JP2010209412A - Method for producing noble metal powder - Google Patents

Method for producing noble metal powder Download PDF

Info

Publication number
JP2010209412A
JP2010209412A JP2009056878A JP2009056878A JP2010209412A JP 2010209412 A JP2010209412 A JP 2010209412A JP 2009056878 A JP2009056878 A JP 2009056878A JP 2009056878 A JP2009056878 A JP 2009056878A JP 2010209412 A JP2010209412 A JP 2010209412A
Authority
JP
Japan
Prior art keywords
metal powder
noble metal
powder
heating furnace
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009056878A
Other languages
Japanese (ja)
Other versions
JP5345421B2 (en
Inventor
Hanako Chikasawa
羽奈子 近澤
Masaki Yoshida
将喜 吉田
Mio Minato
美緒 湊
Yoshihisa Ii
喜久 井伊
Kazunori Yamabe
和則 山部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Pretec Corp
Original Assignee
Asahi Pretec Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Pretec Corp filed Critical Asahi Pretec Corp
Priority to JP2009056878A priority Critical patent/JP5345421B2/en
Publication of JP2010209412A publication Critical patent/JP2010209412A/en
Application granted granted Critical
Publication of JP5345421B2 publication Critical patent/JP5345421B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Powder Metallurgy (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for producing noble metal powder in which the concentration of an impurity gas is reduced without changing a grain size distribution before and after heat treatment. <P>SOLUTION: In the method for producing noble metal powder in which the concentration of the impurity gas is reduced, noble metal powder essentially composed of noble metal is fed to a heating furnace, the noble metal powder is heated in a state of being dispersed into a gas, and is further brought into contact with a refrigerant while being kept in the dispersed state. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、不純物ガス濃度を低減した貴金属粉末を製造する方法に関するものであり、詳細には、熱処理前後の粒度分布を変化させることなく、不純物ガス濃度を低減した貴金属粉末を製造する技術に関するものである。   The present invention relates to a method for producing a noble metal powder having a reduced impurity gas concentration, and more particularly to a technique for producing a noble metal powder having a reduced impurity gas concentration without changing the particle size distribution before and after the heat treatment. It is.

スパッタリングターゲットや自動車用触媒などの原料に用いられる貴金属粉末は、窒素N、酸素O、塩素Clなどの不純物ガスの濃度が少なく、且つ、粒度分布が狭いことが要求される。このような貴金属粉末を提供するため、種々の熱処理方法が提案されている。   Noble metal powders used as raw materials for sputtering targets and automobile catalysts are required to have a low concentration of impurity gases such as nitrogen N, oxygen O, and chlorine Cl, and a narrow particle size distribution. In order to provide such a noble metal powder, various heat treatment methods have been proposed.

例えば、特許文献1には、粒度分布範囲が狭く、高純度な白金粉末を得ることができる高結晶性白金粉末の製造方法として、白金ブラックと、アルカリ塩またはアルカリ土類金属塩の少なくとも一種とを湿式混合してから粉砕し、その後焼成してガスを除去した後、塩を溶解除去する方法が開示されている。しかしこの方法は、アルカリ塩やアルカリ土類金属塩の使用を前提とするものであり、加熱処理後に上記成分を分離するための工程が別途必要になり、処理が煩雑となる。また、上記成分の分離が不充分であれば、白金粉末に不純物が混入するなどし、白金粉末の純度が低下する恐れがある。   For example, in Patent Document 1, as a method for producing a highly crystalline platinum powder having a narrow particle size distribution range and capable of obtaining a highly pure platinum powder, platinum black and at least one alkali salt or alkaline earth metal salt are used. A method is disclosed in which the mixture is pulverized after being wet-mixed and then baked to remove the gas, and then the salt is dissolved and removed. However, this method is premised on the use of an alkali salt or an alkaline earth metal salt, and requires a separate step for separating the above components after the heat treatment, which makes the treatment complicated. Further, if the above components are not sufficiently separated, impurities may be mixed into the platinum powder, and the purity of the platinum powder may be reduced.

また、貴金属粉末を対象とするものではないが、例えば、特許文献2には、縦型加熱炉を用い、高純度シリカの湿り粉末を、不純物の混入をできるだけ小さくして高い純度を維持しながら短時間に乾燥、焼成する方法が開示されている。しかしながら上記文献には、シリカなどのセラミックスを対象とした乾燥方法が開示されているに過ぎず、貴金属粉末中の不純物ガス濃度低減化については何も考慮していない。実際のところ、この技術は、水分含有シリカ粉末を乾燥する際、加熱炉を構成する装置材料や乾燥用熱源からの汚染を極力少なくするという観点からなされたものであって、粉末に含まれるN、O、Clなどの不純物ガスの量を低減化することは意図しておらず、実施例では、熱処理後にNa、Al、Zrの不純物の増大は認められず高純度が維持されたことを確認したに過ぎない。   Although not intended for precious metal powders, for example, in Patent Document 2, a vertical heating furnace is used, and wet powder of high-purity silica is used while maintaining high purity by minimizing the contamination of impurities. A method of drying and firing in a short time is disclosed. However, the above document only discloses a drying method for ceramics such as silica, and does not consider anything about reducing the impurity gas concentration in the noble metal powder. Actually, this technique was made from the viewpoint of minimizing contamination from the apparatus material constituting the heating furnace and the heat source for drying when the moisture-containing silica powder is dried. It is not intended to reduce the amount of impurity gases such as O, O, and Cl, and in the examples, it was confirmed that the purity of Na, Al, and Zr was not increased after heat treatment and high purity was maintained. It was only done.

特許文献3には、アルミ箔片等の処理物を真空中で自由落下させながらその周囲から加熱することにより、処理物を所定の温度まで急速に加熱できる自由落下式熱処理炉が開示されている。また、特許文献4には、各種セラミックス粉等を、汚染させることなく仮焼焼成するために使用できる垂直焼成炉が開示されており、加熱された被焼成材料は、垂直焼成炉の下方に設けられた回収部で回収されて冷却されている。しかしこれらの文献に開示されている方法では、粒子同士が接触した状態で熱処理されるため、粒子同士の焼結を生じる。また、これらの文献では、貴金属粉末を対象としておらず、処理物に含まれる不純物ガスを低減することについても何ら考慮されていない。   Patent Document 3 discloses a free-fall heat treatment furnace capable of rapidly heating a processed object to a predetermined temperature by heating the processed object such as an aluminum foil piece from the surroundings while freely dropping the processed object in a vacuum. . Patent Document 4 discloses a vertical firing furnace that can be used for calcination firing without contaminating various ceramic powders, etc., and the heated material to be fired is provided below the vertical firing furnace. Collected by the collected collection unit and cooled. However, in the methods disclosed in these documents, since the heat treatment is performed while the particles are in contact with each other, the particles are sintered. In these documents, noble metal powder is not targeted, and no consideration is given to reducing the impurity gas contained in the processed product.

特開平10−102103号公報Japanese Patent Laid-Open No. 10-102103 特開平6−3050号公報JP-A-6-3050 特開2003−139469号公報JP 2003-139469 A 特開2008−145004号公報JP 2008-14504 A

本発明は上記事情に鑑みてなされたものであって、その目的は、アルカリ成分などの添加剤を添加しなくても、貴金属粉末に含まれる不純物ガス濃度を低減できる貴金属粉末の製造方法を提供することにある。詳細には、本発明の目的は、粉末の焼結が抑制されるため熱処理前後の粒度分布が変化せず、且つ、不純物ガス濃度を低減した貴金属粉末を製造できる方法を提供することにある。   The present invention has been made in view of the above circumstances, and an object thereof is to provide a method for producing a noble metal powder that can reduce the concentration of impurity gas contained in the noble metal powder without adding an additive such as an alkali component. There is to do. Specifically, an object of the present invention is to provide a method capable of producing a noble metal powder in which the particle size distribution before and after the heat treatment does not change because the sintering of the powder is suppressed and the impurity gas concentration is reduced.

上記課題を解決することのできた本発明に係る貴金属粉末の製造方法は、加熱炉に貴金属を主体とする貴金属粉末を供給し、該貴金属粉末を気体中に分散させた状態で加熱した後、更に分散させた状態のまま冷媒に接触させるところに要旨を有している。   The method for producing a noble metal powder according to the present invention that has solved the above-mentioned problem is to supply a noble metal powder mainly composed of noble metal to a heating furnace, and after heating the noble metal powder dispersed in a gas, The main point is that it is brought into contact with the refrigerant in a dispersed state.

本発明の好ましい実施形態において、上記加熱炉内には、加熱炉の上部から下部に向かって気体の下降流が形成されている。本発明の好ましい実施形態において、上記加熱炉の下部に設けた気体吸引部によって加熱炉内の気体を吸引する。本発明の好ましい実施形態において、上記加熱を500〜1200℃で行なう。本発明の好ましい実施形態において、上記貴金属粉末は、白金またはパラジウムを主体とする粉末である。   In a preferred embodiment of the present invention, a downward gas flow is formed in the heating furnace from the upper part to the lower part of the heating furnace. In preferable embodiment of this invention, the gas in a heating furnace is suck | inhaled by the gas suction part provided in the lower part of the said heating furnace. In a preferred embodiment of the present invention, the heating is performed at 500 to 1200 ° C. In a preferred embodiment of the present invention, the noble metal powder is a powder mainly composed of platinum or palladium.

本発明によれば、貴金属粉末を適切に分散させた状態で加熱炉に投入し、その分散状態を保ちながら加熱を行なった後、分散させたまま直ちに冷却しているため、熱処理による貴金属粉末の焼結が抑制され、熱処理前の粒度分布が熱処理後も維持されたまま、貴金属粉末に含まれる不純物ガス濃度を低減することができる。本発明の方法によれば、従来のように貴金属粉末以外のアルカリ成分などを添加しなくても所望の貴金属粉末が得られるため、当該成分の添加による不純物の混入などの恐れはなく、また、当該成分を分離するための工程も不要になるため、熱処理工程を簡素化できる。更に本発明の方法によれば、加熱炉内雰囲気を真空下に制御して加熱処理を行なわなくても不純物ガス濃度を低減できるため、設備の簡素化を図れる点でも有用である。   According to the present invention, the noble metal powder is appropriately dispersed in a heating furnace, heated while maintaining the dispersed state, and then immediately cooled while being dispersed. Sintering is suppressed, and the concentration of impurity gas contained in the noble metal powder can be reduced while the particle size distribution before the heat treatment is maintained after the heat treatment. According to the method of the present invention, since a desired noble metal powder can be obtained without adding an alkali component other than the noble metal powder as in the prior art, there is no risk of contamination due to the addition of the component, Since a process for separating the components is not necessary, the heat treatment process can be simplified. Furthermore, according to the method of the present invention, the impurity gas concentration can be reduced without performing the heat treatment by controlling the atmosphere in the heating furnace under vacuum, which is useful in that the equipment can be simplified.

図1は、本発明法に好適に用いられる加熱冷却装置の一例を示す概略説明図である。FIG. 1 is a schematic explanatory view showing an example of a heating / cooling apparatus suitably used in the method of the present invention.

本発明の製造方法は、加熱炉に貴金属を主体とする貴金属粉末を供給し、該貴金属粉末を気体中に分散させた状態で加熱した後、更に分散させた状態のまま冷媒に接触させるところに特徴がある。本発明の方法によれば、加熱炉内への貴金属粉末の供給、加熱炉内での貴金属粉末の加熱、加熱後の貴金属粉末の冷却の全工程を、貴金属粉末が所定の分散状態に保持されるように制御して熱処理を行なっているため、加熱による貴金属粉末の焼結が抑制されて熱処理前の粒度分布が熱処理後も維持され、且つ、貴金属粉末中の不純物ガス濃度も低減された所望の貴金属粉末が得られる。   In the production method of the present invention, a precious metal powder mainly composed of a precious metal is supplied to a heating furnace, the precious metal powder is heated in a state of being dispersed in a gas, and then further brought into contact with the refrigerant in a dispersed state. There are features. According to the method of the present invention, the precious metal powder is maintained in a predetermined dispersion state in all steps of supplying the precious metal powder into the heating furnace, heating the precious metal powder in the heating furnace, and cooling the precious metal powder after heating. The heat treatment is performed in such a manner that the sintering of the noble metal powder due to heating is suppressed, the particle size distribution before the heat treatment is maintained after the heat treatment, and the impurity gas concentration in the noble metal powder is also reduced. Noble metal powder is obtained.

詳細には、本発明では、加熱炉内に貴金属粉末を供給するときの供給速度を制御して適切な分散状態とし、加熱炉内では、この分散状態を保ったまま適切な温度で加熱しているため、貴金属粉末を均一に加熱できる。その結果、加熱中に貴金属粉末同士が凝集して粗大化するなどにより熱処理前の粒度分布が変化するのを防止でき、且つ、貴金属粉末中の不純物ガス濃度も低減できる。即ち、一般に、粒径の粗大化防止(焼結の抑制)と不純物ガス濃度の低減化とは、両立し難いものであり、焼結抑制のために加熱温度を低くし過ぎると不純物ガス濃度を有効に低減できず、一方、不純物ガス濃度低減化のために加熱温度を高くし過ぎると焼結を抑制できず粒径の粗大化を招く。本発明では、上記のように加熱炉内への供給、加熱、更にはその後の冷却にわたって、適切な分散状態を維持しつつ、粒径も粗大化せず不純物ガス濃度も低減できる温度範囲(例えば500〜1200℃)で加熱しているため、これらを両立できると思料される。   Specifically, in the present invention, the supply speed when supplying the noble metal powder into the heating furnace is controlled to an appropriate dispersion state, and the heating furnace is heated at an appropriate temperature while maintaining this dispersion state. Therefore, the precious metal powder can be heated uniformly. As a result, the particle size distribution before the heat treatment can be prevented from changing due to aggregation and coarsening of the noble metal powders during heating, and the impurity gas concentration in the noble metal powder can be reduced. That is, in general, preventing coarsening of the particle size (suppression of sintering) and reducing the impurity gas concentration are difficult to achieve at the same time. If the heating temperature is too low to suppress sintering, the impurity gas concentration is reduced. On the other hand, if the heating temperature is too high to reduce the impurity gas concentration, sintering cannot be suppressed and the particle size becomes coarse. In the present invention, as described above, the temperature range (for example, the impurity gas concentration can be reduced without increasing the particle size while maintaining an appropriate dispersion state over the supply to the heating furnace, heating, and subsequent cooling). Since it is heated at 500 to 1200 ° C.), it is thought that both can be achieved.

更に本発明では、この適切な分散状態を保ったまま、加熱後の貴金属粉末を直ちに冷媒に接触させて冷却(強制冷却、急速冷却)を行なっているため、加熱後の状態(熱処理前後の粒度分布の変化は少なく、不純物ガス濃度が低減された状態)がそのまま維持された貴金属粉末が得られる。即ち、上記のような強制冷却を行なわずに空気中で放冷した場合には、加熱によって粉末に保持された余熱で二次反応が起こったり、放冷中に貴金属粉末同士が固着するなどして粒子径が大きくなったり、あるいは、放冷中に雰囲気中のガスを取り込むなどによって不純物ガス濃度が上昇する、といった問題が生じるが、本発明の方法によれば上記問題を全て回避できる。   Furthermore, in the present invention, since the precious metal powder after heating is immediately brought into contact with the refrigerant and cooling (forced cooling, rapid cooling) is performed while maintaining this appropriate dispersion state, the state after heating (particle size before and after heat treatment) A noble metal powder is obtained in which the distribution change is small and the impurity gas concentration is reduced. In other words, when the product is allowed to cool in the air without forced cooling as described above, a secondary reaction occurs due to the residual heat held in the powder by heating, or noble metal powders adhere to each other during the cooling. However, the problem that the particle diameter increases or the concentration of the impurity gas rises due to the incorporation of gas in the atmosphere during cooling, etc., can be avoided by the method of the present invention.

このように本発明では、貴金属粉末を適切に分散させた状態で加熱と冷却を行なうことが極めて重要である。貴金属粉末の分散状態は、貴金属粉末の粒度および密度に密接に関係しているので、一該に決めることはできないが、貴金属粉末の投入量を10〜1000g/m3の範囲にすることで分散状態が適正に保たれる。即ち、加熱炉への粉末の投入量が、加熱炉内容積に対して10〜1000g/m3となるように粉末の落下速度(炉内滞留時間)を勘案して調整すればよい。 As described above, in the present invention, it is extremely important to perform heating and cooling in a state where the precious metal powder is appropriately dispersed. Since the dispersion state of the noble metal powder is closely related to the particle size and density of the noble metal powder, it cannot be determined to one, but it can be dispersed by setting the input amount of the noble metal powder in the range of 10 to 1000 g / m 3. The state is maintained properly. That is, it is only necessary to adjust the powder drop rate (residence time in the furnace) so that the amount of powder input to the heating furnace is 10 to 1000 g / m 3 with respect to the volume in the heating furnace.

粉末の投入量が多過ぎて1000g/m3を超えると、貴金属粉末が加熱炉内に過密な状態で存在するため均一な熱処理を行なうことができず、加熱炉内で貴金属粉末同士が衝突・凝集し、熱処理後の粉末の粒径が大きくなる。一方、粉末の投入量が少な過ぎて10g/m3を下回ると、上記の問題は起こらず貴金属粉末は均一に加熱されるが、生産性が低下する。貴金属粉末のより好ましい投入量は、加熱炉内での貴金属粉末が40〜400g/m3の範囲である。 If the amount of powder input is too much and exceeds 1000 g / m 3 , the precious metal powder is present in an overly dense state in the heating furnace, so uniform heat treatment cannot be performed, and noble metal powder collides with each other in the heating furnace. Agglomeration increases the particle size of the powder after heat treatment. On the other hand, if the input amount of the powder is too small and falls below 10 g / m 3 , the above problem does not occur and the noble metal powder is heated uniformly, but the productivity is lowered. A more preferable input amount of the noble metal powder is in the range of 40 to 400 g / m 3 of the noble metal powder in the heating furnace.

この分散状態(加熱炉への投入量)は、加熱炉内でも維持されていることが必要であるが、これは特に(ア)加熱炉に供給する気体の方向、および(イ)加熱炉に供給する気体の流速を以下のように制御することによって達成される。詳細は以下のとおりである。   This dispersed state (input amount to the heating furnace) needs to be maintained even in the heating furnace. This is particularly (a) the direction of the gas supplied to the heating furnace, and (b) the heating furnace. This is achieved by controlling the flow rate of the supplied gas as follows. Details are as follows.

[(ア)加熱炉に供給する気体の方向]
加熱炉に供給する気体は、好ましくは、加熱炉の上部から下部に向って下降流が形成されており、例えば、縦型加熱炉のような自然落下構造を有する炉で加熱することにより、分散状態の調整が容易になる。
[(A) Direction of gas supplied to heating furnace]
The gas supplied to the heating furnace preferably has a downward flow formed from the upper part to the lower part of the heating furnace, and is dispersed by heating in a furnace having a natural fall structure such as a vertical heating furnace. The state can be easily adjusted.

気体の下降流が充分に形成されない場合には、上昇気流の影響を受けて貴金属粉末が飛散したり、分散状態にバラツキが生じ易くなる。その結果、熱処理前後の貴金属粉末の粒度分布が変化する。   When the downflow of gas is not sufficiently formed, the noble metal powder is scattered by the influence of the updraft, and the dispersion state is likely to vary. As a result, the particle size distribution of the noble metal powder before and after the heat treatment changes.

[(イ)加熱炉に供給する気体の流速]
貴金属粉末を適切に分散させるためには、上記のように気体の下降流を形成させることが好ましいが、更に加熱炉内での気体の流速を約0.2〜5cm/秒に制御することが好ましい。加熱炉内での気体の流速とは、例えば、縦型円筒状の加熱炉であれば、円筒の断面円を通過するときの気体の速度である。気体の流速は、加熱炉内に取り込まれた、もしくは、炉内から排出された、気体の単位時間(秒)当たりの室温付近での容量(cm3)を、加熱炉の断面円の面積(cm2)で割ることによって求めることができる。
[(I) Flow rate of gas supplied to the heating furnace]
In order to disperse the precious metal powder appropriately, it is preferable to form a downward gas flow as described above, but it is also possible to control the flow rate of the gas in the heating furnace to about 0.2 to 5 cm / second. preferable. For example, in the case of a vertical cylindrical heating furnace, the gas flow rate in the heating furnace is a gas velocity when passing through a circular cross-section of the cylinder. The flow rate of the gas is the volume around the room temperature (cm 3 ) per unit time (seconds) of the gas taken into or discharged from the furnace, and the area of the cross-section circle of the furnace ( cm 2 ).

気体の流速が0.2cm/秒を下回ると、気体の下降流が充分に形成されず、上昇気流の影響によって分散状態にバラツキが生じ易くなり、粉末の炉内滞留時間にもバラツキを生じ、焼結を生じるようになる。一方、気体の流速が5cm/秒を超えると、気体の吸引力が大きくなり過ぎて貴金属粉末の一部が、加熱装置の配管や気体吸引部などに吸引されて詰まるといった問題が発生する。具体的には、気体の流速は、使用する加熱炉の形状、貴金属粉末の成分組成や粒度分布などに応じて、上記範囲のなかから適切な範囲を適宜設定すれば良いが、より好ましくは0.5cm/秒以上、3cm/秒以下である。   When the gas flow rate is less than 0.2 cm / second, the gas downflow is not sufficiently formed, and the dispersion state tends to vary due to the influence of the ascending airflow, and the residence time of the powder also varies. Sintering occurs. On the other hand, when the gas flow rate exceeds 5 cm / second, the gas suction force becomes too large, and a problem arises in that a part of the noble metal powder is sucked and clogged by the piping of the heating device, the gas suction part, or the like. Specifically, the gas flow rate may be appropriately set within the above range according to the shape of the heating furnace to be used, the component composition of the noble metal powder, the particle size distribution, etc., but more preferably 0. It is 5 cm / sec or more and 3 cm / sec or less.

上述した気体の下降流を形成するには、例えば、後記する図1の加熱冷却装置に示すように、供給部1と加熱炉2の接続部位において、加熱炉2の上部を開口させておくか、もしくは、非酸化性の気体が供給できるように気体導入口2aを設け、(ウ)加熱炉の下部に気体を吸引し、系外へ排出するための気体吸引部を設けることによって達成できる。また、図1には示さないが、経路11の途中に気体を冷却する装置を設けてもよい。   In order to form the above-described gas downward flow, for example, as shown in the heating and cooling apparatus of FIG. Alternatively, this can be achieved by providing the gas inlet 2a so that a non-oxidizing gas can be supplied, and (c) providing a gas suction part for sucking the gas at the lower part of the heating furnace and discharging it outside the system. Although not shown in FIG. 1, a device for cooling the gas may be provided in the middle of the path 11.

すなわち、貴金属粉末の粒子径や密度などによっては、加熱炉内に発生する上昇気流によって粉末が飛散し、加熱炉への貴金属粉末の供給を安定して均一に行なえないとか、加熱炉内での加熱を均一に行なえない、などの問題が生じる場合がある。その結果、加熱炉内での滞留時間が変化し、貴金属粉末の適切な分散状態が得られなくなる恐れがある。この問題は、縦型加熱炉を使用し、粉末の自然落下(自由落下)による下降流の形成だけでは充分回避できない場合もある。これに対し、上記(ウ)のように、加熱炉の下部を密閉して当該下部に気体吸引部を設けておけば、縦型加熱炉による粉末の下降流だけでなく、気体吸引部による気体の強制的な下降流も形成されるため、下降流の形成が促進され、上昇気流の発生を有効に抑制できる。   That is, depending on the particle size and density of the noble metal powder, the powder is scattered by the rising air flow generated in the heating furnace, and the supply of the noble metal powder to the heating furnace cannot be performed stably or uniformly. There may be a problem that heating cannot be performed uniformly. As a result, the residence time in the heating furnace changes, and there is a possibility that an appropriate dispersion state of the noble metal powder cannot be obtained. This problem may not be sufficiently avoided by using a vertical heating furnace and forming only a downward flow due to the natural fall (free fall) of the powder. On the other hand, if the lower part of the heating furnace is sealed and a gas suction part is provided in the lower part as in (c) above, not only the powder downward flow in the vertical heating furnace but also the gas in the gas suction part Since the forced downward flow is also formed, the formation of the downward flow is promoted, and the generation of the upward airflow can be effectively suppressed.

また、上記のようにして上昇気流の発生を防止できれば、上昇気流によって微細な貴金属粉末が飛散するのを防止でき、貴金属粉末の損失を抑えることもできる。更に、加熱炉壁への貴金属粉末の付着を防止できるなどの効果も得られる。その結果、貴金属粉末の回収効率が上昇するようになる点でも非常に有用である。   Moreover, if generation | occurrence | production of an updraft can be prevented as mentioned above, it can prevent that a fine noble metal powder scatters by an updraft, and can also suppress the loss of noble metal powder. Furthermore, effects such as prevention of adhesion of noble metal powder to the heating furnace wall can be obtained. As a result, the collection efficiency of the noble metal powder is very useful.

更に本発明では、後に詳しく説明するように、加熱後の貴金属粉末を冷却槽で水などの冷媒に接触させて冷却するが、気体吸引部を動作させることにより、冷却槽で発生した水蒸気を系外へ効率よく排出できる。その結果、貴金属粉末の凝集防止や、加熱炉の腐食防止といった効果も得られる。   Further, in the present invention, as will be described in detail later, the heated precious metal powder is cooled in contact with a coolant such as water in the cooling tank, but the water vapor generated in the cooling tank is converted into a system by operating the gas suction unit. Efficiently discharges outside. As a result, effects such as prevention of agglomeration of the noble metal powder and prevention of corrosion of the heating furnace can be obtained.

本発明に用いられる貴金属粉末としては、金(Au)、銀(Ag)、白金族元素[白金(Pt)、パラジウム(Pd)、ロジウム(Rh)、イリジウム(Ir)、ルテニウム(Ru)]の貴金属単独の粉末;およびこれら貴金属を主成分とする貴金属粉末の両方が含まれる。ここで、「貴金属を主成分(主体)とする貴金属粉末」とは、上記の貴金属を少なくとも50質量%以上含有するものである。   The noble metal powder used in the present invention includes gold (Au), silver (Ag), platinum group elements [platinum (Pt), palladium (Pd), rhodium (Rh), iridium (Ir), ruthenium (Ru)]. Both precious metal powders; and precious metal powders based on these precious metals are included. Here, the “noble metal powder containing a noble metal as a main component (main component)” contains at least 50% by mass or more of the above noble metal.

本発明の除去対象である不純物ガスとは、貴金属粉末中に含まれる酸素O、窒素N、塩素Clなど(特に、酸素)を意味する。本発明によれば、酸素を、例えば、0.1質量%以下に低減した貴金属粉末を製造できる。   The impurity gas to be removed in the present invention means oxygen O, nitrogen N, chlorine Cl, etc. (especially oxygen) contained in the noble metal powder. According to the present invention, a noble metal powder in which oxygen is reduced to, for example, 0.1% by mass or less can be produced.

加熱炉に供給する上記貴金属粉末の平均粒径(50%粒子径)は、おおむね、1〜500μmであることが好ましく、より好ましくは5〜50μmである。すなわち、本発明の方法は、このような粒径を有する貴金属粉末を熱処理するのに好適な方法である。なお、貴金属粉末の粒径は、マイクロトラック粒度分布測定装置(日機装製のMT−3300exII)によって測定されたものである。この方法によれば、レーザー光を粒子に照射し、その散乱光強度のパターンから粒子径と粒度分布が計算で求められる。   The average particle size (50% particle size) of the noble metal powder supplied to the heating furnace is preferably about 1 to 500 μm, more preferably 5 to 50 μm. That is, the method of the present invention is a suitable method for heat-treating noble metal powder having such a particle size. In addition, the particle size of the noble metal powder is measured by a microtrack particle size distribution measuring device (MT-3300exII manufactured by Nikkiso). According to this method, a particle is irradiated with laser light, and the particle diameter and particle size distribution are obtained by calculation from the scattered light intensity pattern.

以下、図1の加熱冷却装置を参照しながら、本発明の製造方法を詳しく説明する。図1は、本発明に好ましく用いられる装置の一例であって、本発明の方法はこれに限定する趣旨では決してない。   Hereinafter, the manufacturing method of the present invention will be described in detail with reference to the heating and cooling apparatus of FIG. FIG. 1 shows an example of an apparatus preferably used in the present invention, and the method of the present invention is not intended to be limited to this.

図1の装置は、加熱炉内を貴金属粉末が自由落下する縦型加熱炉(落下式加熱炉)を備えている。これにより、加熱炉の上部から下部に向って気体の下降流が形成され、貴金属粉末の分散状態を調整し易くなる。   The apparatus of FIG. 1 includes a vertical heating furnace (falling type heating furnace) in which precious metal powder freely falls in the heating furnace. Thereby, a downward flow of gas is formed from the upper part to the lower part of the heating furnace, and it becomes easy to adjust the dispersion state of the noble metal powder.

詳細には、図1の加熱冷却装置は、加熱炉2に貴金属粉末を供給するための供給部1と、供給された貴金属粉末を加熱するための加熱炉2と、加熱された貴金属粉末を冷媒3aに接触させるための冷却部3と、加熱炉2の下部に気体を吸引する気体吸引部4と、加熱炉2の上部に気体を導入するための気体導入口2aと、を備えている。気体吸引部4は、加熱炉2と冷却部3との間に経路11を介して接続されている。気体導入口2aから加熱炉2内に供給された気体は、気体吸引部4により、加熱炉2の上部から下部に向かって下降流2bが強制的に形成され、経路11を通って系外へ排出される。   In detail, the heating and cooling apparatus of FIG. 1 includes a supply unit 1 for supplying noble metal powder to the heating furnace 2, a heating furnace 2 for heating the supplied noble metal powder, and the heated noble metal powder as a refrigerant. The cooling part 3 for making it contact 3a, the gas suction part 4 which attracts | sucks gas to the lower part of the heating furnace 2, and the gas inlet 2a for introducing gas into the upper part of the heating furnace 2 are provided. The gas suction unit 4 is connected between the heating furnace 2 and the cooling unit 3 via a path 11. The gas supplied into the heating furnace 2 from the gas introduction port 2a is forced to form a downward flow 2b from the upper part to the lower part of the heating furnace 2 by the gas suction part 4, and passes through the path 11 to the outside of the system. Discharged.

まず、供給部1に貴金属粉末を供給する。供給部1は、フィーダーを用いることが好ましい。フィーダーの使用により、貴金属粉末を均一な速度で加熱炉2内に投入することができる。フィーダーとしては、多段式フィーダーを用いることが好ましく、最終段のフィーダーのホッパー部に供給される貴金属粉末の量を一定に保つことによって、加熱炉2内へ貴金属粉末を一定速度で投入できる。具体的には、例えば、スクリューフィーダーと振動フィーダーの2段式フィーダーや、振動フィーダーを2つ搭載した2段式フィーダーなどが好ましく用いられる。特に、前者の2段式フィーダーを用いて貴金属粉末を投入すれば、スクリューフィーダーによる二次粒子の解砕と振動フィーダーによる粉末の分散を同時に達成できるため、最も好ましい。   First, the noble metal powder is supplied to the supply unit 1. The supply unit 1 preferably uses a feeder. By using the feeder, the noble metal powder can be put into the heating furnace 2 at a uniform speed. As the feeder, it is preferable to use a multistage feeder, and the noble metal powder can be introduced into the heating furnace 2 at a constant speed by keeping the amount of the noble metal powder supplied to the hopper of the final stage feeder constant. Specifically, for example, a two-stage feeder including a screw feeder and a vibration feeder, a two-stage feeder equipped with two vibration feeders, and the like are preferably used. In particular, if the noble metal powder is introduced using the former two-stage feeder, it is most preferable because the secondary particles can be crushed by the screw feeder and the powder can be dispersed by the vibration feeder.

更に気体導入口2aから気体を加熱炉2内に導入する。本発明に用いられる気体の種類は特に限定されず、空気でもよいし、非酸化性ガス(例えば、窒素ガスやアルゴンガスなど)や還元性ガス(例えば、水素ガスなど)でも良い。或いは、これらの混合ガスでも良い。   Further, gas is introduced into the heating furnace 2 from the gas inlet 2a. The kind of gas used in the present invention is not particularly limited, and may be air, non-oxidizing gas (for example, nitrogen gas or argon gas) or reducing gas (for example, hydrogen gas). Alternatively, a mixed gas of these may be used.

次に、供給部1に投入された貴金属粉末を加熱炉2に投入する。   Next, the noble metal powder charged into the supply unit 1 is charged into the heating furnace 2.

貴金属粉末の分散状態を適切に制御するため、上述したように、加熱炉2への貴金属粉末の投入速度を制御したり、気体の流速を適切に制御することが好ましい。   In order to appropriately control the dispersion state of the noble metal powder, it is preferable to control the charging speed of the noble metal powder into the heating furnace 2 or the gas flow rate as described above.

加熱炉2の温度は500〜1200℃とするのがよい。加熱温度が500℃未満では、貴金属粉末中の不純物ガスを充分に低減できない。一方、加熱温度が1200℃を超えると加熱昇温速度との相関もあるが、特殊なヒーターを設定したり、ヒートショック対策を新たに講じる必要があるなど、設備が複雑になり経済性が悪くなる。加熱炉2の好ましい温度は700℃以上、1150℃以下であり、800℃以上、1100℃以下がより好ましい。   The temperature of the heating furnace 2 is preferably 500 to 1200 ° C. When the heating temperature is less than 500 ° C., the impurity gas in the noble metal powder cannot be sufficiently reduced. On the other hand, if the heating temperature exceeds 1200 ° C, there is a correlation with the heating rate, but it is necessary to set a special heater or to take new measures against heat shock. Become. The preferable temperature of the heating furnace 2 is 700 ° C. or higher and 1150 ° C. or lower, and more preferably 800 ° C. or higher and 1100 ° C. or lower.

なお、加熱時間は、処理する貴金属粉末の量や不純物ガス濃度、加熱炉のサイズなどによっても相違し、一律に規定することは困難であるが、おおむね、数秒から10数秒の範囲に制御することが好ましい。   The heating time differs depending on the amount of precious metal powder to be processed, the impurity gas concentration, the size of the heating furnace, and the like, and it is difficult to define it uniformly, but it is generally controlled within the range of several seconds to several tens of seconds. Is preferred.

また、加熱炉2の入口から、上記の加熱炉温度(500〜1200℃)に達するまでの平均昇温速度(℃/秒)を適切に制御することが好ましい。   Moreover, it is preferable to appropriately control the average rate of temperature rise (° C./second) from the entrance of the heating furnace 2 to the above-mentioned heating furnace temperature (500 to 1200 ° C.).

上記の平均昇温速度は、加熱炉内の均熱領域(加熱炉温度±10℃の領域)における温度と加熱炉の入口における温度との差(℃)を、加熱炉の入り口から、加熱炉内の均熱領域に達するまでの距離を通過するのに要した時間t(秒)で、割って算出される計算値である。好ましくは100〜2000℃/秒とする。   The above average heating rate is the difference (° C.) between the temperature in the soaking area (heating furnace temperature ± 10 ° C.) in the heating furnace and the temperature at the inlet of the heating furnace from the entrance of the heating furnace. It is a calculated value calculated by dividing by the time t (seconds) required to pass through the distance to reach the soaking area. Preferably, it is 100 to 2000 ° C./second.

上記の平均昇温速度が2000℃/秒を超えるように制御しようとすると、炉の入口から均熱温度領域に達するまでの距離を短くしなければならず、当該速度を達成するために特別なヒーターを設定したり、ヒートショック対策を新たに講じる必要があるなど、設備が複雑となる。一方、上記の平均昇温速度を100℃/秒未満に制御しようとすると、加熱炉2の炉長を長くしなければならず、設備費用の増大、設置場所の問題などが生じる。   If the average heating rate is controlled to exceed 2000 ° C./second, the distance from the furnace inlet to the soaking temperature region must be shortened, and a special speed is required to achieve the speed. The equipment becomes complicated, such as the need to set a heater and take new measures against heat shock. On the other hand, if it is attempted to control the above average heating rate to less than 100 ° C./second, the furnace length of the heating furnace 2 must be increased, resulting in an increase in equipment costs and a problem in installation location.

具体的には、上記平均昇温速度の範囲は、装置の簡便性や経済性などを適宜考慮し、上記の範囲のなかから、貴金属粉末の種類や粒度分布、不純物ガス濃度などに応じて、適宜適切な速度を設定すれば良い。   Specifically, the range of the average rate of temperature increase is appropriately considered in terms of the simplicity and economy of the apparatus, and from the above range, depending on the type and particle size distribution of the noble metal powder, the impurity gas concentration, An appropriate speed may be set as appropriate.

このようにして加熱処理された貴金属粉末は、熱処理の前後で粒度分布の変化がなく、当該粉末中の不純物ガス濃度も低減されたものとなっている。   The heat-treated noble metal powder has no change in particle size distribution before and after the heat treatment, and the impurity gas concentration in the powder is also reduced.

次いで、加熱処理後の貴金属粉末を、直ちに冷却部3に投入し、冷媒3aと接触させることによって急速冷却する。これにより上記の分散状態を保ったまま貴金属粉末が一気に冷却されるため、加熱後の貴金属粉末の状態がそのまま維持され、所望の粉末が得られる。すなわち、冷媒3aを用いずに空気中で放冷などを行なうと、放冷中に粉末同士が固着したり余熱によって粉末の焼結が起こり、貴金属粉末の粒度分布が変化するほか、空気中の酸素によって貴金属粉末の酸素量が増大する(後記する実施例の欄を参照)が、本発明の方法によれば、これらの問題は見られない。   Next, the precious metal powder after the heat treatment is immediately put into the cooling unit 3 and rapidly cooled by being brought into contact with the refrigerant 3a. As a result, the precious metal powder is cooled at once while maintaining the above dispersion state, so that the state of the precious metal powder after heating is maintained as it is, and a desired powder is obtained. That is, if the cooling is performed in the air without using the refrigerant 3a, the powders are fixed to each other during the cooling or the powder is sintered by the residual heat, and the particle size distribution of the noble metal powder is changed. Oxygen increases the amount of oxygen in the noble metal powder (see Examples below), but according to the method of the present invention, these problems are not observed.

冷却部3内の冷媒3aの温度は、例えば、5〜40℃程度とすればよい。   What is necessary is just to set the temperature of the refrigerant | coolant 3a in the cooling unit 3 to about 5-40 degreeC, for example.

冷却部3に用いられる冷媒3aとしては、水が好適に用いられる。水以外の冷媒を用いると、冷却過程で冷媒中に含まれる余分な元素が貴金属粉末に混入するなどし、不純物濃度が上昇する恐れがあるからである。例えば、冷媒3aとして油を用いると、油に含まれるC(炭素)が不純物として貴金属粉末に混入する恐れがある。また、油を用いた場合には、別途洗浄工程が必要となるが、水を用いれば、洗浄処理は不要であり、そのまま乾燥させれば良いなど、生産性が向上する。   Water is preferably used as the refrigerant 3a used in the cooling unit 3. This is because if a refrigerant other than water is used, excess elements contained in the refrigerant may be mixed into the noble metal powder during the cooling process, and the impurity concentration may increase. For example, when oil is used as the refrigerant 3a, C (carbon) contained in the oil may be mixed into the noble metal powder as an impurity. In addition, when oil is used, a separate cleaning step is required. However, when water is used, the cleaning process is unnecessary, and the productivity can be improved by drying it as it is.

乾燥に当たっては、乾燥時に不純物ガス濃度が上昇することがないように留意する必要がある。具体的には、過度の加熱は避け、例えば、150℃以下で乾燥することが好ましい。また、貴金属粉末の種類によっては、不活性ガス雰囲気で乾燥させることがより好ましい。   In drying, care must be taken so that the impurity gas concentration does not increase during drying. Specifically, avoiding excessive heating, for example, drying at 150 ° C. or lower is preferable. Moreover, it is more preferable to dry in an inert gas atmosphere depending on the kind of noble metal powder.

以下、実施例を挙げて本発明をより具体的に説明するが、本発明は下記実施例によって制限されず、前・後記の趣旨に適合し得る範囲で適切な変更を加えて実施することも可能であり、それらはいずれも本発明の技術的範囲に包含される。   Hereinafter, the present invention will be described in more detail with reference to examples. However, the present invention is not limited by the following examples, and may be implemented with appropriate modifications within a range that can meet the purpose described above and below. All of these are possible within the scope of the present invention.

以下の実験例1〜6では、図1の加熱冷却装置を用い、原料粉末の種類、粉末の投入量、気体の流速などを変えて実験を行なった。   In the following Experimental Examples 1 to 6, experiments were performed using the heating and cooling apparatus of FIG.

詳細には、以下の実験例に用いた加熱冷却装置は、供給部1として、一段目にスクリューフィーダー、二段目に振動フィーダーを有する二段式のフィーダーを備えており、冷却部3として水槽を用いたものである。水槽の温度は約10〜30℃である。   In detail, the heating and cooling apparatus used in the following experimental examples includes a two-stage feeder having a screw feeder in the first stage and a vibration feeder in the second stage as the supply section 1, and a water tank as the cooling section 3. Is used. The temperature of the water tank is about 10-30 ° C.

また、実験例1〜6のうち、実験例1および5はPt粉末を、実験例2および4はPd粉末を、実験例3および6はAg−Pd合金粉末を、それぞれ用いた例である。なお、実験例4は冷却部3として水槽を用いない例であり、実験例5は気体吸引部4を用いない例であり、実験例6は加熱炉2へ供給する貴金属粉末量を過剰にした例である。   Of Experimental Examples 1 to 6, Experimental Examples 1 and 5 are examples using Pt powder, Experimental Examples 2 and 4 are Pd powder, and Experimental Examples 3 and 6 are Ag-Pd alloy powders. Experimental Example 4 is an example in which a water tank is not used as the cooling unit 3, Experimental Example 5 is an example in which the gas suction unit 4 is not used, and Experimental Example 6 has an excessive amount of noble metal powder supplied to the heating furnace 2. It is an example.

[実験例1(発明例:Pt粉末)]
実験例1に用いた貴金属粉末(Pt粉末)の詳細は以下のとおりである。
粒度分布:10%粒子径3.4μm、50%粒子径13μm、90%粒子径23μm
(以上、マイクロトラック粒度分布測定装置による測定結果である。)
不純物ガス濃度:O(酸素)0.9質量%、N(窒素)0.3質量%、Cl(塩素)0.06質量%
(以上、OとNは堀場製作所製「EMGA−620W」による測定結果であり、Clはダイアインスツルメンツ製「自動試料焼成装置AQF−100」に日本ダイオネクス製「イオンクロマト ICS−1500」を組み合わせて測定した結果である。)
[Experimental Example 1 (Invention Example: Pt powder)]
The details of the noble metal powder (Pt powder) used in Experimental Example 1 are as follows.
Particle size distribution: 10% particle size 3.4 μm, 50% particle size 13 μm, 90% particle size 23 μm
(The above is the measurement result by the microtrack particle size distribution measuring device.)
Impurity gas concentration: O (oxygen) 0.9 mass%, N (nitrogen) 0.3 mass%, Cl (chlorine) 0.06 mass%
(O and N are measurement results using “EMGA-620W” manufactured by HORIBA, Ltd., and Cl is measured by combining “Automatic Sample Baking Device AQF-100” manufactured by Dia Instruments with “Ion Chromatograph ICS-1500” manufactured by Nippon Dionex. Is the result.

上記のPt粉末を二段式フィーダーに入れ、気体導入部2aから加熱炉2へ空気を導入して、以下の条件で加熱及び冷却を行なった。
加熱炉でのPt粉末量:300g/m3
加熱炉内の加熱温度 :900℃
加熱時の平均昇温速度:300℃/秒
空気の流速 :0.8cm/秒
The Pt powder was put into a two-stage feeder, air was introduced from the gas introduction part 2a to the heating furnace 2, and heating and cooling were performed under the following conditions.
Pt powder amount in the heating furnace: 300 g / m 3
Heating temperature in the heating furnace: 900 ° C
Average heating rate during heating: 300 ° C./second Air flow rate: 0.8 cm / second

水槽で冷却したPt粉末をろ過して固液分離し、得られたPt粉末を空気雰囲気下、120℃で3時間乾燥した。Pt粉末の回収率は98%であった。   The Pt powder cooled in the water bath was filtered and solid-liquid separated, and the obtained Pt powder was dried at 120 ° C. for 3 hours in an air atmosphere. The recovery rate of Pt powder was 98%.

上記熱処理後のPt粉末の詳細は以下のとおりである(測定条件は、熱処理前と同じ。)。本発明の熱処理法を用いれば、酸素、窒素、塩素の全ての不純物ガス濃度が熱処理前に比べて低減されており、且つ、熱処理の前後で粒度分布の変化は殆ど見られなかった。
粒度分布:10%粒子径4.1μm、50%粒子径13μm、90%粒子径25μm
不純物ガス濃度:O(酸素)0.07質量%、N(窒素)0.03質量%、Cl(塩素)0.02質量%
The details of the Pt powder after the heat treatment are as follows (measurement conditions are the same as before the heat treatment). When the heat treatment method of the present invention was used, the concentration of all impurity gases of oxygen, nitrogen and chlorine was reduced as compared with that before the heat treatment, and almost no change in the particle size distribution was observed before and after the heat treatment.
Particle size distribution: 10% particle size 4.1 μm, 50% particle size 13 μm, 90% particle size 25 μm
Impurity gas concentration: O (oxygen) 0.07 mass%, N (nitrogen) 0.03 mass%, Cl (chlorine) 0.02 mass%

[実験例2(発明例:Pd粉末)]
実験例2に用いた貴金属粉末(Pd粉末)の詳細は以下のとおりである。測定条件は、実験例1と同じである。
粒度分布:10%粒子径2.5μm、50%粒子径10μm、90%粒子径75μm
不純物ガス濃度:O(酸素)0.2質量%
[Experimental example 2 (Invention example: Pd powder)]
The details of the noble metal powder (Pd powder) used in Experimental Example 2 are as follows. The measurement conditions are the same as in Experimental Example 1.
Particle size distribution: 10% particle size 2.5 μm, 50% particle size 10 μm, 90% particle size 75 μm
Impurity gas concentration: O (oxygen) 0.2% by mass

上記のPd粉末を二段式フィーダーに入れ、気体導入部2aから加熱炉2へ空気を導入して、以下の条件で加熱及び冷却を行なった。
加熱炉でのPd粉末量:150g/m3
加熱炉内の加熱温度 :1100℃
加熱時の平均昇温速度:800℃/秒
空気の流速 :2cm/秒
The Pd powder was put into a two-stage feeder, air was introduced from the gas introduction part 2a to the heating furnace 2, and heating and cooling were performed under the following conditions.
Pd powder amount in heating furnace: 150 g / m 3
Heating temperature in the heating furnace: 1100 ° C
Average heating rate during heating: 800 ° C./second Air flow rate: 2 cm / second

水槽で冷却したPd粉末をろ過して固液分離し、得られたPd粉末をアルゴン雰囲気下、100℃で5時間かけて乾燥した。Pd粉末の回収率は99%であった。   The Pd powder cooled in the water bath was filtered and solid-liquid separated, and the obtained Pd powder was dried at 100 ° C. for 5 hours in an argon atmosphere. The recovery rate of Pd powder was 99%.

上記熱処理後のPd粉末の詳細は以下のとおりである(測定条件は、熱処理前と同じ。)。本発明の熱処理法を用いれば、酸素濃度が熱処理前に比べて低減されており、且つ、熱処理の前後で粒度分布の変化は殆んど見られなかった。
粒度分布:10%粒子径2.7μm、50%粒子径10μm、90%粒子径75μm
不純物ガス濃度:O(酸素)<0.05質量%
The details of the Pd powder after the heat treatment are as follows (measurement conditions are the same as before the heat treatment). When the heat treatment method of the present invention was used, the oxygen concentration was reduced as compared with that before the heat treatment, and almost no change in the particle size distribution was observed before and after the heat treatment.
Particle size distribution: 10% particle size 2.7 μm, 50% particle size 10 μm, 90% particle size 75 μm
Impurity gas concentration: O (oxygen) <0.05% by mass

[実験例3(発明例:Ag−Pd合金粉末)]
実験例3に用いた貴金属粉末(Ag20質量%、Pd80質量%のAg−Pd合金粉末)の詳細は以下のとおりである。測定条件は、実験例1と同じである。
粒度分布:10%粒子径1.2μm、50%粒子径3.7μm、90%粒子径7.0μm
不純物ガス濃度:O(酸素)0.5質量%
[Experimental Example 3 (Invention Example: Ag-Pd Alloy Powder)]
The details of the noble metal powder (Ag 20 wt%, Pd 80 wt% Ag—Pd alloy powder) used in Experimental Example 3 are as follows. The measurement conditions are the same as in Experimental Example 1.
Particle size distribution: 10% particle size 1.2 μm, 50% particle size 3.7 μm, 90% particle size 7.0 μm
Impurity gas concentration: O (oxygen) 0.5% by mass

上記のAg−Pd合金粉末を二段式フィーダーに入れ、気体導入部2aから加熱炉2へ空気を導入して、以下の条件で加熱及び冷却を行なった。
加熱炉でのAg−Pd合金粉末量:40g/m3
加熱炉内の加熱温度 :1000℃
加熱時の平均昇温速度 :1200℃/秒
空気の流速 :3cm/秒
The above Ag—Pd alloy powder was put into a two-stage feeder, air was introduced into the heating furnace 2 from the gas introduction part 2a, and heating and cooling were performed under the following conditions.
Ag—Pd alloy powder amount in heating furnace: 40 g / m 3
Heating temperature in the heating furnace: 1000 ° C
Average heating rate during heating: 1200 ° C./sec Air flow rate: 3 cm / sec

水槽で冷却したAg−Pd合金粉末をろ過して固液分離し、得られた粉末を実験例1と同様にして乾燥した。Ag−Pd合金粉末の回収率は98%であった。   The Ag—Pd alloy powder cooled in the water bath was filtered and solid-liquid separated, and the obtained powder was dried in the same manner as in Experimental Example 1. The recovery rate of the Ag—Pd alloy powder was 98%.

上記熱処理後のAg−Pd合金粉末の詳細は以下のとおりである(測定条件は、熱処理前と同じ)。本発明の熱処理法を用いれば、酸素濃度が熱処理前に比べて低減されており、且つ、熱処理の前後で粒度分布の変化は殆んど見られなかった。
粒度分布:10%粒子径1.5μm、50%粒子径4.0μm、90%粒子径8.2μm
不純物ガス濃度:O(酸素)<0.05質量%
The details of the Ag—Pd alloy powder after the heat treatment are as follows (the measurement conditions are the same as before the heat treatment). When the heat treatment method of the present invention was used, the oxygen concentration was reduced as compared with that before the heat treatment, and almost no change in the particle size distribution was observed before and after the heat treatment.
Particle size distribution: 10% particle size 1.5 μm, 50% particle size 4.0 μm, 90% particle size 8.2 μm
Impurity gas concentration: O (oxygen) <0.05% by mass

[実験例4(比較例:Pd粉末)]
実験例4では、上記実験例2と同じPd粉末を用い、冷却部3として水槽を用いずに加熱炉の下部に設けた堆積槽に加熱後のPd粉末を回収したこと以外は、実験例2と同様にして熱処理を行なった。Pd粉末の回収率は98%であった。
[Experimental Example 4 (Comparative Example: Pd powder)]
In Experimental Example 4, the same Pd powder as in Experimental Example 2 was used, and the Pd powder after heating was collected in a deposition tank provided at the lower part of the heating furnace without using a water tank as the cooling unit 3. Heat treatment was performed in the same manner as described above. The recovery rate of Pd powder was 98%.

熱処理後のPd粉末の詳細は以下のとおりである(測定条件は、熱処理前と同じ。)。水による冷却を行なわない実験例4では、熱処理後の酸素濃度は変化しなかった。これは、加熱処理によって酸素量が低減されたにもかかわらず、加熱後、堆積槽に上記粉末が滞留する間に、空気中の酸素を取り込んだためと考えられる。また、熱処理後に粉末の粒径が大きくなったのは、加熱後、堆積槽に上記粉末が滞留する間に、余熱によって粉末同士が凝集したためと推察される。
粒度分布:10%粒子径20μm、50%粒子径100μm、90%粒子径450μm
不純物ガス濃度:O(酸素)0.2質量%
The details of the Pd powder after the heat treatment are as follows (measurement conditions are the same as before the heat treatment). In Experimental Example 4 in which cooling with water was not performed, the oxygen concentration after the heat treatment did not change. This is considered to be because oxygen in the air was taken in while the powder stayed in the deposition tank after the heating even though the amount of oxygen was reduced by the heat treatment. The reason why the particle size of the powder increased after the heat treatment is presumed to be that the powder aggregated due to residual heat while the powder stayed in the deposition tank after heating.
Particle size distribution: 10% particle size 20 μm, 50% particle size 100 μm, 90% particle size 450 μm
Impurity gas concentration: O (oxygen) 0.2% by mass

[実験例5(比較例:Pt粉末)]
実験例5では、上記実験例1と同じPt粉末を用い、気体吸引部4を有しない加熱冷却装置を用いてPt粉末を回収したこと以外は、実験例1と同様にして熱処理を行なった。Pt粉末の回収率は95%であった。
[Experimental Example 5 (Comparative Example: Pt powder)]
In Experimental Example 5, the same Pt powder as in Experimental Example 1 was used, and heat treatment was performed in the same manner as in Experimental Example 1 except that the Pt powder was recovered using a heating and cooling device that did not have the gas suction unit 4. The recovery rate of Pt powder was 95%.

熱処理後のPt粉末の詳細は以下のとおりである(測定条件は、熱処理前と同じ。)。気体吸引部4による吸引を行なわない実験例5では、不純物ガス濃度は低減されたものの、熱処理後の粒径が大きくなった。また、実験例1に比べてPt粉末の回収率も低下した。このように熱処理前後の粒度分布が変化し、Pt粉末の回収率が低下した理由は、一部の微粉末成分が、加熱炉2内に発生した上昇流に伴って系外へ排出されたためと考えられる。また、熱処理後に粉末の粒径が大きくなったのは、加熱炉2内での滞留時間にバラツキが生じ、長時間滞留した粉末が焼結したためと考えられる。
粒度分布:10%粒子径14μm、50%粒子径30μm、90%粒子径50μm
不純物ガス濃度:O(酸素)<0.05質量%、N(窒素)0.02質量%、Cl(塩素)0.01質量%
The details of the Pt powder after the heat treatment are as follows (measurement conditions are the same as before the heat treatment). In Experimental Example 5 in which the suction by the gas suction unit 4 was not performed, the impurity gas concentration was reduced, but the particle size after the heat treatment was increased. In addition, the recovery rate of Pt powder was lower than that in Experimental Example 1. The reason why the particle size distribution before and after the heat treatment is changed and the recovery rate of the Pt powder is thus reduced is that some fine powder components are discharged out of the system along with the upward flow generated in the heating furnace 2. Conceivable. In addition, it is considered that the particle size of the powder increased after the heat treatment because the residence time in the heating furnace 2 varied and the powder retained for a long time was sintered.
Particle size distribution: 10% particle size 14 μm, 50% particle size 30 μm, 90% particle size 50 μm
Impurity gas concentration: O (oxygen) <0.05 mass%, N (nitrogen) 0.02 mass%, Cl (chlorine) 0.01 mass%

[実験例6(比較例:Ag−Pd合金粉末)]
実験例6では、上記実験例3と同じAg−Pd合金粉末を用い、加熱炉2へ供給するAg−Pd合金粉末量が1200g/m3となるように調整してAg−Pd合金粉末を回収したこと以外は、実験例3と同様にして熱処理を行なった。Ag−Pd合金粉末の回収率は98%であった。
[Experimental Example 6 (Comparative Example: Ag—Pd Alloy Powder)]
In Experimental Example 6, the same Ag—Pd alloy powder as in Experimental Example 3 was used, and the amount of Ag—Pd alloy powder supplied to the heating furnace 2 was adjusted to 1200 g / m 3 to collect the Ag—Pd alloy powder. Except that, heat treatment was performed in the same manner as in Experimental Example 3. The recovery rate of the Ag—Pd alloy powder was 98%.

熱処理後のAg−Pd合金粉末の詳細は以下のとおりである(測定条件は、熱処理前と同じ。)。加熱炉2に投入したAg−Pd合金粉末量が多い実験例6では、不純物ガス濃度は低減されたものの、熱処理後の粒径が大きくなった。これは、加熱炉2に投入する粉末量が多かったため、加熱炉2内で粉末同士の接触が起こり、焼結したためと考えられる。
粒度分布:10%粒子径3.5μm、50%粒子径10μm、90%粒子径21μm
不純物ガス濃度:O(酸素)0.1質量%
The details of the Ag—Pd alloy powder after the heat treatment are as follows (measurement conditions are the same as before the heat treatment). In Experimental Example 6 in which the amount of Ag—Pd alloy powder charged into the heating furnace 2 was large, the impurity gas concentration was reduced, but the particle size after the heat treatment was increased. This is presumably because the amount of powder charged into the heating furnace 2 was large, so that the powders contacted each other in the heating furnace 2 and sintered.
Particle size distribution: 10% particle size 3.5 μm, 50% particle size 10 μm, 90% particle size 21 μm
Impurity gas concentration: O (oxygen) 0.1% by mass

1 供給部
2 加熱炉
2a 気体導入口
2b 下降流
3 冷却部
3a 冷媒
4 気体吸引部
11 経路
DESCRIPTION OF SYMBOLS 1 Supply part 2 Heating furnace 2a Gas inlet 2b Downflow 3 Cooling part 3a Refrigerant 4 Gas suction part 11 Path | route

Claims (5)

不純物ガス濃度を低減した貴金属粉末を製造する方法であって、
加熱炉に貴金属を主体とする貴金属粉末を供給し、該貴金属粉末を気体中に分散させた状態で加熱した後、更に分散させた状態のまま冷媒に接触させることを特徴とする貴金属粉末の製造方法。
A method for producing a noble metal powder with reduced impurity gas concentration,
Supplying a precious metal powder mainly composed of a precious metal to a heating furnace, heating the precious metal powder in a state of being dispersed in a gas, and then bringing the precious metal powder into contact with a refrigerant in a dispersed state. Method.
前記加熱炉内には、加熱炉の上部から下部に向かって気体の下降流が形成されている請求項1に記載の製造方法。   The manufacturing method according to claim 1, wherein a gas downward flow is formed in the heating furnace from the upper part to the lower part of the heating furnace. 前記加熱炉の下部に設けた気体吸引部によって前記加熱炉内の気体を吸引する請求項2に記載の製造方法。   The manufacturing method of Claim 2 which attracts | sucks the gas in the said heating furnace with the gas suction part provided in the lower part of the said heating furnace. 前記貴金属粉末を、500〜1200℃で加熱する請求項1〜3のいずれかに記載の製造方法。   The manufacturing method in any one of Claims 1-3 which heat the said noble metal powder at 500-1200 degreeC. 前記貴金属粉末は、白金またはパラジウムを主体とする粉末である請求項1〜4のいずれかに記載の製造方法。   The manufacturing method according to claim 1, wherein the noble metal powder is a powder mainly composed of platinum or palladium.
JP2009056878A 2009-03-10 2009-03-10 Method for producing noble metal powder Active JP5345421B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009056878A JP5345421B2 (en) 2009-03-10 2009-03-10 Method for producing noble metal powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009056878A JP5345421B2 (en) 2009-03-10 2009-03-10 Method for producing noble metal powder

Publications (2)

Publication Number Publication Date
JP2010209412A true JP2010209412A (en) 2010-09-24
JP5345421B2 JP5345421B2 (en) 2013-11-20

Family

ID=42969880

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009056878A Active JP5345421B2 (en) 2009-03-10 2009-03-10 Method for producing noble metal powder

Country Status (1)

Country Link
JP (1) JP5345421B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107159876A (en) * 2016-03-07 2017-09-15 德国贺利氏有限两合公司 Noble metal powder and its manufacture part in purposes

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62177134A (en) * 1986-01-30 1987-08-04 Toshiba Corp Treatment of metallic member having high melting point
JPH04246102A (en) * 1991-01-29 1992-09-02 Daido Steel Co Ltd Method for cleaning surface of pulverized metal powder
JPH05203368A (en) * 1992-01-24 1993-08-10 Showa Kiyabotsuto Suupaa Metal Kk Raw material charging device for hermetic furnace
JPH063050A (en) * 1992-06-16 1994-01-11 Nitto Chem Ind Co Ltd Drying method of powder material
JP2001294922A (en) * 2000-04-18 2001-10-26 Midrex Internatl Bv Device for supplying raw material and method for producing reduced iron
JP2003139469A (en) * 2001-11-02 2003-05-14 Sukegawa Electric Co Ltd Free fall type heat treatment method and heat treatment furnace
JP2008145004A (en) * 2006-12-07 2008-06-26 Tokai Konetsu Kogyo Co Ltd Vertical baking furnace and baking method using the same
JP2010007105A (en) * 2008-06-25 2010-01-14 Mitsui Mining & Smelting Co Ltd Method for producing particle of highly crystalline metal or metal oxide

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62177134A (en) * 1986-01-30 1987-08-04 Toshiba Corp Treatment of metallic member having high melting point
JPH04246102A (en) * 1991-01-29 1992-09-02 Daido Steel Co Ltd Method for cleaning surface of pulverized metal powder
JPH05203368A (en) * 1992-01-24 1993-08-10 Showa Kiyabotsuto Suupaa Metal Kk Raw material charging device for hermetic furnace
JPH063050A (en) * 1992-06-16 1994-01-11 Nitto Chem Ind Co Ltd Drying method of powder material
JP2001294922A (en) * 2000-04-18 2001-10-26 Midrex Internatl Bv Device for supplying raw material and method for producing reduced iron
JP2003139469A (en) * 2001-11-02 2003-05-14 Sukegawa Electric Co Ltd Free fall type heat treatment method and heat treatment furnace
JP2008145004A (en) * 2006-12-07 2008-06-26 Tokai Konetsu Kogyo Co Ltd Vertical baking furnace and baking method using the same
JP2010007105A (en) * 2008-06-25 2010-01-14 Mitsui Mining & Smelting Co Ltd Method for producing particle of highly crystalline metal or metal oxide

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107159876A (en) * 2016-03-07 2017-09-15 德国贺利氏有限两合公司 Noble metal powder and its manufacture part in purposes
CN107159876B (en) * 2016-03-07 2019-11-19 德国贺利氏有限两合公司 Noble metal powder and its purposes in manufacture component
US10744590B2 (en) 2016-03-07 2020-08-18 Haraeus Deutschland Gmbh & Co. Kg Noble-metal powder and the use thereof for producing components

Also Published As

Publication number Publication date
JP5345421B2 (en) 2013-11-20

Similar Documents

Publication Publication Date Title
US7931836B2 (en) Method for making high purity and free flowing metal oxides powder
EP0662521B1 (en) Method for making silver-palladium alloy powders by areosol decomposition
TWI818949B (en) Method for producing fine particles and fine particles
JP4789198B2 (en) Lead-free solder alloy
JP2009285537A (en) Method for producing fine particle and production apparatus to be used therein
TW201841702A (en) Copper particles and manufacturing method therefor
JPH09125107A (en) Production of gold particle by aerosol decomposition
JP2004091843A (en) Manufacturing method of high purity high melting point metal powder
JP5345421B2 (en) Method for producing noble metal powder
JP6453735B2 (en) Method for producing noble metal powder
CN112204159B (en) Method for selectively oxidizing metal of alloy
JPH05214410A (en) Metallic powder in the form of microcrystals, spheres and dense particles, binary and ternary metallic alloy powder and process and apparatus for producing same
JPH0217485B2 (en)
JP4042095B2 (en) High purity metal powder manufacturing method and high purity metal powder manufacturing apparatus
RU2616920C2 (en) Method for obtaining the nanopowder of titanide hydride
JP2021080549A (en) Copper powder and method for manufacturing the same
WO2012124840A1 (en) Method for manufacturing titanium powder for manufacturing oxide-dispersion strengthening-type titanium material
JP2010196118A (en) Method for producing nickel powder
TW202305148A (en) Method for recovering platinum group element
JP4817307B2 (en) Granular semiconductor manufacturing method and manufacturing apparatus
JP5408054B2 (en) Method for producing ceramic beads having a smooth surface
JP5354398B2 (en) True spherical fine powder
JP2002180112A (en) Method for manufacturing high melting point metal powder material
JP5574295B2 (en) High purity silicon fine powder production equipment
JP6221182B2 (en) Inorganic spheroidized particle manufacturing apparatus and inorganic spheroidized particle manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120125

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130513

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130521

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130718

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130806

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130814

R150 Certificate of patent or registration of utility model

Ref document number: 5345421

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250