JP2010209288A - Water-soluble composite material containing titanium oxide, and manufacturing method thereof - Google Patents

Water-soluble composite material containing titanium oxide, and manufacturing method thereof Download PDF

Info

Publication number
JP2010209288A
JP2010209288A JP2009059795A JP2009059795A JP2010209288A JP 2010209288 A JP2010209288 A JP 2010209288A JP 2009059795 A JP2009059795 A JP 2009059795A JP 2009059795 A JP2009059795 A JP 2009059795A JP 2010209288 A JP2010209288 A JP 2010209288A
Authority
JP
Japan
Prior art keywords
water
composite material
group
soluble composite
titanium oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009059795A
Other languages
Japanese (ja)
Inventor
Yoshiro Kaneko
芳郎 金子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kagoshima University NUC
Original Assignee
Kagoshima University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kagoshima University NUC filed Critical Kagoshima University NUC
Priority to JP2009059795A priority Critical patent/JP2010209288A/en
Publication of JP2010209288A publication Critical patent/JP2010209288A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Silicon Polymers (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a water-soluble composite material containing titanium oxide, and a method for manufacturing the same. <P>SOLUTION: A mixture of 3-aminopropyltrialkoxysilane represented by general formula: NH<SB>2</SB>(CH<SB>2</SB>)<SB>3</SB>Si(OL)<SB>3</SB>(wherein L denotes a group by which the OL group easily changes to an OH group in an acidic solution as a catalyst), and a titanium alkoxide represented by general formula: Ti(OL)<SB>4</SB>(wherein L denotes a group by which the OL group easily changes to an OH group in an acidic solution as a catalyst) is reacted in an acidic alcohol solution. Then, the mixture is polymerization reacted in water. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、酸化チタンを含有する水溶性複合材料及びその製造方法に関する。   The present invention relates to a water-soluble composite material containing titanium oxide and a method for producing the same.

酸化チタン(TiO2)は、光触媒(非特許文献1参照)、高屈折材料(非特許文献2参照)、紫外線吸収材料(非特許文献3参照)など、幅広い分野で利用可能であることから注目されている材料である。これらの材料は、以上の用途では、数ナノメートルから数十ナノメールレベルで分散させて使用される。例えば、TiO2の光触媒効率はその表面積に依存するため、同様な結晶構造と重量のTiO2ではより細かく分散されたものの方が触媒効率が良い。また、透明プラスチック(有機ポリマー)の屈折率を向上させる目的で、有機ポリマー中にTiO2を分散させる研究が数多く行われているが、可視光の波長よりも十分に小さい粒子を凝集しないように分散させることが、透明性を維持するためには重要である。さらに、紫外線をカットする目的で化粧品等に混合する場合でも、色彩に影響を与えないように可視光が散乱しないレベルまで細かく分散させることが望まれる。以上のことから、ナノレベルまで分散し、再び凝集しないTiO2をベースとした材料の創製が望まれる。 Since titanium oxide (TiO 2 ) can be used in a wide range of fields such as a photocatalyst (see Non-Patent Document 1), a highly refractive material (see Non-Patent Document 2), and an ultraviolet absorbing material (see Non-Patent Document 3), attention is paid. It is a material that has been. In these applications, these materials are used by being dispersed at a level of several nanometers to several tens of nanomails. For example, since the photocatalytic efficiency of TiO 2 depends on its surface area, a more finely dispersed TiO 2 having the same crystal structure and weight has better catalytic efficiency. In addition, many studies have been made to disperse TiO 2 in organic polymers for the purpose of improving the refractive index of transparent plastics (organic polymers), but particles that are sufficiently smaller than the wavelength of visible light are not aggregated. Dispersion is important for maintaining transparency. Furthermore, even when it is mixed with cosmetics or the like for the purpose of cutting off ultraviolet rays, it is desired to finely disperse it to a level at which visible light is not scattered so as not to affect the color. From the above, it is desired to create a material based on TiO 2 that is dispersed to the nano level and does not aggregate again.

これまでに、TiO2粒子の表面から重合反応を行うことで、有機ポリマー鎖がグラフトしたTiO2ナノコンポジット粒子の合成が行われている(非特許文献4参照)。これは、有機ポリマーの可溶性がTiO2ナノコンポジットの分散性に寄与している。また、アミノ基を有するシランカップリング剤によってTiO2粒子の表面を修飾反応することでも、ナノ分散性を有するTiO2粒子が得られることが報告されている(非特許文献5参照)。 So far, synthesis of TiO 2 nanocomposite particles grafted with organic polymer chains has been performed by carrying out a polymerization reaction from the surface of TiO 2 particles (see Non-Patent Document 4). This is because the solubility of the organic polymer contributes to the dispersibility of the TiO 2 nanocomposite. It has also been reported that TiO 2 particles having nano-dispersibility can be obtained by modifying the surface of TiO 2 particles with a silane coupling agent having an amino group (see Non-Patent Document 5).

一方、層状チタン酸塩の剥離によって、厚さ1ナノメートルのシート状TiO2が得られることが知られており、これはアンモニウムイオンを含んだ水溶液中で良好に分散する材料である(非特許文献6参照)。 On the other hand, it is known that sheet-like TiO 2 having a thickness of 1 nanometer can be obtained by peeling off the layered titanate, which is a material that is well dispersed in an aqueous solution containing ammonium ions (non-patent document). Reference 6).

さらに、TiO2粒子やフィルム、コーティング等の前駆物質であるチタニアゾルも分散性のTiO2と言えるが、これは溶媒を蒸発させることでゾル−ゲル反応が進行し、一度TiO2を析出させると再度分散することは困難である。そこで、ゾル−ゲル反応による再分散可能なTiO2の合成を目的に、これまでにシリカ(SiO2)やシランカップリング剤(RMe2SiO0.5)成分を含んだTiO2ベース材料が創製されている(非特許文献7参照)。また、非水系溶媒(ブタノールとトルエンとの混合溶媒)中でのチタンアルコキシドのゾル−ゲル反応によって得られた材料は、再び上記混合溶媒中に溶解することが可能であり、ナノ分散性のTiO2ベース材料と言える(非特許文献8参照)。 Furthermore, titania sol, which is a precursor of TiO 2 particles, films, coatings, and the like, can also be said to be dispersible TiO 2 , but this causes the sol-gel reaction to proceed by evaporating the solvent, and once TiO 2 is precipitated, it again It is difficult to disperse. Therefore, for the purpose of synthesizing redispersible TiO 2 by sol-gel reaction, TiO 2 base materials containing silica (SiO 2 ) and silane coupling agent (RMe 2 SiO 0.5 ) components have been created so far. (See Non-Patent Document 7). In addition, the material obtained by the sol-gel reaction of titanium alkoxide in a non-aqueous solvent (mixed solvent of butanol and toluene) can be dissolved again in the mixed solvent, and nano-dispersible TiO 2 It can be said that it is a base material (see Non-Patent Document 8).

以上のように、ナノ分散性を示すTiO2の合成に関する研究が数多く行われている。 As described above, many studies on the synthesis of TiO 2 exhibiting nano-dispersibility have been conducted.

しかしながら、従来の技術では、TiO2を水に溶解させることはできない。 However, TiO 2 cannot be dissolved in water by conventional techniques.

特開2005−120333号公報JP 2005-120333 A 特開2006−045392号公報JP 2006-045392 A

Y.Amao,"Photoenergy conversion system based on the photosynthesis dyes conjugated nanoparticle" Current Nanoscience,Vol:4,ページ:45-52,(2008)Y. Amao, "Photoenergy conversion system based on the photosynthesis dyes conjugated nanoparticle" Current Nanoscience, Vol: 4, page: 45-52, (2008) J-G.Liu ほか5名,"Optically transparent sulfur-containing polyimide-TiO2 nanocomposite films with high refractive index and negative pattern formation from poly(amic acid)-TiO2 nanocomposite film",Chemistry of Materials,Vol:20,ページ:273-281,(2008)JG.Liu and 5 others, "Optically transparent sulfur-containing polyimide-TiO2 nanocomposite films with high refractive index and negative pattern formation from poly (amic acid) -TiO2 nanocomposite film", Chemistry of Materials, Vol: 20, Page: 273- 281, (2008) M.Zayat ほか2名,"Preventing UV-light damage of light sensitive materials using a highly protective UV-absorbing coating",Chemical Society Reviews,Vol:36,ページ:1270-1281,(2007)M.Zayat and 2 others, "Preventing UV-light damage of light sensitive materials using a highly protective UV-absorbing coating", Chemical Society Reviews, Vol: 36, page: 1270-1281, (2007) M.Kobayashi ほか3名,"Precise surface structure control of inorganic solid and metal oxide nanoparticles through surface-initiated radical polymerization",Science and Technology of Advanced Materials,Vol:7, ページ:617-628,(2006)M. Kobayashi and 3 others, "Precise surface structure control of inorganic solid and metal oxide nanoparticles through surface-initiated radical polymerization", Science and Technology of Advanced Materials, Vol: 7, Page: 617-628, (2006) A.Andrzejewska ほか2名,“Adsorption of organic dyes on the aminosilane modified TiO2 surface",Dyes and Pigments,Vol:62,ページ:121-130,(2004)A. Andrzejewska and 2 others, “Adsorption of organic dyes on the aminosilane modified TiO2 surface”, Dyes and Pigments, Vol: 62, page: 121-130, (2004) T.Sasaki ほか1名,“Osmotic swelling to exfoliation. Exceptionally high degrees of hydration of a layered titanate", Journal of the American Chemical Society,Vol:120,ページ:4682-4689,(1998)T. Sasaki and 1 other, “Osmotic swelling to exfoliation. Exceptionally high degrees of hydration of a layered titanate”, Journal of the American Chemical Society, Vol: 120, page: 4682-4689, (1998) T.Suzuki ほか3名,“Preparation and properties of inorganic-organic composite-materials containing R3SiO1/2, SiO2, and TiO2 units",Chemistry of Materials,Vol:6,ページ:692-696,(1994)T. Suzuki and 3 others, “Preparation and properties of inorganic-organic composite-materials containing R3SiO1 / 2, SiO2, and TiO2 units”, Chemistry of Materials, Vol: 6, page: 692-696, (1994) E.M.Mohamed ほか4名,“High-quality growth of TiO2 thin film from its precursor solution by new sol-gel method",Electrochemistry,Vol:72,ページ:455-457(2004)E.M.Mohamed and 4 others, “High-quality growth of TiO2 thin film from its precursor solution by new sol-gel method”, Electrochemistry, Vol: 72, page: 455-457 (2004) Y.Kaneko ほか5名,“Hexagonal-structured polysiloxane material prepared by sol-gel reaction of aminoalkyltrialkoxysilane without using surfactants",Chemistry of Materials,VoL:16,ページ:3417-3423,(2004)Y.Kaneko and 5 others, “Hexagonal-structured polysiloxane material prepared by sol-gel reaction of aminoalkyltrialkoxysilane without using surfactants”, Chemistry of Materials, VoL: 16, page: 3417-3423, (2004) Y.Kaneko ほか3名,“Synthesis of rodlike polysiloxane with hexagonal phase by sol-gel reaction of organotrialkoxysilane monomer containing two amino groups",Polymer,VoL:46,ページ:1828-1833,(2005)Y.Kaneko and 3 others, “Synthesis of rodlike polysiloxane with hexagonal phase by sol-gel reaction of organotrialkoxysilane monomer containing two amino groups”, Polymer, VoL: 46, page: 1828-1833, (2005) Y.Kaneko ほか1名,“Sol-gel synthesis of rodlike polysilsesquioxanes forming regular higher-ordered nanostructure",Zeitschrift fur Kristallographie,Vol:222,ページ:656-662(2007)Y.Kaneko and 1 other, “Sol-gel synthesis of rodlike polysilsesquioxanes forming regular higher-ordered nanostructure”, Zeitschrift fur Kristallographie, Vol: 222, page: 656-662 (2007) Y.Kaneko ほか3名,“Synthesis of water-soluble silicon oxide material by sol-gel reaction in tetraalkoxysilane-aminoalkyltrialkoxysilane binary system",Journal of Materials Research,Vol:20,ページ:2199-2204(2005)Y.Kaneko and 3 others, “Synthesis of water-soluble silicon oxide material by sol-gel reaction in tetraalkoxysilane-aminoalkyltrialkoxysilane binary system”, Journal of Materials Research, Vol: 20, page: 2199-2204 (2005)

本発明は、酸化チタンを含有する水溶性複合材料及びその製造方法を提供することを目的とする。   An object of this invention is to provide the water-soluble composite material containing a titanium oxide, and its manufacturing method.

本願発明者は、上記課題を解決するに当たり、アンモニウム陽イオンを有するロッド状ポリシロキサンの製造方法に着目した(特許文献1、特許文献2、非特許文献9、非特許文献10、非特許文献11)。このポリシロキサンは、アミノ基含有トリアルコキシシランの酸触媒によるゾル−ゲル反応によって合成できる。通常このような多官能性のアルコキシシランを用いてゾル−ゲル反応を行うと、3次元方向に反応が生長したネットワーク構造のポリシロキサンが得られる。しかし、この材料は、原料のアミノ基と触媒の酸からなる塩(イオンコンプレックス)の働きにより反応が3次元方向に広がるのを抑制し、その結果、直径約1〜2nmのロッド状ポリシロキサンが形成される。この材料は、固体状態では規則的なナノ高次構造(ヘキサゴナル相)をもって積層し、水を加えると透明な水溶液になるような非常に分散性・溶解性に優れた無機材料である。   In order to solve the above problems, the inventor of the present application focused on a method for producing a rod-shaped polysiloxane having an ammonium cation (Patent Document 1, Patent Document 2, Non-Patent Document 9, Non-Patent Document 10, Non-Patent Document 11). ). This polysiloxane can be synthesized by an acid-catalyzed sol-gel reaction of an amino group-containing trialkoxysilane. Usually, when such a polyfunctional alkoxysilane is used to carry out a sol-gel reaction, a polysiloxane having a network structure in which the reaction grows in a three-dimensional direction is obtained. However, this material prevents the reaction from spreading in a three-dimensional direction by the action of a salt (ion complex) consisting of the amino group of the raw material and the acid of the catalyst, and as a result, rod-shaped polysiloxane having a diameter of about 1 to 2 nm is formed. It is formed. This material is an inorganic material excellent in dispersibility and solubility that is laminated with a regular nano-order structure (hexagonal phase) in a solid state and becomes a transparent aqueous solution when water is added.

更に、本願発明者は、アンモニウム陽イオンを表面に有する水溶性酸化ケイ素材料の製造方法にも着目した(特許文献1、非特許文献12)。この材料は、酸化ケイ素(シリカ)の原料であるテトラアルコキシシランと上記のアミノ基含有トリアルコキシシランの混合物をゾル−ゲル反応することで得られ、析出と溶解を繰り返し行うことができるような再溶解性を示す材料である。これも、アミノ基含有トリアルコキシシランと触媒の酸からなるイオンコンプレックスの働きにより、反応が3次元方向に広がるのを抑制し粒径制御ができたために水溶性を示すと考えられる。   Furthermore, the inventor of the present application also paid attention to a method for producing a water-soluble silicon oxide material having an ammonium cation on the surface (Patent Document 1, Non-Patent Document 12). This material is obtained by a sol-gel reaction of a mixture of tetraalkoxysilane, which is a raw material of silicon oxide (silica), and the above-mentioned amino group-containing trialkoxysilane, and can be repeatedly precipitated and dissolved. It is a material showing solubility. This is also considered to be water-soluble because the action of an ion complex comprising an amino group-containing trialkoxysilane and a catalyst acid can suppress the spread of the reaction in the three-dimensional direction and control the particle size.

粒径が可視光の波長よりも十分に小さく、粒子の表面が水になじむ置換基を有することが、水溶性材料に必要とされる要素である。そこで、本願発明者は、上述の水溶性材料の合成方法をもとに、酸化チタンの原料であるチタンアルコキシドに対してアミノ基含有トリアルコキシシランと触媒である酸を共存させ反応を行うことで、粒径制御された水溶性複合材料が合成できるのではないかとの考えに至った。具体的には、チタンテトラアルコキシドと3−アミノプロピルトリアルコキシシランとの混合物を、酸溶液中で加熱し反応を行うことで、粒径制御された水溶性複合材料が合成できるのではないかとの考えに至った。   It is an element required for a water-soluble material that the particle diameter is sufficiently smaller than the wavelength of visible light and the surface of the particle has a substituent that is compatible with water. Therefore, the inventor of the present application performs reaction by coexisting an amino group-containing trialkoxysilane and a catalyst acid with respect to titanium alkoxide, which is a raw material of titanium oxide, based on the method for synthesizing the water-soluble material described above. It came to the idea that a water-soluble composite material with controlled particle size could be synthesized. Specifically, a mixture of titanium tetraalkoxide and 3-aminopropyltrialkoxysilane may be heated in an acid solution and reacted to synthesize a water-soluble composite material with controlled particle size. I came up with an idea.

そして、チタンテトラアルコキシドと3−アミノプロピルトリアルコキシシランとの仕込み比が0:100〜50:50の範囲において酸性条件下でゾル−ゲル反応を行った結果、水溶性を示す酸化チタン及びケイ素の複合材料(以下、水溶性酸化チタン/ケイ素複合材料ということがある)を合成することができることを見出した。更に、以下に示す発明の諸態様に想到した。   And as a result of performing sol-gel reaction under acidic conditions in the preparation ratio of titanium tetraalkoxide and 3-aminopropyl trialkoxysilane in the range of 0: 100 to 50:50, titanium oxide and silicon showing water solubility It has been found that a composite material (hereinafter sometimes referred to as a water-soluble titanium oxide / silicon composite material) can be synthesized. Furthermore, the inventors have conceived the following aspects of the invention.

本発明に係る水溶性複合材料は、繰り返し単位が、一般式;Z-・NH3 +(CH23SiO1.5(式中、Z-は、塩化物イオン等のハロゲン元素陰イオン、並びに硝酸イオン等の陰イオンを表す)で表される組成と、繰り返し単位が、一般式;TiO2で表される組成と、を有する骨格から構成されていることを特徴とする。 In the water-soluble composite material according to the present invention, the repeating unit has a general formula: Z .NH 3 + (CH 2 ) 3 SiO 1.5 (wherein Z is a halogen element anion such as a chloride ion, and nitric acid) And a repeating unit is composed of a skeleton having a general formula; a composition represented by TiO 2 .

このような水溶性複合材料は、酸化チタンを含有しつつ、アンモニウム陽イオンを備えているため、透明度の高い溶液が得られるような溶解性を示す。また、析出と溶解とを繰り返し行うことができる再溶解性も示す。更に、水等の反応性溶媒中での安定性も示す。   Since such a water-soluble composite material contains titanium oxide and has an ammonium cation, it exhibits solubility such that a highly transparent solution can be obtained. Moreover, the re-solubility which can perform precipitation and melt | dissolution repeatedly is also shown. Furthermore, stability in a reactive solvent such as water is also shown.

前記一般式;Z-・NH3 +(CH23SiO1.5中のZが塩化物イオンの場合の構造の例を(化1)に示す。ただし、nは重合度を表す。 An example of the structure in the case where Z in the general formula: Z .NH 3 + (CH 2 ) 3 SiO 1.5 is a chloride ion is shown in (Chemical Formula 1). However, n represents a polymerization degree.

Figure 2010209288
Figure 2010209288

本発明に係る水溶性複合材料の製造方法は、一般式;NH2(CH23Si(OL)3(式中、Lは触媒となる酸性溶液中で容易にOL基がOH基に変化し得る基を示す)で表される3−アミノプロピルトリアルコキシシランと、一般式;Ti(OL)4(式中、Lは触媒となる酸性溶液中で容易にOL基がOH基に変化し得る基を示す)で表されるチタンアルコキシドとの混合物を、酸性アルコール溶液で反応させる工程と、次いで、前記混合物を水中で重合反応させる工程と、を有することを特徴とする。 The method for producing a water-soluble composite material according to the present invention has a general formula: NH 2 (CH 2 ) 3 Si (OL) 3 (wherein L is easily changed from an OL group to an OH group in an acidic solution serving as a catalyst). 3-aminopropyltrialkoxysilane represented by the general formula; Ti (OL) 4 (wherein L represents an OH group easily converted into an OH group in an acidic solution serving as a catalyst). And a step of reacting a mixture with a titanium alkoxide represented by (1) in an acidic alcohol solution, and then a step of polymerizing the mixture in water.

このような方法によれば、上記の水溶性複合材料を、簡易な処理で製造することができる。   According to such a method, said water-soluble composite material can be manufactured by a simple process.

本発明によれば、水溶液としたときに高い透明度を得ることができる。このため、酸化チタン由来の紫外線吸収を有効に利用することができる。   According to the present invention, high transparency can be obtained when an aqueous solution is used. For this reason, ultraviolet absorption derived from titanium oxide can be used effectively.

ゾル−ゲル反応による水溶性酸化チタン/ケイ素複合材料の合成方法を示す図である。It is a figure which shows the synthesis | combining method of the water-soluble titanium oxide / silicon composite material by sol-gel reaction. 生成物のIRスペクトルを示す図である。It is a figure which shows IR spectrum of a product. 生成物の水溶液のUV−Visスペクトルを示す図である。It is a figure which shows the UV-Vis spectrum of the aqueous solution of a product. 生成物の(a)1.0w/v%水溶液の状態及び(b)固体状態を示す図であるIt is a figure which shows the state of (a) 1.0 w / v% aqueous solution of a product, and (b) solid state. 生成物の0.5w/v%水溶液(25℃)の動的光散乱(DLS)測定による粒径分布:(a)重量平均分布、(b)数平均分布を示す図である。It is a figure which shows the particle size distribution by the dynamic light scattering (DLS) measurement of 0.5 w / v% aqueous solution (25 degreeC) of a product: (a) weight average distribution, (b) number average distribution. 生成物のフィルムのUV−Visスペクトルを示す図である。FIG. 6 shows a UV-Vis spectrum of the product film.

以下、本発明の実施例について、添付の図面を参照しながら説明する。但し、これらの実施例は、本発明を容易に理解するための一助として示したものであり、決して本発明を限定する趣旨ではない。   Embodiments of the present invention will be described below with reference to the accompanying drawings. However, these examples are shown as an aid for easily understanding the present invention, and are not intended to limit the present invention in any way.

ここでは、本願発明者が実際に行った実験について説明する。水溶性酸化チタン/ケイ素複合材料合成のための反応スキームを図1に示す。3−アミノプロピルトリメトキシシラン(APTMOS)0.897g(=5mmol)に、0.5mol/L塩酸メタノール溶液12.5mL(=6.25mmol)を加えて均一な溶液を調製し、この溶液をチタンテトライソプロポキシド(Ti(isoPrO)4)1.421g(=5mmol)のイソプロピルアルコール(37.5mL)溶液に加えて、室温で2時間撹拌し、その後開放系で50℃〜60℃で加熱し溶媒を蒸発させた。続いて、得られた粉末状の生成物に水50mLを加えて開放系で60℃〜70℃で加熱し水を蒸発させることでガラス状の生成物を得た。この生成物を100℃で30分加熱し反応を十分に進行させた後、水100mLを加えて溶解し、これを凍結乾燥しガラス状で白色の生成物(1.217g)を得た。赤外(IR)スペクトル及びエネルギー分散X線(EDX)測定により生成物の主鎖骨格の構造を検討した。 Here, an experiment actually performed by the present inventor will be described. A reaction scheme for the synthesis of water-soluble titanium oxide / silicon composite is shown in FIG. To 0.897 g (= 5 mmol) of 3-aminopropyltrimethoxysilane (APTMOS), 12.5 mL (= 6.25 mmol) of 0.5 mol / L hydrochloric acid methanol solution was added to prepare a uniform solution. Tetraisopropoxide (Ti (isoPrO) 4 ) is added to a solution of 1.421 g (= 5 mmol) in isopropyl alcohol (37.5 mL), stirred at room temperature for 2 hours, and then heated at 50 to 60 ° C. in an open system. The solvent was evaporated. Subsequently, 50 mL of water was added to the obtained powdery product and heated at 60 ° C. to 70 ° C. in an open system to evaporate the water, thereby obtaining a glassy product. This product was heated at 100 ° C. for 30 minutes to allow the reaction to proceed sufficiently, and then 100 mL of water was added to dissolve it, which was lyophilized to obtain a glassy white product (1.217 g). The structure of the main chain skeleton of the product was examined by infrared (IR) spectrum and energy dispersive X-ray (EDX) measurement.

上記反応により得られた生成物のIRスペクトルを図2に示す。−NH3 +基由来の吸収ピーク(1612cm-1及び1497cm-1)に加えて、Si−O−Si結合由来の吸収ピーク(1119cm-1)、Ti−O−Si結合由来の吸収ピーク(900cm-1)、及びTi−O−Ti結合由来の吸収ピーク(697cm-1)が観察された。このことより、酸化チタン/ケイ素複合材料が形成されたことが示唆された。 The IR spectrum of the product obtained by the above reaction is shown in FIG. In addition to absorption peaks derived from —NH 3 + groups (1612 cm −1 and 1497 cm −1 ), absorption peaks derived from Si—O—Si bonds (1119 cm −1 ), absorption peaks derived from Ti—O—Si bonds (900 cm) −1 ), and an absorption peak (697 cm −1 ) derived from Ti—O—Ti bond were observed. This suggested that a titanium oxide / silicon composite material was formed.

また、上記反応により得られた生成物のEDX測定の結果より、TiとSiとの原子数の比が1:1であることを確認し、原料の仕込み比とほぼ同様な組成比であることが示唆された。   Moreover, from the result of EDX measurement of the product obtained by the above reaction, it was confirmed that the ratio of the number of atoms of Ti and Si was 1: 1, and the composition ratio was almost the same as the raw material charge ratio. Was suggested.

生成物の様々な濃度での水溶液の透明性を評価するために、紫外−可視(UV−Vis)分光測定を行った。その結果、1.0w/v%以下の濃度では500nmの可視光で96%以上の透過率を示し、非常に透明な水溶液が得られたことが示唆された(図3)。生成物の1.0w/v%水溶液の写真からも透明な溶液であることが確認された(図4(a))。   In order to evaluate the transparency of the aqueous solution at various concentrations of the product, UV-Vis spectroscopic measurements were performed. As a result, at a concentration of 1.0 w / v% or less, a transmittance of 96% or more was observed with 500 nm visible light, suggesting that a very transparent aqueous solution was obtained (FIG. 3). It was confirmed from a photograph of a 1.0 w / v% aqueous solution of the product that the solution was transparent (FIG. 4 (a)).

一方、この水溶液を凍結乾燥することで固体生成物が再生した(図4(b))。このことは、生成物が水に溶解した理由が、Ti−O結合又はSi−O結合の分解によるものではないことを示している。生成物の水への溶解と凍結乾燥による固体生成物の析出は繰り返し行うことができ、生成物が再溶解可能な材料であることが示唆された。   On the other hand, the solid product was regenerated by freeze-drying the aqueous solution (FIG. 4B). This indicates that the reason why the product was dissolved in water was not due to the decomposition of Ti—O bonds or Si—O bonds. The dissolution of the product in water and the precipitation of the solid product by lyophilization could be repeated, suggesting that the product is a re-dissolvable material.

一方、生成物の水溶液は紫外光を遮断する性質を有し、10w/v%水溶液では360nm以下、1.0w/v%水溶液では340nm以下、0.1w/v%水溶液では300nm以下の紫外光をほとんど遮断できることが明らかとなった(図3)。   On the other hand, the aqueous solution of the product has a property of blocking ultraviolet light, and has an ultraviolet light of 360 nm or less in a 10 w / v% aqueous solution, 340 nm or less in a 1.0 w / v% aqueous solution, and 300 nm or less in a 0.1 w / v% aqueous solution. It was clarified that most can be blocked (FIG. 3).

生成物の粒径を測定するために、0.5w/v%水溶液を調製し25℃でDLS測定を行った。キュムラント法によって重量および数平均粒径を算出したところ、それぞれ9.3±2.2および8.2±1.6nmであることがわかり(図5)、生成物が、その平均粒径が10nm以下であり、水に良好に溶解するナノ粒子であることが確認された。   In order to measure the particle size of the product, a 0.5 w / v% aqueous solution was prepared and DLS measurement was performed at 25 ° C. The weight and number average particle size calculated by the cumulant method were found to be 9.3 ± 2.2 and 8.2 ± 1.6 nm, respectively (FIG. 5), and the product had an average particle size of 10 nm. The following were confirmed to be nanoparticles that dissolve well in water.

上記の生成物の水溶液を石英板に塗布し、室温で自然乾燥することでフィルムを作成した。ここでは厚さの異なる3種類のフィルム(1g/cm2、5g/cm2及び10mg/cm2)を用いて、UV−Visスペクトル測定を行った。その結果、いずれのフィルムも500nmの可視光に対して98%の透過率を示し(図6)、非常に透明なフィルムであることが示唆された。また、10mg/cm2で調製した生成物のフィルムの写真を図6中に示しており、これからも透明なフィルムであることが確認できた。 An aqueous solution of the above product was applied to a quartz plate and naturally dried at room temperature to form a film. Here, UV-Vis spectrum measurement was performed using three types of films (1 g / cm 2 , 5 g / cm 2, and 10 mg / cm 2 ) having different thicknesses. As a result, all the films showed a transmittance of 98% with respect to visible light of 500 nm (FIG. 6), suggesting that they were very transparent films. Moreover, the photograph of the film of the product prepared at 10 mg / cm < 2 > is shown in FIG. 6, It has confirmed that it was a transparent film from now on.

これらのフィルムは紫外光を遮断する性質を有し、10mg/cm2で調製したフィルムでは340nm以下、5mg/cm2で調製したフィルムでは320nm以下、1mg/cm2で調製したフィルムでは260nm以下の紫外光をほとんど遮断する(図6)。このような性質より、紫外線カット用のコーティング剤としての利用が期待できる。 These films have the property of blocking ultraviolet light, 340 nm or less for films prepared at 10 mg / cm 2 , 320 nm or less for films prepared at 5 mg / cm 2 , and 260 nm or less for films prepared at 1 mg / cm 2 . Most of the ultraviolet light is blocked (FIG. 6). Due to these properties, it can be expected to be used as a coating agent for UV protection.

このように、これらの一連の処理により製造された水溶性複合材料は、水溶液としたときに高い透明度を示す。このため、酸化チタン由来の紫外線吸収を有効に利用することができる。例えば、紫外線吸収を利用した化粧品等に使用することができる。また、酸化チタンの高屈折率を有する性質を透明プラスチックへ付与したハイブリッド材料の創製にも利用することができる。更に、このような水溶性複合材料は、析出と溶解とを繰り返し行うことができる再溶解性、及び水等の反応性溶媒中での安定性も示す。   Thus, the water-soluble composite material produced by a series of these treatments exhibits high transparency when made into an aqueous solution. For this reason, ultraviolet absorption derived from titanium oxide can be used effectively. For example, it can be used for cosmetics utilizing ultraviolet absorption. It can also be used to create a hybrid material that imparts a high refractive index property of titanium oxide to transparent plastic. Furthermore, such a water-soluble composite material also exhibits re-solubility that allows repeated precipitation and dissolution, and stability in a reactive solvent such as water.

本発明は、以上に示した実施例以外にも多数の実験を積み重ねた結果導き出され、明らかにされた。すなわち、本発明は、決してこの開示した実施例のみにとどまらない。多数にあがる実験を通じて、本発明における重要な要点は、水溶性酸化チタン/ケイ素複合材料を合成するためのゾル−ゲル手法において、酸性条件下で原料の仕込み量を調整することで、得られる材料の粒径や表面形態を容易に制御することが可能であるということである。例えば、酸性条件下で(チタンテトラアルコキシドの仕込み量)/(3−アミノプロピルトリアルコキシシランの仕込み量)≦1の場合に、適切な水溶性複合材料を得ることができる。   The present invention has been derived and clarified as a result of accumulating many experiments other than the examples shown above. The invention is not limited to the disclosed embodiments. Through many experiments, the important point in the present invention is that the material obtained by adjusting the amount of raw materials charged under acidic conditions in the sol-gel method for synthesizing the water-soluble titanium oxide / silicon composite material This means that it is possible to easily control the particle size and surface morphology of the material. For example, an appropriate water-soluble composite material can be obtained when (amount of titanium tetraalkoxide) / (amount of 3-aminopropyltrialkoxysilane) ≦ 1 under acidic conditions.

本発明によれば、これまで存在していなかった透明且つ安定な水溶液を得ることが可能な酸化チタン及びケイ素の水溶性複合材料が得られ、この水溶性複合材料は、水溶液とフィルムの両方で使用が可能である。また、紫外線を吸収する性質に加えて、表面に反応性のアミノ基を有することから、機能性分子の導入や有機ポリマーとのハイブリッド化などが可能であり、今後各種分野に大いに利用されることが期待される。   According to the present invention, a water-soluble composite material of titanium oxide and silicon capable of obtaining a transparent and stable aqueous solution that has not existed before is obtained, and this water-soluble composite material is obtained in both an aqueous solution and a film. Can be used. In addition to the property of absorbing ultraviolet light, it has a reactive amino group on its surface, so it can be introduced into functional molecules and hybridized with organic polymers, and will be used in various fields in the future. There is expected.

Claims (4)

繰り返し単位が、一般式;Z-・NH3 +(CH23SiO1.5(式中、Z-は陰イオンを表す)で表される組成と、
繰り返し単位が、一般式;TiO2で表される組成と、
を有する骨格から構成されていることを特徴とする水溶性複合材料。
A composition in which the repeating unit is represented by the general formula: Z .NH 3 + (CH 2 ) 3 SiO 1.5 (wherein Z represents an anion);
The repeating unit is represented by the general formula: TiO 2 ;
A water-soluble composite material comprising a skeleton having
平均粒径が10ナノメートル以下であることを特徴とする請求項1に記載の水溶性複合材料。   The water-soluble composite material according to claim 1, wherein the average particle size is 10 nanometers or less. 一般式;NH2(CH23Si(OL)3(式中、Lは触媒となる酸性溶液中でOL基がOH基に変化し得る基を示す)で表される3−アミノプロピルトリアルコキシシランと、一般式;Ti(OL)4(式中、Lは触媒となる酸性溶液中でOL基がOH基に変化し得る基を示す)で表されるチタンアルコキシドとの混合物を、酸性アルコール溶液で反応させる工程と、
次いで、前記混合物を水中で重合反応させる工程と、
を有することを特徴とする水溶性複合材料の製造方法。
3-aminopropyltri-- represented by the general formula: NH 2 (CH 2 ) 3 Si (OL) 3 (wherein L represents a group in which the OL group can be changed to an OH group in an acidic solution serving as a catalyst). A mixture of an alkoxysilane and a titanium alkoxide represented by the general formula; Ti (OL) 4 (wherein L represents a group capable of changing an OL group to an OH group in an acidic solution serving as a catalyst) Reacting with an alcohol solution;
Next, a step of polymerizing the mixture in water;
A method for producing a water-soluble composite material, comprising:
前記重合反応は、ゾル−ゲル反応であることを特徴とする請求項3に記載の水溶性複合材料の製造方法。   The method for producing a water-soluble composite material according to claim 3, wherein the polymerization reaction is a sol-gel reaction.
JP2009059795A 2009-03-12 2009-03-12 Water-soluble composite material containing titanium oxide, and manufacturing method thereof Pending JP2010209288A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009059795A JP2010209288A (en) 2009-03-12 2009-03-12 Water-soluble composite material containing titanium oxide, and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009059795A JP2010209288A (en) 2009-03-12 2009-03-12 Water-soluble composite material containing titanium oxide, and manufacturing method thereof

Publications (1)

Publication Number Publication Date
JP2010209288A true JP2010209288A (en) 2010-09-24

Family

ID=42969790

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009059795A Pending JP2010209288A (en) 2009-03-12 2009-03-12 Water-soluble composite material containing titanium oxide, and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP2010209288A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112250704A (en) * 2020-10-27 2021-01-22 湖北新蓝天新材料股份有限公司 Silicon-titanium copolymerization primer and preparation method thereof
WO2022124106A1 (en) * 2020-12-07 2022-06-16 株式会社ダイセル Titanium-containing composite material

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57198730A (en) * 1981-05-21 1982-12-06 Degussa Ammonium compound of polymer having silicic base structure, manufacture and ion exchanger thereof
JPS64126A (en) * 1987-02-27 1989-01-05 Toru Yamamoto Composite material and its production
JP2005200625A (en) * 2003-06-23 2005-07-28 Shin Etsu Chem Co Ltd Aqueous water-repellent treatment agent and water-repelling treatment method
WO2007053396A2 (en) * 2005-10-28 2007-05-10 Dow Global Technologies Inc. Silsesquioxane-titania hybrid polymers

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57198730A (en) * 1981-05-21 1982-12-06 Degussa Ammonium compound of polymer having silicic base structure, manufacture and ion exchanger thereof
JPS64126A (en) * 1987-02-27 1989-01-05 Toru Yamamoto Composite material and its production
JP2005200625A (en) * 2003-06-23 2005-07-28 Shin Etsu Chem Co Ltd Aqueous water-repellent treatment agent and water-repelling treatment method
WO2007053396A2 (en) * 2005-10-28 2007-05-10 Dow Global Technologies Inc. Silsesquioxane-titania hybrid polymers

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112250704A (en) * 2020-10-27 2021-01-22 湖北新蓝天新材料股份有限公司 Silicon-titanium copolymerization primer and preparation method thereof
CN112250704B (en) * 2020-10-27 2023-12-05 湖北新蓝天新材料股份有限公司 Silicon-titanium copolymerization primer and preparation method thereof
WO2022124106A1 (en) * 2020-12-07 2022-06-16 株式会社ダイセル Titanium-containing composite material

Similar Documents

Publication Publication Date Title
Nakayama et al. Preparation of TiO2 nanoparticles surface-modified by both carboxylic acid and amine: Dispersibility and stabilization in organic solvents
Sanchez et al. Designed hybrid organic− inorganic nanocomposites from functional nanobuilding blocks
Xia et al. Synthesis of transparent aqueous ZrO2 nanodispersion with a controllable crystalline phase without modification for a high-refractive-index nanocomposite film
Li et al. Bulk synthesis of transparent and homogeneous polymeric hybrid materials with ZnO quantum dots and PMMA
JP5646855B2 (en) Silicone resin composition
Zhang et al. Transparent and UV-shielding ZnO@ PMMA nanocomposite films
JP4974459B2 (en) Support comprising a photocatalytic TiO2 layer
Stanley et al. Effect of surfactants on the wet chemical synthesis of silica nanoparticles
JP5287038B2 (en) Silica-coated gold nanorod and method for producing the same
US20080031806A1 (en) Continuous process for making nanocrystalline metal dioxide
Liu et al. High refractive index organic–inorganic hybrid coatings with TiO2 nanocrystals
WO2011135974A1 (en) Infrared-ray-absorbable thin film containing rutile-type titanium oxide crystals, and process for production thereof
Huang et al. Synthesis of monodispersed ZnO@ SiO2 nanoparticles for anti-UV aging application in highly transparent polymer-based nanocomposites
WO2009051271A1 (en) Photocatalytic film, method for production of photocatalytic film, article, and hydrophilization method
WO2014057976A1 (en) Core-shell silica nanoparticles and production method thereof, hollow silica nanoparticle production method using same, and hollow silica nanoparticles obtained by said production method
Meng et al. Transparent poly (methyl methacrylate)/TiO 2 nanocomposites for UV-shielding applications
CN105439198B (en) A kind of preparation method of high ethano/water dispersible nano-titanium dioxide powder
He et al. Surface engineering of titanium dioxide nanoparticles for silicone-based transparent hybrid films with ultrahigh refractive indexes
Jassim et al. Preparation and characterization of ZnO/polystyrene nanocomposite films using ultrasound irradiation
Du et al. One-step synthesis of SiO2 nanomesh for antireflection and self-cleaning of solar cell
Jeon et al. Hard coating films based on organosilane-modified boehmite nanoparticles under UV/thermal dual curing
Tangchantra et al. The effect of surface modification of TiO2 on mechanical properties of polyethylene composite film
JP2010209288A (en) Water-soluble composite material containing titanium oxide, and manufacturing method thereof
Maniglia et al. Reactive CeO2 nanofluids for UV protective films
Zhao et al. Surfactant-free synthesis of water-soluble anatase nanoparticles and their application in preparation of high optic performance monoliths

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110228

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121016

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121023

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121210

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130108

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130402