JP2010209139A - Furan-based resin - Google Patents

Furan-based resin Download PDF

Info

Publication number
JP2010209139A
JP2010209139A JP2009053554A JP2009053554A JP2010209139A JP 2010209139 A JP2010209139 A JP 2010209139A JP 2009053554 A JP2009053554 A JP 2009053554A JP 2009053554 A JP2009053554 A JP 2009053554A JP 2010209139 A JP2010209139 A JP 2010209139A
Authority
JP
Japan
Prior art keywords
furan
resin
general formula
present
biomass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009053554A
Other languages
Japanese (ja)
Other versions
JP5562567B2 (en
Inventor
Masahiro Ueda
昌宏 植田
Nana Yamaji
奈々 山路
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kansai Research Institute KRI Inc
Original Assignee
Kansai Research Institute KRI Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kansai Research Institute KRI Inc filed Critical Kansai Research Institute KRI Inc
Priority to JP2009053554A priority Critical patent/JP5562567B2/en
Publication of JP2010209139A publication Critical patent/JP2010209139A/en
Application granted granted Critical
Publication of JP5562567B2 publication Critical patent/JP5562567B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a resin which uses a biomass as a raw material, and is excellent in heat resistance, mechanical strengths and durability. <P>SOLUTION: There is provided a furan-based resin having furan structures of general formula (1) and the like, and generically called polyketones, polyethers, polythioethers, polycarbonates, or polyurethanes. The resin is excellent in heat resistance, mechanical strengths, and durability, can be produced from agricultural wastes originated from plants of biomass as a raw material, and is an industrially useful resin capable of contributing also to environmental problems and global warming problems. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、バイオマス由来の原料で製造可能で、さらに、耐熱性、機械的強度、および、耐久性に優れるフラン系樹脂に関するものである。詳しくは、主鎖に、ケトン構造、エーテル構造、チオエーテル構造、カーボネート構造、および、ウレタン構造が導入されたフラン系樹脂に関するものである。   The present invention relates to a furan resin that can be produced from a raw material derived from biomass and is excellent in heat resistance, mechanical strength, and durability. Specifically, the present invention relates to a furan resin in which a ketone structure, an ether structure, a thioether structure, a carbonate structure, and a urethane structure are introduced into the main chain.

生分解性を有する樹脂やバイオマス由来の原料を用いた樹脂が、環境配慮型または環境持続型材料として近年開発実用化されているが、これらの樹脂は、石油由来の原料から製造される従来の汎用樹脂やエンジニアリングプラスチックスと比較して、耐熱性、機械的強度、耐久性、成型加工性、および、製造コストに関して優れているとは言えないのが現状である。   Recently, biodegradable resins and resins using biomass-derived materials have been developed and put into practical use as environmentally friendly or environmentally sustainable materials. Compared to general-purpose resins and engineering plastics, the current situation is that they cannot be said to be superior in terms of heat resistance, mechanical strength, durability, molding processability, and manufacturing cost.

そんな中でバイオマスから製造可能なフラン誘導体を原料に選択した幾つかの樹脂に関して優れた耐熱性や機械的強度が報告されていることは注目に値する(特許文献1〜2参照および非特許文献1〜3参照)。しかしながら、フラン構造がエステル結合で主鎖に導入されているポリエステルやポリアミドと総称されるかかる樹脂においては、空気中の湿分等によって、エステル結合又はアミド結合の加水分解が進行するおそれがあるという課題がある。また、電気・電子部品、自動車材料、および、エンジニアリング部品関連材料として利用するには、耐熱性、機械的強度、耐久性、成型加工性、および、製造コストに関するさらなる改善が求められるところである。   Among them, it is worth noting that excellent heat resistance and mechanical strength have been reported for some resins selected from raw materials of furan derivatives that can be produced from biomass (see Patent Documents 1 and 2 and Non-Patent Document 1). To 3). However, in such resins collectively called polyesters and polyamides in which the furan structure is introduced into the main chain by ester bonds, hydrolysis of ester bonds or amide bonds may proceed due to moisture in the air or the like. There are challenges. Further, in order to use it as an electrical / electronic component, automobile material, and engineering component-related material, further improvements regarding heat resistance, mechanical strength, durability, molding processability, and manufacturing cost are required.

特開2008−291243JP2008-291243 特開2008−291244JP 2008-291244 A

Gardini, A., Macromol., 41, 3949(2008)Gardini, A., Macromol., 41, 3949 (2008) Gardini, A., et al., Prog. Polym. Sci., 22,1203(1997)Gardini, A., et al., Prog. Polym. Sci., 22,1203 (1997) Belgacem,M.N., Gardini, A., Eds., Monomers, Polymers and Compositesfrom Renewable Resources, Elsevier, Amsterdam, 2008Belgacem, M.N., Gardini, A., Eds., Monomers, Polymers and Compositesfrom Renewable Resources, Elsevier, Amsterdam, 2008

本発明の目的は、バイオマス由来の原料で製造可能な、耐熱性、機械的強度、および、耐候性に優れた樹脂を提供することである。詳しくは廃棄されている植物由来の農業廃材を原料に製造可能なフラン誘導体により、耐熱性、機械物性、および、耐久性に優れた樹脂を製造し、環境問題や地球温暖化問題に寄与できる産業上有益な樹脂を提供することである。   An object of the present invention is to provide a resin excellent in heat resistance, mechanical strength, and weather resistance, which can be produced from a raw material derived from biomass. Specifically, an industry that contributes to environmental and global warming issues by producing resins with excellent heat resistance, mechanical properties, and durability using furan derivatives that can be produced from discarded plant-derived agricultural waste. It is to provide a useful resin.

本発明者らは、上記課題を解決するために鋭意検討した結果、主鎖にケトン構造、エーテル構造、チオエーテル構造、スルホン構造、カーボネート構造、および、ウレタン構造を導入したフラン系樹脂が、バイオマスを原料に製造可能で、さらに様々な優れた特性を示すことを見出し、本発明を完成するに至った。   As a result of diligent studies to solve the above problems, the present inventors have found that a furan resin in which a ketone structure, an ether structure, a thioether structure, a sulfone structure, a carbonate structure, and a urethane structure are introduced into the main chain has a biomass. It has been found that it can be produced as a raw material and exhibits various excellent characteristics, and the present invention has been completed.

すなわち、本発明は、下記〔1〕〜〔3〕に記載の事項をその特徴とするものである。   That is, the present invention is characterized by the matters described in [1] to [3] below.

〔1〕下記一般式(1)又は(2)を単位構造とするフラン系樹脂。

Figure 2010209139

Figure 2010209139

上記一般式(1)又は(2)において、Pは、CO、O、S、OCOO又はNHCOOのいずれかであり、上記一般式(2)において、R及びR’は、CmHm(mは10以下の正の整数)である。 [1] A furan resin having the following general formula (1) or (2) as a unit structure.
Figure 2010209139

Figure 2010209139

In the general formula (1) or (2), P is any one of CO, O, S, OCOO, and NHCOO. In the general formula (2), R and R ′ are CmHm (m is 10 or less). Positive integer).

前記一般式(1)又は(2)で示されるフラン構造の置換基は、2箇所に導入した図になっているが、フラン系樹脂の置換基は2位〜5位のいずれかの2箇所以上に導入することができる。 Although the substituent of the furan structure represented by the general formula (1) or (2) has been introduced in two places, the substituent of the furan-based resin is any one of the 2-position to 5-position. It can be introduced above.

〔2〕前記〔1〕に記載の一般式(1)及び/又は(2)の単位構造を2種以上有するように共重合したことを特徴とするフラン系樹脂。 [2] A furan resin obtained by copolymerization so as to have two or more unit structures of the general formula (1) and / or (2) described in [1].

〔3〕前記〔1〕に記載の一般式(1)の単位構造を1種以上及び/又は(2)の単位構造を1種以上からなる成分の含有量が全成分の50重量%以上であることを特徴とするフラン系樹脂。 [3] The content of the component comprising at least one unit structure of the general formula (1) and / or at least one unit structure of (2) according to the above [1] is 50% by weight or more of the total components A furan resin characterized by being.

〔4〕前記〔1〕に記載の一般式(1)又は(2)の単位構造が下記一般式(3)又は(4)であることを特徴とする前記〔1〕〜〔3〕記載のうちのいずれかのフラン系樹脂。

Figure 2010209139

Figure 2010209139

上記一般式(3)又は(4)において、Pは、CO、O、S、OCOO又はNHCOOのいずれかであり、上記一般式(2)において、R及びR’は、CmHm(mは10以下の正の整数)である。 [4] The above-mentioned [1] to [3], wherein the unit structure of the general formula (1) or (2) described in [1] is the following general formula (3) or (4) One of our furan resins.
Figure 2010209139

Figure 2010209139

In the general formula (3) or (4), P is any one of CO, O, S, OCOO, and NHCOO. In the general formula (2), R and R ′ are CmHm (m is 10 or less). Positive integer).

本発明によれば、バイオマスを原料にして、耐熱性、機械的強度、および、耐久性に優れた産業上有益な樹脂の提供を可能にする。   According to the present invention, it is possible to provide an industrially useful resin having excellent heat resistance, mechanical strength, and durability using biomass as a raw material.

特に、現在有効に利用されずに廃棄されている植物由来の農業廃材から製造可能なフラン誘導体を原料にして、耐熱性、機械的強度、および、耐久性に優れた産業上有益な樹脂の提供を可能にする。   In particular, the provision of industrially useful resins with excellent heat resistance, mechanical strength, and durability using furan derivatives that can be produced from plant-derived agricultural waste that is not effectively used and discarded Enable.

以下に、本発明を実施するための代表的な態様を具体的に説明するが、本発明はその要旨を超えない限り以下の態様に限定されるものではない。   Below, the typical aspect for implementing this invention is demonstrated concretely, However, This invention is not limited to the following aspects, unless the summary is exceeded.

前記一般式(1)又は(2)で示されるフラン構造の置換基の位置は、2位〜5位のいずれかの2箇所以上に導入されていればよいが、2箇所に導入するのが好ましく、その中でも2位と5位の2箇所に導入されているものが最も好ましい。フラン構造の3箇所以上の置換基が重合反応を起こす場合は、置換基の組み合わせによっては架橋の進行による生成樹脂のゲル化に注意しなければならない場合がある。   The position of the substituent of the furan structure represented by the general formula (1) or (2) may be introduced at two or more of any of the 2nd to 5th positions. Among these, those introduced at two positions of the 2nd and 5th positions are most preferable. When three or more substituents in the furan structure cause a polymerization reaction, it may be necessary to pay attention to gelation of the resulting resin due to the progress of crosslinking depending on the combination of the substituents.

<本発明が供する樹脂を構成する単量体成分>
本発明が供する樹脂を構成する単量体成分の代表的な例としてフラン構造の2位及び/又は5位に置換基が導入された下記の化合物〔A〕から化合物〔N〕を例示する。これらの例以外に2位〜5位に1以上の置換基を導入したものを用いることができる。これらの単量体成分は、全て植物由来の農業廃材を原料に製造可能なフラン誘導体である。
<Monomer component constituting the resin provided by the present invention>
As typical examples of the monomer component constituting the resin provided by the present invention, the following compounds [A] to [N] in which substituents are introduced at the 2-position and / or 5-position of the furan structure are exemplified. In addition to these examples, those having one or more substituents introduced at the 2nd to 5th positions can be used. These monomer components are all furan derivatives that can be produced from plant-derived agricultural waste materials.

Figure 2010209139
Figure 2010209139
Figure 2010209139
Figure 2010209139
Figure 2010209139
Figure 2010209139
Figure 2010209139
Figure 2010209139

本発明が供する樹脂を構成するフラン構造を有する単量体成分は、単独で用いても、2種類以上を併用しても差し支えない。2種類以上の単量体成分を併用して得られた共重合体(コポリマー)は、すなわち前記〔2〕に記載のフラン系樹脂は単独の単量体で得られたホモポリマー(前記〔1〕に記載のフラン系樹脂)と比較してバランスのとれた特性を示すことが多く重要である。   The monomer component having a furan structure constituting the resin provided by the present invention may be used alone or in combination of two or more. A copolymer (copolymer) obtained by using two or more kinds of monomer components in combination, that is, the furan resin described in [2] is a homopolymer ([1 It is often important to exhibit balanced properties as compared to the furan-based resins described in 1).

本発明が供する樹脂を構成するフラン構造を有する単量体成分は、石油由来原料またはバイオマス由来原料で製造されて良いが、環境問題への寄与を考慮する場合は、バイオマス由来原料から製造せねばならない。   The monomer component having a furan structure constituting the resin provided by the present invention may be manufactured from petroleum-derived raw materials or biomass-derived raw materials. However, when considering contribution to environmental problems, the monomer components must be manufactured from biomass-derived raw materials. Don't be.

<本発明が供する前記〔1〕記載のフラン系樹脂の製造法>
前記〔1〕に記載された樹脂は、ポリケトン、ポリエーテル、ポリチオエーテル、ポリスルホン、ポリカーボネート、および、ポリウレタンと総称される樹脂である。
以下に、最も好ましい形態であるフラン構造の2位と5位に置換基を導入した各樹脂の製造方法を示す。
<The manufacturing method of the furan-type resin as described in [1] provided by the present invention>
The resin described in [1] is a resin collectively referred to as polyketone, polyether, polythioether, polysulfone, polycarbonate, and polyurethane.
Below, the manufacturing method of each resin which introduce | transduced the substituent into 2-position and 5-position of the furan structure which is the most preferable form is shown.

<<ポリケトン>>
本発明が供するポリケトン樹脂(単位構造の一般式(1)及び(2)のPがCOの場合)の合成法としては次の反応が例示できる。2−フランカルボン酸クロライド(化合物〔F〕)をAlCl3に代表される触媒でFriedel−Craft反応を進行させることで得られる。また、フラン(化合物〔A〕)と2、5−フランジカルボン酸クロライド(化合物〔G〕)にAlCl3に代表される触媒でFriedel−Craft反応を進行させることでも得られる。
<< Polyketone >>
The following reaction can be exemplified as a synthesis method of the polyketone resin provided by the present invention (when P in the general formulas (1) and (2) of the unit structure is CO)). It can be obtained by proceeding Friedel-Craft reaction of 2-furancarboxylic acid chloride (compound [F]) with a catalyst typified by AlCl3. It can also be obtained by allowing Friedel-Craft reaction to proceed with furan (compound [A]) and 2,5-furandicarboxylic acid chloride (compound [G]) with a catalyst typified by AlCl3.

ポリケトンは、ポリエステルと比較した場合、加水分解性が低く、耐熱性や機械的強度に優れているという特徴を有する。   Polyketone is characterized by low hydrolyzability and excellent heat resistance and mechanical strength when compared to polyester.

<<ポリエーテル>>
本発明が供するポリエーテル(単位構造の一般式(1)及び(2)のPがOの場合)の合成法としては次の反応が例示できる。2、5−ジメチロールフラン(化合物〔I〕)を、NaHを用いて水酸基をNaO−(ナトリウムアルコラート)に変成した後、2、5−ジハロメチルフラン(化合物〔M〕)と反応させて、脱塩NaX(Xはハロゲン原子を示す)を進行させて縮合することで得られる。
また、2、5−ジメチロールフラン(化合物〔I〕)を、NaHを用いて水酸基をNaO−(ナトリウムアルコラート)に変成した後、2、5−ジハロフラン(化合物〔L〕)と反応させて、脱塩NaX(Xはハロゲン原子を示す)を進行させて縮合することでも得られる。
ポリエーテルは、ポリエステルと比較した場合、加水分解性が低く、熱加工成型性に優れているという特徴を有する。
<< Polyether >>
The following reaction can be exemplified as a method for synthesizing the polyether provided by the present invention (when P in the general formulas (1) and (2) of the unit structure is O). 2,5-dimethylolfuran (compound [I]) is reacted with 2,5-dihalomethylfuran (compound [M]) after converting the hydroxyl group to NaO— (sodium alcoholate) using NaH. , Desalted NaX (X represents a halogen atom) is allowed to proceed and condensed.
In addition, 2,5-dimethylolfuran (compound [I]) is reacted with 2,5-dihalofuran (compound [L]) after converting the hydroxyl group to NaO— (sodium alcoholate) using NaH. It can also be obtained by allowing desalted NaX (X represents a halogen atom) to proceed and condense.
Polyethers are characterized by low hydrolyzability and excellent thermal processability when compared to polyester.

<<ポリチオエーテル>>
本発明が供するポリチオエーテル(単位構造の一般式(1)及び(2)のPがSの場合)の合成法としては次の反応が例示できる。2、5−ジハロフラン(化合物〔L〕)をNa2Sの存在下、脱塩NaX(Xはハロゲン原子を示す)を進行させて縮合することで得られる。
また、2、5−ジメチロールフラン(化合物〔M〕)に塩素を反応させることで得られた2,5−ジクロロメチルフランをNa2Sの存在下、脱塩NaClを進行させて縮合することでも得られる。
ポリチオエーテルは、ポリエステルと比較した場合、加水分解性が低く、耐熱性や機械的強度が高く、さらに、他の材料との相溶性に優れているという特徴を有する。
<< Polythioether >>
The following reaction can be exemplified as a synthesis method of the polythioether provided by the present invention (when P in the general formulas (1) and (2) of the unit structure is S)). It can be obtained by condensing 2,5-dihalofuran (compound [L]) by proceeding with desalted NaX (X represents a halogen atom) in the presence of Na2S.
It can also be obtained by condensing 2,5-dichloromethylfuran obtained by reacting 2,5-dimethylolfuran (compound [M]) with chlorine by proceeding with desalted NaCl in the presence of Na2S. It is done.
Polythioether has characteristics of low hydrolyzability, high heat resistance and mechanical strength, and excellent compatibility with other materials when compared with polyester.

<<ポリカーボネート>>
本発明が供するポリカーボネート(単位構造の一般式(1)および(2)のPがSO2の場合)の合成法としては次の反応が例示できる。
2、5−ジメチロールフラン(化合物〔I〕)をホスゲンと反応させて脱塩化水素しながら縮合することで得られる。
<< Polycarbonate >>
The following reaction can be exemplified as a synthesis method of the polycarbonate provided by the present invention (when P in the general formulas (1) and (2) of the unit structure is SO2)).
It can be obtained by reacting 2,5-dimethylolfuran (compound [I]) with phosgene and condensing while dehydrochlorinating.

ポリカーボネートは、ポリエステルと比較した場合、耐熱性や機械的強度、特に耐衝撃性が高いことが注目される。さらに、光学特性、特に透明性に優れることも重要である。
<<ポリウレタン>>
It is noted that polycarbonate has higher heat resistance and mechanical strength, particularly impact resistance, when compared to polyester. Furthermore, it is also important to have excellent optical properties, particularly transparency.
<< Polyurethane >>

本発明が供するポリウレタン(単位構造の一般式(1)および(2)のPがOCONHの場合)で一般式(1)に相当するポリスルホン(単位構造の一般式(1)のPがOCONHの場合)の合成法としては次の反応が例示できる。2、5−ジメチロールフラン(化合物〔I〕)に2官能以上のイソシアネート化合物、例えばトルエンジイソシアネートを反応させ、オクチル酸スズに代表される触媒を用いて、または無触媒で付加縮合することで得られる。   Polysulfone corresponding to the general formula (1) in the polyurethane provided by the present invention (when P in the unit structure general formulas (1) and (2) is OCONH) (when P in the unit structure general formula (1) is OCONH) The following reaction can be illustrated as a synthesis method of). Obtained by reacting 2,5-dimethylolfuran (compound [I]) with a bifunctional or higher isocyanate compound, such as toluene diisocyanate, and addition-condensation with or without a catalyst represented by tin octylate. It is done.

ポリエステルとの比較のみならず他の樹脂類と比較した場合も同様であるが、ポリウレタンの合成は、比較的容易で、このことは、本材料の工業的な重要性に大きく寄与している。ただし、現時点では材料の半分は石油由来の化合物を用いる必要がある。   The same is true not only in comparison with polyester but also in comparison with other resins, but the synthesis of polyurethane is relatively easy, which greatly contributes to the industrial importance of this material. However, at present, half of the material needs to use petroleum-derived compounds.

前記〔1〕のうちで一般式(2)を単位構造とするフラン系樹脂は、脂肪族炭化水素と総称される一般式(2)中のRおよびR’にあたる構造を有しており、本発明が供するポリマーの機械的強度に極めて重要な影響をおよぼす。すなわち、R及びR’であるCmHmのmが大きいほど弾性率は低下するものの伸びが増加しいわゆるタフさが加わる場合がある。さらに、加熱時の溶融粘度が減少し成型加工上有利になるとともに、疎水性が増加し、吸水性および吸湿性を重要視する用途では好都合となる。   Of the above [1], the furan-based resin having the general formula (2) as a unit structure has a structure corresponding to R and R ′ in the general formula (2) generically called an aliphatic hydrocarbon. It has a very important influence on the mechanical strength of the polymer provided by the invention. That is, as the m of CmHm as R and R ′ increases, the elastic modulus decreases, but the elongation increases and so-called toughness may be added. Furthermore, the melt viscosity at the time of heating is reduced, which is advantageous in terms of molding processing, and the hydrophobicity is increased, which is advantageous in applications in which water absorption and moisture absorption are important.

<本発明が供する前記〔2〕記載のフラン系樹脂の製造法>
次に、前記〔1〕に記載の一般式(1)及び/又は(2)の単位構造を2以上有するように共重合したことを特徴とするフラン系樹脂の代表的な合成法を示す。
<The manufacturing method of the furan-type resin as described in said [2] which this invention provides>
Next, a typical method for synthesizing a furan resin, which is copolymerized so as to have two or more unit structures represented by the general formula (1) and / or (2) described in [1] above, will be described.

<<ポリケトンとポリエーテルの2元共重合体>>
本発明が供するポリケトン(単位構造の一般式(1)および(2)のPがCOの場合)とポリエーテル(単位構造の一般式(1)および(2)のPがOの場合)の共重合体の合成法として次の反応が例示できる。2、5−ジメチロールフラン(化合物〔I〕)を、NaHを用いて水酸基をNaO−(ナトリウムアルコラート)に変成した後、ジ(2−ハロフラニル)ケトン(化合物〔N〕)と反応させて、脱塩NaX(Xはハロゲン原子を示す)を進行させて縮合することで得られる。
<< Binary copolymer of polyketone and polyether >>
A polyketone provided by the present invention (when P in the general formulas (1) and (2) of the unit structure is CO) and a polyether (when P in the general formulas (1) and (2) of the unit structure are O) The following reaction can be illustrated as a polymer synthesis method. 2,5-dimethylolfuran (compound [I]) is reacted with di (2-halofuranyl) ketone (compound [N]) after converting the hydroxyl group to NaO— (sodium alcoholate) using NaH, It is obtained by allowing desalted NaX (X represents a halogen atom) to proceed and condense.

<<ポリケトンとポリチオエーテルの2元共重合体>>
本発明が供するポリケトン(単位構造の一般式(1)および(2)のPがCOの場合)とポリチオエーテル(単位構造の一般式(1)および(2)のPがSの場合)の共重合体の合成法として次の反応が例示できる。ジ(2−ハロフラニル)ケトン(化合物〔N〕)をNa2Sの存在下、脱塩NaX(Xはハロゲン原子を示す)を進行させて縮合することで得られる。
<< Binary copolymer of polyketone and polythioether >>
The polyketone provided by the present invention (when P in the general formulas (1) and (2) of the unit structure is CO) and polythioether (when P in the general formulas (1) and (2) of the unit structure are S) The following reaction can be illustrated as a polymer synthesis method. It can be obtained by condensing di (2-halofuranyl) ketone (compound [N]) by proceeding with desalted NaX (X represents a halogen atom) in the presence of Na 2 S.

<本発明が供する前記〔3〕記載のフラン系樹脂の製造法>
本発明が供するフラン系樹脂は、その特性が損なわれない範囲でフラン構造を含まない各種単量体と共重合を行っても良い。フラン構造を含有しない共重合可能な単量体の代表的なものを例示すると、2〜3官能の下記構造式(a)〜(h)に示す化合物群が挙げられる。ただし特性が損なわれない範囲で4〜6官能の化合物群も用いることができる。これらの化合物は単独で用いても複数併用しても良い。

Figure 2010209139

P、Q、および、Rは、-Z-F、-Z-Cl、-Z-Br、-Z-I、-Z-OH、-Z-CHO、-Z-COOH、-Z-COOR、-Z-COCl、-Z-CONHR、-Z-CONRR’、-Z-NH2、-Z-NHR、-ZNRR’、-Z-NO2、-Z-CM、および、-CmH2m+1を表す。 ここで、Zは、なし、-CH2-または-C2H4-を表し、mは0または10以下の自然数を表す。 <The manufacturing method of the furan resin as described in [3] provided by the present invention>
The furan-based resin provided by the present invention may be copolymerized with various monomers not containing a furan structure as long as the characteristics are not impaired. When the typical thing of the copolymerizable monomer which does not contain a furan structure is illustrated, the compound group shown to the following trifunctional formula (a)-(h) will be mentioned. However, 4- to 6-functional compound groups can be used as long as the characteristics are not impaired. These compounds may be used alone or in combination.
Figure 2010209139

P, Q, and R are -ZF, -Z-Cl, -Z-Br, -ZI, -Z-OH, -Z-CHO, -Z-COOH, -Z-COOR, -Z-COCl, -Z-CONHR, -Z-CONRR ', -Z-NH2, -Z-NHR, -ZNRR', -Z-NO2, -Z-CM, and -CmH2m + 1 are represented. Here, Z represents none, —CH 2 — or —C 2 H 4 —, and m represents a natural number of 0 or 10 or less.

本発明が供する樹脂を構成するフラン構造を有する単量体成分の割合は、50重量%未満では、本発明の特徴である特殊なフラン構造に起因する優れた特性を必ずしも発現できず、前記〔1〕に記載の一般式(1)の単位構造を1種以上及び/又は(2)の単位構造を1種以上からなる成分の含有量が全成分の50重量%以上である必要があり、70重量%以上であることがより好ましい。共重合成分が石油由来の原料で製造される場合は、環境問題への寄与も低下する。   If the proportion of the monomer component having a furan structure constituting the resin provided by the present invention is less than 50% by weight, the excellent characteristics resulting from the special furan structure, which is a feature of the present invention, cannot necessarily be expressed. 1) the content of the component comprising one or more unit structures of the general formula (1) and / or one or more unit structures of (2) must be 50% by weight or more of the total components, More preferably, it is 70% by weight or more. When the copolymer component is produced from petroleum-derived raw materials, the contribution to environmental problems is also reduced.

以下に、本発明を実施例により更に具体的に説明するが、本発明はその要旨を超えない限り、これらの実施例によって限定されるものではない。なお、以下における各種物性等の測定方法や成形方法は次の通りである。   EXAMPLES Hereinafter, the present invention will be described more specifically with reference to examples. However, the present invention is not limited to these examples as long as the gist thereof is not exceeded. In addition, the measurement methods and molding methods for various physical properties and the like in the following are as follows.

引張試験:実施例及び比較例で得られた樹脂を用いてプレスフィルムを作製し、得られたプレスフィルムからサンプルをダンベル形状に打ち抜き、JIS K7127に従って引っ張り試験機(精密万能試験機オートグラフ AG−X、島津製作所製)にて引張試験を行い、引張弾性率を測定した。
熱分析:実施例及び比較例で得られた樹脂を用いて熱分析装置(Thermoplus DSC 8230、理学製)にて溶融温度を測定した。
Tensile test: A press film was prepared using the resins obtained in the examples and comparative examples, a sample was punched out into a dumbbell shape from the obtained press film, and a tensile tester (precision universal testing machine Autograph AG-) was formed according to JIS K7127. X, manufactured by Shimadzu Corporation) was subjected to a tensile test, and the tensile modulus was measured.
Thermal analysis: Melting temperature was measured with a thermal analyzer (Thermoplus DSC 8230, manufactured by Rigaku) using the resins obtained in Examples and Comparative Examples.

〔実施例1〕

Figure 2010209139

攪拌機、窒素導入口、マントルヒータ、温度計、および、冷却管を装着した反応容器を減圧置換で窒素雰囲気にした後、2−フランカルボン酸100g、キノリン0.5g、および、銅0.5gを攪拌子と共に仕込み、室温で10時間加熱攪拌した。得られた反応液を蒸留して収率70%でフランを得た(43℃、常圧)。冷却管と滴下ロートを装着した丸底フラスコにTHF100mLとフラン10g(147mmol)を仕込み、氷冷下、滴下ロートから臭素23.5g(147mmol)を30分かけて滴下した。さらに室温で5時間攪拌を継続した。得られた反応液を分液ロートに移し、トルエン500mLと純水500mLを加えて良くしんとうした。水層を除去して再び純水500mLを加えて良くしんとうした。有機層を取り出しMgSO4で脱水後、濃縮乾燥した。得られた固形分をトルエン/メタノール混合溶媒で再結晶することで高純度の2,5−ジブロモフランを得た(得量30.3g、収率80% )。攪拌機、窒素導入口、マントルヒータ、温度計、および、冷却管を装着した反応容器を減圧置換で窒素雰囲気にして、得られた2,5−ジブロモフラン20g(77.5mmol)、N−メチルピロリドン200mL、および、Na2S6.0g(77.5mmol)を添加して150℃で10時間加熱を続けた。反応容器内の混合液を大量のメタノールに滴下し発生した沈澱を濾過にて回収した。60℃の通風乾燥機で乾燥後、大量の純水で洗浄した。固形分を濾過にて回収し再度60℃の通風乾燥機で1日乾燥して目的の樹脂を得た(得量4.56g、収率60%)。得られた樹脂の引張弾性率は5800MPa、溶融温度は、300℃以上であった。 [Example 1]
Figure 2010209139

A reaction vessel equipped with a stirrer, a nitrogen inlet, a mantle heater, a thermometer, and a cooling tube was placed under a nitrogen atmosphere by vacuum replacement, and then 100 g of 2-furancarboxylic acid, 0.5 g of quinoline, and 0.5 g of copper were added. The mixture was charged with a stirrer and heated and stirred at room temperature for 10 hours. The obtained reaction solution was distilled to obtain furan in a yield of 70% (43 ° C., normal pressure). A round bottom flask equipped with a condenser and a dropping funnel was charged with 100 mL of THF and 10 g (147 mmol) of furan, and 23.5 g (147 mmol) of bromine was added dropwise from the dropping funnel over 30 minutes under ice cooling. Further, stirring was continued at room temperature for 5 hours. The obtained reaction solution was transferred to a separatory funnel, and 500 mL of toluene and 500 mL of pure water were added and well squeezed. The aqueous layer was removed, and 500 mL of pure water was added again, and the mixture was well reinforced. The organic layer was taken out, dehydrated with MgSO4, and concentrated to dryness. The obtained solid was recrystallized with a toluene / methanol mixed solvent to obtain 2,5-dibromofuran of high purity (amount 30.3 g, yield 80%). A reaction vessel equipped with a stirrer, a nitrogen inlet, a mantle heater, a thermometer, and a cooling tube was placed in a nitrogen atmosphere by substituting under reduced pressure, and 20 g (77.5 mmol) of the obtained 2,5-dibromofuran was obtained. 200 mL and 6.0 g (77.5 mmol) of Na 2 S were added and heating was continued at 150 ° C. for 10 hours. The mixed solution in the reaction vessel was dropped into a large amount of methanol, and the generated precipitate was collected by filtration. After drying with a ventilation dryer at 60 ° C., it was washed with a large amount of pure water. The solid content was collected by filtration and again dried for 1 day with a draft dryer at 60 ° C. to obtain the desired resin (yield 4.56 g, yield 60%). The obtained resin had a tensile modulus of 5800 MPa and a melting temperature of 300 ° C. or higher.

〔実施例2〕

Figure 2010209139

攪拌機、窒素導入口、マントルヒータ、温度計、および、冷却管を装着した反応容器を減圧置換で窒素雰囲気にした後、2,5−フランジカルボン酸10g(64.1mmol)に塩化チオニル100mLを加えて80℃で3時間反応させた後、濃縮乾燥し2,5−フランジカルボン酸クロライド12.3gを得た。攪拌装置、窒素導入口、加熱装置、温度計、および、冷却管を装着した反応容器を減圧置換で窒素雰囲気にした後、得られた2,5−フランジカルボン酸クロライド10.0g(51.8mmol)、フラン3.52g(51.8mmol)、N−メチルピロリドン100mL、および、AlCl3、7.64g(57.0mmol)を添加し、70℃で20時間反応を継続した。反応容器内の混合液を大量のメタノールに滴下し発生した沈澱を濾過にて回収した。60℃の通風乾燥機で1日乾燥して目的の樹脂を得た(得量3.16g、収率65%)。得られた樹脂の引張弾性率は5200MPa、溶融温度は、290℃であった。 [Example 2]
Figure 2010209139

A reaction vessel equipped with a stirrer, nitrogen inlet, mantle heater, thermometer, and cooling tube was placed under a nitrogen atmosphere by vacuum replacement, and then 100 mL of thionyl chloride was added to 10 g (64.1 mmol) of 2,5-furandicarboxylic acid. The mixture was reacted at 80 ° C. for 3 hours and then concentrated to dryness to obtain 12.3 g of 2,5-furandicarboxylic acid chloride. A reaction vessel equipped with a stirrer, a nitrogen inlet, a heating device, a thermometer, and a cooling tube was placed in a nitrogen atmosphere by vacuum replacement, and then 10.0 g (51.8 mmol) of 2,5-furandicarboxylic acid chloride obtained was obtained. ), 3.52 g (51.8 mmol) of furan, 100 mL of N-methylpyrrolidone, and 7.64 g (57.0 mmol) of AlCl 3 were added, and the reaction was continued at 70 ° C. for 20 hours. The mixed solution in the reaction vessel was dropped into a large amount of methanol, and the generated precipitate was collected by filtration. The desired resin was obtained by drying for 1 day with a 60 ° C. ventilation dryer (yield 3.16 g, yield 65%). The obtained resin had a tensile modulus of 5200 MPa and a melting temperature of 290 ° C.

〔実施例3〕

Figure 2010209139
攪拌機、窒素導入口、マントルヒータ、温度計、および、冷却管を装着した反応容器を減圧置換で窒素雰囲気にした後、2,5−ジメチロールフラン10g(100mmol)、トリエチルアミン9.72g(120mmol)、および、THF100gを攪拌子と共に仕込み、激しく攪拌しながらホスゲン9.90g(100mmol)を注意深くゆっくりと反応容器に仕込んだ。室温で2時間攪拌後、60℃に昇温してさらに4時間攪拌を続けた。反応液を大量のメタノールに滴下して得られた沈澱を濾過にて回収し乾燥することで目的の樹脂を得た(得量10.8g、収率70%)。得られた樹脂の引張弾性率は2100MPa、溶融温度190℃であった。 Example 3
Figure 2010209139
A reaction vessel equipped with a stirrer, a nitrogen inlet, a mantle heater, a thermometer, and a cooling pipe was made into a nitrogen atmosphere by vacuum replacement, and then 2,5-dimethylolfuran 10 g (100 mmol), triethylamine 9.72 g (120 mmol) Then, 100 g of THF was charged together with a stirring bar, and 9.90 g (100 mmol) of phosgene was carefully and slowly charged into the reaction vessel with vigorous stirring. After stirring at room temperature for 2 hours, the temperature was raised to 60 ° C. and stirring was continued for 4 hours. The precipitate obtained by dropping the reaction solution into a large amount of methanol was collected by filtration and dried to obtain the desired resin (yield 10.8 g, yield 70%). The obtained resin had a tensile modulus of 2100 MPa and a melting temperature of 190 ° C.

〔実施例4〕

Figure 2010209139

攪拌機、窒素導入口、マントルヒータ、温度計、および、冷却管を装着した反応容器を減圧置換で窒素雰囲気にした後、2,5−ジメチロールフラン10g(100mmol)、NaH2.64g(110mmol)、および、ジメチルホルムアミド(DMF)100mLを攪拌子と共に仕込んだ。 続いて、2、5−ジブロモフラン22.2g(100mmol)を注意深くゆっくりと反応容器に仕込んだ。60℃に昇温して3時間攪拌を続けた。反応液を大量のメタノールに滴下して得られた沈澱を濾過にて回収し乾燥することで目的の樹脂を得た(得量12.3g、収率70%)。得られた樹脂の引張弾性率は2600MPa、溶融温度は210℃であった。 Example 4
Figure 2010209139

A reaction vessel equipped with a stirrer, a nitrogen inlet, a mantle heater, a thermometer, and a cooling tube was placed under a nitrogen atmosphere by vacuum replacement, and then 2,5-dimethylolfuran 10 g (100 mmol), NaH 2 .64 g (110 mmol), And 100 mL of dimethylformamide (DMF) was charged with a stirring bar. Subsequently, 22.5-g (100 mmol) of 2,5-dibromofuran was carefully and slowly charged into the reaction vessel. The temperature was raised to 60 ° C. and stirring was continued for 3 hours. A precipitate obtained by dropping the reaction solution into a large amount of methanol was collected by filtration and dried to obtain the desired resin (yield 12.3 g, yield 70%). The resulting resin had a tensile modulus of 2600 MPa and a melting temperature of 210 ° C.

〔比較例1〕

Figure 2010209139

攪拌機、窒素導入口、マントルヒータ、温度計、および、冷却管を装着した反応容器を減圧置換で窒素雰囲気にした後、ジメチル−2,5−フランジカルボン酸20.0g、1,4−ブタンジオール24.1g、チタンテトラブチレート19.1mg、および、酢酸マグネシウム4水和物11.9mgを仕込んだ。220℃に昇温し2時間反応した後、240℃に昇温し、さらに反応容器内を十分減圧した状態で5時間反応を継続した。得られた樹脂の引張弾性率は1200MPa、溶融温度は170℃であった。 [Comparative Example 1]
Figure 2010209139

A reaction vessel equipped with a stirrer, a nitrogen inlet, a mantle heater, a thermometer, and a cooling pipe was made into a nitrogen atmosphere by vacuum replacement, and then 20.0 g of dimethyl-2,5-furandicarboxylic acid, 1,4-butanediol 24.1 g, titanium tetrabutyrate 19.1 mg, and magnesium acetate tetrahydrate 11.9 mg were charged. After raising the temperature to 220 ° C. and reacting for 2 hours, the temperature was raised to 240 ° C., and the reaction was continued for 5 hours in a state where the pressure in the reaction vessel was sufficiently reduced. The resulting resin had a tensile modulus of 1200 MPa and a melting temperature of 170 ° C.

Figure 2010209139
Figure 2010209139

表1に示すように、本発明によれば、優れた耐熱性、機械的強度および耐久性を示すフラン系樹脂を提供することができる。   As shown in Table 1, according to the present invention, a furan resin exhibiting excellent heat resistance, mechanical strength, and durability can be provided.

石油由来の原料から製造され、汎用樹脂やエンジニアリングプラスチックとして現在実用されている樹脂群を、環境配慮型または環境持続型材料である本件記載のバイオマス由来の原料から製造されるフラン系樹脂で代替できれば産業上きわめて有益である。   If the resin group manufactured from petroleum-derived raw materials and currently used as general-purpose resins and engineering plastics can be replaced with furan-based resins manufactured from biomass-derived raw materials described in this case, which are environmentally friendly or environmentally sustainable materials It is extremely useful for industry.

同じくバイオマス由来の原料で作製されるポリ乳酸に代表される脂肪族系樹脂は工業的に必ずしも満足できる特性を具備しているとは言えず、それらと本件記載のバイオマス由来の原料から製造されるフラン系樹脂は、相補的な位置付けにあると言える。環境を配慮した21世紀型の樹脂としての応用が期待される。
本発明のフラン系樹脂は、各種添加剤を添加した樹脂組成物としても各種に利用できる。また、本発明のフラン系樹脂には、汎用プラスチックに適用される各種成形法が適用でき、それらの成型法によって本発明の樹脂及び樹脂組成物は成型体に加工することができる。
Similarly, aliphatic resins represented by polylactic acid produced from biomass-derived raw materials do not necessarily have industrially satisfactory characteristics, and are produced from these and biomass-derived raw materials described in this case. It can be said that the furan resin is in a complementary position. It is expected to be applied as an environmentally friendly 21st century resin.
The furan resin of the present invention can be used in various ways as a resin composition to which various additives are added. In addition, various molding methods applied to general-purpose plastics can be applied to the furan resin of the present invention, and the resin and resin composition of the present invention can be processed into a molded body by these molding methods.

Claims (4)

下記一般式(1)又は(2)を単位構造とするフラン系樹脂。
Figure 2010209139

Figure 2010209139

上記一般式(1)又は(2)において、Pは、CO、O、S、OCOO又はNHCOOのいずれかであり、上記一般式(2)において、R及びR’は、CmHm(mは10以下の正の整数)である。
Furan resin having the following general formula (1) or (2) as a unit structure.
Figure 2010209139

Figure 2010209139

In the general formula (1) or (2), P is any one of CO, O, S, OCOO, and NHCOO. In the general formula (2), R and R ′ are CmHm (m is 10 or less). Positive integer).
請求項1に記載の一般式(1)及び/又は(2)の単位構造を2種以上有するように共重合したことを特徴とするフラン系樹脂。
A furan-based resin obtained by copolymerization so as to have two or more unit structures of the general formula (1) and / or (2) according to claim 1.
請求項1に記載の一般式(1)の単位構造を1種以上及び/又は(2)の単位構造を1種以上からなる成分の含有量が全成分の50重量%以上であることを特徴とするフラン系樹脂。
The content of a component comprising one or more unit structures of the general formula (1) according to claim 1 and / or one or more unit structures of (2) is 50% by weight or more of all components. Furan resin.
請求項1記載の一般式(1)又は(2)の単位構造が下記一般式(3)又は(4)であることを特徴とする請求項1〜3記載のうちのいずれかのフラン系樹脂。
Figure 2010209139
Figure 2010209139

上記一般式(3)又は(4)において、Pは、CO、O、S、OCOO又はNHCOOのいずれかであり、上記一般式(2)において、R及びR’は、CmHm(mは10以下の正の整数)である。
The furan resin according to any one of claims 1 to 3, wherein the unit structure of the general formula (1) or (2) according to claim 1 is the following general formula (3) or (4). .
Figure 2010209139
Figure 2010209139

In the general formula (3) or (4), P is any one of CO, O, S, OCOO, and NHCOO. In the general formula (2), R and R ′ are CmHm (m is 10 or less). Positive integer).
JP2009053554A 2009-03-06 2009-03-06 Furan resin Active JP5562567B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009053554A JP5562567B2 (en) 2009-03-06 2009-03-06 Furan resin

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009053554A JP5562567B2 (en) 2009-03-06 2009-03-06 Furan resin

Publications (2)

Publication Number Publication Date
JP2010209139A true JP2010209139A (en) 2010-09-24
JP5562567B2 JP5562567B2 (en) 2014-07-30

Family

ID=42969659

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009053554A Active JP5562567B2 (en) 2009-03-06 2009-03-06 Furan resin

Country Status (1)

Country Link
JP (1) JP5562567B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012214680A (en) * 2011-03-30 2012-11-08 Kao Corp Toner-binding resin
JP2014088480A (en) * 2012-10-29 2014-05-15 Okayama Univ Polyether ketone and manufacturing method thereof
WO2018062563A1 (en) * 2016-09-27 2018-04-05 Sekisui Chemical Co., Ltd. Bisfuran dihalide, method for producing bisfuran dihalide, and method for producing bisfuran diacid, bisfuran diol or bisfuran diamine using bisfuran dihalide
CN110372840A (en) * 2019-07-15 2019-10-25 陕西科技大学 A kind of inorganic-organic hybrid modified crosslinking type aqueous polyurethane emulsion and preparation method thereof
CN111925513A (en) * 2019-05-13 2020-11-13 中国石油天然气股份有限公司 Bio-based polycarbonate compound and preparation method thereof

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102293210B1 (en) 2018-08-10 2021-08-25 주식회사 엘지화학 Polycarbonate and method for preparing the same
KR102092838B1 (en) * 2018-10-02 2020-03-24 성균관대학교산학협력단 Novel furanic polycarbonate and synthesis method thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4316935A (en) * 1979-03-12 1982-02-23 The Celotex Corporation Polyisocyanurate foam and laminates thereof and process for producing them
JPH0586177A (en) * 1991-01-14 1993-04-06 Hoechst Ag Heteroaromatic polyether
JPH07506604A (en) * 1992-05-19 1995-07-20 シュラー インターナショナル インコーポレーテッド Glass fiber bonding composition, glass fiber bonding method, and glass fiber composition

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4316935A (en) * 1979-03-12 1982-02-23 The Celotex Corporation Polyisocyanurate foam and laminates thereof and process for producing them
JPH0586177A (en) * 1991-01-14 1993-04-06 Hoechst Ag Heteroaromatic polyether
JPH07506604A (en) * 1992-05-19 1995-07-20 シュラー インターナショナル インコーポレーテッド Glass fiber bonding composition, glass fiber bonding method, and glass fiber composition

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JPN6013039172; Mekki Choura, Naceur M. Belgacem, Alessandro Gandini: 'Acid-Catalyzed Polycondensation of Furfuryl Alcohol: Mechanisms of Chromophore Formation and Cross-L' Macromolecules Vol. 29, No. 11, 19960520, Page. 3839-3850 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012214680A (en) * 2011-03-30 2012-11-08 Kao Corp Toner-binding resin
JP2014088480A (en) * 2012-10-29 2014-05-15 Okayama Univ Polyether ketone and manufacturing method thereof
WO2018062563A1 (en) * 2016-09-27 2018-04-05 Sekisui Chemical Co., Ltd. Bisfuran dihalide, method for producing bisfuran dihalide, and method for producing bisfuran diacid, bisfuran diol or bisfuran diamine using bisfuran dihalide
CN109563061A (en) * 2016-09-27 2019-04-02 积水化学工业株式会社 Coumarin dihalide, the method for producing Coumarin dihalide and the method using Coumarin dihalide production Coumarin diacid, Coumarin glycol or Coumarin diamines
CN111925513A (en) * 2019-05-13 2020-11-13 中国石油天然气股份有限公司 Bio-based polycarbonate compound and preparation method thereof
CN110372840A (en) * 2019-07-15 2019-10-25 陕西科技大学 A kind of inorganic-organic hybrid modified crosslinking type aqueous polyurethane emulsion and preparation method thereof
CN110372840B (en) * 2019-07-15 2021-12-31 陕西科技大学 Inorganic-organic composite modified crosslinking type waterborne polyurethane emulsion and preparation method thereof

Also Published As

Publication number Publication date
JP5562567B2 (en) 2014-07-30

Similar Documents

Publication Publication Date Title
JP5562567B2 (en) Furan resin
Wu et al. Biobased poly (butylene 2, 5-furandicarboxylate) and poly (butylene adipate-co-butylene 2, 5-furandicarboxylate) s: From synthesis using highly purified 2, 5-furandicarboxylic acid to thermo-mechanical properties
KR101702936B1 (en) High Temperature melt processable semi-crystalline poly (aryl ether ketone) containing a (4-hydroxyphenyl)phthalazin-1(2H)-one comonomer unit
JP5120944B2 (en) Biodegradable high molecular weight aliphatic polyester and method for producing the same
Hsiao et al. Soluble aromatic polyamides bearing asymmetrical diaryl ether groups
KR101336465B1 (en) Thermoplastic lignin polycondensates and processes for preparing same
JP2007146153A (en) Polymer compound and method for synthesizing the same
KR20130015154A (en) Preparation of nylon 4,6 copolymers using 2-pyrrolidone based on biomass
JP5618040B2 (en) High molecular weight aliphatic polyester ether using bio-based raw material and process for producing the same
Wu et al. Aromatic polyesters containing different content of Thioether and methyl units: facile synthesis and properties
US10941104B2 (en) Biomass-derived polymers and copolymers incorporating monolignols and their derivatives
KR101309375B1 (en) Polyester resin composition using biomass extract and method for preparing the same
KR101606480B1 (en) Polylactic acid copolymer having excellently improved elasticity and method for preparing the same
Liaw et al. Synthesis and characterization of new soluble polyamides containing ether and pendant cyclododecylidene groups
JP7113465B2 (en) Novel polymer with aldaric acid as a structural unit and production method
JP2019526678A (en) Sulfur-containing polyimide and method for producing the same
JP5556670B2 (en) Glycol compound having dioxane structure and method for producing the same
KR20140109619A (en) Poly(ethersulfone) resin
CN113185694A (en) Furan dicarboxylic acid polyester containing sulfur element and preparation method thereof
JP5556669B2 (en) Glycol compound having dioxane structure and method for producing the same
Yu et al. Synthesis and Characterization of Novel Soluble Aromatic Polyesters with Pendant Cyano Groups
Sheng et al. A novel class of organosoluble poly (arylene ether nitrile) copolymers containing methyl substituent and cardo xanthene moiety
Huang et al. Flexible, transparent, and sustainable cellulose-based films for organic solar cell substrates
JP3904473B2 (en) Fluorine-containing arylamide ether polymer and process for producing the same
JPH0531574B2 (en)

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120302

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130426

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130801

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130827

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131002

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140603

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140611

R150 Certificate of patent or registration of utility model

Ref document number: 5562567

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250