JP2010207742A - Solvent cooling and separating apparatus of gas treatment apparatus - Google Patents

Solvent cooling and separating apparatus of gas treatment apparatus Download PDF

Info

Publication number
JP2010207742A
JP2010207742A JP2009057412A JP2009057412A JP2010207742A JP 2010207742 A JP2010207742 A JP 2010207742A JP 2009057412 A JP2009057412 A JP 2009057412A JP 2009057412 A JP2009057412 A JP 2009057412A JP 2010207742 A JP2010207742 A JP 2010207742A
Authority
JP
Japan
Prior art keywords
solvent
gas
cooling
activated carbon
flow path
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009057412A
Other languages
Japanese (ja)
Inventor
Minoru Kashiwada
実 柏田
Noriya Suzuki
宣也 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
APEL CO Ltd
Original Assignee
APEL CO Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by APEL CO Ltd filed Critical APEL CO Ltd
Priority to JP2009057412A priority Critical patent/JP2010207742A/en
Publication of JP2010207742A publication Critical patent/JP2010207742A/en
Pending legal-status Critical Current

Links

Landscapes

  • Treating Waste Gases (AREA)
  • Separation Of Gases By Adsorption (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a solvent cooling and separating apparatus of a gas treatment apparatus, which uses a Peltier element to cool, concentrate and separate a solvent concentrated gas containing a solvent desorbed from activated carbon and does not need cooling water. <P>SOLUTION: In the solvent cooling and separating apparatus, the flow path of the solvent concentrated gas flowing out from an activated carbon tank 10 and the flow path of inert gas flowing into the activated carbon tank 10 are adjacently disposed, and the Peltier element 46 is disposed at a partition wall 42 partitioning the two flow paths so as to expose one heating or cooling surface to the flow path of the solvent concentrated gas and expose the other heating or cooling surface to the flow path of the inert gas. In a desorption process, the solvent concentrated gas is cooled and the solvent is concentrated and separated by the cooling of the Peltier element 46, and the inert gas is heated by the heating of the Peltier element 46 simultaneously. The cooling water is not needed. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、溶剤を用いる工程から排出される被処理ガス中に含まれる溶剤を吸着工程により浄化するとともに脱着工程により溶剤を脱着するガス処理装置において、脱着された溶剤を凝縮分離して回収するための溶剤冷却分離装置に関するものである。   The present invention condenses and separates the desorbed solvent in a gas treatment apparatus that purifies the solvent contained in the gas to be treated discharged from the process using the solvent by the adsorption process and desorbs the solvent by the desorption process. The present invention relates to a solvent cooling / separation apparatus.

環境汚染に対する関心が高まり、溶剤を用いる工程で排出される溶剤を含む被処理ガスを浄化して排出するとともに溶剤を回収することが要請されている。そこで、この溶剤を含む被処理ガスを浄化するガス処理装置として、例えば、特開平7−39717号公報に記載された技術は次のようなものである。活性炭を内蔵した活性炭塔に溶剤を含む被処理ガスを流入させ、内蔵された活性炭により被処理ガス中に含まれる溶剤を吸着して、浄化されたガスが活性炭塔から浄化ガスとして排出される。溶剤を吸着した活性炭はヒータにより加熱され活性炭より溶剤を脱着させ、溶剤が含まれる溶剤濃縮ガスが冷却水が循環する冷却凝縮器により冷却されて溶剤が凝縮分離される。
特開平7−39717号公報
There is a growing interest in environmental pollution, and it is required to purify and discharge the gas to be treated including the solvent discharged in the process using the solvent and to recover the solvent. Therefore, as a gas processing apparatus for purifying the gas to be processed containing this solvent, for example, the technique described in Japanese Patent Application Laid-Open No. 7-39717 is as follows. A treated gas containing a solvent is introduced into an activated carbon tower containing activated carbon, and the solvent contained in the treated gas is adsorbed by the incorporated activated carbon, and the purified gas is discharged from the activated carbon tower as a purified gas. The activated carbon adsorbing the solvent is heated by a heater to desorb the solvent from the activated carbon, and the solvent-concentrated gas containing the solvent is cooled by a cooling condenser in which cooling water circulates to condense and separate the solvent.
JP 7-39717 A

活性炭より脱着させた溶剤が含まれる溶剤濃縮ガスを冷却水が循環する冷却凝縮器により冷却して溶剤を凝縮分離する特開平7−39717号公報に示された技術にあっては、大量の冷却水を必要とするという不具合がある。   In the technique disclosed in Japanese Patent Laid-Open No. 7-39717, a solvent concentrated gas containing a solvent desorbed from activated carbon is cooled by a cooling condenser in which cooling water circulates to condense and separate the solvent. There is a problem of requiring water.

本発明は、かかる従来技術の事情に鑑みてなされたもので、活性炭より脱着させた溶剤が含まれる溶剤濃縮ガスを冷却して溶剤を凝縮分離するのに、冷却水を必要としないようにしたガス処理装置の溶剤冷却分離装置を提供することを目的とする。   The present invention has been made in view of the circumstances of the prior art, and does not require cooling water to cool and concentrate the solvent-condensed gas containing the solvent desorbed from the activated carbon. It is an object of the present invention to provide a solvent cooling separation device for a gas processing device.

かかる目的を達成するために、本発明のガス処理装置の溶剤冷却分離装置は、吸着工程で、溶剤を含む被処理ガスを活性炭槽に流入させ、前記活性炭槽に内蔵した活性炭により前記溶剤を吸着して前記活性炭槽から浄化された浄化ガスを流出させ、脱着工程で、前記溶剤を吸着した前記活性炭を加熱して吸着された前記溶剤を脱着し、前記活性炭槽に不活性ガスを流入して脱着された前記溶剤が濃縮されて含まれる溶剤濃縮ガスを流出させ、前記溶剤濃縮ガスを溶剤冷却分離装置に流入させて冷却して前記不活性ガスから前記溶剤を凝縮分離させるガス処理装置の溶剤冷却分離装置において、前記溶剤冷却分離装置に、前記活性炭槽から流出した前記溶剤濃縮ガスの流路と、前記活性炭槽に流入する前記不活性ガスの流路を隣接して配設し、前記2つの流路を仕切る隔壁に前記溶剤濃縮ガスの流路に発熱または冷却の一方の面を晒すとともに前記不活性ガスの流路に発熱または冷却の他方の面を晒すようにしてペルチェ素子を配設し、前記脱着工程の少なくとも一時期において、前記ペルチェ素子の発熱と冷却により前記溶剤濃縮ガスを冷却して前記溶剤を凝縮分離するすると同時に前記不活性ガスを加熱するように構成されている。   In order to achieve this object, the solvent cooling / separation apparatus of the gas treatment apparatus of the present invention allows the gas to be treated containing a solvent to flow into the activated carbon tank in the adsorption step, and adsorbs the solvent with the activated carbon built in the activated carbon tank. The purified gas purified from the activated carbon tank is allowed to flow out, and in the desorption process, the activated carbon that has adsorbed the solvent is heated to desorb the adsorbed solvent, and an inert gas is flowed into the activated carbon tank. Solvent of a gas processing device for condensing the solvent from the inert gas by flowing out the solvent concentrated gas contained by concentrating the desorbed solvent and flowing the solvent concentrated gas into a solvent cooling / separating device and cooling it In the cooling / separating apparatus, the solvent cooling / separating apparatus is provided adjacent to the flow path of the solvent-concentrated gas flowing out from the activated carbon tank and the flow path of the inert gas flowing into the activated carbon tank, A Peltier element is formed by exposing one surface of heat generation or cooling to the flow path of the solvent-concentrated gas to the partition wall that separates the two flow paths and exposing the other surface of heat generation or cooling to the flow path of the inert gas. And at least one stage of the desorption step, the solvent-concentrated gas is cooled by heat generation and cooling of the Peltier element to condense and separate the solvent, and at the same time, the inert gas is heated.

また、吸着工程で、溶剤を含む被処理ガスを活性炭槽に流入させ、前記活性炭槽に内蔵した活性炭により前記溶剤を吸着して前記活性炭槽から浄化された浄化ガスを流出させ、脱着工程で、前記溶剤を吸着した前記活性炭を加熱して吸着された前記溶剤を脱着し、前記活性炭槽に不活性ガスを流入して脱着された前記溶剤が濃縮されて含まれる溶剤濃縮ガスを流出させ、前記溶剤濃縮ガスを溶剤冷却分離装置に流入させて冷却して前記不活性ガスから前記溶剤を凝縮分離させるガス処理装置の溶剤冷却分離装置において、前記溶剤冷却分離装置にペルチェ素子を配設し、このペルチェ素子の発熱または冷却の一方の面に接続した第1の熱伝導板を前記活性炭槽から流出した前記溶剤濃縮ガスの流路に晒すとともに発熱または冷却の他方の面に接続した第2の熱伝導板を前記活性炭槽に流入する前記不活性ガスの流路に晒すようにし、前記脱着工程の少なくとも一時期において、前記ペルチェ素子の発熱と冷却により前記溶剤濃縮ガスを冷却して前記溶剤を凝縮分離するすると同時に前記不活性ガスを加熱するように構成しても良い。   Further, in the adsorption step, a gas to be treated containing a solvent is allowed to flow into the activated carbon tank, and the purified gas that has been purified from the activated carbon tank by adsorbing the solvent by the activated carbon incorporated in the activated carbon tank is flown out, Desorbing the adsorbed solvent by heating the activated carbon adsorbing the solvent, allowing the inert gas to flow into the activated carbon tank and concentrating the desorbed solvent to flow out the concentrated solvent gas, In a solvent cooling / separation apparatus of a gas processing apparatus for condensing and separating the solvent from the inert gas by flowing a solvent concentrated gas into a solvent cooling / separation apparatus and cooling the Peltier element, The first heat conducting plate connected to one surface of the Peltier element for heat generation or cooling is exposed to the flow path of the solvent-concentrated gas flowing out of the activated carbon tank, and the other surface of heat generation or cooling is exposed. The second heat conduction plate that is continued is exposed to the flow path of the inert gas flowing into the activated carbon tank, and the solvent-concentrated gas is cooled by heat generation and cooling of the Peltier element at least at one time of the desorption process. Then, the inert gas may be heated at the same time as the solvent is condensed and separated.

そして、前記脱着工程の終了の際に、前記ペルチェ素子に印可する電圧の極性を切り換えて、前記不活性ガスが冷却されて前記活性炭槽に流入するように構成することもできる。   Then, at the end of the desorption process, the polarity of the voltage applied to the Peltier element is switched so that the inert gas is cooled and flows into the activated carbon tank.

さらに、前記不活性ガスの流路の内側に前記溶剤濃縮ガスの流路を配設して構成しても良い。   Furthermore, the flow path of the solvent-enriched gas may be disposed inside the flow path of the inert gas.

さらにまた、前記溶剤濃縮ガスの流路の内側に前記不活性ガスの流路を配設して構成しても良い。   Furthermore, the inert gas flow path may be disposed inside the solvent concentrated gas flow path.

また、前記内側に配設された流路の隔壁を略蛇腹形状に構成しても良い。   Moreover, you may comprise the partition of the flow path arrange | positioned inside the said substantially bellows shape.

またさらに、前記内側に配設された前記溶剤濃縮ガスの流路の隔壁を上下方向を軸とする略蛇腹形状とし、この略蛇腹形状の内側端縁に下方に向けた縁を設け、この内側端縁の内径が下側ほど大きくなるようにし、前記溶剤濃縮ガスの流路の上下方向の軸の下方に凝縮分離された前記溶剤が溜まる溜まり容器を配設して構成することも可能である。   Furthermore, the partition wall of the flow path of the solvent-enriched gas disposed on the inner side has a substantially bellows shape with the vertical direction as an axis, and an inner edge of the substantially bellows shape is provided with an edge directed downward. The inner diameter of the edge may be increased toward the lower side, and a reservoir container in which the condensed solvent is stored may be disposed below the vertical axis of the solvent-concentrated gas flow path. .

請求項1記載のガス処理装置の溶剤冷却分離装置は、溶剤冷却分離装置に、活性炭槽から流出した溶剤濃縮ガスの流路と、活性炭槽に流入する不活性ガスの流路を隣接して配設し、2つの流路を仕切る隔壁に溶剤濃縮ガスの流路に発熱または冷却の一方の面を晒すとともに不活性ガスの流路に発熱または冷却の他方の面を晒すようにしてペルチェ素子を配設したので、脱着工程において、ペルチェ素子で溶剤濃縮ガスを冷却して溶剤を凝縮分離でき、従来技術のごとく冷却水を必要としない。しかも、ペルチェ素子に発生する発熱により同時に活性炭槽に流入する不活性ガスを加熱するので、流入する不活性ガスのより活性炭槽の温度が低下して脱着効率が悪くなるようなことがない。   The solvent cooling / separating device of the gas treatment device according to claim 1 is arranged such that a solvent concentrated gas flow path flowing out from the activated carbon tank and an inert gas flow path flowing into the activated carbon tank are arranged adjacent to the solvent cooling separation apparatus. The Peltier element is exposed so that one side of the heat generation or cooling is exposed to the flow path of the solvent concentrated gas and the other side of the heat generation or cooling is exposed to the flow path of the inert gas to the partition wall that divides the two flow paths. In the desorption process, the solvent-concentrated gas is cooled by the Peltier element to condense and separate the solvent, and cooling water is not required as in the prior art. Moreover, since the inert gas flowing into the activated carbon tank is simultaneously heated by the heat generated in the Peltier element, the temperature of the activated carbon tank is not lowered by the flowing inert gas, and the desorption efficiency is not deteriorated.

請求項2記載のガス処理装置の溶剤冷却分離装置にあっては、溶剤冷却分離装置にペルチェ素子を配設し、ペルチェ素子の発熱または冷却の一方の面に接続した第1の熱伝導板を活性炭槽から流出した溶剤濃縮ガスの流路に晒すとともに発熱または冷却の他方の面に接続した第2の熱伝導板を活性炭槽に流入する不活性ガスの流路に晒すようにしたので、請求項1と同様に、脱着工程において、溶剤濃縮ガスを冷却して溶剤を凝縮分離ために、従来技術のごとく冷却水を必要とせず、しかも活性炭槽に流入する不活性ガスを加熱して流入させることができる。さらに、第1と第2の熱伝導板を用いることで、溶剤濃縮ガスの流路と活性炭槽に流入する不活性ガスの流路を隣接して配設しなければならないというような制約がない。   In the solvent cooling / separating apparatus for a gas processing apparatus according to claim 2, a Peltier element is provided in the solvent cooling / separating apparatus, and the first heat conduction plate connected to one surface of heat generation or cooling of the Peltier element is provided. Since the second heat conducting plate connected to the other side of the heat generation or cooling is exposed to the flow path of the inert gas flowing into the activated carbon tank while being exposed to the flow path of the solvent concentrated gas flowing out from the activated carbon tank. As in Item 1, in the desorption process, in order to cool the solvent concentrated gas and condense and separate the solvent, no cooling water is required as in the prior art, and the inert gas flowing into the activated carbon tank is heated to flow in. be able to. Furthermore, by using the first and second heat conductive plates, there is no restriction that the flow path of the solvent concentrated gas and the flow path of the inert gas flowing into the activated carbon tank must be disposed adjacent to each other. .

請求項3記載のガス処理装置の溶剤冷却分離装置にあっては、脱着工程の終了の際に、ペルチェ素子に印可する電圧の極性を切り換えて、不活性ガスが冷却されて活性炭槽に流入するようにしたので、冷却された不活性ガスにより活性炭が冷却され、溶剤を吸着する作用を速やかに回復させることができる。   In the solvent cooling / separation apparatus for a gas processing apparatus according to claim 3, the inert gas is cooled and flows into the activated carbon tank by switching the polarity of the voltage applied to the Peltier element at the end of the desorption process. Since it was made to do, activated carbon is cooled with the cooled inert gas and the effect | action which adsorb | sucks a solvent can be recovered rapidly.

請求項4および5記載のガス処理装置の溶剤冷却分離装置にあっては、不活性ガスの流路の内側に前記溶剤濃縮ガスの流路を配設し、または溶剤濃縮ガスの流路の内側に不活性ガスの流路を配設して、2つの流路が2重構造となるので、2つの流路の隔壁にペルチェ素子を設ければ良く、構造が簡単である。   6. The solvent cooling / separating apparatus for a gas processing apparatus according to claim 4 or 5, wherein the solvent-enriched gas flow path is disposed inside the inert gas flow path, or the solvent-enriched gas flow path is disposed inside. In addition, since the flow path of the inert gas is arranged in the two and the two flow paths have a double structure, a Peltier element may be provided in the partition walls of the two flow paths, and the structure is simple.

請求項6記載のガス処理装置の溶剤冷却分離装置にあっては、2重構造となる2つの流路の内側に配設された流路の隔壁を略蛇腹形状に構成することで、ペルチェ素子を広い面積に配設することができ、溶剤濃縮ガスおよび不活性ガスが接する面積を広くできて、溶剤濃縮ガスおよび不活性ガスに対する熱の伝達が効率的になし得る。     In the solvent cooling / separation device for a gas processing device according to claim 6, the Peltier element is configured by forming the partition walls of the flow passages disposed inside the two flow passages having a double structure into a substantially bellows shape. Can be disposed over a wide area, the area where the solvent concentrated gas and the inert gas are in contact with each other can be increased, and heat can be efficiently transferred to the solvent concentrated gas and the inert gas.

請求項7記載のガス処理装置の溶剤冷却分離装置にあっては、2重構造の内側に配設された溶剤濃縮ガスの流路の隔壁を上下方向を軸とする略蛇腹形状とし、この略蛇腹形状の内側端縁に下方に向けた縁を設けたので、冷却により凝縮分離された溶剤は、略蛇腹形状の内側端縁に下方に向けた縁から下に滴れ落ちる。しかも、この内側端縁の内径が下側ほど大きくなるようにしたので、縁から滴れ落ちた溶剤は、下方に配設した溜まり容器に直接に落ちて溜まり、凝縮分離された溶剤が下方にあるペルチェ素子の表面を流れることがない。もって、ペルチェ素子により溶剤が含まれる溶剤濃縮ガスを効率よく冷却することができる。   In the solvent cooling / separation device of the gas processing device according to claim 7, the partition wall of the solvent-concentrated gas flow passage disposed inside the double structure is formed in a substantially bellows shape with the vertical direction as an axis. Since the edge directed downward is provided at the inner edge of the bellows shape, the solvent condensed and separated by cooling drops down from the edge directed downward toward the inner edge of the substantially bellows shape. Moreover, since the inner diameter of the inner end edge is increased toward the lower side, the solvent dripped from the edge is directly dropped and accumulated in a storage container disposed below, and the condensed and separated solvent is downward. It does not flow on the surface of a Peltier element. Accordingly, the solvent concentrated gas containing the solvent can be efficiently cooled by the Peltier element.

以下、本発明のガス処理装置の溶剤冷却分離装置の第1実施例につき、図1ないし図3を参照して説明する。図1は、本発明のガス処理装置の溶剤冷却分離装置の第1実施例を用いたガス処理装置のブロック図である。図2は、図1に示す第1実施例で開閉弁と電圧印加とペルチェ素子およびブロワーの動作を示すタイムテーブルである。図3は、図1の溶剤冷却分離装置の動作を説明するための図である。   Hereinafter, a first embodiment of a solvent cooling / separating apparatus for a gas processing apparatus according to the present invention will be described with reference to FIGS. FIG. 1 is a block diagram of a gas processing apparatus using a first embodiment of the solvent cooling / separating apparatus of the gas processing apparatus of the present invention. FIG. 2 is a time table showing the operation of the on-off valve, voltage application, Peltier element and blower in the first embodiment shown in FIG. FIG. 3 is a view for explaining the operation of the solvent cooling / separating apparatus of FIG.

図1の第1実施例において、活性炭槽10は、円筒状の細長い中空形状でその両端部が上方に位置するようにして略U字状に形成されている。そして、細長い中空形状の一端部に流入室16が形成され、他端部に排出室18が形成される。そして、流入室16には、第1の開閉弁20を介して溶剤を含む被処理ガスとしての原ガスを流入させる流路が接続されている。また、流入室16には、第2の開閉弁24を介して溶剤冷却分離装置40からの窒素ガス等の不活性ガスを流入させる流路が接続されている。さらに、排出室18には、第3の開閉弁26を介して浄化されたガスが流出する流路が接続されている。また、排出室18には、第4の開閉弁28を介して溶剤が濃縮されて含まれた溶剤濃縮ガスが、溶剤冷却分離装置40に流出する流路が接続されている。   In the first embodiment of FIG. 1, the activated carbon tank 10 is formed in a substantially U shape so that both ends of the activated carbon tank 10 are located upward. An inflow chamber 16 is formed at one end of the elongated hollow shape, and a discharge chamber 18 is formed at the other end. The inflow chamber 16 is connected to a flow path through which the raw gas as the gas to be treated including the solvent flows through the first on-off valve 20. The inflow chamber 16 is connected to a flow path through which an inert gas such as nitrogen gas from the solvent cooling / separating device 40 flows through the second on-off valve 24. Furthermore, a flow path through which the purified gas flows out through the third on-off valve 26 is connected to the discharge chamber 18. The exhaust chamber 18 is connected to a flow path through which the solvent concentrated gas containing the concentrated solvent flows out to the solvent cooling / separating device 40 via the fourth on-off valve 28.

円筒状の細長い中空形状の活性炭槽10の外周壁は、ステンレス等の耐熱性と導電性を有する金属で形成され、第1の電極30としても作用する。しかも、この外周壁としての第1の電極30が接地されている。また、円筒状の活性炭槽10の断面軸心位置に軸方向に長い線状または円筒状または円柱状のステンレス等の耐熱性と導電性を有する金属で形成された第2の電極32が配設される。この第2の電極32は、第1の電極30とは絶縁状態に構成されることは勿論である。なお、第2の電極32は、細長い中空形状の活性炭槽10の内部で適宜に支持固定されている。そして、活性炭槽10の内部に活性炭14が挿入されて内蔵され、第1の電極30と第2の電極32の間に活性炭14が介在する状態となされる。さらに、電源としての交流電圧36が、スイッチ38を直列に介して、第1の電極30と第2の電極32の間に印加される。なお、第1の電極30には、交流電圧36の送電回路の接地側を接続することは勿論である。そして、第1の電極30と第2の電極32の間に電圧を印加して活性炭14に電流を流してジュール熱により発熱させて、活性炭14を加熱する手段が構成されている。   The outer peripheral wall of the cylindrical elongated hollow activated carbon tank 10 is formed of a metal having heat resistance and conductivity, such as stainless steel, and also functions as the first electrode 30. In addition, the first electrode 30 as the outer peripheral wall is grounded. In addition, a second electrode 32 formed of a metal having heat resistance and conductivity such as a linear, cylindrical, or columnar stainless steel that is long in the axial direction is disposed at the axial center position of the cylindrical activated carbon tank 10. Is done. Of course, the second electrode 32 is configured to be insulated from the first electrode 30. Note that the second electrode 32 is appropriately supported and fixed inside the elongated activated carbon tank 10 having a hollow shape. The activated carbon 14 is inserted and incorporated in the activated carbon tank 10, and the activated carbon 14 is interposed between the first electrode 30 and the second electrode 32. Further, an AC voltage 36 as a power source is applied between the first electrode 30 and the second electrode 32 via a switch 38 in series. Needless to say, the first electrode 30 is connected to the ground side of the AC voltage 36 power transmission circuit. A means for heating the activated carbon 14 is configured by applying a voltage between the first electrode 30 and the second electrode 32 to cause a current to flow through the activated carbon 14 to generate heat by Joule heat.

溶剤冷却分離装置40にあっては、上下方向を軸とする2重構造であり、内側の隔壁42が断熱材等の熱伝導性の悪い素材で形成され、しかも略蛇腹形状とされる。隔壁42の内側が溶剤濃縮ガスの流路となり、隔壁42と外側の壁44の間が不活性ガスの流路とされる。そして、内側の隔壁42と置き換わるようにして、発熱または冷却する一方の面を内側の溶剤濃縮ガスの流路に晒すとともに発熱または冷却する他方の面を外側の不活性ガスの流路に晒すように多数のペルチェ素子42が設けられている。隔壁42の略蛇腹形状の内径が、上側より下側ほど大きくなるように形成され、しかも略蛇腹形状の内側縁部に下方に向けた縁48が設けられている。   The solvent cooling / separating device 40 has a double structure centering on the vertical direction, and the inner partition 42 is formed of a material having poor thermal conductivity such as a heat insulating material, and has a substantially bellows shape. The inside of the partition wall 42 is a flow path for the solvent concentrated gas, and the space between the partition wall 42 and the outer wall 44 is a flow path for an inert gas. Then, it replaces the inner partition wall 42 and exposes one surface to be heated or cooled to the inner solvent-concentrated gas flow path and exposes the other surface to be heated or cooled to the outer inert gas flow path. A number of Peltier elements 42 are provided. An inner diameter of the substantially bellows shape of the partition wall 42 is formed so as to become larger from the upper side to the lower side, and an edge 48 directed downward is provided at the inner edge portion of the substantially bellows shape.

そして、溶剤冷却分離装置40の隔壁42と外側の壁44の間の不活性ガスの流路の下側にブロワー22を介して不活性ガスが流入する流路が接続される。また、溶剤冷却分離装置40の隔壁42と外側の壁44の間の不活性ガスの流路の上側から、第2の開閉弁24を介して流入室16に流路が接続される。さらに、溶剤冷却分離装置40の隔壁42の内側の溶剤濃縮ガスの流路の下側に、溶剤を溜める溜まり容器50が設けられるとともに第4の開閉弁28を介して排出室18に流路が接続される。また、溶剤冷却分離装置40の隔壁42の内側の溶剤濃縮ガスの流路の上側が排出する不活性ガスを回収する適宜な装置(図示せず)に接続されている。溜まり容器50の下部は、溜まった溶剤を外部に流し出す第5の開閉弁52に接続されている。   And the flow path into which an inert gas flows in via the blower 22 is connected to the lower side of the flow path of the inert gas between the partition wall 42 and the outer wall 44 of the solvent cooling / separating device 40. In addition, a flow path is connected to the inflow chamber 16 through the second opening / closing valve 24 from above the flow path of the inert gas between the partition wall 42 and the outer wall 44 of the solvent cooling / separating device 40. Furthermore, a reservoir 50 for storing the solvent is provided below the solvent-concentrated gas channel inside the partition wall 42 of the solvent cooling / separating device 40, and a channel is provided in the discharge chamber 18 via the fourth on-off valve 28. Connected. Further, the upper side of the flow path of the solvent concentrated gas inside the partition wall 42 of the solvent cooling / separating device 40 is connected to an appropriate device (not shown) for collecting the inert gas discharged. The lower part of the reservoir 50 is connected to a fifth on-off valve 52 that drains the accumulated solvent to the outside.

かかる構成からなるガス処理装置の溶剤冷却分離装置の第1実施例の動作につき、図2を参照して説明する。まず、最初は、活性炭槽10で溶剤の吸着がなされる。そして、活性炭槽10の活性炭14に適宜な量の溶剤が吸着されると、活性炭槽10で溶剤の脱着がなされる。吸着工程にあっては、まず活性炭槽10に接続される第1の開閉弁20と第3の開閉弁26が開成され、第2の開閉弁24と第4の開閉弁28が閉成され、ブロワー22は回転されず(OFF)、さらにスイッチ38がOFFとされて、第1の電極30と第2の電極32の間に電圧が印加されない。また、ペルチェ素子46には電圧が印可されておらず発熱および冷却がなされされない。かかる状態では、第1の開閉弁20を介して溶剤を含む被処理ガスとしての原ガスが一端部の流入室16から活性炭槽10内に流入すると、活性炭14の隙間を通過することで溶剤が活性炭14に吸着され、浄化された浄化ガスが他端部の排出室18から第3の開閉弁26を介して外部に浄化ガスとして排出される。そして、活性炭14に吸着された溶剤の量が適宜な所定値に達すると、第1と第3の開閉弁20、26を閉成して原ガスの流入を停止させ、吸着工程が終了する。   The operation of the first embodiment of the solvent cooling / separating apparatus of the gas processing apparatus having such a configuration will be described with reference to FIG. First, the adsorption of the solvent is performed in the activated carbon tank 10. When an appropriate amount of solvent is adsorbed on the activated carbon 14 of the activated carbon tank 10, the solvent is desorbed in the activated carbon tank 10. In the adsorption process, first, the first on-off valve 20 and the third on-off valve 26 connected to the activated carbon tank 10 are opened, the second on-off valve 24 and the fourth on-off valve 28 are closed, The blower 22 is not rotated (OFF), the switch 38 is turned OFF, and no voltage is applied between the first electrode 30 and the second electrode 32. Further, no voltage is applied to the Peltier element 46, and neither heat generation nor cooling is performed. In such a state, when the raw gas as the gas to be treated containing the solvent flows into the activated carbon tank 10 from the inflow chamber 16 at one end through the first on-off valve 20, the solvent passes through the gap of the activated carbon 14. The purified gas adsorbed and purified by the activated carbon 14 is discharged from the discharge chamber 18 at the other end as a purified gas to the outside through the third on-off valve 26. When the amount of the solvent adsorbed on the activated carbon 14 reaches an appropriate predetermined value, the first and third on-off valves 20 and 26 are closed to stop the inflow of the raw gas, and the adsorption process is completed.

脱着工程にあっては、まず第1と第3のの開閉弁20、26が閉成された状態で、第2と第4のの開閉弁24、28が開成され、ブロワー22が回転される(ON)。すると、不活性ガスである窒素ガス等が活性炭槽10内に流入し、活性炭槽10内に残存する浄化ガスが第4の開閉弁28を介して溶剤冷却分離装置40に排出される。この不活性ガスを適宜に設定された所定量または所定時間だけ流入させて、活性炭槽10の内部を不活性ガスで充満した後に、スイッチ38がONとされて第1の電極30と第2の電極32の間に電圧が印加されるとともに、ペルチェ素子46に隔壁42の内側が冷却されるように電圧が印加される。すると、活性炭14に電流が流れ、ジュール熱により活性炭14が約200度まで熱せられ、吸着された溶剤が活性炭14から脱着され、第4の開閉弁28を介して溶剤が濃縮されて含まれる溶剤濃縮ガスが溶剤冷却分離装置40の内側の溶剤濃縮ガスの流路に流れ込み、ペルチェ素子46により冷却され、含まれていた溶剤が不活性ガスから凝縮分離されて下方に滴れ落ちる。冷却により溶剤が凝縮分離された不活性ガスは排出不活性ガスとして回収装置へと流れる。これと同時に、隔壁42と外側の壁44の間の不活性ガスの流路を流れる不活性ガスは、ペルチェ素子46の発熱により加熱され、高温の不活性ガスが第2の開閉弁24を介して流入室16に流れ込む。そして、冷却により凝縮分離されて下方に滴れ落ちた溶剤は、溜まり容器50に溜まる。さらに、脱着が適宜に設定された所定値までなされると、スイッチ38がOFFされて電圧の印加が停止されて脱着が停止される。そして、その後も流入する不活性ガスで活性炭14から溶剤濃縮ガスが排出され、溶剤冷却分離装置40で冷却されて溶剤の凝縮分離がなされる。その後、ペルチェ素子46に印加される電圧の極性が変えられて、隔壁42と外側の壁44の間を流れる不活性ガスが冷却されて流入室16に流れ込み、活性炭14が冷却される。活性炭14が所定の温度まで低下して所望の吸着性能を奏するようになると、ペルチェ素子46への電圧の印加が停止されるとともに、ブロワー22の回転が停止されて脱着が終了する。ここで、次の吸着工程に備えて、第1と第3の開閉弁20、26が開成され、第2と第4の開閉弁24、28が閉成される。   In the desorption process, first, the first and third on-off valves 20 and 26 are closed, the second and fourth on-off valves 24 and 28 are opened, and the blower 22 is rotated. (ON). Then, nitrogen gas or the like, which is an inert gas, flows into the activated carbon tank 10, and the purified gas remaining in the activated carbon tank 10 is discharged to the solvent cooling / separating device 40 via the fourth on-off valve 28. The inert gas is allowed to flow in for a predetermined amount or for a predetermined time, and after the inside of the activated carbon tank 10 is filled with the inert gas, the switch 38 is turned on to turn on the first electrode 30 and the second electrode. A voltage is applied between the electrodes 32 and a voltage is applied to the Peltier element 46 so that the inside of the partition wall 42 is cooled. Then, an electric current flows through the activated carbon 14, the activated carbon 14 is heated to about 200 degrees by Joule heat, the adsorbed solvent is desorbed from the activated carbon 14, and the solvent is concentrated and contained through the fourth on-off valve 28. The concentrated gas flows into the flow path of the solvent concentrated gas inside the solvent cooling / separating device 40, is cooled by the Peltier element 46, and the contained solvent is condensed and separated from the inert gas and drops down. The inert gas from which the solvent has been condensed and separated by cooling flows to the recovery device as discharged inert gas. At the same time, the inert gas flowing through the inert gas flow path between the partition wall 42 and the outer wall 44 is heated by the heat generated by the Peltier element 46, and the high-temperature inert gas passes through the second on-off valve 24. Into the inflow chamber 16. Then, the solvent that has been condensed and separated by cooling and dripped downward is accumulated in the accumulation container 50. Further, when the desorption is performed up to a predetermined value set appropriately, the switch 38 is turned off to stop the application of the voltage and the desorption is stopped. Then, the solvent-concentrated gas is discharged from the activated carbon 14 by the inert gas that flows in after that, and is cooled by the solvent cooling / separating device 40 to condense and separate the solvent. Thereafter, the polarity of the voltage applied to the Peltier element 46 is changed, the inert gas flowing between the partition wall 42 and the outer wall 44 is cooled and flows into the inflow chamber 16, and the activated carbon 14 is cooled. When the activated carbon 14 is lowered to a predetermined temperature and exhibits a desired adsorption performance, the application of voltage to the Peltier element 46 is stopped, and the rotation of the blower 22 is stopped to complete the desorption. Here, in preparation for the next adsorption step, the first and third on-off valves 20 and 26 are opened, and the second and fourth on-off valves 24 and 28 are closed.

溶剤濃縮ガスの冷却により凝縮分離されて下方に滴れ落ちた溶剤は、図3に示すごとく、略蛇腹形状の斜面を内側に流れ落ちて、内側縁部の下方に向けた縁48から下方に滴れ落ちて溜まり容器50に溜まる。ここで、上側の内側縁部の内径が下側よりも小さく、上側の内側縁部の縁48から下方に滴れ落ちた溶剤は、略蛇腹形状の他の斜面に滴れ落ちることなく真っ直ぐに溜まり容器50に落ちて溜まる。そこで、下側の略蛇腹形状の斜面を上側で凝縮分離された溶剤が流れることがなく、溶剤を含む溶剤濃縮ガスを効率良く冷却することができる。溜まり容器50に滴れ落ちて溜まった溶剤が適宜な量となれば、第5の開閉弁が開成されて外部へと排出させる。   As shown in FIG. 3, the solvent that has been condensed and separated by cooling of the solvent-concentrated gas and dropped down flows down on the substantially bellows-shaped slope and drops downward from the edge 48 directed downward of the inner edge. It falls off and accumulates in the accumulation container 50. Here, the inner diameter of the upper inner edge portion is smaller than the lower side, and the solvent dripping downward from the edge 48 of the upper inner edge portion is straight without dropping on the other inclined surface of the substantially bellows shape. It falls into the accumulation container 50 and accumulates. Therefore, the solvent condensed and separated on the upper side of the substantially bellows-shaped slope on the lower side does not flow, and the solvent concentrated gas containing the solvent can be efficiently cooled. When the amount of the solvent that has dripped into the storage container 50 and accumulated becomes an appropriate amount, the fifth on-off valve is opened and discharged to the outside.

本発明のガス処理装置の溶剤冷却分離装置の第1実施例にあっては、脱着工程において、ペルチェ素子46で溶剤濃縮ガスを冷却して溶剤を凝縮分離でき、従来技術のごとく冷却水を必要としない。しかも、ペルチェ素子46に発生する発熱により同時に活性炭槽10に流入する不活性ガスを加熱するので、流入する不活性ガスにより活性炭槽10の温度が低下して脱着効率が悪くなるようなことがない。しかも、ペルチェ素子46に印加する電圧の極性を切り換えて、不活性ガスを冷却して活性炭槽10に流入させることができ、この冷却された不活性ガスにより活性炭槽10に内蔵される活性炭14を速やかに冷却することができて、溶剤を吸着する作用を速やかに回復させることができる。また、2重構造となる2つの流路の内側に配設された流路の隔壁42を略蛇腹形状に構成することで、ペルチェ素子46を広い面積に配設することができ、溶剤濃縮ガスおよび不活性ガスが接する面積を広くでき、溶剤濃縮ガスおよび不活性ガスに対する熱の伝達を効率的になし得る。さらに、2重構造の内側に配設された溶剤濃縮ガスの流路の隔壁42を上下方向を軸とする略蛇腹形状とし、この略蛇腹形状の内側端縁に下方に向けた縁48を設けたので、冷却により凝縮分離された溶剤は、略蛇腹形状の内側端縁に下方に向けた縁から下に滴れ落ちる。しかも、この内側端縁の内径が下側ほど大きくなるようにしたので、縁48から滴れ落ちた溶剤は、下方に配設した溜まり容器50に直接に落ちて溜まり、凝縮分離された溶剤が下方にあるペルチェ素子46の表面を流れることがない。もって、ペルチェ素子46により溶剤が含まれる溶剤濃縮ガスを効率よく冷却することができる。   In the first embodiment of the solvent cooling / separating apparatus of the gas processing apparatus of the present invention, the solvent can be condensed and separated by cooling the solvent concentrated gas by the Peltier element 46 in the desorption process, and cooling water is required as in the prior art. And not. Moreover, since the inert gas flowing into the activated carbon tank 10 is simultaneously heated by the heat generated in the Peltier element 46, the temperature of the activated carbon tank 10 is not lowered by the flowing inert gas, and the desorption efficiency is not deteriorated. . In addition, the polarity of the voltage applied to the Peltier element 46 can be switched to cool the inert gas and flow into the activated carbon tank 10, and the activated carbon 14 built in the activated carbon tank 10 can be cooled by the cooled inert gas. It can be cooled quickly, and the action of adsorbing the solvent can be quickly recovered. Further, the partition wall 42 of the flow path disposed inside the two flow paths having a double structure is formed in a substantially bellows shape, whereby the Peltier element 46 can be disposed in a wide area, and the solvent concentrated gas In addition, the area in contact with the inert gas can be increased, and heat can be efficiently transferred to the solvent concentrated gas and the inert gas. Further, the partition wall 42 of the flow path of the solvent-enriched gas disposed inside the double structure has a substantially bellows shape with the vertical direction as an axis, and an edge 48 facing downward is provided on the inner end edge of the substantially bellows shape. Therefore, the solvent condensed and separated by cooling is dripped down from the edge directed downward to the inner end edge of the substantially bellows shape. Moreover, since the inner diameter of the inner end edge is increased toward the lower side, the solvent dropped from the edge 48 is directly dropped and accumulated in the reservoir 50 disposed below, and the condensed and separated solvent is removed. It does not flow on the surface of the lower Peltier element 46. Therefore, the solvent concentrated gas containing the solvent can be efficiently cooled by the Peltier element 46.

次に、本発明のガス処理装置の溶剤冷却分離装置の第2実施例につき、図4を参照して説明する。図4は、本発明のガス処理装置の溶剤冷却分離装置の第2実施例の構造図である。図4において、図1ないし図3に示す部材と同じまたは均等な部材には同じ符号を付けて、重複する説明を省略する。   Next, a second embodiment of the solvent cooling / separating apparatus of the gas processing apparatus of the present invention will be described with reference to FIG. FIG. 4 is a structural view of a second embodiment of the solvent cooling / separating apparatus of the gas processing apparatus of the present invention. In FIG. 4, the same or equivalent members as those shown in FIG. 1 to FIG.

図4に示す第2の実施例の溶剤冷却分離装置60は、上下方向を軸とする2重構造の円筒状であり、内側の隔壁62は熱伝導性の悪い材質で形成され、この隔壁62に置き換わるようにペルチェ素子46が配設されている。したがって、ペルチェ素子46は、発熱または冷却の一面を隔壁62の内側に晒し、他方の面を隔壁62の外側に晒している。そして、隔壁62の内側に下側からブロワー22により不活性ガスが流入されて不活性ガスの流路とされ、その上側から不活性ガスが活性炭槽10へと流れる。また、隔壁62と外側の壁64の間が溶剤濃縮ガスの流路であり、その下側から溶剤濃縮ガスが流入し上側から溶剤が分離された不活性ガスが排出される。隔壁62と外側の壁64の間の溶剤濃縮ガスの流路の下側には溜まり容器50が接続されている。   The solvent cooling / separating device 60 of the second embodiment shown in FIG. 4 has a double-layered cylindrical shape with the vertical direction as an axis, and the inner partition wall 62 is formed of a material having poor thermal conductivity. A Peltier element 46 is disposed so as to be replaced. Therefore, the Peltier element 46 exposes one surface of heat generation or cooling to the inside of the partition wall 62 and the other surface to the outside of the partition wall 62. Then, an inert gas is flowed into the partition wall 62 from the lower side by the blower 22 to form a flow path of the inert gas, and the inert gas flows from the upper side to the activated carbon tank 10. A space between the partition wall 62 and the outer wall 64 is a flow path for the solvent concentrated gas. The solvent concentrated gas flows from the lower side and the inert gas from which the solvent is separated is discharged from the upper side. A reservoir 50 is connected to the lower side of the flow path of the solvent concentrated gas between the partition wall 62 and the outer wall 64.

脱着工程において、ペルチェ素子46で隔壁62の外側を冷却するように電圧を印加し、溶剤濃縮ガスを冷却して溶剤を凝縮分離する。第1実施例と第2実施例に示すように、流路を2重構造とした場合に、いずれの流路が溶剤濃縮ガスおよび不活性ガスの流路であっても良く、流路内を流れるガスに応じてペルチェ素子46に適宜な極性で電圧を印可すれば良い。また、ペルチェ素子46を配設する面積を広くするには、第2実施例のごとく筒状の2重管であれば、隔壁62の面積を広くすべくその軸方向の長さを長くすれば足りる。   In the desorption process, a voltage is applied so that the outside of the partition wall 62 is cooled by the Peltier element 46, the solvent concentrated gas is cooled, and the solvent is condensed and separated. As shown in the first and second embodiments, when the flow path has a double structure, any of the flow paths may be a solvent-concentrated gas flow path and an inert gas flow path. A voltage may be applied to the Peltier element 46 with an appropriate polarity according to the flowing gas. Further, in order to increase the area where the Peltier element 46 is disposed, in the case of a cylindrical double tube as in the second embodiment, if the axial length is increased in order to increase the area of the partition wall 62. It ’s enough.

さらに、本発明のガス処理装置の溶剤冷却分離装置の第3実施例につき、図5を参照して説明する。図5は、本発明のガス処理装置の溶剤冷却分離装置の第3実施例の構造図であり、(a)は全体構造図であり、(b)は(a)のA−A断面矢視図である。図5において、図1ないし図4に示す部材と同じまたは均等な部材には同じ符号を付けて、重複する説明を省略する。   Furthermore, a third embodiment of the solvent cooling / separating apparatus of the gas processing apparatus of the present invention will be described with reference to FIG. FIG. 5 is a structural view of a third embodiment of the solvent cooling / separating device of the gas processing apparatus of the present invention, wherein (a) is an overall structural view, and (b) is an AA cross-sectional view of (a). FIG. In FIG. 5, the same or equivalent members as those shown in FIGS. 1 to 4 are denoted by the same reference numerals, and redundant description is omitted.

図5に示す第3の実施例の溶剤冷却分離装置70は、外側の壁74は上下方向を軸とする円筒状であり、その内側の中央に隔壁72が熱伝導性の悪い材質で形成され、この隔壁72に置き換わるようにペルチェ素子46が配設されている。したがって、円筒形状内が隔壁72で2つの流路とされ、ペルチェ素子46は、発熱または冷却の一面を一方の流路に晒し、他方の面を他方の流路に晒している。そして、隔壁72で仕切られた一方の流路の下側からブロワー22により不活性ガスが流入されて不活性ガスの流路とされて、その上側から不活性ガスが活性炭槽10へと流れる。また、隔壁72で仕切られた他方の流路が溶剤濃縮ガスの流路であり、その下側から溶剤濃縮ガスが流入し上側から溶剤が分離された不活性ガスが排出される。この溶剤濃縮ガスの流路の下側には溜まり容器50が接続されている。   In the solvent cooling / separating apparatus 70 of the third embodiment shown in FIG. 5, the outer wall 74 has a cylindrical shape with the vertical direction as an axis, and a partition wall 72 is formed of a material having poor thermal conductivity at the center inside thereof. A Peltier element 46 is disposed so as to replace the partition wall 72. Therefore, the inside of the cylindrical shape is divided into two flow paths by the partition wall 72, and the Peltier element 46 exposes one surface of heat generation or cooling to one flow channel and the other surface to the other flow channel. Then, an inert gas is introduced from the lower side of one flow path partitioned by the partition wall 72 by the blower 22 to form an inert gas flow path, and the inert gas flows from the upper side to the activated carbon tank 10. The other flow path partitioned by the partition wall 72 is a flow path for the solvent concentrated gas. The solvent concentrated gas flows from the lower side and the inert gas from which the solvent is separated is discharged from the upper side. A reservoir container 50 is connected to the lower side of the flow path of the solvent concentrated gas.

脱着工程において、ペルチェ素子46で溶剤濃縮ガスの流路を冷却するように電圧を印加し、溶剤濃縮ガスを冷却して溶剤を凝縮分離する。1枚の板状の隔壁72の一部を置き換えるようにペルチェ素子46を配設するので、その構造が簡単である。   In the desorption process, a voltage is applied so as to cool the flow path of the solvent concentrated gas by the Peltier element 46, the solvent concentrated gas is cooled, and the solvent is condensed and separated. Since the Peltier element 46 is disposed so as to replace a part of one plate-like partition wall 72, the structure thereof is simple.

またさらに、本発明のガス処理装置の溶剤冷却分離装置の第4実施例につき、図6を参照して説明する。図6は、本発明のガス処理装置の溶剤冷却分離装置の第4実施例の構造図である。図6において、図1ないし図5に示す部材と同じまたは均等な部材には同じ符号を付けて、重複する説明を省略する。   Furthermore, a fourth embodiment of the solvent cooling / separating apparatus of the gas processing apparatus of the present invention will be described with reference to FIG. FIG. 6 is a structural view of a fourth embodiment of the solvent cooling / separating device of the gas processing apparatus of the present invention. In FIG. 6, the same or equivalent members as those shown in FIG. 1 to FIG.

図6に示す第4の実施例の溶剤冷却分離装置80は、溶剤濃縮ガスの流路82と不活性ガスの流路84が互いに近接しているが独立して設けられている。溶剤濃縮ガスの流路82の下側には、溶剤濃縮ガスが流入する流路が接続され、また溜まり容器50が設けられ、上側から溶剤が分離された不活性ガスが排出される流路が接続されている。また、不活性ガスの流路84は、その下側からブロワー22により不活性ガスが流入し、その上側から不活性ガスが活性炭槽10に流出するように接続される。そして、ペルチェ素子46の発熱または冷却する一方の面に接続された第1の熱伝導板86が、溶剤濃縮ガスの流路82内に晒され、第1の熱伝導板86から流路82内に複数の熱交換板86aが突出している。また、ペルチェ素子46の発熱または冷却する他方の面に接続された第2の熱伝導板88が、不活性ガスの流路84内に晒され、第2の熱伝導板88から流路84内に複数の熱交換板88aが突出している。第1と第2の熱伝導板86、88および熱交換板86a、88aは、熱伝導性の良い素材で形成されることは勿論である。   In the solvent cooling / separating apparatus 80 of the fourth embodiment shown in FIG. 6, a solvent-concentrated gas flow path 82 and an inert gas flow path 84 are provided close to each other but independently. A flow path through which the solvent concentrated gas flows is connected to the lower side of the flow path 82 for the solvent concentrated gas, and a reservoir container 50 is provided, and a flow path through which the inert gas from which the solvent is separated is discharged from the upper side. It is connected. Further, the inert gas flow path 84 is connected so that the inert gas flows in from the lower side by the blower 22, and the inert gas flows out from the upper side to the activated carbon tank 10. The first heat conduction plate 86 connected to one surface of the Peltier element 46 that generates heat or cools is exposed to the flow path 82 of the solvent-enriched gas, and the first heat conduction plate 86 and the inside of the flow path 82 are exposed. A plurality of heat exchanging plates 86a protrudes. In addition, the second heat conductive plate 88 connected to the other surface of the Peltier element 46 that generates heat or cools is exposed to the inert gas flow path 84, and the second heat conductive plate 88 passes through the flow path 84. A plurality of heat exchange plates 88a protrude. Of course, the first and second heat conducting plates 86 and 88 and the heat exchanging plates 86a and 88a are made of a material having good thermal conductivity.

脱着工程において、ペルチェ素子46で溶剤濃縮ガスの流路82に晒される第1の熱伝導板86を冷却するように電圧を印加し、溶剤濃縮ガスを冷却して溶剤を凝縮分離する。第1と第2の熱伝導板86、88を用いることで、ペルチェ素子46の配設位置および溶剤濃縮ガスの流路82と不活性ガスの流路84を配設する位置が制約されることがない。   In the desorption process, a voltage is applied so as to cool the first heat conducting plate 86 exposed to the flow path 82 of the solvent concentrated gas by the Peltier element 46, the solvent concentrated gas is cooled, and the solvent is condensed and separated. By using the first and second heat conducting plates 86 and 88, the position where the Peltier element 46 is disposed and the position where the solvent-concentrated gas flow path 82 and the inert gas flow path 84 are disposed are restricted. There is no.

なお、上記実施例において、溶剤冷却分離装置40、60、70、80は、いずれも上下方向を軸とする構造としているが、これに限られず、凝縮分離された溶剤が適切に回収できる構造であれば、軸方向が横方向または斜め方向であっても良い。また、被処理ガスに含まれる溶剤を吸着し、また吸着した溶剤を脱着させる活性炭槽10の構造は、上記説明のものに限られず、特開平7−39717号公報に記載されたようなものや特開2000−107563号公報に記載されたようなものであっても良い。
特開2000−107563号公報
In the above embodiment, the solvent cooling / separating devices 40, 60, 70, 80 all have a structure with the vertical direction as the axis, but the structure is not limited to this, and the structure in which the condensed and separated solvent can be recovered appropriately. If present, the axial direction may be a horizontal direction or an oblique direction. Further, the structure of the activated carbon tank 10 that adsorbs the solvent contained in the gas to be treated and desorbs the adsorbed solvent is not limited to the one described above, but as described in JP-A-7-39717. A thing as described in Unexamined-Japanese-Patent No. 2000-107563 may be sufficient.
JP 2000-107563 A

本発明のガス処理装置の溶剤冷却分離装置の第1実施例を用いたガス処理装置のブロック図である。It is a block diagram of the gas processing apparatus using the 1st example of the solvent cooling separation device of the gas processing apparatus of the present invention. 図1に示す第1実施例で開閉弁と電圧印加とペルチェ素子およびブロワーの動作を示すタイムテーブルである。It is a timetable which shows operation | movement of an on-off valve, a voltage application, a Peltier device, and a blower in 1st Example shown in FIG. 図1の溶剤冷却分離装置の動作を説明するための図である。It is a figure for demonstrating operation | movement of the solvent cooling separation apparatus of FIG. 本発明のガス処理装置の溶剤冷却分離装置の第2実施例の構造図である。It is a structural diagram of 2nd Example of the solvent cooling separation apparatus of the gas processing apparatus of this invention. 本発明のガス処理装置の溶剤冷却分離装置の第3実施例の構造図であり、(a)は全体構造図であり、(b)は(a)のA−A断面矢視図である。It is a block diagram of 3rd Example of the solvent cooling separation apparatus of the gas processing apparatus of this invention, (a) is a whole structure figure, (b) is an AA cross-sectional arrow view of (a). 本発明のガス処理装置の溶剤冷却分離装置の第4実施例の構造図である。It is a structure figure of 4th Example of the solvent cooling separation apparatus of the gas processing apparatus of this invention.

10 活性炭槽
14 活性炭
16 流入室
18 排出室
20 第1の開閉弁
22 ブロワー
24 第2の開閉弁
26 第3の開閉弁
28 第4の開閉弁
30 第1の電極
32 第2の電極
36 交流電圧
38 スイッチ
40、60、70、80 溶剤冷却分離装置
42、62、72 隔壁
44、64、74 外側の壁
46 ペルチェ素子
48 縁
50 溜まり容器
52 第5の開閉弁
82 溶剤濃縮ガスの流路
84 不活性ガスの流路
86 第1の熱伝導板
86a、88a 熱交換板
88 第2の熱伝導板
DESCRIPTION OF SYMBOLS 10 Activated carbon tank 14 Activated carbon 16 Inflow chamber 18 Discharge chamber 20 1st on-off valve 22 Blower 24 2nd on-off valve 26 3rd on-off valve 28 4th on-off valve 30 1st electrode 32 2nd electrode 36 AC voltage 38 Switch 40, 60, 70, 80 Solvent cooling / separation device 42, 62, 72 Bulkhead 44, 64, 74 Outer wall 46 Peltier element 48 Edge 50 Reservoir container 52 Fifth open / close valve 82 Solvent concentrated gas flow path 84 Active gas flow path 86 First heat conduction plate 86a, 88a Heat exchange plate 88 Second heat conduction plate

Claims (7)

吸着工程で、溶剤を含む被処理ガスを活性炭槽に流入させ、前記活性炭槽に内蔵した活性炭により前記溶剤を吸着して前記活性炭槽から浄化された浄化ガスを流出させ、脱着工程で、前記溶剤を吸着した前記活性炭を加熱して吸着された前記溶剤を脱着し、前記活性炭槽に不活性ガスを流入して脱着された前記溶剤が濃縮されて含まれる溶剤濃縮ガスを流出させ、前記溶剤濃縮ガスを溶剤冷却分離装置に流入させて冷却して前記不活性ガスから前記溶剤を凝縮分離させるガス処理装置の溶剤冷却分離装置において、前記溶剤冷却分離装置に、前記活性炭槽から流出した前記溶剤濃縮ガスの流路と、前記活性炭槽に流入する前記不活性ガスの流路を隣接して配設し、前記2つの流路を仕切る隔壁に前記溶剤濃縮ガスの流路に発熱または冷却の一方の面を晒すとともに前記不活性ガスの流路に発熱または冷却の他方の面を晒すようにしてペルチェ素子を配設し、前記脱着工程の少なくとも一時期において、前記ペルチェ素子の発熱と冷却により前記溶剤濃縮ガスを冷却して前記溶剤を凝縮分離するすると同時に前記不活性ガスを加熱するように構成したことを特徴とするガス処理装置の溶剤冷却分離装置。 In the adsorption step, a gas to be treated containing a solvent is caused to flow into the activated carbon tank, and the purified gas is adsorbed by the activated carbon incorporated in the activated carbon tank and the purified gas purified from the activated carbon tank is flown out. The activated carbon adsorbed is heated to desorb the adsorbed solvent, and an inert gas is flowed into the activated carbon tank to concentrate the desorbed solvent, and the contained solvent concentrated gas is discharged, and the solvent concentration is performed. In the solvent cooling / separation apparatus of the gas processing apparatus for condensing and separating the solvent from the inert gas by flowing the gas into the solvent cooling / separation apparatus, the solvent concentration separated from the activated carbon tank is added to the solvent cooling / separation apparatus. A gas flow path and an inert gas flow path that flows into the activated carbon tank are disposed adjacent to each other, and a partition wall that divides the two flow paths is provided with heat generation or cooling in the solvent concentrated gas flow path. And the Peltier element is disposed so that the other surface of heat generation or cooling is exposed to the flow path of the inert gas, and the solvent is generated by heat generation and cooling of the Peltier element at least at one time of the desorption process. A solvent cooling / separating apparatus for a gas processing apparatus, wherein the concentrated gas is cooled to condense and separate the solvent and simultaneously heat the inert gas. 吸着工程で、溶剤を含む被処理ガスを活性炭槽に流入させ、前記活性炭槽に内蔵した活性炭により前記溶剤を吸着して前記活性炭槽から浄化された浄化ガスを流出させ、脱着工程で、前記溶剤を吸着した前記活性炭を加熱して吸着された前記溶剤を脱着し、前記活性炭槽に不活性ガスを流入して脱着された前記溶剤が濃縮されて含まれる溶剤濃縮ガスを流出させ、前記溶剤濃縮ガスを溶剤冷却分離装置に流入させて冷却して前記不活性ガスから前記溶剤を凝縮分離させるガス処理装置の溶剤冷却分離装置において、前記溶剤冷却分離装置にペルチェ素子を配設し、このペルチェ素子の発熱または冷却の一方の面に接続した第1の熱伝導板を前記活性炭槽から流出した前記溶剤濃縮ガスの流路に晒すとともに発熱または冷却の他方の面に接続した第2の熱伝導板を前記活性炭槽に流入する前記不活性ガスの流路に晒すようにし、前記脱着工程の少なくとも一時期において、前記ペルチェ素子の発熱と冷却により前記溶剤濃縮ガスを冷却して前記溶剤を凝縮分離するすると同時に前記不活性ガスを加熱するように構成したことを特徴とするガス処理装置の溶剤冷却分離装置。 In the adsorption step, a gas to be treated containing a solvent is caused to flow into the activated carbon tank, and the purified gas is adsorbed by the activated carbon incorporated in the activated carbon tank and purified gas is discharged from the activated carbon tank. The activated carbon adsorbed is heated to desorb the adsorbed solvent, and an inert gas is flowed into the activated carbon tank to concentrate the desorbed solvent, and the contained solvent concentrated gas is discharged, and the solvent concentration is performed. In a solvent cooling / separating apparatus of a gas processing apparatus for condensing and separating the solvent from the inert gas by flowing gas into the solvent cooling / separating apparatus, a Peltier element is provided in the solvent cooling / separating apparatus, and the Peltier element The first heat conduction plate connected to one side of the heat generation or cooling is exposed to the flow path of the solvent concentrated gas flowing out from the activated carbon tank and connected to the other side of the heat generation or cooling. The second heat conducting plate is exposed to the flow path of the inert gas flowing into the activated carbon tank, and at least at one stage of the desorption process, the solvent-concentrated gas is cooled by heat generation and cooling of the Peltier element. A solvent cooling / separating apparatus for a gas processing apparatus, wherein the inert gas is heated at the same time as the solvent is condensed and separated. 請求項1または2記載のガス処理装置の溶剤冷却分離装置において、前記脱着工程の終了の際に、前記ペルチェ素子に印可する電圧の極性を切り換えて、前記不活性ガスが冷却されて前記活性炭槽に流入するように構成したことを特徴とするガス処理装置の溶剤冷却分離装置。 3. The solvent cooling / separating apparatus for a gas processing apparatus according to claim 1, wherein the inert gas is cooled by switching a polarity of a voltage applied to the Peltier element at the end of the desorption process. A solvent cooling / separation device for a gas processing device, wherein the solvent cooling / separation device is configured to flow into the gas treatment device. 請求項1記載のガス処理装置の溶剤冷却分離装置において、前記不活性ガスの流路の内側に前記溶剤濃縮ガスの流路を配設して構成したことを特徴とするガス処理装置の溶剤冷却分離装置。 2. The solvent cooling / separating apparatus for a gas processing apparatus according to claim 1, wherein the solvent-concentrated gas flow path is disposed inside the inert gas flow path. Separation device. 請求項1記載のガス処理装置の溶剤冷却分離装置において、前記溶剤濃縮ガスの流路の内側に前記不活性ガスの流路を配設して構成したことを特徴とするガス処理装置の溶剤冷却分離装置。 2. The solvent cooling / separating apparatus for a gas processing apparatus according to claim 1, wherein the inert gas flow path is disposed inside the solvent concentrated gas flow path. Separation device. 請求項4または5記載のガス処理装置の溶剤冷却分離装置において、前記内側に配設された流路の隔壁を略蛇腹形状に構成したことを特徴とするガス処理装置の溶剤冷却分離装置。 6. The solvent cooling / separating apparatus for a gas processing apparatus according to claim 4 or 5, wherein a partition wall of the flow path disposed inside the gas processing apparatus has a substantially bellows shape. 請求項4記載のガス処理装置の溶剤冷却分離装置において、前記内側に配設された前記溶剤濃縮ガスの流路の隔壁を上下方向を軸とする略蛇腹形状とし、この略蛇腹形状の内側端縁に下方に向けた縁を設け、この内側端縁の内径が下側ほど大きくなるようにし、前記溶剤濃縮ガスの流路の上下方向の軸の下方に凝縮分離された前記溶剤が溜まる溜まり容器を配設して構成したことを特徴とするガス処理装置の溶剤冷却分離装置。 5. The solvent cooling / separating apparatus for a gas processing apparatus according to claim 4, wherein a partition wall of the solvent-concentrated gas flow path disposed inside is substantially bellows shaped with the vertical direction as an axis, and the inner end of the substantially bellows shaped shape. A reservoir in which the solvent is condensed and separated below the vertical axis of the flow path of the solvent-concentrated gas so that the inner edge has an inner diameter that increases toward the lower side. A solvent cooling / separating apparatus for a gas processing apparatus, characterized by comprising:
JP2009057412A 2009-03-11 2009-03-11 Solvent cooling and separating apparatus of gas treatment apparatus Pending JP2010207742A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009057412A JP2010207742A (en) 2009-03-11 2009-03-11 Solvent cooling and separating apparatus of gas treatment apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009057412A JP2010207742A (en) 2009-03-11 2009-03-11 Solvent cooling and separating apparatus of gas treatment apparatus

Publications (1)

Publication Number Publication Date
JP2010207742A true JP2010207742A (en) 2010-09-24

Family

ID=42968523

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009057412A Pending JP2010207742A (en) 2009-03-11 2009-03-11 Solvent cooling and separating apparatus of gas treatment apparatus

Country Status (1)

Country Link
JP (1) JP2010207742A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020054603A3 (en) * 2018-09-11 2020-05-14 東洋紡株式会社 Organic solvent recovery system

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04271810A (en) * 1991-02-26 1992-09-28 Japan Steel Works Ltd:The Dehumidifier
JPH0739717A (en) * 1993-07-28 1995-02-10 Toray Ind Inc Organic solvent recovering apparatus
JPH08131530A (en) * 1994-11-04 1996-05-28 Tdk Corp Deodorizer
JPH09141233A (en) * 1995-11-22 1997-06-03 Matsushita Electric Ind Co Ltd Crude refuse decomposing and treating device
JP2002263444A (en) * 2001-03-12 2002-09-17 Mitsubishi Electric Corp Method and equipment for removing nox
JP2006000724A (en) * 2004-06-16 2006-01-05 Mitsubishi Heavy Ind Ltd Organic solvent recovering apparatus and organic solvent recovering method
JP2008012431A (en) * 2006-07-05 2008-01-24 Fuji Xerox Co Ltd Apparatus for removing air pollution substance

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04271810A (en) * 1991-02-26 1992-09-28 Japan Steel Works Ltd:The Dehumidifier
JPH0739717A (en) * 1993-07-28 1995-02-10 Toray Ind Inc Organic solvent recovering apparatus
JPH08131530A (en) * 1994-11-04 1996-05-28 Tdk Corp Deodorizer
JPH09141233A (en) * 1995-11-22 1997-06-03 Matsushita Electric Ind Co Ltd Crude refuse decomposing and treating device
JP2002263444A (en) * 2001-03-12 2002-09-17 Mitsubishi Electric Corp Method and equipment for removing nox
JP2006000724A (en) * 2004-06-16 2006-01-05 Mitsubishi Heavy Ind Ltd Organic solvent recovering apparatus and organic solvent recovering method
JP2008012431A (en) * 2006-07-05 2008-01-24 Fuji Xerox Co Ltd Apparatus for removing air pollution substance

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020054603A3 (en) * 2018-09-11 2020-05-14 東洋紡株式会社 Organic solvent recovery system

Similar Documents

Publication Publication Date Title
JP3936867B2 (en) Selective adsorption and desorption of gases by electrically heated activated carbon fiber fabric elements.
JP4466422B2 (en) Volatile organic compound processing equipment
US5904750A (en) VOC control/solvent recovery system
US20090229461A1 (en) Method and apparatus for desorption and dehumidifier using the same
JP2012531299A (en) Method and apparatus for gas removal
WO2011021637A1 (en) Organic solvent recovery system
JP5509759B2 (en) Organic solvent-containing gas recovery system
WO2018105196A1 (en) Gas concentrator
JP2007050378A (en) Recovery process for volatile organic compound
JP4530945B2 (en) Recovery process for volatile organic compounds
JP2011240243A (en) Organic solvent recovery system
JP2010207742A (en) Solvent cooling and separating apparatus of gas treatment apparatus
WO2021132071A1 (en) Organic solvent recovery system
JP5760440B2 (en) Organic solvent recovery system
JP2014000526A (en) Solvent recovery apparatus and method of controlling the same
JP2019510627A (en) Multistage adsorption gas separation process and system
JP5720658B2 (en) Volatile organic compound processing equipment
JP2012166155A (en) Organic solvent recovery system
JP2017000991A (en) Concentrator and organic solvent recovery system
JP2009291676A (en) Solvent refining apparatus
JP2013128918A (en) Device for desorption and dehumidification, and system using the same
JP2011062687A (en) Organic solvent recovery system
JP6458465B2 (en) Organic solvent recovery system
JP2008194594A (en) Adsorbing body and adsorption-type recovery apparatus using the same
JP2014226617A (en) Gas purification device and gas purification method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120203

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120816

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120824

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20121225