JP2010206866A - 電子機器及び充電器 - Google Patents

電子機器及び充電器 Download PDF

Info

Publication number
JP2010206866A
JP2010206866A JP2009046641A JP2009046641A JP2010206866A JP 2010206866 A JP2010206866 A JP 2010206866A JP 2009046641 A JP2009046641 A JP 2009046641A JP 2009046641 A JP2009046641 A JP 2009046641A JP 2010206866 A JP2010206866 A JP 2010206866A
Authority
JP
Japan
Prior art keywords
electronic device
charging
charger
vibrator
power
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2009046641A
Other languages
English (en)
Inventor
Masanori Oshimi
正典 押味
Haruo Hayakawa
温雄 早川
Norihito Mochida
則仁 持田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Original Assignee
Panasonic Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp filed Critical Panasonic Corp
Priority to JP2009046641A priority Critical patent/JP2010206866A/ja
Publication of JP2010206866A publication Critical patent/JP2010206866A/ja
Withdrawn legal-status Critical Current

Links

Images

Abstract

【課題】充電器に対して電子機器を非接触充電を行うための最適位置に配置することが可能な電子機器を提供する。
【解決手段】非接触方式で充電する充電器2によって充電可能な二次電池307を電源として用いる電子機器3であって、充電器2の一次コイル201から送電される電力を受電する二次コイル301と、二次コイル301により受電される電力が最大になる所定の一次コイル301と二次コイル302との位置関係を基準に、一次コイル201と二次コイル301のずれ量を検出する閾値電圧判定部と305、ずれ量が第1ずれ量と第1ずれ量より小さい第2ずれ量との間にある場合に、バイブレータ309が振動するよう制御する充電制御部306と、を備える。
【選択図】図4

Description

本発明は、電子機器及び充電器に関し、特に、非接触方式で受電した電力によって充電する二次電池を電源として用いる電子機器、及び、非接触方式で電力を送電する充電器に関する。
近年、充電器と電子機器とで電子機器充電システムを構成し、金属接点やコネクタ等を介さずに充電器から電子機器へ電力を伝送すること(以下、無接点電力伝送または単に電力伝送という)、また、伝送された電力を電子機器が備える二次電池に充電すること(以下、非接触充電という)が行われている。充電器が電子機器に対して非接触充電を行う場合には、所定の認証処理を行った後に、無接点電力伝送を行って電子機器内の二次電池に充電を開始する。
無接点電力伝送では、充電器と電子機器とが所定の位置関係(例えば、充電器の中心の真上に電子機器を配置するなど)となるように両者を配置しなければ、電子機器において電力を受電するための磁束密度が疎になってしまうため、電力伝送効率が低下してしまう。
このような無接点電力伝送時の伝送効率の低下を防止するための装置として、電磁誘導コイルを有する電子機器に外部より交流磁界を作用することにより充電する充電器において、商用電源に接続され、安定化電源回路と充電のための交流信号を出力するための駆動回路を有する充電器部と、充電器部と別体に構成されるとともに、駆動回路と結線され、交流信号を受けて充電のための交流磁界を発生するための一次コイルを有する一次コイル部と、一次コイル部に設けられ、電子機器の誘導コイルの位置に対応した一次コイルの位置と指向性を表示するためのマーク部とからなる電磁誘導式充電器が知られている(例えば、特許文献1参照)。
また、他の装置として、磁気発生部と、磁気発生部における載置台に載置される二次コイルを具備する負荷部と、負荷部の載置位置を定める位置決め手段と、負荷部における負荷の種別を二次コイルへの高周波電流の伝達前に磁気発生部に報知する負荷種別報知手段とを有し、磁気発生部は、載置台の下に配置された一次コイル、一次コイルに高周波電流を流す発振手段および負荷種別報知手段からの報知内容を基に発振手段の発振出力を制御する制御手段を備え、負荷部は、一次コイルと電磁結合して二次コイルに伝達された高周波電流に基づく電力を負荷に供給する調理器が知られている(例えば、特許文献2参照)。
実用新案登録第2524306号公報 特許第3871729号公報
しかしながら、充電器に対して電子機器を最適位置に配置するための機構を充電器が備えていない場合には、当該最適位置を把握できないため、電力伝送効率が低下してしまうことがあった。また、充電器上に視覚的に認識可能な目印を設けて、目印により最適な配置位置に電子機器を誘導させる場合であっても、電子機器を充電器に近づけている途中で目印が電子機器に隠れてしまい、視認することができない状態になることがあった。
本発明は、上記事情に鑑みてなされたものであって、充電器に対して電子機器を非接触充電を行うための最適位置に配置することが可能な充電器、電子機器を提供することを目的とする。
本発明の電子機器は、非接触方式で充電する充電器によって充電可能な二次電池を電源として用いる電子機器であって、前記充電器の一次コイルから送電される電力を受電する二次コイルと、前記二次コイルにより受電される電力が最大になる所定の一次コイルと二次コイル位置関係を基準に、前記一次コイルと前記二次コイルのずれ量を検出する位置ずれ検出手段と、前記ずれ量が第1ずれ量と前記第1ずれ量より小さい第2ずれ量との間にある場合に、前記バイブレータが振動するよう制御する振動制御手段と、を備える。
この構成により、充電器に対して電子機器を非接触充電を行うための最適位置に配置することが可能である。特に、振動によりユーザに最適位置を通知することで、目の不自由な方や暗所においても最適充電位置に対して電子機器の位置がずれていることを認識することができる。さらに、最適位置において非接触充電を行うことで、効率の良い充電が可能である。
また、本発明の電子機器は、前記位置ずれ検出手段が、前記二次コイルにより受電されたときの当該二次コイルの電流を検出し、第1の電流を前記第1ずれ量とし、前記第1の電流よりも小さい第2の電流を前記第2ずれ量として、前記ずれ量を検出する。
この構成により、電流値に基づいても、バイブレータの振動によってユーザに最適位置を通知することができる。さらに、最適位置において非接触充電を行うことで、効率の良い充電が可能である。
また、本発明の電子機器は、前記位置ずれ検出手段が、所定の認証処理が成立する最大のずれ量を第1ずれ量とし、前記二次コイルの起電圧が所定の電圧に達した時のずれ量を第2ずれ量として、前記ずれ量を検出する。
この構成により、認証処理が成功したか否かに基づいて、バイブレータの振動によってユーザに最適位置を通知することができる。さらに、最適位置において非接触充電を行うことで、効率の良い充電が可能である。
また、本発明の電子機器は、当該電子機器内の複数の点におけるそれぞれの磁束密度を検出する磁気検出手段を備え、前記位置ずれ検出手段が、前記磁気検出手段により検出された各磁束密度に基づいて磁束密度の高い方向及び当該方向の磁束密度の大きさを示すベクトルの絶対値を算出し、前記ベクトルの第1の絶対値を前記第1ずれ量とし、前記第1の絶対値よりも小さい前記ベクトルの第2の絶対値を第2ずれ量として、前記ずれ量を検出する。
この構成により、磁気検出に基づいても、バイブレータの振動によってユーザに最適位置を通知することができる。特に、二次コイル周辺の各位置に配置される磁気検出手段により磁束密度を検出し、検出結果を統合して合成ベクトルとして表すことで、より正確な位置ずれ情報を取得することができる。
また、本発明の電子機器は、前記二次コイルにより受電された電力を前記バイブレータに供給するよう制御する充電制御手段を備える。
この構成により、二次コイルにより受電された電力をバイブレータの駆動のための電力に用いることができる。また、位置ずれが大きい場合には、二次コイルが受電する電力は小さく、位置ずれが小さい場合には二次コイルが受電する電力は大きい。このように位置ずれの大小に応じて二次コイルが受電する電力も変化する。この変化を利用して、位置ずれの大小をバイブレータの振動の大小に変換することができ、ユーザに位置ずれの大小を報知してもよい。
また、本発明の電子機器は、前記二次電池の電力を前記バイブレータに供給するよう制御する充電制御手段を備える。
この構成により、二次電池に蓄積された電力をバイブレータの駆動のための電力に用いることができる。
また、本発明の電子機器は、前記充電制御手段が、前記二次電池の電圧が所定値以下である場合、前記二次コイルにより受電された電力を前記バイブレータに供給するよう制御する。
この構成により、二次電池の電力ではバイブレータに対して電力不足となる場合であっても、非接触充電用に受電した電力を充電に用いずに、バイブレータの駆動のための電力に用いることができる。
また、本発明の電子機器は、前記振動制御手段が、前記ずれ量が第1ずれ量と前記第2ずれ量との間になってから所定時間が経過した場合、バイブレータの振動を停止するよう制御する。
この構成により、ユーザが電子機器を振動領域から移動させるなど、ユーザによる応答がない場合には、バイブレータの振動を停止し、省電力化を図ることができる。
また、本発明の電子機器は、前記振動制御手段は、前記バイブレータの振動を停止するよう制御した場合、発光又は報音により報知するよう制御する。
この構成により、振動を知覚することができない状況であっても、位置ずれを把握することができ、非接触充電のための最適位置に電子機器を配置することが可能となる。
また、本発明の充電器は、電子機器の電源として用いられる充電可能な二次電池を非接触方式で充電する充電器であって、バイブレータと、前記電子機器の二次コイルへ電力を送電し、信号を受信する一次コイルと、前記一次コイルにより前記電子機器からの前記バイブレータを起動するための起動信号を受信すると、前記バイブレータが振動するよう制御する振動制御手段と、を備える。
この構成により、充電器に対して電子機器を非接触充電を行うための最適位置に配置することが可能である。特に、振動によりユーザに最適位置を通知することで、目の不自由な方や暗所においても最適充電位置に対して電子機器の位置がずれていることを認識することができる。さらに、最適位置において非接触充電を行うことで、効率の良い充電が可能である。
また、本発明の充電器は、前記一次コイルが、前記充電器の前記電子機器に対向する面の中心部に配置され、当該充電器が、前記中心部に向かって下がる傾斜面を備える。
この構成により、中心部に向かって下がる傾斜面を設けることで、電子機器の配置位置が中心部付近の最適位置からずれた場合であっても、振動することで最適位置方向に電子機器を移動させることができる。
本発明によれば、充電器に対して電子機器を非接触充電を行うための最適位置に配置することが可能である。
以下、本発明の実施形態の電子機器及び充電器について、添付図面を参照して詳細に説明する。
図1は、本発明の実施形態における電子機器充電システムの外観図である。図1に示す電子機器充電システム1は、携帯電話、PHS(Personal Handy-phone System)、PDA(Personal Digital Assistant)、携帯端末等の電子機器3と、電子機器3に対して非接触に充電を行う充電台等の充電器2とを備える。電子機器3は、充電器2と非接触の状態で充電器2から電力の給電を受けて充電可能な電池(二次電池)に充電することができる。ここで、非接触とは、電子機器3と充電器2が、金属端子を介して直接電気的に導通しない状態で、両者の間で電力(電波)、信号等がやり取り可能であることをいう。
また、充電器2は電子機器3に電磁誘導で電力を送るための一次コイル201を備えており、電子機器3は充電器2から電磁誘導で電力を受けるための二次コイル301を備えている。図1では、一次コイル201及び二次コイル301の形状を円形として示しているが、これに限られない。一次コイル201と二次コイル301は、充電器2における電子機器3が載置される面と電子機器3における充電器2と対向する筐体の外側の面との間の面に対向するように配置される。電子機器3と充電器2とを所定の位置に対向して配置することで、一次コイル201と二次コイル301が対向した状態となり、二次コイル301を用いた電磁誘導により、無接点電力伝送及び非接触充電を行うことが可能である。
また、電子機器充電システム1は、非接触充電を開始する前に、充電器2と電子機器3との間で、所定の認証処理を行う。認証処理とは、電子機器3が充電を行う対象としての正規負荷であるか否かを充電器2が認証するための処理である。認証処理においては、充電器2が負荷に対して認証要求信号を送信し、充電器2に載置された負荷(電子機器3)が充電器2に対して認証ID信号を送信する。認証IDが正当なものであれば充電器2は正規負荷であると判定する。電子機器3が正規負荷であると判定されると、充電器2から電子機器3へ充電用の電力が伝送される。
充電器2に電子機器3を載置して充電を行う場合、一次コイル201の中心位置と二次コイル301の中心位置とが対向するように(つまり一次コイル201の中心の真上に二次コイル301の中心がくるように)電子機器3を載置すると、二次コイル301により受電される電力(以下、受電電力ともいう)が最大になる。電子機器3は、この最大電力となる一次コイル201と二次コイル301との位置関係を基準に、一次コイル201と二次コイル301とがどの程度ずれているかを示す量(以下、ずれ量という)を検出し、当該ずれ量が第1ずれ量と第2ずれ量(第1ずれ量>第2ずれ量)との間にある場合に、電子機器3が振動するようにしている。
次に、充電器2において電子機器3が載置される面(以下、載置面という)上の複数の領域について説明する。本明細書では、載置には、実際に電子機器3が充電器2に接して置かれていなくても、充電器2上に非接触かつ近距離で電子機器3が存在する場合(例えば電子機器3を把持して充電器2にかざしている状態)も含むものとする。
図2に示す載置面は、複数の領域を有する。複数の領域には、最適充電領域41、振動領域42が含まれる。
最適充電領域41は、当該領域に電子機器3が載置された場合に、電子機器3が充電器2から十分な電力を受けることができ、二次電池を好適に充電可能な領域である。最適充電領域41は振動領域42よりも内側に形成される。また、充電器2は、最適充電領域41の中心が、一次コイル201の中心位置と略一致する。
振動領域42は、当該領域に電子機器3が載置された場合に、充電器2又は電子機器3が振動動作を行う領域である。振動領域42では、電子機器3は充電器2から電力を受けることが可能であるが、二次電池を充電するために好適な充電電力ではない。振動領域42は、上記第1ずれ量と上記第2ずれ量との間にある領域を示している。
なお、振動領域42の外縁は第1ずれ量を示しており、最適充電領域41の外縁(振動領域42の内縁)は第2ずれ量を示している。
電子機器3の位置を載置面上で移動することで、または、電子機器3の位置が載置面上を移動されることで、例えば振動領域42、最適充電領域41、振動領域42の順に移行することになり、この場合、振動領域42のみで振動動作が行われ、最適充電領域43では振動動作は停止される。これにより、最適な電力供給ポイント(最適充電ポイント)をユーザが認識することが可能であり、充電器2を目視することなく、手探りで最適位置に容易に電子機器3を配置することができる。つまり、電子機器充電システム1は、目の不自由な方であっても、または薄暗い中においても、充電器2の位置さえユーザが認識できれば、最適充電ポイントに誘導することができる。
以下、振動領域42に電子機器3が載置されることで振動動作を行う主体が、電子機器3である場合を第1〜第3の実施形態で、充電器2である場合を第4の実施形態で説明する。
(第1の実施形態)
第1の実施形態では、電子機器3が振動動作を行う。また、所定の認証処理が成立する最大のずれ量を上記第1ずれ量とし、電子機器3が備える二次コイルの起電圧が所定の電圧に達した時のずれ量を上記第2ずれ量とする。つまり、第1の電圧としての所定の認証処理が成立する最小の電力を受けたときの電圧(後述する認証用の閾値電圧)を第1ずれ量としており、第2の電圧としての後述する充電用の閾値電圧を第2ずれ量としている。
したがって、本実施形態では、最適充電領域41は、電子機器3が充電器2から受電した電力に起因する電圧(以下、受電電圧ともいう)が、充電用の閾値電圧以上の領域である。また、振動領域42は、受電電圧が、上記充電用の閾値電圧未満であり、かつ、認証用の閾値電圧以上の領域である。なお、充電用の閾値電圧>認証用の閾値電圧を満たす。また、各閾値電圧はあらかじめ定められている。
このように受電電圧に基づいてずれ量を検出し、最適充電領域41及び振動領域42の範囲を規定することにより、各領域41及び42の距離的な範囲も定まる。
次に、電子機器充電システム1の構成について説明する。
本実施形態においても、電子機器充電システム1は、充電器2及び電子機器3を備える。充電器2は、非接触充電を行うための電力供給装置としての充電器の一般的な構成を備えている。例えば、一次コイル201や認証処理部や給電部等を備える。
また、充電器2は、図3に示すように、振動領域42が傾斜面αを備えるようにしてもよい。傾斜面αは、最適充電領域41の中心(つまり一次コイル201の中心)に向かって下がる傾斜を有している。傾斜面αの傾斜角度は、電子機器3を振動無く充電器2に載置した場合には最適充電領域41の方向へ移動せず、振動動作があるときに電子機器3を充電器2に載置した場合には最適充電領域41の方向へ移動する程度の角度である。このような傾斜面を有することで、振動動作により電子機器3が振動領域42から最適充電領域41へ向かって移動することになり、自動的に電子機器3が最適充電領域41に配置されることになる。
また、充電器2は、図示はしないが、上記のような傾斜面αを備えていなくてもよい。この場合、振動により、電子機器3が充電器2に対して位置ずれしていることを認識可能である。
図4は本実施形態における電子機器3の具体的な構成の一例を示す図である。
電子機器3は、二次コイル301、整流部302、第1電圧制御部303、認証処理部304、閾値電圧判定部305、充電制御部306、二次電池307、第2電圧制御部308、バイブレータ309を備える。図4では、二次電池307は通常状態(例えば電池電圧3.70V以上)であり、二次電池307がバイブレータ309へ電力を供給することを想定している。二次電池307の電圧は、図示しない電圧検出部により検出され、充電制御部306へ通知される。
二次コイル301は、電力供給を受けるための電力の受電や各種信号を受信するための電力の受電、各種信号を送信する。
整流部302は、受電電力を整流して直流電力を生成する。整流部302は、例えばダイオードブリッジにより構成される。
第1電圧制御部303は、整流部302の出力電圧が充電用の閾値電圧以上である場合に、第1電圧制御部303からの出力電圧が充電用の閾値電圧で一定になるように、電圧制御(降圧制御)を行う。これにより、一定の電圧が充電制御部306へ供給される。
認証処理部304は、二次コイル301及び整流部302を介して、充電器2との間で所定の認証処理を行う。
閾値電圧判定部305は、認証処理部304により実施される認証処理において、二次コイル301により受信された信号の電圧が認証用の閾値電圧以上であるか否かを判定する。認証用の閾値電圧以上である場合には、電子機器3が振動領域42もしくは最適充電領域43に載置されていることになる。一方、認証用の閾値電圧以下である場合には、電子機器3が振動領域42よりも外側に載置されていることになる。
また、閾値電圧判定部305は、第1電圧制御部303から出力される電圧が充電用の閾値電圧以上であるか否かを判定する。また、閾値電圧判定部305は、第1電圧制御部303から出力される電圧が認証用の閾値電圧以上であるか否かを判定する。ここで、充電用の閾値電圧の方が認証用の閾値電圧よりも大きい。上記出力電圧が充電用の閾値電圧以上である場合には、電子機器3が最適充電領域41に載置されていることになる。また、上記出力電圧が充電用の閾値電圧未満であり、かつ、認証用の閾値電圧以上である場合には、電子機器3が振動領域42に載置されていることになる。また、上記出力電圧が認証用の閾値電圧未満である場合には、電子機器3が振動領域42よりも外側に載置されていることになる。
なお、閾値電圧判定部305は、位置ずれ検出手段として機能する。
充電制御部306は、二次電池307への充電を行うための充電制御を行う。また、充電制御部306は、バイブレータ309を振動させるための振動制御を行う。具体的には、閾値電圧判定部305により第1電圧制御部303からの出力電圧が充電用の閾値電圧以上であると判定された場合、充電制御部306は、二次電池307を充電すべく二次電池307へ電力を供給する。また、閾値電圧判定部305により第1電圧制御部303からの出力電圧が充電用の閾値電圧未満であり、かつ、認証用の閾値電圧以上であると判定された場合、第2電力制御部308は、二次電池307の電力を利用してバイブレータ309を振動させる。
二次電池307は、リチウムイオン電池などの二次電池であり、充電制御部306からの電力により充電される。また、二次電池307は、第2電力制御部308へ電力を供給する。
第2電圧制御部308は、二次電池307からの電力を入力し、バイブレータ309のモータの回転数を一定にするために電圧制御(降圧制御)を行う。これにより、一定の電圧(一定の駆動用電圧)がバイブレータ309へ供給される。
バイブレータ309は、振動手段の一例であり、第2電圧制御部308からの電圧により駆動する。バイブレータ309が駆動して電子機器3が振動することにより、最適充電領域41よりも外側の振動領域42に電子機器3が載置されていることを報知する。また、第2電圧制御部308からの電力が一定であるため、振動の大きさが一定である。
また、図5は本実施形態における電子機器3の具体的な構成の別の一例を示す図である。図5に示す電子機器3の構成は、図4に示した電子機器3の構成と同じであるが、動作が若干異なる部分がある。ここでは異なる部分を主に説明する。なお、図4の電子機器3と同一の構成については、同一の符号を付している。図5では、二次電池307は過放電状態(例えば電池電圧3.10V)であり、受電電力をバイブレータ309へ供給することを想定している。二次電池307の電圧は、図示しない電圧検出部により検出され、充電制御部306へ通知される。
充電制御部306は、閾値電圧判定部305により第1電圧制御部303からの出力電圧が充電用の閾値電圧未満であり、かつ、認証用の閾値電圧以上であると判定された場合、第2電圧制御部308は、第1電圧制御部303から電力の供給を受け、バイブレータ309を振動させる。
二次電池307は、過放電状態であるため、バイブレータ309駆動用の電圧を第2電力制御部308へは供給しない。また、受電電力はバイブレータ309駆動用に使用し、充電制御部306による二次電池307への充電は停止する。そのため、バイブレータ309に受電電力の多く供給でき、バイブレータ309の振動を大きくできる。
第2電圧制御部308は、受電電力に基づく第1電圧制御部303からの電力を入力し、バイブレータ309のモータの回転数を一定にするために電圧制御(降圧制御)を行う。これにより、一定の電圧(一定の駆動用電圧)がバイブレータ309へ供給される。
バイブレータ309は、第2電圧制御部308からの電圧によりバイブレータ309内のモータを駆動する。
図4及び図5では、二次電池の充電状態によってバイブレータ309へ電力供給を行う電力供給元(二次電池の電力と受電電力)を分けて説明したが、二次電池307によってバイブレータ309へ電力を供給しているとき(図4の状態)に、供給途中で二次電池307が過放電状態(つまり二次電池307の電圧が3.10V以下)となった場合、二次電池307による電力供給から受電電力による電力供給に切り替えてもよい(図5の状態)。この場合、例えば、充電制御部306が二次電池307の電圧の低下を認識し、第2電圧制御部308は、二次電池307から電力供給を受けずに、第1電圧制御部303から電力供給を受け、バイブレータ309へ電力供給を行う。
また、図5に示した受電電力をバイブレータ309に供給する場合には、バイブレータ309の振動の大きさを一定とせず、受電電力の大きさに基づいて、充電制御部306が、バイブレータ309による振動の大きさを制御してもよい。この場合、第2電圧制御部308は、出力電圧が一定となるような制御は行わない。したがって、充電器2からの電磁エネルギーを強く受ける方向に電子機器3が近づくにつれて振動が大きくなるため、ユーザに最適位置の方向を認識させることができる。特に、最適充電領域の中心からどの程度電子機器3の載置位置がずれているかをユーザが認識可能である。
次に、電子機器3が最適充電領域41に載置された場合、振動領域42に載置された場合について説明する。
図6は、載置位置に基づく電子機器3の動作を説明するための図である。図6は、受電電力をバイブレータ309へ供給する場合を想定している。図6では、図5の電子機器3の構成部に、充電用スイッチ311と駆動用スイッチ312とが追加されている。図5の電子機器3と同一の構成については、同一の符号を付し、説明を省略する。
電子機器3が最適充電領域41に載置された場合には、バイブレータ309による振動動作を行わず、二次電池307への充電動作を行うために、充電制御部306は、充電用スイッチ311をオン状態に、駆動用スイッチ312をオフ状態になるよう制御する。また、電子機器3が充電領域42に載置された場合には、バイブレータ309による振動動作を行い、二次電池307への充電動作を行わないため、充電制御部306は、充電用スイッチ311をオフ状態に、駆動用スイッチ312をオン状態になるよう制御する。
次に、電子機器3の載置位置と受電電圧に基づく電圧との関係について説明する。
図7は、図2の点線Aによって示される位置を横軸で示しており、各位置における受電電圧に基づく電圧を縦軸に示している。この電圧は、図4のM点 又は図5におけるM点に相当する点において電圧検出した値である。図7に示すように、受電電圧は最適充電領域41に近づくにつれて高くなり、最適充電領域41内では一定電圧となる。これは、第1電圧制御部303により所定電圧以上の場合には一定の電圧となるように制御されるためである。なお、受電電圧は、図示はしないが最適充電領域41の中心において最大となり、中心から離れるにしたがって小さくなる。つまり、図7の最適充電領域41の中心が頂点となる山型の電圧ラインとなる。
次に、電子機器3がバイブレータ309による振動及び二次電池307への充電を行う際の動作について説明する。
図8は、電子機器3がバイブレータ309による振動及び二次電池307への充電を行う際の動作の一例を示すフローチャートである。
まず、認証処理部304が、二次コイル301を介して、充電器2との間で所定の認証処理を行う(ステップS11)。
認証処理が成功すると、閾値電圧判定部305が、受電電圧が充電用の閾値電圧以上であるか否か、充電用の閾値電圧未満かつ認証用の閾値電圧以上であるか否かを判定する(ステップS12)。
受電電圧が充電用の閾値電圧以上である場合、充電制御部306が、バイブレータ309の振動を行っている場合には振動を停止するよう制御する(ステップS13)。続いて、充電制御部306が、二次電池307の充電を行うべく二次電池307に電力を供給する(ステップS14)。二次電池307の充電を開始すると、充電制御部306が、図示しないLEDが点灯するよう制御する。
一方、受電電圧が充電用の閾値電圧未満である場合、かつ、認証用の閾値電圧以上である場合、充電制御部306は、二次電池307が通常状態(バイブレータ309の駆動が可能な状態)か否かを判定する(ステップS15)通常状態か否かは、具体的には、充電制御部306が、図示しない電圧センサを用いて二次電池307の電圧を検出し、二次電池307の電圧が過放電確認用の閾値電圧(例えば、3.10V)以上であるか否かによって判定する。
二次電池307が通常状態つまり電池電圧が過放電確認用の閾値電圧以上である場合には、バイブレータ309は、二次電池307からの電力供給により振動する(ステップS16)。一方、二次電池307が過放電状態つまり電池電圧が過放電確認用の閾値電圧未満である場合には、バイブレータ309は、二次コイル301からの電力供給により振動する(ステップS107)。
図8の処理を行うことで、電子機器3は、例えば、振動領域42よりも外側から振動領域42に移動したときに、認証が成立してバイブレーション309が振動を開始する。さらに、電子機器3は、振動領域42から最適充電領域41へ移動したときに、受電電力が規定電圧(充電用の閾値電圧)以上となり、振動を停止し、二次電池307の充電を開始し、充電ランプとしてのLEDを点灯する。
なお、バイブレータ309の振動時間が所定時間を経過しても電子機器3が振動領域42に載置されている場合には、充電制御部306が、バイブレータ309の振動を停止するよう制御してもよい。さらに、このようにバイブレータ309の振動を停止する場合には、充電制御部306が、電子機器3が振動領域42に未だ載置されていることを示す情報を、発光もしくは報音により報知するようにしてもよい。
このような本実施形態における電子機器充電システム1によれば、受電電圧に基づいて、充電器2に対して電子機器3を非接触充電を行うための最適位置に配置することが可能である。特に、振動によりユーザに最適位置を通知することで、目の不自由な方や暗所においても最適充電位置に対して電子機器3の載置位置がずれていることを認識することができる。
(第2の実施形態)
第1の実施形態では、二次コイルにより受電した電力に起因する電圧に基づいて振動制御及び充電制御を行うことを説明したが、第2の実施形態では、電子機器充電システム1が、二次コイルにより受電した電力に起因する電流に基づいて振動制御及び充電制御を行う点が第1の実施形態と異なる点である。
第2の実施形態では、電子機器3が振動動作を行う。また、電子機器3は、二次コイルの電流を検出し、当該電流が第1の電流のときのずれ量を上記第1ずれ量とし、当該電流が第2の電流のときのずれ量を上記第2ずれ量とする。つまり、後述する下限閾値電流を第1ずれ量としており、後述する充電用の閾値電流を第2ずれ量としている。
したがって、本実施形態では、最適充電領域41は、電子機器3が充電器2から受電した電力に起因する電流(以下、受電電流ともいう)が、充電用の閾値電流以上の領域である。また、振動領域42は、受電電流が、上記充電用の閾値電流未満であり、かつ、下限閾値電流以上の領域である。なお、充電用の閾値電流>下限閾値電流を満たす。また、各閾値電流はあらかじめ定められている。
次に、電子機器充電システム1の構成について説明する。
本実施形態においても、電子機器充電システム1は、充電器2及び電子機器3を備える。充電器2の構成は、第1の実施形態の充電器2と同様である。
図9は本実施形態における電子機器3の具体的な構成の一例を示す図である。
電子機器3は、二次コイル301、電流検出部321、擬似負荷322、スイッチ323、二次電池307、充電制御部324、バイブレータ309を備える。なお、第1の実施形態で説明した構成と同一の構成については、同一の符号を付し、説明を省略又は簡略化する。
電流検出部321は、二次コイル301により電力を受電した際に、二次コイル301に流れる電流値を検出する。擬似負荷322は、二次コイル301に一時的に接続される。スイッチ323は、二次コイル301の接続先を擬似負荷322と二次電池307との間で 切り替わる。
充電制御部324は、二次電池307への充電を行うための充電制御を行う。また、充電制御部306は、バイブレータ309を振動させるための振動制御を行う。具体的には、電流検出部321により検出される二次コイル301により受電した電力に起因する電流(以下、受電電流ともいう)に基づいて、スイッチ323及びバイブレータ309を制御する。例えば、上記受電電流が充電用の閾値電流以上である場合には、充電制御部324は、スイッチ323を二次電池側と接続するよう制御し、バイブレータ309が振動しないよう制御する。この場合には、電子機器3が最適充電領域41に載置されていることになる。また、上記充電電流が充電用の閾値電流未満であり、かつ、下限閾値電流以上である場合には、充電制御部324は、スイッチ323を二次電池側と接続しないよう制御し、バイブレータ309が振動するよう制御する。この場合、電子機器3が振動領域42に載置されていることになる。また、上記充電電流が下限閾値電流未満である場合には、充電制御部324は、スイッチ323を二次電池側と接続しないよう制御し、バイブレータ309が振動しないよう制御する。この場合、電子機器3が振動領域42よりも外側に載置されていることになる。充電制御部324がバイブレータ309が振動するよう制御する際には、所定電力をバイブレータ309へ供給する。なお、充電制御部324は、第1の実施形態の閾値電圧判定部305による閾値判定に相当する機能を有する。
バイブレータ309は、振動手段の一例であり、充電制御部324からの電力によりバイブレータ309内のモータを駆動する。充電制御部324からの電力は、二次コイル301もしくは二次電池307から供給される電力である。
次に、電子機器3の動作について説明する。
図10は、本実施形態の電子機器3の動作の一例を示すフローチャートである。
電子機器3が充電器2による充電を行うために載置面に載置されると(ステップS21)、充電器2は電子機器3に対して送電を開始する。そして、電子機器3の電流検出部321が、二次コイル301に流れる受電電流Iを検出し(ステップS22)、充電制御部324が、受電電流Iが充電用の閾値電流以上かどうかを判定する(ステップS23)。
受電電流Iが充電用の閾値電流以上である場合(Yes)は、電子機器3が最適充電領域41に載置されているため、充電制御部324が、二次電池307への充電を行うよう制御する(ステップS24)。一方、受電電流Iが充電用の閾値電流未満である場合(No)は、充電制御部324が、受電電流Iが下限閾値電流以上かどうかを判定する(ステップS25)。
受電電流Iが下限閾値電流以上である場合(Yes)は、電子機器3が振動領域42に載置されているため、充電制御部324が、バイブレータ309が振動するよう制御する(ステップS26)。一方、受電電流Iが下限閾値電流未満である場合(No)は、ステップS23の直前に戻る。
次に、電子機器3の載置位置と受電電流との関係について説明する。
図11は、図2の点線Aによって示される位置を横軸で示しており、各位置における受電電流を縦軸に示している。図11に示すように、受電電流は最適充電領域41の中心部に近づくにつれて高くなる。
このような本実施形態における電子機器充電システム1によれば、受電電流に基づいて、充電器2に対して電子機器3を非接触充電を行うための最適位置に配置することが可能である。特に、振動によりユーザに最適位置を通知することで、目の不自由な方や暗所においても最適充電位置に対して電子機器3の載置位置がずれていることを認識することができる。
なお、詳細は記載しないが、第1の実施形態と同様に、二次電池307が通常状態であるか過放電状態であるかに基づいて、バイブレータ309へ二次電池307の電力を供給するか二次コイル301の受電電力を供給するかを切り替えることが可能である。また、電子機器3の載置位置の移動に伴い、充電制御と振動制御との切り替えも可能である。また、受電電力の大きさに応じて、バイブレータ309の振動の大きさを決定することも可能である。また、振動時間が所定時間を経過した場合には、バイブレータ309の振動を停止し、他の報知手段により報知することも可能である。
(第3の実施形態)
第3の実施形態では、電子機器充電システム1は、充電器2と電子機器3との位置関係を示す情報(位置ずれ検出情報)に応じた合成ベクトルを算出し、合成ベクトルの絶対値に基づいて振動制御及び充電制御を行う。
第3の実施形態では、電子機器3が振動動作を行う。また、電子機器3は、上記合成ベクトルの絶対値を算出し、当該絶対値が第1の絶対値のときのずれ量を上記第1ずれ量とし、当該絶対値が第2の絶対値のときのずれ量を上記第2ずれ量とする。この絶対値は、一次コイル201又は二次コイル301の周囲の異なる位置に配置された各位置検出部により検出された位置検出情報を合成した合成ベクトルの大きさであり、充電器2と電子機器3との位置が非接触充電のための最適位置からどの程度ずれているかを示すものである。つまり、後述する充電用の閾値絶対値を第1ずれ量としており、後述する上限閾値絶対値を第2ずれ量としている。
本実施形態では、最適充電領域41は、各位置検出部により検出された位置情報(具体的には磁束密度)に基づく合成ベクトルの絶対値が、充電用の閾値絶対値未満の領域である。また、振動領域42は、合成ベクトルの絶対値が、上記充電用の閾値絶対値以上であり、かつ、上限閾値絶対値未満の領域である。なお、充電用の閾値絶対値<上限閾値絶対値を満たす。また、各閾値絶対値はあらかじめ定められている。
次に、電子機器充電システム1の構成について説明する。
本実施形態においても、電子機器充電システム1は、充電器2及び電子機器3を備える。充電器2の構成は、第1の実施形態の充電器2と同様である。
図12は本実施形態における電子機器3の具体的な構成の一例を示す図である。
電子機器3は、二次コイル301(不図示)、位置検出部311〜333、整流部334〜336、充電制御部337、バイブレータ309、二次電池307を備える。なお、第1の実施形態で説明した構成と同一の構成については、同一の符号を付し、説明を省略又は簡略化する。
位置検出部331は、例えば位置検出コイルであり、電子機器3内の第1の点の磁束密度(第1の磁束密度)を検出する。位置検出部332は、例えば位置検出コイルであり、電子機器3内の第2の点の磁束密度(第2の磁束密度)を検出する。位置検出部333は、例えば位置検出コイルであり、電子機器3内の第3の点の磁束密度(第3の磁束密度)を検出する。位置検出部331〜333に発生する起電力は、磁束密度の時間変化率であるので、磁束密度は起電力から容易に求めることができる。なお、位置検出部は磁束密度を求められればよく、位置検出コイルではなく、磁気検出素子等を用いてもよい。また、位置検出部の数は3個に限られない。
整流部334は、位置検出部331からの検出信号を整流する。整流部335は、位置検出部332からの検出信号を整流する。整流部336は、位置検出部333からの検出信号を整流する。
充電制御部337は、整流された各検出信号について合成ベクトルを生成し、その絶対値を算出する。充電制御部337は、当該合成ベクトルに基づいて、二次電池307への充電を行うための充電制御を行う。また、当該合成ベクトルに基づいて、バイブレータ309を振動させるための振動制御を行う。
例えば、充電制御部337は、二次コイル301の主点338(二次コイル301の巻回方向により定義される面における二次コイルの中心)を始点とし上記第1の点を終点とするベクトルを第1の単位ベクトルとし、主点338を始点とし上記第2の点を終点とするベクトルを第2の単位ベクトルとし、(第1の磁束密度×第1の単位ベクトル)+(第2の磁束密度×第2の単位ベクトル)+(第3の磁束密度×第3の単位ベクトル)で求めたベクトル(合成ベクトル)の絶対値を算出する。
また、充電制御部337は、例えば、合成ベクトルの絶対値が充電用の閾値絶対値未満である場合には、二次コイル307の受電電力を二次電池307へ充電を行うよう制御し、バイブレータ309が振動しないよう制御する。この場合には、電子機器3が最適充電領域41に載置されていることになる。また、合成ベクトルの絶対値が充電用の閾値絶対値以上であり、かつ、上限閾値絶対値未満である場合には、充電制御部337は、二次電池307へ充電しないよう制御し、バイブレータ309が振動するよう制御する。この場合、電子機器3が振動領域42に載置されていることになる。また、合成ベクトルの絶対値が上限閾値絶対値以上である場合には、充電制御部337は、二次電池307へ充電しないよう制御し、バイブレータ309が振動しないよう制御する。この場合、電子機器3が振動領域42よりも外側に載置されていることになる。充電制御部337によりバイブレータ309が振動するよう制御する際には、所定電力をバイブレータ309へ供給する。
なお、充電制御部337は、第1の実施形態の閾値電圧判定部305による閾値判定に相当する機能を有する。
バイブレータ309は、振動手段の一例であり、充電制御部337からの電力によりバイブレータ309内のモータを駆動する。充電制御部337からの電力は、二次コイル301もしくは二次電池307から供給される電力である。
次に、図13は、二次コイル301の位置ずれ検出動作の概要を説明するための図である。なお、ここでは二次コイル301の形状を矩形で示しているが、これに限られない。
図13(a)は、二次コイル301が一次コイル201に対して最適位置(図13に示される平面において二次コイル301の中心と一次コイル201の中心が略一致する位置)にあるときの状態を示しており、この状態のときは、位置検出部331〜333の全てに略同量の電力が供給される。
また、図13(b)は、二次コイル301が一次コイル201に対して下方向にずれて、左右下方向の位置検出部332及び333が一次コイル201の外側に位置しているときの状態を示しており、この状態のときは、位置検出部331には電力が供給されるが、位置検出部332及び333には電力が供給されない。
また、図13(c)は、二次コイル301が一次コイル201に対して左上方向にずれて、上方向の位置検出部331と左下方向の位置検出部332が一次コイル201の外側に位置しているときの状態を示している。この状態のときは、位置検出部333には電力が供給されるが、位置検出部331及び332には電力が供給されない。
このように、位置検出部331〜333の全てで略同量の電力の供給が行われているときは、二次コイル301に位置ずれが生じておらず、電力供給を受けていない位置検出部が1つでもあると、二次コイル301に位置ずれが生じていることになる。したがって、上、左下、右下の位置検出部331〜333に発生する起電力から、二次側コイル301の位置ずれの度合いを判別し、その結果に基づいて充電制御部337がバイブレータ309を振動するよう制御することで、ユーザは電子機器3の位置修正を容易に行うことができる。
ここで、図14及び図15を参照して位置ずれ検出の原理について説明する。
図14に示すように、位置検出部331〜333が120°の間隔で配置されているとする。また、中心(0,0)は主点338に対応する。位置検出部331〜333の起電力をベクトルで表記した場合、位置検出部331の起電力Aは、|A|(0,1)、位置検出部332の起電力Bは、|B|(−√3/2,−1/2)、位置検出部333の起電力Cは、|C|(√3/2,−1/2)となる。これらのベクトルを合成することで位置ずれの大きさと方向が判る。例えば図15(a)に示すように、二次コイル301が一次コイル201に対して左上方向にずれている場合、上記の原理を適用すると、位置検出部331〜333の各起電力の向きと大きさ、及びこれらの起電力の合成は、図15(b)に示すようになる。そして、図15(c)に示すように、充電制御部337は、合成ベクトルXに対応する矢印339を算出し、その矢印339の長さ(合成ベクトルXの絶対値)を算出する。そして、充電制御部337は、この合成ベクトルXの絶対値が充電用の閾値絶対値と上限閾値絶対値との間にある場合には、振動領域42に電子機器3が載置されているとして、バイブレータ309が振動するよう制御する。なお、矢印21の長さは、電子機器3の二次コイル301が最適位置(主点338の位置)に近づくに従って短くなる。
次に、電子機器3の動作について説明する。
図16は、本実施形態の電子機器3の動作の一例を示すフローチャートである。
電子機器3が充電器2による充電を行うために載置面に載置されると、充電器2は電子機器3に対して送電を開始する。そして、位置検出部331〜333は、第1の点、第2の点、第3の点においてそれぞれ発生する起電力を検出する(ステップS31)。続いて、充電制御部337は、位置検出部331〜333により検出された起電力に基づき、合成起電力(ベクトルX)を求める(ステップS32)。続いて、充電制御部337が、合成起電力の絶対値が充電用の閾値絶対値未満かどうかを判定する(ステップS33)。
合成起電力の絶対値が充電用の閾値絶対値未満である場合(Yes)は、電子機器3が最適充電領域41に載置されているため、充電制御部337が、二次電池307への充電を行うよう制御する(ステップS34)。一方、合成起電力の絶対値が充電用の閾値絶対値以上である場合(No)は、充電制御部337が、合成起電力の絶対値が上限閾値絶対値未満かどうかを判定する(ステップS35)。
合成起電力の絶対値が上限閾値絶対値未満である場合(Yes)は、電子機器3が振動領域42に載置されているため、充電制御部337が、バイブレータ309が振動するよう制御する(ステップS36)。一方、合成起電力の絶対値が下限閾値絶対値以上である場合(No)は、ステップS33の直前に戻る。
このような本実施形態における電子機器充電システム1によれば、各位置検出部131〜133により検出された結果に応じて生成した合成ベクトルの絶対値に基づいて、充電器2に対して電子機器3を非接触充電を行うための最適位置に配置することが可能である。特に、振動によりユーザに最適位置を通知することで、目の不自由な方や暗所においても最適充電位置に対して電子機器3の載置位置がずれていることを認識することができる。
なお、詳細は記載しないが、第1の実施形態と同様に、二次電池307が通常状態であるか過放電状態であるかに基づいて、バイブレータ309へ二次電池307の電力を供給するか二次コイル301の受電電力を供給するかを切り替えることが可能である。また、電子機器3の載置位置の移動に伴い、充電制御と振動制御との切り替えも可能である。また、受電電力の大きさに応じて、バイブレータ309の振動の大きさを決定することも可能である。また、振動時間が所定時間を経過した場合には、バイブレータ309の振動を停止し、他の報知手段により報知することも可能である。
(第4の実施形態)
第4の実施形態では、第1の実施形態〜第3の実施形態と異なり、充電器2が振動動作を行う。本実施形態では、電子機器3が第1の実施形態〜第3の実施形態において説明したいずれかの方法で振動領域42に載置されているか否かを判定し、判定結果を充電器2へ送信する。そして、充電器2が、判定結果として振動すべき情報を受信した場合には、充電器2のバイブレータを振動するよう制御する。
次に、電子機器充電システム1の構成について説明する。
本実施形態においても、電子機器充電システム1は、充電器2及び電子機器3を備える。電子機器3の構成は、第1の実施形態〜第3の実施形態の電子機器のいずれかと同様である。
図17は本実施形態における充電器2の具体的な構成の一例を示す図である。
充電器2は、一次コイル201、認証処理部202、駆動制御部203、給電部204、バイブレータ205を備える。
なお、充電器2は、第1の実施形態と同様に、図17に示すように傾斜面αを備えていてもよいし、備えていなくてもよい。傾斜面αを備える場合には、充電器2の振動により電子機器3が最適充電領域41の方向へ移動することになり、自動的に電子機器3が最適充電領域41に配置されることになる。また、傾斜面αを備えていない場合には、充電器2の振動により、電子機器3が充電器2に対して位置ずれしていることを認識可能である。
一次コイル201は、電力伝送を行うための電力の送電と各種信号を送信および受信する。認証処理部202は、電子機器との間で所定の認証処理を行う。駆動制御部203は、電子機器3が振動領域42に載置されていることを示す信号(起動信号)を電子機器3から一次コイル201を介して受信した場合、バイブレータ205を駆動(振動)するよう制御する。このとき、駆動制御部203は、バイブレータ205に対して供給する電力が一定になるように制御する。給電部204は、一次コイル201及び駆動制御部203に給電する。バイブレータ205は、駆動制御部203からの電力により駆動する。
次に、本実施形態の充電器2及び電子機器3の動作について説明する。
図18は充電器2の動作の一例を示すフローチャートである。
まず、認証処理部202は、電子機器3との間で所定の認証処理を行う(ステップS41)。認証が成立した後、駆動制御部203は、バイブレータ205が振動するよう制御するか否かを判定する(ステップS42)。具体的には、一次コイル201を介して電子機器3から起動信号を受信したか否かを判定する。起動信号を受信した場合には、バイブレータ205が振動するよう制御する(ステップS43)。
図19は電子機器3の動作の一例を示すフローチャートである。
ここでは、電子機器3が第1の実施形態の電子機器であるものと想定する。
まず、認証処理部304は、電子機器2との間で所定の認証処理を行う(ステップS51)。認証が成立した後、充電制御部306が、二次コイル301の受電電圧を検出し、電子機器3が振動領域42に載置されているか否かを判定する(ステップS52)。具体的には、受電電圧が充電用の閾値電圧未満であり、かつ、認証用の閾値電圧以上であるか否かを判定する。上記所定範囲の受電電圧である場合には、充電制御部306が、電子機器3が振動領域42に載置されていることを示す信号(起動信号)を二次コイル301を介して充電器2へ送信する(ステップS53)。一方、電子機器3が充電用の閾値電圧以上である場合、電子機器3は最適充電領域41に載置されていることになる。この場合には、充電制御部306は、二次電池307への充電を開始し、図示しないLEDをオンにする(ステップS54)。
なお、ここでは第1の実施形態の電子機器を想定したが、第2の実施形態の電子機器を想定して受電電流を用いたり、第3の実施形態の電子機器を想定して合成ベクトルの絶対値を用いたりしてもよい。
また、電子機器3が受電電力の大きさを示す情報も起動信号に含ませて送信し、充電器2がこの情報に基づいてバイブレータ205を駆動する電力の大きさを制御するようにしてもよい。これにより、充電器2のバイブレータの振動により電子機器3の受電状態をユーザに通知することができる。また、第1〜第3の実施形態の電子機器3と同様に、振動時間が所定時間を経過した場合には、バイブレータ205の振動を停止し、他の放置手段により報知することも可能である。
このような本実施形態における電子機器充電システム1によれば、電子機器3が載置された領域を判定し、充電器2がこの判定結果に基づいて振動動作を行うため、充電器2に対して電子機器3を非接触充電を行うための最適位置に配置することが可能である。特に、振動によりユーザに最適位置を通知することで、目の不自由な方や暗所においても最適充電位置に対して電子機器3の載置位置がずれていることを認識することができる。
本発明は、充電器に対して電子機器を非接触充電を行うための最適位置に配置することが充電器、電子機器等に有用である。
本発明の実施形態における電子機器充電システムの一例の外観図 本発明の実施形態における充電器の載置面における最適充電領域及び振動領域の一例を示す図 本発明の実施形態における傾斜面を備える充電器の構成の一例を示す図 本発明の第1の実施形態における電子機器の具体的な構成の一例を示す図 本発明の第1の実施形態における電子機器の具体的な構成の別の一例を示す図 本発明の第1の実施形態における載置位置に基づく電子機器3の動作を説明するための図 本発明の第1の実施形態における電子機器の載置位置と受電電圧に基づく電圧との関係の一例を示す図 本発明の第1の実施形態における電子機器の動作の一例を示すフローチャート 本発明の第2の実施形態における電子機器の具体的な構成の一例を示す図 本発明の第2の実施形態における電子機器の動作の一例を示すフローチャート 本発明の第2の実施形態における電子機器の載置位置と受電電流との関係の一例を示す図 本発明の第3の実施形態における電子機器の具体的な構成の一例を示す図 本発明の第3の実施形態における二次コイルの位置ずれ検出動作の概要を説明するための図 本発明の第3の実施形態における位置ずれ検出の原理を説明するための図 本発明の第3の実施形態における位置ずれ検出の原理を説明するための図 本発明の第3の実施形態における電子機器の動作の一例を示すフローチャート 本発明の第4の実施形態における充電器2の具体的な構成の一例を示す図 本発明の第4の実施形態における充電器の動作の一例を示すフローチャート 本発明の第4の実施形態における電子機器の動作の一例を示すフローチャート
1 電子機器充電システム
2 充電器
3 電子機器
41 最適充電領域
42 振動領域
201 一次コイル
202 認証処理部
203 駆動制御部
204 給電部
205 バイブレータ
301 二次コイル
302 整流部
303 第1電圧制御部
304 認証処理部
305 閾値電圧判定部
306 充電制御部
307 二次電池
308 第2電圧制御部
309 バイブレータ
311 充電用スイッチ
312 駆動用スイッチ
321 電流検出部
322 擬似負荷
323 スイッチ
324 充電制御部
331〜333 位置検出部
334〜336 整流部
337 充電制御部
338 主点
339 合成ベクトルの矢印

Claims (11)

  1. 非接触方式で充電する充電器によって充電可能な二次電池を電源として用いる電子機器であって、
    前記充電器の一次コイルから送電される電力を受電する二次コイルと、
    前記二次コイルにより受電される電力が最大になる所定の一次コイルと二次コイル位置関係を基準に、前記一次コイルと前記二次コイルのずれ量を検出する位置ずれ検出手段と、
    前記ずれ量が第1ずれ量と前記第1ずれ量より小さい第2ずれ量との間にある場合に、バイブレータが振動するよう制御する振動制御手段と、
    を備える電子機器。
  2. 請求項1に記載の電子機器であって、
    前記位置ずれ検出手段は、前記二次コイルにより受電されたときの当該二次コイルの電流を検出し、第1の電流を前記第1ずれ量とし、前記第1の電流よりも大きい第2の電流を前記第2ずれ量として、前記ずれ量を検出する電子機器。
  3. 請求項1に記載の電子機器であって、
    前記位置ずれ検出手段は、所定の認証処理が成立する最大のずれ量を第1ずれ量とし、前記二次コイルの起電圧が所定の電圧に達した時のずれ量を第2ずれ量として、前記ずれ量を検出する電子機器。
  4. 請求項1に記載の電子機器であって、更に、
    当該電子機器内の複数の点におけるそれぞれの磁束密度を検出する磁気検出手段を備え、
    前記位置ずれ検出手段は、前記磁気検出手段により検出された各磁束密度に基づいて磁束密度の高い方向及び当該方向の磁束密度の大きさを示すベクトルの絶対値を算出し、前記ベクトルの第1の絶対値を前記第1ずれ量とし、前記第1の絶対値よりも小さい前記ベクトルの第2の絶対値を第2ずれ量として、前記ずれ量を検出する電子機器。
  5. 請求項1ないし請求項4のいずれか1項に記載の電子機器であって、更に、
    前記二次コイルにより受電された電力を前記バイブレータに供給するよう制御する充電制御手段を備える電子機器。
  6. 請求項1ないし請求項5のいずれか1項に記載の電子機器であって、更に、
    前記二次電池の電力を前記バイブレータに供給するよう制御する充電制御手段を備える電子機器。
  7. 請求項5に記載の電子機器であって、
    前記充電制御手段は、前記二次電池の電圧が所定値以下である場合、前記二次コイルにより受電された電力を前記バイブレータに供給するよう制御する電子機器。
  8. 請求項1ないし請求項7のいずれか1項に記載の電子機器であって、
    前記振動制御手段は、前記ずれ量が第1ずれ量と前記第2ずれ量との間になってから所定時間が経過した場合、バイブレータの振動を停止するよう制御する電子機器。
  9. 請求項8に記載の電子機器であって、
    前記振動制御手段は、前記バイブレータの振動を停止するよう制御した場合、発光又は報音により報知する電子機器。
  10. 電子機器の電源として用いられる充電可能な二次電池を非接触方式で充電する充電器であって、
    バイブレータと、
    前記電子機器の二次コイルへ電力を送電し、信号を受信する一次コイルと、
    前記一次コイルにより前記電子機器からの前記バイブレータを起動するための起動信号を受信すると、前記バイブレータが振動するよう制御する振動制御手段と、
    を備える充電器。
  11. 請求項10に記載の充電器であって、
    前記一次コイルは、前記充電器の前記電子機器に対向する面の中心部に配置され、
    当該充電器は、前記中心部に向かって下がる傾斜面を備える
    充電器。
JP2009046641A 2009-02-27 2009-02-27 電子機器及び充電器 Withdrawn JP2010206866A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009046641A JP2010206866A (ja) 2009-02-27 2009-02-27 電子機器及び充電器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009046641A JP2010206866A (ja) 2009-02-27 2009-02-27 電子機器及び充電器

Publications (1)

Publication Number Publication Date
JP2010206866A true JP2010206866A (ja) 2010-09-16

Family

ID=42967792

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009046641A Withdrawn JP2010206866A (ja) 2009-02-27 2009-02-27 電子機器及び充電器

Country Status (1)

Country Link
JP (1) JP2010206866A (ja)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011151467A (ja) * 2010-01-19 2011-08-04 Nec Casio Mobile Communications Ltd 端末装置及び無接点型電子機器並びにプログラム
WO2012073349A1 (ja) * 2010-12-01 2012-06-07 トヨタ自動車株式会社 非接触給電設備、車両および非接触給電システムの制御方法
JP2014042426A (ja) * 2012-08-23 2014-03-06 Canon Inc 給電装置、給電装置の制御方法及びプログラム
JP2014093884A (ja) * 2012-11-05 2014-05-19 Sega Corp 充電装置および該充電装置を備えたゲーム装置
CN104034971A (zh) * 2013-03-04 2014-09-10 联想(北京)有限公司 用于对电子设备进行充电检测的方法和装置
US9073442B2 (en) 2010-03-16 2015-07-07 Toyota Jidosha Kabushiki Kaisha Inductively charged vehicle with automatic positioning
JP2016509823A (ja) * 2012-12-27 2016-03-31 ノキア テクノロジーズ オサケユイチア アプリケーション・パラメータの制御
JP2016529865A (ja) * 2013-08-06 2016-09-23 モーメンタム ダイナミックス コーポレーション 無線誘導電力伝送におけるコイルアライメント誤差を検出する方法および装置
US9902271B2 (en) 2008-11-07 2018-02-27 Toyota Jidosha Kabushiki Kaisha Power feeding system for vehicle, electrically powered vehicle and power feeding apparatus for vehicle
US10061372B2 (en) 2015-01-06 2018-08-28 Toshiba Tec Kabushiki Kaisha Information processing apparatus and peripheral device used by the same

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9902271B2 (en) 2008-11-07 2018-02-27 Toyota Jidosha Kabushiki Kaisha Power feeding system for vehicle, electrically powered vehicle and power feeding apparatus for vehicle
US10618411B2 (en) 2008-11-07 2020-04-14 Toyota Jidosha Kabushiki Kaisha Power feeding system for vehicle, electrically powered vehicle and power feeding apparatus for vehicle
JP2011151467A (ja) * 2010-01-19 2011-08-04 Nec Casio Mobile Communications Ltd 端末装置及び無接点型電子機器並びにプログラム
US9981566B2 (en) 2010-03-16 2018-05-29 Toyota Jidosha Kabushiki Kaisha Inductively charged vehicle with automatic positioning
US9073442B2 (en) 2010-03-16 2015-07-07 Toyota Jidosha Kabushiki Kaisha Inductively charged vehicle with automatic positioning
WO2012073349A1 (ja) * 2010-12-01 2012-06-07 トヨタ自動車株式会社 非接触給電設備、車両および非接触給電システムの制御方法
JP5083480B2 (ja) * 2010-12-01 2012-11-28 トヨタ自動車株式会社 非接触給電設備、車両および非接触給電システムの制御方法
JP2014042426A (ja) * 2012-08-23 2014-03-06 Canon Inc 給電装置、給電装置の制御方法及びプログラム
JP2014093884A (ja) * 2012-11-05 2014-05-19 Sega Corp 充電装置および該充電装置を備えたゲーム装置
US9722455B2 (en) 2012-12-27 2017-08-01 Nokia Technologies Oy Controlling an application parameter
JP2016509823A (ja) * 2012-12-27 2016-03-31 ノキア テクノロジーズ オサケユイチア アプリケーション・パラメータの制御
CN104034971A (zh) * 2013-03-04 2014-09-10 联想(北京)有限公司 用于对电子设备进行充电检测的方法和装置
JP2016529865A (ja) * 2013-08-06 2016-09-23 モーメンタム ダイナミックス コーポレーション 無線誘導電力伝送におけるコイルアライメント誤差を検出する方法および装置
US10061372B2 (en) 2015-01-06 2018-08-28 Toshiba Tec Kabushiki Kaisha Information processing apparatus and peripheral device used by the same

Similar Documents

Publication Publication Date Title
JP2010206866A (ja) 電子機器及び充電器
US8415834B2 (en) Power feeding system, power feeder, power-receiving equipment, and positioning control method
KR102544891B1 (ko) 무선 전력 전송 시스템에서 코일 위치 조절 방법 및 그 장치
EP2590300B1 (en) Non-contact electric power feeding system and metal foreign-object detection apparatus for non-contact electric power feeding system
KR101243587B1 (ko) 무접점 충전 장치, 무접점 충전 시스템 및 무접점 충전 방법
KR102197580B1 (ko) 무선 전력 전송 장치 및 방법
JP5372537B2 (ja) 電子機器充電システム、充電器、及び電子機器
JP5756925B2 (ja) 電気機器に設けられた受電装置
US8541975B2 (en) System and method for efficient wireless charging of a mobile terminal
US9191075B2 (en) Wireless power control method, system, and apparatus utilizing a wakeup signal to prevent standby power consumption
CN109302853B (zh) 无线充电装置和方法
JP2010268609A (ja) 充電器及びその制御方法
JP5528080B2 (ja) 電力供給装置
JP2008312294A (ja) 充電器、被充電器、充電システム及び方法
JP2012023913A (ja) 非接触給電装置
JP2016092921A (ja) 非接触電力伝送装置および送電装置
JP2009213294A (ja) 非接触充電器
JP2020039245A (ja) 無線で電力を伝送する装置と方法
JPWO2013031054A1 (ja) 充電システム、電子機器、充電制御方法及びプログラム
JP2013215036A (ja) 充電誘導装置、電子機器、充電誘導プログラムおよび記録媒体
JP2013070571A (ja) 自走電子装置
KR20140002850A (ko) 무선 충전 장치
RU2727524C1 (ru) Беспроводное зарядное устройство, система, способ управления, зарядное оборудование и носитель данных
JP2012204921A (ja) 電子機器
CN109066862A (zh) 充电装置及充电方法

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20120501