5. A connecting member having a triangular or polygonal cross-sectional shape according to claim 2, 3 or 4, wherein the inclination of the surface in contact with the rectangle is such that the vertical cross-sectional shape of the building structure is inscribed or circumscribed or reversed to the reverse catenary curve. A connecting portion having a triangular or polygonal cross-sectional shape that is processed so as to include a catenary curve.
JP2009083399A 2009-03-06 2009-03-06 Building structure whose vertical cross-sectional shape is approximated by inverse catenary curve and its connecting material Expired - Fee Related JP5467211B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009083399A JP5467211B2 (en) 2009-03-06 2009-03-06 Building structure whose vertical cross-sectional shape is approximated by inverse catenary curve and its connecting material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009083399A JP5467211B2 (en) 2009-03-06 2009-03-06 Building structure whose vertical cross-sectional shape is approximated by inverse catenary curve and its connecting material

Publications (2)

Publication Number Publication Date
JP2010209661A true JP2010209661A (en) 2010-09-24
JP5467211B2 JP5467211B2 (en) 2014-04-09

Family

ID=42970096

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009083399A Expired - Fee Related JP5467211B2 (en) 2009-03-06 2009-03-06 Building structure whose vertical cross-sectional shape is approximated by inverse catenary curve and its connecting material

Country Status (1)

Country Link
JP (1) JP5467211B2 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11280153A (en) * 1998-03-31 1999-10-12 Mitsubishi Heavy Ind Ltd Arch-shaped structure and its construction method
JP2000017768A (en) * 1998-07-01 2000-01-18 Kajima Corp Laminated wood beam and roof structure formed of laminated wood beam
JP2000319996A (en) * 1999-03-09 2000-11-21 Wakamoto Seisakusho:Kk Roof structure and construction method therefor
JP2002227304A (en) * 2001-01-30 2002-08-14 T I S & Partners:Kk Structure unit, building using it, and its construction method
JP2003301517A (en) * 2002-04-10 2003-10-24 Takenaka Komuten Co Ltd Construction method for structure using panel unit
JP2006322241A (en) * 2005-05-19 2006-11-30 Nippon Steel Engineering Co Ltd Connected structure, wooden structure, and construction method for wooden structure

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11280153A (en) * 1998-03-31 1999-10-12 Mitsubishi Heavy Ind Ltd Arch-shaped structure and its construction method
JP2000017768A (en) * 1998-07-01 2000-01-18 Kajima Corp Laminated wood beam and roof structure formed of laminated wood beam
JP2000319996A (en) * 1999-03-09 2000-11-21 Wakamoto Seisakusho:Kk Roof structure and construction method therefor
JP2002227304A (en) * 2001-01-30 2002-08-14 T I S & Partners:Kk Structure unit, building using it, and its construction method
JP2003301517A (en) * 2002-04-10 2003-10-24 Takenaka Komuten Co Ltd Construction method for structure using panel unit
JP2006322241A (en) * 2005-05-19 2006-11-30 Nippon Steel Engineering Co Ltd Connected structure, wooden structure, and construction method for wooden structure

Also Published As

Publication number Publication date
JP5467211B2 (en) 2014-04-09

Similar Documents

Publication Publication Date Title
KR20080060225A (en) Building structure
CN105908865A (en) Steel plate shear wall
JP5575561B2 (en) Seismic structure of buildings
CN101302833B (en) Chord branch barrel shell structure system
CN203145193U (en) Welding-combination type steel concrete specially-shaped column and steel girder semi-rigid node
JP5467211B2 (en) Building structure whose vertical cross-sectional shape is approximated by inverse catenary curve and its connecting material
JP2016094766A (en) Building frame construction method
JP5541499B2 (en) Building structure
JP6937457B2 (en) A connecting body in which wooden cross-shaped composite columns are tightly crimped with flat PC beams.
JPH1171907A (en) Vibration-resistant reinforcing method of existing building
CN204370614U (en) The split type combined concrete shear wall of built-in round steel pipe cross section bearing diagonal
JPH0810081Y2 (en) Reinforcement structure for RC / column joints
KR101148546B1 (en) Steel built up beam for longspan structure and steel frame using the same
JP4379733B2 (en) Seismic reinforcement structure for buildings
JPH0334967Y2 (en)
JPH0996043A (en) Void slab structure
JPH0450723Y2 (en)
CN210316148U (en) Slab frame integrated floor skeleton structure and building
KR101387232B1 (en) Moment framework system
Hossen et al. Seismic performance of concrete flat slabs
JPH0742805B2 (en) Steel bar truss built-in rebar concrete column
JP2006112197A (en) Aluminum building structure using aluminum square hollow-shaped member
JP2008308395A (en) Bubble concrete
JP6951851B2 (en) High-rise earthquake-resistant building
JP2015218495A (en) Reinforcement structure of rc building having silver cool roof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120302

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130411

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130423

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131119

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131129

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees