JP2010206443A - Temperature compensated piezoelectric oscillator - Google Patents

Temperature compensated piezoelectric oscillator Download PDF

Info

Publication number
JP2010206443A
JP2010206443A JP2009048899A JP2009048899A JP2010206443A JP 2010206443 A JP2010206443 A JP 2010206443A JP 2009048899 A JP2009048899 A JP 2009048899A JP 2009048899 A JP2009048899 A JP 2009048899A JP 2010206443 A JP2010206443 A JP 2010206443A
Authority
JP
Japan
Prior art keywords
temperature
frequency
circuit
piezoelectric oscillator
vibration element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009048899A
Other languages
Japanese (ja)
Other versions
JP2010206443A5 (en
JP5381162B2 (en
Inventor
Masayuki Sakai
雅行 酒井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Miyazaki Epson Corp
Original Assignee
Miyazaki Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Miyazaki Epson Corp filed Critical Miyazaki Epson Corp
Priority to JP2009048899A priority Critical patent/JP5381162B2/en
Publication of JP2010206443A publication Critical patent/JP2010206443A/en
Publication of JP2010206443A5 publication Critical patent/JP2010206443A5/en
Application granted granted Critical
Publication of JP5381162B2 publication Critical patent/JP5381162B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To obtain a means for reducing temperature drift immediately after activation of a temperature compensated piezoelectric oscillator. <P>SOLUTION: A piezoelectric vibrating element 6 has frequency/temperature characteristics with a maximal value and a minimal value at a low-temperature side and a high-temperature side of an inflection point, respectively, and an IC component 8 includes: a temperature sensor 31 for sensing a temperature, a temperature compensation circuit 32 for compensating for the piezoelectric vibrating element, and a voltage controlled oscillation circuit 33 forming a voltage controlled oscillator together with the piezoelectric vibrating element. The temperature compensation circuit 32 is provided with: a circuit including a first-order component circuit and a third-order or higher-order component circuit; a signal processing circuit 35; and an adder circuit 36, and the compensation circuit 32 is adjusted in such a way that a relationship between a frequency compensation amount output from the voltage controlled oscillation circuit 33 and the temperature becomes less than a compensation amount for accurately compensating for the frequency/temperature characteristics of the piezoelectric vibrating element 6 and a frequency of the temperature compensated piezoelectric oscillator is decreased in accordance with temperature elevation. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、主として移動体通信機器に用いられる温度補償型圧電発振器に関し、特に温
度補償特性を改善して、移動体通信機器の電源投入後、速やかにその機能を発揮できるよ
うにした温度補償型圧電発振器に関する。
The present invention relates to a temperature-compensated piezoelectric oscillator mainly used in mobile communication devices, and more particularly to a temperature-compensated piezoelectric oscillator that can improve its temperature compensation characteristics so that its function can be quickly demonstrated after power-on of the mobile communication device. The present invention relates to a piezoelectric oscillator.

近年、圧電発振器は周波数安定度、小型軽量、堅牢性、低価格等により携帯電話等の通
信機器から水晶時計のような民生機器まで、多くの分野で用いられている。中でも圧電振
動子の周波数温度特性を補償した温度補償型圧電発振器(TCXO)は、周波数安定度を
必要とする携帯電話等に広く用いられている。
TCXOは、周知のように、可変容量素子等を用いて温度変化に応じて発振回路の負荷
容量を可変させるようにした圧電発振器である。温度変動による圧電振動子の周波数変化
に対して、これと逆に変化するように発振回路の負荷容量を制御し、圧電振動子の周波数
変化を相殺して補償する。近年では、圧電発振器の小型化要求に伴い可変容量を含めて発
振回路は1チップIC化されている。
In recent years, piezoelectric oscillators are used in many fields from communication devices such as mobile phones to consumer devices such as quartz watches due to their frequency stability, small size and light weight, robustness and low price. In particular, a temperature compensated piezoelectric oscillator (TCXO) that compensates for the frequency temperature characteristics of a piezoelectric vibrator is widely used in mobile phones and the like that require frequency stability.
As is well known, the TCXO is a piezoelectric oscillator that uses a variable capacitance element or the like to vary the load capacitance of the oscillation circuit in accordance with a temperature change. The load capacity of the oscillation circuit is controlled so as to change in reverse to the frequency change of the piezoelectric vibrator due to temperature fluctuation, and the frequency change of the piezoelectric vibrator is canceled and compensated. In recent years, the oscillation circuit including a variable capacitor has been made into a one-chip IC in accordance with a demand for miniaturization of a piezoelectric oscillator.

特開2008−252812公報(特許文献1)には、起動又は温度変化から所定の周
波数変化量で安定するまでの時間を短縮した温度補償型発振器が開示されている。温度補
償型発振器70は、水晶振動素子72と、水晶振動素子72の温度補償を行う集積回路素
子74と、水晶振動素子72及び集積回路素子74を収容する容器体75と、容器体75
を封止する蓋体78と、を備えている。
水晶振動素子72は、温度と周波数変化量との関係が三次関数的となる周波数特性を有
している。また、集積回路素子74は、温度を検出する温度センサ81と、三次関数発生
回路と一次成分発生回路とからなる温度補償回路82と、水晶振動素子72を発振させる
発振回路83と、加算回路84と、記憶手段85と、を備えている。
Japanese Patent Laying-Open No. 2008-252812 (Patent Document 1) discloses a temperature compensated oscillator that shortens the time from start-up or temperature change until it stabilizes at a predetermined frequency change amount. The temperature-compensated oscillator 70 includes a crystal resonator element 72, an integrated circuit element 74 that performs temperature compensation of the crystal resonator element 72, a container body 75 that houses the crystal resonator element 72 and the integrated circuit element 74, and a container body 75.
And a lid 78 for sealing.
The crystal resonator element 72 has a frequency characteristic in which the relationship between the temperature and the frequency change amount is a cubic function. The integrated circuit element 74 includes a temperature sensor 81 that detects temperature, a temperature compensation circuit 82 that includes a cubic function generation circuit and a primary component generation circuit, an oscillation circuit 83 that oscillates the crystal oscillation element 72, and an addition circuit 84. And storage means 85.

容器体75は、矩形環状の枠部77が基板部76の両主面に一体で形成されたH型構造
をしており、一方の凹部(上側)の底面に水晶振動素子72用の接続パッドPが設けられ
ている。また、他方の凹部(下側)の底面に集積回路素子74を搭載用のパッドTが設け
られている。パッドTの一部は容器体75に設けられた内部配線Hにより、接続パッドP
と、外部接続端子Gとに接続している。
温度補償後の温度特性は、温度が25℃のときの周波数変化量(df/f)を0(pp
m)とし、温度tが1℃上昇するにつれて周波数変化量(df/f)が0.1(ppm)
以内の緩やかな勾配とする。つまり、最大の勾配は、温度が1℃の増加に対し周波数変化
量が0.1(ppm)減少する勾配となる。なお、温度が1℃上昇するにつれて周波数変
化量が0.1(ppm)減少する勾配となる適用温度範囲は、例えば、−40℃〜80℃
の範囲でも、25℃〜40℃の範囲でも良いと、開示されている。
特開2008−252812公報
The container body 75 has an H-shaped structure in which a rectangular ring-shaped frame portion 77 is integrally formed on both main surfaces of the substrate portion 76, and a connection pad for the crystal resonator element 72 is provided on the bottom surface of one recess (upper side). P is provided. Also, a pad T for mounting the integrated circuit element 74 is provided on the bottom surface of the other concave portion (lower side). Part of the pad T is connected to the connection pad P by the internal wiring H provided in the container body 75.
And the external connection terminal G.
The temperature characteristics after the temperature compensation are such that the frequency change amount (df / f) when the temperature is 25 ° C. is 0 (pp
m), and the frequency change (df / f) is 0.1 (ppm) as the temperature t increases by 1 ° C.
Within a gentle slope. That is, the maximum gradient is a gradient in which the frequency change amount decreases by 0.1 (ppm) with respect to an increase in temperature of 1 ° C. In addition, the application temperature range in which the frequency change amount decreases by 0.1 (ppm) as the temperature increases by 1 ° C. is, for example, −40 ° C. to 80 ° C.
It is disclosed that it may be in the range of 25 ° C to 40 ° C.
JP 2008-252812 A

特許文献1には、温度変化に対し周波数が三次関数的に変化する水晶振動子を用いた温
度補償型水晶発振器の温度補償方法が開示されている。特許文献1によると、温度補償回
路の一次成分を調整して、温度と周波数変化量との関係が、温度が高くなるにつれて周波
数変化量が下がるように温度補償を行う方法が示されている。
しかしながら、実際の圧電振動子、例えばATカット水晶振動子の周波数温度特性を正
確に表すには、温度に関する三次関数では誤差が生じ、最近では温度に関して四次成分以
上の項を含む多項式が必要になってきた。つまり、補償回路として、1次成分回路、3次
成分回路及び四次成分以上の回路構成が必要となってきた。そのため、特許文献1のよう
に一次成分のみを調整する方法では、最近の温度補償型圧電発振器への要求を満たすには
不十分であるという問題があった。
本発明は上記問題を解決するためになされたもので、温度補償回路に四次成分以上の成
分を含んだ回路を用いて、電源投入後の周波数ドリフトを小さくした温度補償型発振器を
提供することにある。
Patent Document 1 discloses a temperature compensation method for a temperature-compensated crystal oscillator using a crystal resonator whose frequency changes in a cubic function with respect to temperature change. Japanese Patent Application Laid-Open No. 2004-228561 shows a method for adjusting temperature so that the primary component of the temperature compensation circuit is adjusted so that the relationship between the temperature and the frequency change amount decreases as the temperature increases.
However, in order to accurately represent the frequency temperature characteristics of an actual piezoelectric resonator, for example, an AT-cut crystal resonator, an error occurs in the cubic function related to temperature, and recently, a polynomial including a term of a fourth-order component or more related to temperature is required. It has become. That is, a circuit configuration of a primary component circuit, a tertiary component circuit, and a quaternary component or higher is required as a compensation circuit. Therefore, there is a problem that the method of adjusting only the primary component as in Patent Document 1 is insufficient to satisfy the recent demand for a temperature compensated piezoelectric oscillator.
The present invention has been made to solve the above-described problem, and provides a temperature compensated oscillator in which a frequency drift after power-on is reduced by using a circuit that includes a fourth-order component or more in the temperature compensation circuit. It is in.

本発明は、上記の課題の少なくとも一部を解決するためになされたものであり、以下の
形態又は適用例として実現することが可能である。
SUMMARY An advantage of some aspects of the invention is to solve at least a part of the problems described above, and the invention can be implemented as the following forms or application examples.

[適用例1]本発明に係る温度補償型圧電発振器は、電源投入後の周波数ドリフトを小
さくすべく、圧電振動素子と、IC部品と、前記圧電振動素子及びIC部品を収容するパ
ッケージ本体と、該パッケージ本体の一方の開口部を封止する蓋体と、を備えた温度補償
型圧電発振器であって、前記圧電振動素子は、変曲点の低温側及び高温側に夫々極大値及
び極小値と有する周波数温度特性を有し、前記IC部品は、温度を感知する温度センサと
、前記圧電振動素子の温度による周波数変化を補償する温度補償回路と、前記圧電振動素
子と協働して電圧制御型発振器を形成する電圧制御型発振回路と、を備え、前記温度補償
回路は、1次成分回路と3次以上の高次成分回路とを含む回路と、信号の処理回路と、加
算回路と、を備え、前記電圧制御型発振回路から出力される周波数補償量と温度との関係
が、前記圧電振動素子の周波数温度特性を正確に補償する補償量より小さく、温度の上昇
に応じて温度補償型圧電発振器の周波数が減少するように処理回路及び補償回路を調整し
たことを特徴とする温度補償型圧電発振器である。
[Application Example 1] A temperature-compensated piezoelectric oscillator according to the present invention includes a piezoelectric vibration element, an IC component, and a package main body that accommodates the piezoelectric vibration element and the IC component in order to reduce frequency drift after power-on. A temperature-compensating piezoelectric oscillator comprising a lid for sealing one opening of the package body, wherein the piezoelectric vibration element has a maximum value and a minimum value on a low temperature side and a high temperature side of the inflection point, respectively. The IC component has a temperature sensor that senses temperature, a temperature compensation circuit that compensates for a frequency change due to the temperature of the piezoelectric vibration element, and voltage control in cooperation with the piezoelectric vibration element. A voltage-controlled oscillation circuit that forms a type oscillator, and the temperature compensation circuit includes a circuit including a primary component circuit and a third-order or higher-order component circuit, a signal processing circuit, an adder circuit, The voltage regulation The relationship between the frequency compensation amount output from the type oscillation circuit and the temperature is smaller than the compensation amount for accurately compensating the frequency temperature characteristic of the piezoelectric vibration element, and the frequency of the temperature compensation type piezoelectric oscillator decreases as the temperature rises. Thus, the temperature compensation type piezoelectric oscillator is characterized by adjusting the processing circuit and the compensation circuit.

温度の増加に伴い温度補償型圧電発振器の周波数が減少するように温度補償回路の1次
成分回路と3次以上の高次成分回路とを含む回路の係数、及び処理回路を調整するので、
温度補償型圧電発振器の周波数ドリフトが減少し、該温度補償型圧電発振器を例えば、G
PS装置に用いると電源の投入後、速やかにGPS装置が機能するという効果がある。
Since the coefficient of the circuit including the primary component circuit of the temperature compensation circuit and the higher-order component circuit of the third or higher order and the processing circuit are adjusted so that the frequency of the temperature compensated piezoelectric oscillator decreases as the temperature increases,
The frequency drift of the temperature compensated piezoelectric oscillator is reduced, and the temperature compensated piezoelectric oscillator is, for example, G
When used in a PS device, the GPS device functions immediately after the power is turned on.

[適用例2]温度補償型圧電発振器は、温度と前記周波数補償量との関係が、前記圧電
振動素子の周波数温度特性を正確に補償する補償量より少なくし、温度の上昇に応じて温
度補償型圧電発振器の周波数が減少するように前記3次成分回路を調整したことを特徴と
する適用例1に記載の温度補償型圧電発振器である。
Application Example 2 In the temperature compensated piezoelectric oscillator, the relationship between the temperature and the frequency compensation amount is made smaller than the compensation amount for accurately compensating the frequency temperature characteristic of the piezoelectric vibration element, and the temperature compensation is performed as the temperature rises. The temperature-compensated piezoelectric oscillator according to Application Example 1, wherein the third-order component circuit is adjusted so that the frequency of the piezoelectric oscillator decreases.

温度の増加に伴い温度補償型圧電発振器の周波数が減少するように温度補償回路の3次
成分回路を調整するので、温度補償型圧電発振器の周波数ドリフトが減少する。温度補償
回路の1回路を調整するのみで容易であり、該温度補償型圧電発振器を例えば、GPS装
置に用いると電源の投入後、速やかに使用が可能になるという効果がある。
Since the third-order component circuit of the temperature compensation circuit is adjusted so that the frequency of the temperature compensation piezoelectric oscillator decreases as the temperature increases, the frequency drift of the temperature compensation piezoelectric oscillator decreases. It is easy to adjust only one circuit of the temperature compensation circuit. When the temperature compensated piezoelectric oscillator is used in, for example, a GPS device, there is an effect that it can be used immediately after the power is turned on.

[適用例3]温度補償型圧電発振器は、温度補償型圧電発振器は、温度と前記周波数補
償量との関係が、前記圧電振動素子の周波数温度特性を正確に補償する補償量より少なく
し、温度の上昇に応じて温度補償型圧電発振器の周波数が減少するように前記1次及び3
次成分回路を調整したことを特徴とする適用例1に記載の温度補償型圧電発振器である。
[Application Example 3] In the temperature compensated piezoelectric oscillator, the temperature compensated piezoelectric oscillator is configured such that the relationship between the temperature and the frequency compensation amount is less than the compensation amount for accurately compensating the frequency temperature characteristic of the piezoelectric vibration element. As the frequency increases, the frequency of the temperature-compensated piezoelectric oscillator decreases so that the primary and 3
The temperature-compensated piezoelectric oscillator according to Application Example 1, wherein the second component circuit is adjusted.

温度の増加に伴い温度補償型圧電発振器の周波数が減少するように温度補償回路の1次
及び3次成分回路を調整するので、温度補償型圧電発振器の周波数ドリフトが減少する。
温度補償回路の2つの回路を調整するので所望の特性に調整することが可能であり、該温
度補償型圧電発振器をGPS装置に用いると電源の投入後、速やかに使用が可能になると
いう効果がある。
Since the primary and tertiary component circuits of the temperature compensation circuit are adjusted so that the frequency of the temperature compensation piezoelectric oscillator decreases as the temperature increases, the frequency drift of the temperature compensation piezoelectric oscillator decreases.
Since the two circuits of the temperature compensation circuit are adjusted, it is possible to adjust to a desired characteristic. When the temperature compensated piezoelectric oscillator is used in a GPS device, it can be used immediately after the power is turned on. is there.

[適用例4]温度補償型圧電発振器は、温度と前記周波数補償量との関係が、前記圧電
振動素子の周波数温度特性を正確に補償する補償量より少なくし、温度の上昇に応じて温
度補償型圧電発振器の周波数が減少するように前記3次以上の高次成分回路を調整したこ
とを特徴とする請求項1に記載の温度補償型圧電発振器である。
Application Example 4 In the temperature-compensated piezoelectric oscillator, the relationship between the temperature and the frequency compensation amount is less than the compensation amount for accurately compensating the frequency temperature characteristic of the piezoelectric vibration element, and the temperature compensation is performed as the temperature increases. 2. The temperature compensated piezoelectric oscillator according to claim 1, wherein the third-order or higher-order component circuit is adjusted so that the frequency of the piezoelectric oscillator decreases.

温度の増加に伴い温度補償型圧電発振器の周波数が減少するように温度補償回路の3次
以上の高次成分回路を調整するので、温度補償型圧電発振器の周波数ドリフトが減少する
。周波数温度特性を所望の特性に調整することが可能であり、該温度補償型圧電発振器を
GPS装置に用いると起動後直ぐに使用が可能になるという効果がある。
Since the third-order or higher-order component circuit of the temperature compensation circuit is adjusted so that the frequency of the temperature compensation type piezoelectric oscillator decreases as the temperature increases, the frequency drift of the temperature compensation type piezoelectric oscillator decreases. The frequency temperature characteristic can be adjusted to a desired characteristic, and when the temperature compensated piezoelectric oscillator is used in a GPS device, it can be used immediately after startup.

[適用例5]温度補償型圧電発振器は、温度と前記周波数補償量との関係が、前記圧電
振動素子の周波数温度特性を正確に補償する補償量より少なくし、温度の上昇に応じて温
度補償型圧電発振器の周波数が減少するように前記温度センサから得られる信号を前記処
理回路で処理し、2次成分を調整したことを特徴とする適用例1に記載の温度補償型圧電
発振器である。
Application Example 5 In the temperature compensated piezoelectric oscillator, the relationship between the temperature and the frequency compensation amount is made smaller than the compensation amount for accurately compensating the frequency temperature characteristic of the piezoelectric vibration element, and the temperature compensation is performed as the temperature rises. The temperature-compensated piezoelectric oscillator according to application example 1, wherein a signal obtained from the temperature sensor is processed by the processing circuit so that a frequency of the piezoelectric oscillator decreases, and a secondary component is adjusted.

温度の増加に伴い温度補償型圧電発振器の周波数が減少するように温度補償回路の2次
成分を調整するので、温度補償型圧電発振器の周波数ドリフトが減少する。2次成分の調
整は処理回路の記憶回路を調整するだけで極めて容易であり、該温度補償型圧電発振器を
GPS装置に用いると電源の投入後、速やかに使用が可能になるという効果がある。
Since the secondary component of the temperature compensation circuit is adjusted so that the frequency of the temperature compensated piezoelectric oscillator decreases as the temperature increases, the frequency drift of the temperature compensated piezoelectric oscillator decreases. Adjustment of the secondary component is extremely easy by adjusting only the memory circuit of the processing circuit. When the temperature compensated piezoelectric oscillator is used in a GPS device, it can be used immediately after the power is turned on.

[適用例6]温度補償型圧電発振器は、常温から前記圧電振動素子の極小値を示す温度
の範囲において温度と前記周波数補償量との関係が、前記圧電振動素子の周波数温度特性
を正確に補償する補償量より少なくして、温度の上昇に応じて温度補償型圧電発振器の周
波数が減少するように調整したことを特徴とする適用例1乃至5の何れか一項に記載の温
度補償型圧電発振器である。
[Application Example 6] In the temperature compensated piezoelectric oscillator, the relationship between the temperature and the frequency compensation amount accurately compensates the frequency-temperature characteristic of the piezoelectric vibration element in the temperature range from room temperature to the minimum value of the piezoelectric vibration element. The temperature compensated piezoelectric device according to any one of application examples 1 to 5, wherein the temperature compensated piezoelectric oscillator is adjusted so that the frequency of the temperature compensated piezoelectric oscillator decreases as the temperature rises. It is an oscillator.

常温から圧電振動素子の極小値までの範囲で温度の増加に伴い温度補償型圧電発振器の
周波数が減少するように、温度補償回路の3次成分回路、1次及び3次成分回路、3次以
上の高次成分回路、2次成分、1次及び3次以上の高次成分回路の何れかを調整するので
、温度補償型圧電発振器の周波数ドリフトが減少する。該温度補償型圧電発振器をGPS
装置に用いると起動後直ぐに使用が可能になるという効果がある。
The temperature compensation circuit third-order component circuit, first-order and third-order component circuit, third-order or more so that the frequency of the temperature-compensated piezoelectric oscillator decreases as the temperature increases from room temperature to the minimum value of the piezoelectric vibration element. Therefore, the frequency drift of the temperature compensated piezoelectric oscillator is reduced. This temperature compensated piezoelectric oscillator is GPS
When used in an apparatus, there is an effect that it can be used immediately after startup.

本発明に係る温度補償型圧電発振器1の構造を示す概略断面図。1 is a schematic sectional view showing the structure of a temperature compensated piezoelectric oscillator 1 according to the present invention. 温度補償型圧電発振器1の回路構成を示すブロック回路図。1 is a block circuit diagram showing a circuit configuration of a temperature compensated piezoelectric oscillator 1. FIG. 温度補償回路の構成を示すブロック回路図。The block circuit diagram which shows the structure of a temperature compensation circuit. (a)は従来の温度補償型圧電発振器の経過時間と周波数偏差を示す図、(b)は本発明の温度補償方法を示す図、(c)は圧電振動素子及びIC部品の温度上昇を示す図。(A) is the figure which shows the elapsed time and frequency deviation of the conventional temperature compensation type piezoelectric oscillator, (b) is the figure which shows the temperature compensation method of this invention, (c) shows the temperature rise of a piezoelectric vibration element and IC components. Figure. (a)〜(e)は温度補償の過程を説明する図。(A)-(e) is a figure explaining the process of temperature compensation. (a)は温度補償回路により生成される周波数補償量の温度特性、(b)は温度補償型圧電発振器の周波数温度特性を示す図。(A) is a temperature characteristic of the frequency compensation amount produced | generated by a temperature compensation circuit, (b) is a figure which shows the frequency temperature characteristic of a temperature compensation type | mold piezoelectric oscillator. 1次成分回路の値を変化させた場合の、(a)は補償電圧の温度特性、(b)は温度補償型圧電発振器の周波数温度特性を示す図。FIG. 6A is a graph showing temperature characteristics of compensation voltage and FIG. 5B is a diagram showing frequency temperature characteristics of a temperature compensated piezoelectric oscillator when the value of the primary component circuit is changed. 3次成分以上の回路の値を変化させた場合の、(a)は補償電圧の温度特性、(b)は温度補償型圧電発振器の周波数温度特性を示す図。FIG. 6A is a graph showing temperature characteristics of compensation voltage and FIG. 5B is a diagram showing frequency temperature characteristics of a temperature-compensated piezoelectric oscillator when the value of a circuit having a third or higher order component is changed. 2次成分の値を変化させた場合の、(a)は補償電圧の温度特性、(b)は温度補償型圧電発振器の周波数温度特性を示す図。FIG. 6A is a graph showing temperature characteristics of compensation voltage and FIG. 5B is a diagram showing frequency temperature characteristics of a temperature compensated piezoelectric oscillator when the value of a secondary component is changed. 5次成分回路の値を変化させた場合の、(a)は補償電圧の温度特性、(b)は温度補償型圧電発振器の周波数温度特性を示す図。FIG. 6A is a graph showing temperature characteristics of compensation voltage and FIG. 5B is a diagram showing frequency temperature characteristics of a temperature compensated piezoelectric oscillator when a value of a fifth-order component circuit is changed. 従来の温度補償型圧電発振器の構造を示す概略断面図。FIG. 6 is a schematic cross-sectional view showing the structure of a conventional temperature compensated piezoelectric oscillator. 従来の温度補償型圧電発振器の回路構成を示すブロック回路図。The block circuit diagram which shows the circuit structure of the conventional temperature compensation type | mold piezoelectric oscillator.

以下、本発明の実施の形態を図面に基づいて詳細に説明する。図1は本発明の一実施形
態に係る温度補償型圧電発振器1の構造を示す概略断面図、図2は温度補償型圧電発振器
1の回路構成を示すブロック図である。温度補償型圧電発振器1は、圧電振動素子6と、
IC部品8と、圧電振動素子6及びIC部品8を収容するパッケージ本体10と、該パッ
ケージ本体10の一方の開口部を封止する蓋体20と、を備えている。パッケージ本体1
0は、図1の断面図に示すように二階建て構造型(H型)をしており、パッケージ本体1
0の上面と下面に夫々設けた凹所14a、14b内に、圧電振動素子6とIC部品8を搭
載し、上面の凹所14aを蓋体20で気密封止した構成を有している。
温度補償型圧電発振器1のパッケージ本体10は、上面と下面に夫々凹所14a、14
bを有した縦断面形状が略H型の絶縁容器10aと、絶縁容器10aの矩形環状の外底面
の対向する2辺に沿って夫々突設した各段差部10bの底面に複数個ずつ配置した実装端
子15と、を備えている。上面側凹所14a内には圧電振動素子6を搭載するために、2
つの上面側内部パッド12aが設けられている。また、温度センサ、温度補償回路、発振
回路等を有するIC部品8を搭載するために、下面側凹所14bの天井面には下面側内部
パッド12bが配置されている。そして、各実装端子15と上面側内部パッド12aと下
面側内部パッド12bとの間を導通する内部配線13が、形成されている。
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. FIG. 1 is a schematic sectional view showing the structure of a temperature compensated piezoelectric oscillator 1 according to an embodiment of the present invention, and FIG. 2 is a block diagram showing the circuit configuration of the temperature compensated piezoelectric oscillator 1. The temperature compensated piezoelectric oscillator 1 includes a piezoelectric vibration element 6 and
An IC component 8, a package main body 10 that houses the piezoelectric vibration element 6 and the IC component 8, and a lid 20 that seals one opening of the package main body 10 are provided. Package body 1
0 has a two-story structure type (H type) as shown in the sectional view of FIG.
The piezoelectric vibration element 6 and the IC component 8 are mounted in the recesses 14a and 14b provided on the upper surface and the lower surface of 0, respectively, and the recess 14a on the upper surface is hermetically sealed with the lid 20.
The package body 10 of the temperature compensated piezoelectric oscillator 1 has recesses 14a and 14 on the upper and lower surfaces, respectively.
A plurality of insulating containers 10a each having a vertical cross-sectional shape b are disposed on the bottom surface of each stepped portion 10b projecting along two opposing sides of the rectangular annular outer bottom surface of the insulating container 10a. And a mounting terminal 15. In order to mount the piezoelectric vibration element 6 in the upper surface side recess 14a, 2
Two upper surface side internal pads 12a are provided. In order to mount the IC component 8 having a temperature sensor, a temperature compensation circuit, an oscillation circuit, etc., a lower surface side internal pad 12b is disposed on the ceiling surface of the lower surface side recess 14b. And the internal wiring 13 which conduct | electrically_connects between each mounting terminal 15, the upper surface side internal pad 12a, and the lower surface side internal pad 12b is formed.

温度補償型圧電発振器1は、パッケージ本体10の上面側内部パッド12aに圧電振動
素子6を、導電性接着剤16を介して接続固定して、上面側凹所14aを例えば金属製の
蓋体20にて気密封止する。そして、パッケージ本体10の下面側内部パッド12bにI
C部品8を、金バンプ17等を用いて接続固定した構成を備えている。なお、上面側凹所
14aを気密封止する際は、上面側凹所14a内部を真空にするか、内部に不活性ガス(
例えばN2)を封入して封止する。
プリント基板上に温度補償型圧電発振器1を実装する際には、各段差部10bの底面に
設けた実装端子15をプリント基板に形成したランドに半田を介して接続固定する。
In the temperature-compensated piezoelectric oscillator 1, the piezoelectric vibration element 6 is connected and fixed to the upper surface side internal pad 12 a of the package body 10 via the conductive adhesive 16, and the upper surface side recess 14 a is made of, for example, a metal lid 20. Hermetically seal with. Then, the lower surface side internal pad 12b of the package body 10 is connected
The C component 8 is connected and fixed using a gold bump 17 or the like. When the upper surface side recess 14a is hermetically sealed, the inside of the upper surface side recess 14a is evacuated or contains an inert gas (
For example, N 2 ) is enclosed and sealed.
When the temperature compensated piezoelectric oscillator 1 is mounted on the printed board, the mounting terminals 15 provided on the bottom surface of each stepped portion 10b are connected and fixed to the lands formed on the printed board via solder.

温度補償型圧電発振器1の回路構成は、図2のブロック回路図示すように圧電振動素子
6と、IC部品8とを備えている。圧電振動素子6は、圧電基板、例えばATカット水晶
基板の両主面に真空中で金属を蒸着して形成した金属薄膜(励振電極6a、6b)と、励
振電極6a、6bから圧電基板の端部に引出電極とを備えている。また、ATカット振動
素子6の例では水晶基板の切断角度により、種々の周波数温度特性が得られるが、温度補
償型圧電発振器1では変曲点より低温側及び高温側に夫々極大値及び極小値と有する周波
数温度特性を有する圧電振動素子6を用いる。一般的に圧電振動素子6の周波数温度特性
は、変曲点温度をt0とし、温度tに関する多項式(Cn(t−t0n+Cn−1(t−
0n-1+・・・+C3(t−t03+C2(t−t02+C1(t−t0))で表すこ
とができる。
また、IC部品8は、温度を感知するサーミスタまたはダイオード等の温度センサ31
と、圧電振動素子6の温度による周波数変化を補償する温度補償回路32と、可変容量素
子(バリキャップダイオード、nMOS−FET、pMOS−FET等)を有し圧電振動
素子6と協働して電圧制御型発振器を形成する電圧制御型発振回路33と、増幅回路34
と、を備えている。
The circuit configuration of the temperature compensated piezoelectric oscillator 1 includes a piezoelectric vibration element 6 and an IC component 8 as shown in the block circuit diagram of FIG. The piezoelectric vibration element 6 includes a metal thin film (excitation electrodes 6a and 6b) formed by vapor-depositing metal in vacuum on both main surfaces of a piezoelectric substrate, for example, an AT-cut quartz substrate, and the excitation electrodes 6a and 6b to the end of the piezoelectric substrate. The part is provided with an extraction electrode. In the example of the AT cut vibration element 6, various frequency temperature characteristics can be obtained depending on the cutting angle of the quartz substrate. In the temperature compensated piezoelectric oscillator 1, the maximum value and the minimum value are located on the low temperature side and the high temperature side, respectively, from the inflection point. The piezoelectric vibration element 6 having the frequency temperature characteristic is used. Frequency-temperature characteristics of the general piezoelectric vibrating element 6, the inflection point temperature of t 0, polynomial in temperature t (Cn (t-t 0 ) n + Cn-1 (t-
t 0 ) n−1 +... + C3 (t−t 0 ) 3 + C2 (t−t 0 ) 2 + C1 (t−t 0 )).
The IC component 8 includes a temperature sensor 31 such as a thermistor or a diode that senses temperature.
And a temperature compensation circuit 32 that compensates for a frequency change due to the temperature of the piezoelectric vibration element 6 and a variable capacitance element (varicap diode, nMOS-FET, pMOS-FET, etc.) in cooperation with the piezoelectric vibration element 6. A voltage controlled oscillation circuit 33 forming a controlled oscillator and an amplifier circuit 34
And.

図3は温度補償回路32を説明するブロック回路図である。温度補償回路32は、1次
成分回路32a、3次成分回路32b、4次成分以上の回路と、温度センサ31からの信
号に基づいて1次〜n次成分回路32aの信号を処理する処理回路35と、1次〜n次成
分回路32aの信号を加算する加算回路36と、を備えている。なお、周知のように、温
度補電圧を生成する2次成分は、変曲点温度t0をシフトすることにより形成することが
できるので、IC部品8には電子回路としては含まれていない。
温度センサ31からの信号に基づき、圧電振動素子6の温度特性を補償するために必要
な補償量を処理装置35が演算し、1次〜n次の成分回路に各定数を出力する。1次〜n
次の成分回路の出力を加算するのが加算回路36であり、加算回路36の出力電圧Vcが
電圧制御型発振器33の可変容量素子に印加される。
FIG. 3 is a block circuit diagram illustrating the temperature compensation circuit 32. The temperature compensation circuit 32 is a primary component circuit 32 a, a third component circuit 32 b, a circuit having a fourth component or higher, and a processing circuit that processes the signals of the primary to n-order component circuit 32 a based on the signal from the temperature sensor 31. 35 and an adder circuit 36 for adding the signals of the primary to n-order component circuit 32a. As is well known, since the secondary component that generates the temperature supplementary voltage can be formed by shifting the inflection point temperature t 0 , the IC component 8 is not included as an electronic circuit.
Based on the signal from the temperature sensor 31, the processing device 35 calculates a compensation amount necessary to compensate the temperature characteristic of the piezoelectric vibration element 6, and outputs each constant to the first to n-th order component circuits. Primary to n
The adder circuit 36 adds the outputs of the next component circuit, and the output voltage Vc of the adder circuit 36 is applied to the variable capacitance element of the voltage controlled oscillator 33.

図4(a)は、従来の温度補償型圧電発振器の補償を説明する図であり、起動後、ある
いは温度変化後の経過時間t(sec)を横軸に、周波数偏差(Δf/f)を縦軸にして
いる。温度補償型圧電発振器の一般的な温度補償方法は、起動後十分に時間が経過(t2
)してから、圧電振動素子の任意の温度における周波数変化量α(t2)を測定し、この
変化量α(t2)を補償すべく、温度補償回路による補償量β(t2)がβ(t2)=α
(t2)となるように、温度補償回路の各成分(A1、A3、A4、A5・・)を決める

起動後、あるいは温度変化後の過渡期t1には温度センサが感知する温度Tβで温度補
償回路の補償量β(t1)を生成する。しかるに、図4(c)に示すように、過渡期(t
1)に圧電振動素子(Xtal)が呈する温度Tαは、Tα<Tβであり、圧電振動素子6の
周波数変動量α(t1)は補償量β(t1)より小さい。その結果、過渡期t1では補償
量が過多となり、所謂周波数ドリフトが生じる。
FIG. 4A is a diagram for explaining compensation of a conventional temperature-compensated piezoelectric oscillator. The frequency deviation (Δf / f) is plotted with the elapsed time t (sec) after startup or after temperature change as the horizontal axis. The vertical axis is shown. A general temperature compensation method for a temperature-compensated piezoelectric oscillator has a sufficiently long time after startup (t2
), The frequency change amount α (t2) at an arbitrary temperature of the piezoelectric vibration element is measured, and the compensation amount β (t2) by the temperature compensation circuit is β (t2) to compensate for this change amount α (t2). ) = Α
Each component (A1, A3, A4, A5,...) Of the temperature compensation circuit is determined so as to be (t2).
In the transition period t1 after the start-up or after the temperature change, the compensation amount β (t1) of the temperature compensation circuit is generated at the temperature Tβ sensed by the temperature sensor. However, as shown in FIG. 4C, the transition period (t
The temperature Tα exhibited by the piezoelectric vibration element (Xtal) in 1) is Tα <Tβ, and the frequency fluctuation amount α (t1) of the piezoelectric vibration element 6 is smaller than the compensation amount β (t1). As a result, the compensation amount becomes excessive in the transition period t1, and so-called frequency drift occurs.

図4(a)のβ(t)は、温度補償回路による補償量、α(t)は圧電振動素子の変化
量、γ(t)は温度補償がなされた後の温度補償型圧電発振器の周波数である。起動後、
あるいは温度変化後、時間taが経過すると曲線β(t)で示す補償量(Δf/f)は一
定となる。また、時間tbが経過すると、曲線α(t)で示す周波数変動量(Δf/f)
は一定となる。時間としてはta<tbであるり、経過時間tb以後はα(t)=β(t
)となる。
しかし、圧電振動素子6の周波数変動量α(t)と、温度補償回路32による補償量β
(t)とは、経過時間tによる変化量が異なるため、温度補償型圧電発振器(TCXO)
の周波数γ(t)は0とならず、初めに急速に立ち上がり、時間の経過と共に0に収斂す
る曲線となる。
曲線γ(t)は、起動後、又はある温度に変化した後の経過時間(t)で、温度センサ
31が感知する温度と、補償すべき圧電振動素子6の呈する温度との差により、TCXO
の周波数γ(t)は0ラインから急激に変化し、ピークに達した後、時間tbの経過後0
ラインに戻るような特性となる。このような急激に変化する周波数特性を有する温度補償
型圧電発振器は、GPSのように複数の衛星からの情報を瞬時に受信する装置には適さな
い。
In FIG. 4A, β (t) is a compensation amount by the temperature compensation circuit, α (t) is a change amount of the piezoelectric vibration element, and γ (t) is a frequency of the temperature compensated piezoelectric oscillator after the temperature compensation is performed. It is. After starting,
Alternatively, the compensation amount (Δf / f) indicated by the curve β (t) becomes constant when the time ta elapses after the temperature change. Further, when the time tb elapses, the frequency fluctuation amount (Δf / f) indicated by the curve α (t)
Is constant. The time is ta <tb, and after the elapsed time tb, α (t) = β (t
)
However, the frequency fluctuation amount α (t) of the piezoelectric vibration element 6 and the compensation amount β by the temperature compensation circuit 32.
Since the amount of change with elapsed time t is different from (t), a temperature compensated piezoelectric oscillator (TCXO)
The frequency γ (t) does not become 0, but rises rapidly at the beginning and converges to 0 as time passes.
The curve γ (t) is TCXO depending on the difference between the temperature sensed by the temperature sensor 31 and the temperature exhibited by the piezoelectric vibration element 6 to be compensated at the elapsed time (t) after startup or after changing to a certain temperature.
The frequency γ (t) changes rapidly from the 0 line, reaches a peak, and then reaches 0 after the elapse of time tb.
The characteristic returns to the line. Such a temperature-compensated piezoelectric oscillator having rapidly changing frequency characteristics is not suitable for a device that instantaneously receives information from a plurality of satellites such as GPS.

従来の温度補償型圧電発振器の周波数変化が、図4(a)のγ(t)で示すようになる
理由を具体的に説明する。初めに温度補償型圧電発振器が単体で、その構造が例えば、図
1に示すような二階建て構造型(H型)である場合を考える。
温度補償型圧電発振器の下面側凹所14bに配置したIC部品8は、内部の能動素子が
起動後に急速に発熱し、IC部品8は極めて小さいためチップ全体の温度が急に上昇する
。IC部品8に内蔵された温度センサ31はIC部品8の温度上昇を瞬時に感知し、IC
部品8に内蔵された温度補償回路32は補償電圧を生成し、補償電圧を電圧制御型発振器
33の可変容量素子に加え、補償量(Δf/f)が生成される。この補償量(Δf/f)
が図3(a)のβ(t)であり、短時間で一定値に収斂する。
The reason why the frequency change of the conventional temperature compensated piezoelectric oscillator becomes as indicated by γ (t) in FIG. 4A will be specifically described. First, consider a case where the temperature-compensated piezoelectric oscillator is a single unit and the structure is, for example, a two-story structure type (H type) as shown in FIG.
The IC component 8 disposed in the lower side recess 14b of the temperature compensated piezoelectric oscillator generates heat rapidly after the internal active element is activated, and the IC component 8 is extremely small, so that the temperature of the entire chip increases rapidly. The temperature sensor 31 built in the IC component 8 instantly senses the temperature rise of the IC component 8, and the IC component 8
The temperature compensation circuit 32 built in the component 8 generates a compensation voltage, and adds the compensation voltage to the variable capacitance element of the voltage-controlled oscillator 33 to generate a compensation amount (Δf / f). This compensation amount (Δf / f)
Is β (t) in FIG. 3A and converges to a constant value in a short time.

一方、圧電振動素子への熱伝導は2つの経路あり、第1の経路は発熱源であるIC部品
8から下面側内部パッド12bを経由して内部配線13に伝導し、上面側内部パッド12
a経由して、圧電振動素子6引き出し電極、励振電極6a、6bを介して圧電基板に伝導
する経路である。第2の経路は発熱源であるIC部品8から下面側内部パッド12bを介
してパッケージ本体10の絶縁容器10aに伝導し、絶縁容器10aの基板から上側凹所
14aの気体(N2)を介して圧電振動素子6に伝導する経路である。第1の経路の内部
配線13を経由する経路は金属製であるため熱伝導率は高いが、細く、あるいは薄いため
熱伝導量は小さい。また、パッケージ本体10の絶縁容器10a、気体(N2)を経由す
る熱伝導は、気体の熱伝導率が小さいため、この経路の熱伝導量も大きくない。これらの
理由のためIC部品の温度センサ31の感知する温度と、圧電振動素子6の呈する温度と
の間には温度差が生じ、両者の温度が等しくなるには時間がかかる。
従って、温度補償型圧電発振器を起動させた直後は、圧電振動素子6が呈する温度と、
温度センサ31が感知する温度とに差が生じることになり、圧電振動素子6に対し補償す
べき補償量と、温度補償回路から生じる補償量とが互いに異なることになる。そのため、
起動直後の周波数ドリフトが生じる。
On the other hand, heat conduction to the piezoelectric vibration element has two paths, and the first path is conducted from the IC component 8 which is a heat generation source to the internal wiring 13 via the lower surface side internal pad 12b, and the upper surface side inner pad 12 is transmitted.
This is a path that passes through a to the piezoelectric substrate via the piezoelectric vibration element 6 extraction electrode and excitation electrodes 6a and 6b. The second path is conducted from the IC component 8 which is a heat generation source to the insulating container 10a of the package body 10 through the lower surface side internal pad 12b, and from the substrate of the insulating container 10a through the gas (N 2 ) in the upper recess 14a. This is a path that conducts to the piezoelectric vibration element 6. Since the path through the internal wiring 13 of the first path is made of metal, the thermal conductivity is high. However, since the path is thin or thin, the thermal conductivity is small. Further, the heat conduction through the insulating container 10a of the package body 10 and the gas (N 2 ) has a small heat conductivity of the gas, and thus the heat conduction amount of this path is not large. For these reasons, there is a temperature difference between the temperature sensed by the temperature sensor 31 of the IC component and the temperature exhibited by the piezoelectric vibration element 6, and it takes time for the two temperatures to be equal.
Therefore, immediately after starting the temperature compensated piezoelectric oscillator, the temperature exhibited by the piezoelectric vibration element 6,
There is a difference between the temperature sensed by the temperature sensor 31 and the compensation amount to be compensated for the piezoelectric vibration element 6 is different from the compensation amount generated from the temperature compensation circuit. for that reason,
A frequency drift occurs immediately after startup.

温度補償型圧電発振器を通信機器のプリント基板に実装し、通信機器を起動させる場合
は、プリント基板にはCPUや電源回路等が搭載されており、これら電子部品は起動直後
から発熱し、プリント基板は急速に温度が上昇する。このプリント基板に実装された温度
補償型圧電発振器は、自身のIC部品の発熱に加えプリント基板側からの熱の影響も受け
ることになる。温度補償型圧電発振器が二階建て構造型(H型)であると、IC部品8は
パッケージ本体10の下面側凹所14bに搭載されているため、プリント基板から実装端
子15、内部配線13を経由する経路からの熱伝導は、経路も短くIC部品8の温度は急
速に上昇する。また、プリント基板から輻射熱によってもIC部品8は温度上昇を来し、
温度センサ31はこの温度上昇を速やかに感知する。しかるに、圧電振動素子6への熱の
伝導は内部配線13を経由する経路も長く、パッケージ本体10を経由した熱伝導にも時
間を要し、温度センサの感知する温度と、圧電振動素子の温度との間には温度差が生じ、
実際の使用状態でも図3(a)のような周波数ドリフトが生じる。
When a temperature-compensated piezoelectric oscillator is mounted on a printed circuit board of a communication device and the communication device is activated, the printed circuit board is equipped with a CPU, a power supply circuit, etc., and these electronic components generate heat immediately after the activation, and the printed circuit board The temperature rises rapidly. The temperature compensated piezoelectric oscillator mounted on the printed circuit board is affected by heat from the printed circuit board side in addition to the heat generation of its own IC components. If the temperature-compensated piezoelectric oscillator is of a two-story structure type (H type), the IC component 8 is mounted on the lower surface side recess 14b of the package body 10, so that the printed circuit board is connected via the mounting terminal 15 and the internal wiring 13. The heat conduction from the path to be conducted is short and the temperature of the IC component 8 rises rapidly. In addition, the temperature of the IC component 8 increases due to radiant heat from the printed circuit board.
The temperature sensor 31 quickly detects this temperature increase. However, the conduction of heat to the piezoelectric vibration element 6 has a long path through the internal wiring 13, and the heat conduction through the package body 10 also takes time. The temperature sensed by the temperature sensor and the temperature of the piezoelectric vibration element There is a temperature difference between
Even in an actual use state, a frequency drift as shown in FIG.

GPSシステムが高い測位精度を実現するためには、温度補償型圧電発振器の周波数安
定度が高いことが必要とされる。特に、携帯型のGPSの場合であればこれに搭載される
基準周波数源の周波数安定度には限界があると共に、受信機も移動する。このため、一般
的にはドップラー効果に基づく搬送波周波数の周波数偏移を演算してドップラー周波数を
測定する。ドップラー周波数と複数のGPS衛星を使って通信機器の移動速度のベクトル
を検出し、移動に伴う周波数ズレ(ドップラー効果によるズレ)を補正する。このとき同
時に通信機器内の基準発振器の周波数誤差も得られて補正される。しかし、補正可能な範
囲には限度があり基準発振器の周波数誤差が規定値よりも大きい場合には補正できず、G
PS装置は衛星からの信号を捕捉することができない。そのため信号を捕捉するまでには
温度補償型の温度分布が均一になるまで時間を要するという問題があった。
In order for the GPS system to achieve high positioning accuracy, the temperature stability of the temperature compensated piezoelectric oscillator is required to be high. In particular, in the case of a portable GPS, the frequency stability of a reference frequency source mounted on the GPS is limited, and the receiver moves. Therefore, generally, the Doppler frequency is measured by calculating the frequency shift of the carrier frequency based on the Doppler effect. A vector of the moving speed of the communication device is detected using the Doppler frequency and a plurality of GPS satellites, and a frequency shift (shift due to the Doppler effect) accompanying the movement is corrected. At the same time, the frequency error of the reference oscillator in the communication device is also obtained and corrected. However, there is a limit to the range that can be corrected, and if the frequency error of the reference oscillator is larger than the specified value, it cannot be corrected.
PS devices cannot capture signals from satellites. Therefore, there is a problem that it takes time until the temperature compensation type temperature distribution becomes uniform until the signal is captured.

本発明に係る温度補償型圧電発振器(TCXO)1の温度補償回路32の調整方法につ
いて、図4(b)を用いて説明する。図4(b)に示すα(t2)は、任意温度おいて時
間t2が経過して熱が定常状態に達したときの圧電振動素子6の周波数変動量である。β
(t2)は時間t2が経過した後の温度補償回路32による周波数補償量であり、β(t
2)=α(t2)である。本発明の補償方法は周波数補償量β(t2)より少ない周波数
補償量β’(t2)を用いて圧電振動素子6を補償する方法である。つまり、温度補償回
路32を調整して周波数補償量β’(t2)を生成することである。周波数補償量β’(
t2)が生成できれば、図4(b)に示すTCXO1の周波数変動γ’(t)は、過渡期
t1における周波数ドリフトも小さくなり、全時間に亘りGPSの仕様を満たすようにす
ることが可能となる。
A method for adjusting the temperature compensation circuit 32 of the temperature compensated piezoelectric oscillator (TCXO) 1 according to the present invention will be described with reference to FIG. Α (t2) shown in FIG. 4B is the frequency fluctuation amount of the piezoelectric vibrating element 6 when the heat reaches a steady state after the time t2 has passed at an arbitrary temperature. β
(T2) is a frequency compensation amount by the temperature compensation circuit 32 after the time t2 has elapsed, and β (t
2) = α (t2). The compensation method of the present invention is a method for compensating the piezoelectric vibration element 6 using a frequency compensation amount β ′ (t2) smaller than the frequency compensation amount β (t2). That is, the temperature compensation circuit 32 is adjusted to generate the frequency compensation amount β ′ (t2). Frequency compensation amount β ′ (
If t2) can be generated, the frequency fluctuation γ ′ (t) of TCXO1 shown in FIG. 4 (b) also reduces the frequency drift in the transition period t1, and can satisfy the GPS specifications over the entire time. Become.

本発明に係る温度補償型圧電発振器1の温度補償方法について図面を用いて説明する。
図5(a)は縦軸を周波数偏差(Δf/f)、横軸を温度(T℃)とした圧電振動素子6
の周波数温度特性を示す曲線である。図5(b)の破線は、同図(a)の周波数温度特性
を正確に補償するための温度補償回路32の出力電圧Vcの温度特性である。本発明の調
整法は、図5(b)の実線で示すように、圧電振動素子6の周波数温度特性を正確に補償
する破線の補償電圧曲線に対し、極大及び極小値の補償電圧Vcの絶対値を夫々小さくし
て補償を行うのが特徴である。
図5(c)は電圧制御発振回路33に用いられる可変容量素子の容量C−電圧Vc特性
である。図5(d)に示す温度T−容量C特性は、図5(b)に示す温度補償回路32の
出力電圧Vc特性を可変容量素子に加えた場合に生成される容量特性である。図5(e)
は圧電振動素子6の負荷容量Cと周波数偏移の関係を示す負荷容量特性である。圧電振動
素子6に図5(d)の実線で示す温度T−容量C特性の容量を負荷させると、図6(a)
に示す温度Tと周波数補償量(Δf/f)との関係を示す周波数補償特性が得られる。こ
の周波数補償特性と、圧電振動素子の呈する周波数温度特性とを加算することにより、図
6(b)の実線で示す、温度の増加に伴い右下がりに減少する周波数温度特性が得られる
。図6(b)の破線は、図5(b)の破線で示す温度補償電圧を用いた場合の従来の周波
数温度特性である。図6(b)の実線は、図5(b)の実線で示す温度補償電圧、つまり
波線で示す温度補償電圧の極大値、極小値の絶対値よりも小さい温度補償電圧を用いて圧
電振動素子6を補償した場合の周波数温度特性であり、本発明の周波数温度特性は温度T
の増加に伴い右下がりに減少する。
A temperature compensation method for the temperature compensated piezoelectric oscillator 1 according to the present invention will be described with reference to the drawings.
FIG. 5A shows a piezoelectric vibration element 6 with the vertical axis representing frequency deviation (Δf / f) and the horizontal axis representing temperature (T ° C.).
It is a curve which shows the frequency temperature characteristic of. The broken line in FIG. 5B is the temperature characteristic of the output voltage Vc of the temperature compensation circuit 32 for accurately compensating the frequency temperature characteristic in FIG. As shown by the solid line in FIG. 5B, the adjustment method of the present invention is based on the absolute value of the maximum and minimum values of the compensation voltage Vc with respect to the dashed compensation voltage curve for accurately compensating the frequency temperature characteristic of the piezoelectric vibration element 6. The characteristic is that compensation is performed by decreasing the value.
FIG. 5C shows the capacitance C-voltage Vc characteristics of the variable capacitance element used in the voltage controlled oscillation circuit 33. The temperature T-capacitance C characteristic shown in FIG. 5D is a capacitance characteristic generated when the output voltage Vc characteristic of the temperature compensation circuit 32 shown in FIG. 5B is added to the variable capacitance element. FIG. 5 (e)
Is a load capacity characteristic showing the relationship between the load capacity C of the piezoelectric vibration element 6 and the frequency shift. When the piezoelectric vibration element 6 is loaded with a capacity having a temperature T-capacitance C characteristic indicated by a solid line in FIG. 5D, FIG.
The frequency compensation characteristic indicating the relationship between the temperature T and the frequency compensation amount (Δf / f) shown in FIG. By adding the frequency compensation characteristic and the frequency temperature characteristic exhibited by the piezoelectric vibration element, a frequency temperature characteristic that decreases downward as the temperature increases, which is indicated by a solid line in FIG. 6B, is obtained. The broken line in FIG. 6B is the conventional frequency temperature characteristic when the temperature compensation voltage shown by the broken line in FIG. 5B is used. The solid line in FIG. 6B is a piezoelectric vibration element using a temperature compensation voltage smaller than the absolute value of the temperature compensation voltage indicated by the solid line in FIG. 5B, that is, the maximum value and the minimum value of the temperature compensation voltage indicated by the wavy line. 6 is a frequency-temperature characteristic in the case of compensating 6 and the frequency-temperature characteristic of the present invention is the temperature T
Decrease to the right with the increase.

図7(a)は、温度補償型圧電発振器1の温度補償回路32の1次成分回路の定数値を
変化させた場合、温度補償回路32から得られる出力電圧Vcをシミュレーションして得
られた温度T−補償電圧Vcの曲線である。D2で示す曲線は補償電圧Vc曲線の最適値
であり、所定の温度範囲(例えば−30℃〜85℃)で周波数温度特性がほぼゼロになる
ように、温度補償回路32を設定した場合である。曲線D1は1次成分回路の定数値を適
正値より過大に、曲線D3は過小に設定した場合の出力電圧曲線である。
図7(b)は同図(a)に示したと温度補償回路32の出力電圧Vc(D1、D2、D
3)に基づいて得られた温度補償型圧電発振器1の周波数温度特性である。図7(b)の
曲線D2は、同図(a)の出力電圧曲線D2を用いて圧電振動素子6を補償した周波数温
度特性であり、平坦な特性をしている。図7(b)のD1、D3より温度補償回路32の
1次成分回路の定数値を適正値から変えることで、温度の増加に伴い右下がりの周波数温
度特性、あるいは右上がりの周波数温度特性が得られることが分かる。
図7(b)に示した周波数温度特性の図は、温度補償回路32の出力電圧Vcの変化に
より、周波数偏差(Δf/f)が大きく振れるようにシミュレーションした図である。曲
線D2とD1との間の曲線は、処理回路に備えるメモリを適宜設定することにより多数得
られ、温度補償型圧電発振器の構造、搭載されるプリント基板の温度上昇等を考慮して最
適な特性となるように設定すればよい。
なお、実際GPSに用いられる周波数温度特性の仕様の一例は、温度範囲(−30℃〜
85℃)で±0.5ppm程度である。
FIG. 7A shows the temperature obtained by simulating the output voltage Vc obtained from the temperature compensation circuit 32 when the constant value of the primary component circuit of the temperature compensation circuit 32 of the temperature compensated piezoelectric oscillator 1 is changed. It is a curve of T-compensation voltage Vc. A curve indicated by D2 is an optimum value of the compensation voltage Vc curve, and is a case where the temperature compensation circuit 32 is set so that the frequency temperature characteristic becomes almost zero in a predetermined temperature range (for example, −30 ° C. to 85 ° C.). . A curve D1 is an output voltage curve when the constant value of the primary component circuit is set larger than an appropriate value, and a curve D3 is set too small.
FIG. 7B shows the output voltage Vc (D1, D2, D) of the temperature compensation circuit 32 as shown in FIG.
3 is a frequency temperature characteristic of the temperature compensated piezoelectric oscillator 1 obtained based on 3). A curve D2 in FIG. 7B is a frequency temperature characteristic obtained by compensating the piezoelectric vibration element 6 using the output voltage curve D2 in FIG. 7A, and has a flat characteristic. By changing the constant value of the primary component circuit of the temperature compensation circuit 32 from an appropriate value from D1 and D3 in FIG. 7B, a frequency temperature characteristic that falls to the right or a frequency temperature characteristic that rises to the right as the temperature increases. You can see that
The diagram of the frequency-temperature characteristic shown in FIG. 7B is a simulation that the frequency deviation (Δf / f) greatly fluctuates due to the change in the output voltage Vc of the temperature compensation circuit 32. A large number of curves between the curves D2 and D1 can be obtained by appropriately setting the memory provided in the processing circuit, and the optimum characteristics in consideration of the structure of the temperature-compensated piezoelectric oscillator, the temperature rise of the printed board to be mounted, etc. Should be set to be.
In addition, an example of the specification of the frequency temperature characteristic actually used for GPS is a temperature range (−30 ° C. to
85 ° C.) and about ± 0.5 ppm.

図8(a)は温度補償型圧電発振器1の温度補償回路32の3次成分以上の回路の定数
値を変化させた場合、温度補償回路32から得られる出力電圧Vcのシミュレーションで
ある。D2で示す曲線は、周波数温度特性が所定の温度範囲(例えば−30℃〜85℃)
で、ほぼゼロになるように温度補償回路32を最適値に設定した場合の出力電圧Vcであ
る。曲線D1は3次成分以上の回路の定数値を適正値より過大に、曲線D3は過小に設定
した場合の出力電圧Vc曲線である。
図8(b)は(a)に示したと温度補償回路32の出力電圧Vc(D1、D2、D3)
に基づいて得られた温度補償型圧電発振器1の周波数温度特性である。図8(b)の曲線
D2は、同図(a)の出力電圧曲線D2を用いて圧電振動素子6を補償した周波数温度特
性であり、平坦な特性をしている。図8(b)より温度補償回路32の3次成分以上の回
路の定数値を変えることで、温度の増加に伴い右下がりの周波数温度特性、あるいは右上
がりの周波数温度特性を得ることが分かる。
温度の増加に伴い温度補償型圧電発振器の周波数が減少するように温度補償回路の3次
以上の高次成分回路を調整するので、温度補償型圧電発振器の周波数ドリフトが減少する
。周波数温度特性を所望の特性に調整することが可能であり、温度補償型圧電発振器をG
PS装置に用いると起動後直ぐに使用が可能になるという効果がある。
FIG. 8A is a simulation of the output voltage Vc obtained from the temperature compensation circuit 32 when the constant value of the circuit of the third or higher order component of the temperature compensation circuit 32 of the temperature compensated piezoelectric oscillator 1 is changed. The curve indicated by D2 has a frequency temperature characteristic within a predetermined temperature range (for example, −30 ° C. to 85 ° C.).
Thus, the output voltage Vc when the temperature compensation circuit 32 is set to an optimum value so as to be substantially zero. A curve D1 is an output voltage Vc curve when a constant value of a circuit having a third or higher order component is set to be larger than an appropriate value, and a curve D3 is set to be too small.
FIG. 8B shows the output voltage Vc (D1, D2, D3) of the temperature compensation circuit 32 as shown in FIG.
2 is a frequency temperature characteristic of the temperature compensated piezoelectric oscillator 1 obtained based on the above. A curve D2 in FIG. 8B is a frequency-temperature characteristic in which the piezoelectric vibration element 6 is compensated using the output voltage curve D2 in FIG. 8A, and has a flat characteristic. From FIG. 8B, it can be seen that by changing the constant value of the circuit of the third or higher order component of the temperature compensation circuit 32, a frequency temperature characteristic that decreases to the right or a frequency temperature characteristic that increases to the right is obtained as the temperature increases.
Since the third-order or higher-order component circuit of the temperature compensation circuit is adjusted so that the frequency of the temperature compensation type piezoelectric oscillator decreases as the temperature increases, the frequency drift of the temperature compensation type piezoelectric oscillator decreases. The frequency temperature characteristic can be adjusted to the desired characteristic, and the temperature compensated piezoelectric oscillator
When used in a PS device, there is an effect that it can be used immediately after startup.

図9(a)は温度補償型圧電発振器1の温度補償回路32の2次成分の定数値を変化さ
せた場合、温度補償回路32から得られる出力電圧Vcのシミュレーションである。D2
で示す曲線は、周波数温度特性が所定の温度範囲(例えば−30℃〜85℃)でほぼゼロ
になるように、温度補償回路32を最適値に設定した場合の出力電圧Vcの曲線である。
曲線D1は2次成分の定数値を適正値より過大に、曲線D3は過小に設定した場合の出力
電圧曲線である。
なお、周知のように、処理回路に格納されている温度センサ31の温度−出力電圧特性
を適宜選択することにより2次成分を変えることが可能である。これは変曲点温度t0
含む温度(t−t0)の多項式で温度補償回路32を構成する場合に、変曲点t0をシフト
することに相当する。
図9(b)は(a)に示したと温度補償回路32の出力電圧Vc(D1、D2、D3)
に基づいて得られた温度補償型圧電発振器1の周波数温度特性である。図9(b)の曲線
D2は、同図(a)の出力電圧曲線D2を用いて圧電振動素子6を補償した周波数温度特
性であり、平坦な特性をしている。図9(b)より温度補償回路32の2次成分の定数値
を変えることで、温度の増加に伴い右下がりの周波数温度特性、あるいは右上がりの周波
数温度特性を得ることが分かる。
温度の増加に伴い温度補償型圧電発振器の周波数が減少するように温度補償回路の2次
成分を調整するので、温度補償型圧電発振器の周波数ドリフトが減少する。2次成分の調
整は処理回路の記憶回路を調整するだけで極めて容易であり、温度補償型圧電発振器をG
PS装置に用いると電源の投入後、速やかに使用が可能になるという効果がある。
FIG. 9A is a simulation of the output voltage Vc obtained from the temperature compensation circuit 32 when the constant value of the secondary component of the temperature compensation circuit 32 of the temperature compensated piezoelectric oscillator 1 is changed. D2
Is a curve of the output voltage Vc when the temperature compensation circuit 32 is set to an optimum value so that the frequency temperature characteristic becomes substantially zero in a predetermined temperature range (for example, −30 ° C. to 85 ° C.).
A curve D1 is an output voltage curve when the constant value of the secondary component is set to be larger than an appropriate value, and a curve D3 is set to be too small.
As is well known, the secondary component can be changed by appropriately selecting the temperature-output voltage characteristics of the temperature sensor 31 stored in the processing circuit. This corresponds to shifting the inflection point t 0 when the temperature compensation circuit 32 is configured by a polynomial of the temperature (t−t 0 ) including the inflection point temperature t 0 .
FIG. 9B shows the output voltage Vc (D1, D2, D3) of the temperature compensation circuit 32 shown in FIG.
2 is a frequency temperature characteristic of the temperature compensated piezoelectric oscillator 1 obtained based on the above. A curve D2 in FIG. 9B is a frequency temperature characteristic obtained by compensating the piezoelectric vibration element 6 using the output voltage curve D2 in FIG. 9A, and has a flat characteristic. It can be seen from FIG. 9 (b) that by changing the constant value of the secondary component of the temperature compensation circuit 32, a frequency temperature characteristic that decreases to the right or a frequency temperature characteristic that increases to the right is obtained as the temperature increases.
Since the secondary component of the temperature compensation circuit is adjusted so that the frequency of the temperature compensated piezoelectric oscillator decreases as the temperature increases, the frequency drift of the temperature compensated piezoelectric oscillator decreases. Adjustment of the secondary component is extremely easy by adjusting the memory circuit of the processing circuit.
When used in a PS device, there is an effect that it can be used immediately after the power is turned on.

図10(a)は温度補償型圧電発振器1の温度補償回路32の5次成分回路の定数値を
変化させた場合、温度補償回路32から得られる出力電圧Vcのシミュレーションである
。D2で示す曲線は、周波数温度特性が所定の温度範囲(例えば−30℃〜85℃)でほ
ぼゼロになるように温度補償回路32を設定した場合の出力電圧Vcの曲線である。曲線
D1は補償を適正値より過大に、曲線D3は過小に設定した場合の出力電圧曲線である。
図10(b)は、(a)に示したと温度補償回路32の出力電圧Vc(D1、D2、D
3)に基づいて得られた温度補償型圧電発振器1の周波数温度特性である。図10(b)
の曲線D2は、同図(a)の出力電圧曲線D2を用いて圧電振動素子6を補償した周波数
温度特性であり、平坦な特性をしている。図10(b)より温度補償回路32の5次成分
回路の定数値を変えることで、温度の増加に伴い右下がりの周波数温度特性、あるいは右
上がりの周波数温度特性を得ることが分かる。
FIG. 10A is a simulation of the output voltage Vc obtained from the temperature compensation circuit 32 when the constant value of the fifth-order component circuit of the temperature compensation circuit 32 of the temperature compensated piezoelectric oscillator 1 is changed. A curve indicated by D2 is a curve of the output voltage Vc when the temperature compensation circuit 32 is set so that the frequency temperature characteristic becomes substantially zero in a predetermined temperature range (for example, −30 ° C. to 85 ° C.). A curve D1 is an output voltage curve when the compensation is set to an excessive value above the appropriate value, and a curve D3 is set to an excessively small value.
FIG. 10B shows the output voltage Vc (D1, D2, D) of the temperature compensation circuit 32 shown in FIG.
3 is a frequency temperature characteristic of the temperature compensated piezoelectric oscillator 1 obtained based on 3). FIG. 10 (b)
A curve D2 is a frequency-temperature characteristic obtained by compensating the piezoelectric vibrating element 6 using the output voltage curve D2 of FIG. From FIG. 10B, it can be seen that by changing the constant value of the fifth-order component circuit of the temperature compensation circuit 32, a frequency temperature characteristic that decreases to the right or a frequency temperature characteristic that increases to the right is obtained as the temperature increases.

以上では温度補償回路の各回路と、回路の幾つかの組み合わせについて説明したが、温
度補償回路の3次成分回路、あるいは1次成分回路と3次成分回路を調整し、温度の増加
に伴い温度補償型圧電発振器の周波数が減少するように調整してもよい。
このように調整すると、温度補償型圧電発振器の周波数ドリフトが減少し、温度補償型
圧電発振器をGPS装置に用いると電源の投入後、速やかに使用が可能になるという効果
がある。
In the above, each circuit of the temperature compensation circuit and some combinations of the circuits have been described. However, the third-order component circuit of the temperature compensation circuit, or the first-order component circuit and the third-order component circuit are adjusted, and the temperature increases as the temperature increases. You may adjust so that the frequency of a compensation type piezoelectric oscillator may decrease.
By adjusting in this way, the frequency drift of the temperature compensated piezoelectric oscillator is reduced, and if the temperature compensated piezoelectric oscillator is used in a GPS device, it can be used immediately after the power is turned on.

以上では温度補償回路の各回路と、回路の幾つかの組み合わせについて説明したが、1
次成分回路と3次以上の高次成分回路と2次成分との全てを調整して、温度補償型圧電発
振器の周波数温度特性を所望の特性になるように調整してもよい。
温度の増加に伴い温度補償型圧電発振器の周波数が減少するように温度補償回路の1次
成分回路と3次以上の高次成分回路とを含む回路の係数、及び処理回路を調整するので、
温度補償型圧電発振器の周波数ドリフトが減少し、温度補償型圧電発振器を例えば、GP
S装置に用いると電源の投入後、速やかにGPS装置が機能するという効果がある。
常温から圧電振動素子の極小値までの範囲で温度の増加に伴い温度補償型圧電発振器の
周波数が減少するように、温度補償回路の3次成分回路、1次及び3次成分回路、3次以
上の高次成分回路、2次成分、1次及び3次以上の高次成分回路の何れかを調整してもよ
い。
実用的には常温以上で温度の上昇に伴い周波数が減少するように温度補償型圧電発振器
を調整すれば、温度補償型圧電発振器をGPS装置に用いると起動後直ぐに使用が可能に
なるという効果がある。
In the above, each circuit of the temperature compensation circuit and some combinations of the circuits have been described.
The frequency temperature characteristic of the temperature compensated piezoelectric oscillator may be adjusted to a desired characteristic by adjusting all of the second component circuit, the third and higher order component circuit, and the second component.
Since the coefficient of the circuit including the primary component circuit of the temperature compensation circuit and the higher-order component circuit of the third or higher order and the processing circuit are adjusted so that the frequency of the temperature compensated piezoelectric oscillator decreases as the temperature increases,
The frequency drift of the temperature compensated piezoelectric oscillator is reduced and the temperature compensated piezoelectric oscillator
When used in the S device, there is an effect that the GPS device functions immediately after the power is turned on.
The temperature compensation circuit third-order component circuit, first-order and third-order component circuit, third-order or more so that the frequency of the temperature-compensated piezoelectric oscillator decreases as the temperature increases from room temperature to the minimum value of the piezoelectric vibration element. The higher order component circuit, the second order component, the first order, and the higher order component circuit of the third order or higher may be adjusted.
Practically, if the temperature compensated piezoelectric oscillator is adjusted so that the frequency decreases as the temperature rises at room temperature or higher, the temperature compensated piezoelectric oscillator can be used immediately after startup if used in a GPS device. is there.

1…温度補償型圧電発振器、6…圧電振動素子、8…IC部品、10…パッケージ本体、
10a…絶縁容器、10b…段差部、12a…上面側内部パッド、12b…下面側内部パ
ッド、13…内部配線、14a、14b…凹所、15…実装端子、16…導電性接着剤、
17…金バンプ、20…蓋体、31…温度センサ、32…温度補償回路、33…電圧制御
型発振回路、34…増幅回路、35…処理回路、36…加算回路、α(t)…圧電振動素
子の周波数変化量、β(t)…補償回路による補償量、γ(t)…温度補償型圧電発振器
の周波数
DESCRIPTION OF SYMBOLS 1 ... Temperature compensation type | mold piezoelectric oscillator, 6 ... Piezoelectric vibration element, 8 ... IC component, 10 ... Package body,
DESCRIPTION OF SYMBOLS 10a ... Insulation container, 10b ... Step part, 12a ... Upper surface side internal pad, 12b ... Lower surface side internal pad, 13 ... Internal wiring, 14a, 14b ... Recess, 15 ... Mounting terminal, 16 ... Conductive adhesive agent,
DESCRIPTION OF SYMBOLS 17 ... Gold bump, 20 ... Cover body, 31 ... Temperature sensor, 32 ... Temperature compensation circuit, 33 ... Voltage control type oscillation circuit, 34 ... Amplification circuit, 35 ... Processing circuit, 36 ... Addition circuit, (alpha) (t) ... Piezoelectric Frequency change amount of vibration element, β (t): compensation amount by compensation circuit, γ (t): frequency of temperature compensated piezoelectric oscillator

Claims (6)

圧電振動素子と、IC部品と、前記圧電振動素子及びIC部品を収容するパッケージ本
体と、該パッケージ本体の一方の開口部を封止する蓋体と、を備えた温度補償型圧電発振
器であって、
前記圧電振動素子は、変曲点の低温側及び高温側に夫々極大値及び極小値と有する周波
数温度特性を有し、
前記IC部品は、温度を感知する温度センサと、前記圧電振動素子の温度による周波数
変化を補償する温度補償回路と、前記圧電振動素子と協働して電圧制御型発振器を形成す
る電圧制御型発振回路と、を備え、
前記温度補償回路は、1次成分回路と3次以上の高次成分回路とを含む回路と、信号の
処理回路と、加算回路と、を備え、
前記電圧制御型発振回路から出力される周波数補償量と温度との関係が、前記圧電振動
素子の周波数温度特性を正確に補償する補償量より少なく、温度の上昇に応じて温度補償
型圧電発振器の周波数が減少するように処理回路及び補償回路を調整したことを特徴とす
る温度補償型圧電発振器。
A temperature-compensated piezoelectric oscillator comprising: a piezoelectric vibration element; an IC component; a package body that houses the piezoelectric vibration element and the IC component; and a lid that seals one opening of the package body. ,
The piezoelectric vibration element has a frequency temperature characteristic having a maximum value and a minimum value on the low temperature side and the high temperature side of the inflection point, respectively.
The IC component includes a temperature sensor that senses temperature, a temperature compensation circuit that compensates for a frequency change due to the temperature of the piezoelectric vibration element, and a voltage-controlled oscillation that forms a voltage-controlled oscillator in cooperation with the piezoelectric vibration element. A circuit,
The temperature compensation circuit includes a circuit including a primary component circuit and a third-order or higher-order component circuit, a signal processing circuit, and an addition circuit.
The relationship between the frequency compensation amount output from the voltage controlled oscillation circuit and the temperature is less than the compensation amount for accurately compensating the frequency temperature characteristic of the piezoelectric vibration element, and the temperature compensated piezoelectric oscillator according to the temperature rise A temperature-compensated piezoelectric oscillator, wherein a processing circuit and a compensation circuit are adjusted so that the frequency decreases.
温度と前記周波数補償量との関係を、前記圧電振動素子の周波数温度特性を正確に補償
する補償量より少なくし、温度の上昇に応じて温度補償型圧電発振器の周波数が減少する
ように前記3次成分回路を調整したことを特徴とする請求項1に記載の温度補償型圧電発
振器。
The relationship between the temperature and the frequency compensation amount is made smaller than the compensation amount for accurately compensating the frequency temperature characteristic of the piezoelectric vibration element, and the frequency of the temperature compensated piezoelectric oscillator decreases as the temperature rises. 2. The temperature compensated piezoelectric oscillator according to claim 1, wherein a second component circuit is adjusted.
温度と前記周波数補償量との関係を、前記圧電振動素子の周波数温度特性を正確に補償
する補償量より少なくし、温度の上昇に応じて温度補償型圧電発振器の周波数が減少する
ように前記1次及び3次成分回路を調整したことを特徴とする請求項1に記載の温度補償
型圧電発振器。
The relationship between the temperature and the frequency compensation amount is made smaller than the compensation amount for accurately compensating the frequency temperature characteristic of the piezoelectric vibration element, and the frequency of the temperature compensated piezoelectric oscillator is decreased as the temperature rises. 2. The temperature compensated piezoelectric oscillator according to claim 1, wherein the second and third component circuits are adjusted.
温度と前記周波数補償量との関係を、前記圧電振動素子の周波数温度特性を正確に補償
する補償量より少なくし、温度の上昇に応じて温度補償型圧電発振器の周波数が減少する
ように前記3次以上の高次成分回路を調整したことを特徴とする請求項1に記載の温度補
償型圧電発振器。
The relationship between the temperature and the frequency compensation amount is made smaller than the compensation amount for accurately compensating the frequency temperature characteristic of the piezoelectric vibration element, and the frequency of the temperature compensated piezoelectric oscillator decreases as the temperature rises. The temperature-compensated piezoelectric oscillator according to claim 1, wherein a higher-order component circuit of the second order or higher is adjusted.
温度と前記周波数補償量との関係を、前記圧電振動素子の周波数温度特性を正確に補償
する補償量より少なくし、温度の上昇に応じて温度補償型圧電発振器の周波数が減少する
ように前記温度センサから得られる信号を前記処理回路で処理し、2次成分を調整したこ
とを特徴とする請求項1に記載の温度補償型圧電発振器。
The relationship between the temperature and the frequency compensation amount is made smaller than the compensation amount for accurately compensating the frequency temperature characteristic of the piezoelectric vibration element, and the temperature of the temperature compensated piezoelectric oscillator decreases as the temperature rises. The temperature-compensated piezoelectric oscillator according to claim 1, wherein a signal obtained from a sensor is processed by the processing circuit and a secondary component is adjusted.
常温から前記圧電振動素子の極小値を示す温度の範囲において温度と前記周波数補償量
との関係を、前記圧電振動素子の周波数温度特性を正確に補償する補償量より少なくし、
温度の上昇に応じて温度補償型圧電発振器の周波数が減少するように調整したことを特徴
とする請求項1乃至5の何れか一項に記載の温度補償型圧電発振器。
The relationship between the temperature and the frequency compensation amount in a temperature range from room temperature to a minimum value of the piezoelectric vibration element is less than the compensation amount for accurately compensating the frequency temperature characteristic of the piezoelectric vibration element,
6. The temperature compensated piezoelectric oscillator according to claim 1, wherein the temperature compensated piezoelectric oscillator is adjusted so that the frequency of the temperature compensated piezoelectric oscillator decreases with an increase in temperature.
JP2009048899A 2009-03-03 2009-03-03 Temperature compensated oscillator Active JP5381162B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009048899A JP5381162B2 (en) 2009-03-03 2009-03-03 Temperature compensated oscillator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009048899A JP5381162B2 (en) 2009-03-03 2009-03-03 Temperature compensated oscillator

Publications (3)

Publication Number Publication Date
JP2010206443A true JP2010206443A (en) 2010-09-16
JP2010206443A5 JP2010206443A5 (en) 2012-03-22
JP5381162B2 JP5381162B2 (en) 2014-01-08

Family

ID=42967492

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009048899A Active JP5381162B2 (en) 2009-03-03 2009-03-03 Temperature compensated oscillator

Country Status (1)

Country Link
JP (1) JP5381162B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4715972B1 (en) * 2010-11-29 2011-07-06 ミツミ電機株式会社 Function generator
JP2013098860A (en) * 2011-11-02 2013-05-20 Kyocera Crystal Device Corp Temperature-compensated oscillator, and method of temperature compensation of temperature-compensated oscillator
JP2013102315A (en) * 2011-11-08 2013-05-23 Seiko Epson Corp Piezoelectric device and electronic apparatus
JP2013236199A (en) * 2012-05-08 2013-11-21 Seiko Epson Corp Temperature compensation circuit, circuit device, electronic apparatus and adjustment method
JP2021040266A (en) * 2019-09-04 2021-03-11 株式会社東芝 Oscillation device
US11502644B2 (en) 2020-11-26 2022-11-15 Seiko Epson Corporation Vibration device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0918234A (en) * 1995-04-27 1997-01-17 Seiko Epson Corp Temperature compensated piezoelectric oscillator
JP2001267847A (en) * 2000-03-17 2001-09-28 Asahi Kasei Microsystems Kk Temperature compensated crystal oscillator and method for compensating temperature or the oscillator
WO2003021765A1 (en) * 2001-08-29 2003-03-13 Seiko Epson Corporation Oscillator and communication appliance
JP2004336374A (en) * 2003-05-07 2004-11-25 Toyo Commun Equip Co Ltd Temperature compensation piezoelectric oscillator
JP2008258710A (en) * 2007-04-02 2008-10-23 Epson Toyocom Corp Temperature compensation piezoelectric oscillator, and temperature compensating method thereof

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0918234A (en) * 1995-04-27 1997-01-17 Seiko Epson Corp Temperature compensated piezoelectric oscillator
JP2001267847A (en) * 2000-03-17 2001-09-28 Asahi Kasei Microsystems Kk Temperature compensated crystal oscillator and method for compensating temperature or the oscillator
WO2003021765A1 (en) * 2001-08-29 2003-03-13 Seiko Epson Corporation Oscillator and communication appliance
JP2004336374A (en) * 2003-05-07 2004-11-25 Toyo Commun Equip Co Ltd Temperature compensation piezoelectric oscillator
JP2008258710A (en) * 2007-04-02 2008-10-23 Epson Toyocom Corp Temperature compensation piezoelectric oscillator, and temperature compensating method thereof

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4715972B1 (en) * 2010-11-29 2011-07-06 ミツミ電機株式会社 Function generator
JP2012119781A (en) * 2010-11-29 2012-06-21 Mitsumi Electric Co Ltd Function generation circuit
US8659361B2 (en) 2010-11-29 2014-02-25 Mitsumi Electric Co., Ltd. Function generator circuit
JP2013098860A (en) * 2011-11-02 2013-05-20 Kyocera Crystal Device Corp Temperature-compensated oscillator, and method of temperature compensation of temperature-compensated oscillator
JP2013102315A (en) * 2011-11-08 2013-05-23 Seiko Epson Corp Piezoelectric device and electronic apparatus
JP2013236199A (en) * 2012-05-08 2013-11-21 Seiko Epson Corp Temperature compensation circuit, circuit device, electronic apparatus and adjustment method
JP2021040266A (en) * 2019-09-04 2021-03-11 株式会社東芝 Oscillation device
US11502644B2 (en) 2020-11-26 2022-11-15 Seiko Epson Corporation Vibration device

Also Published As

Publication number Publication date
JP5381162B2 (en) 2014-01-08

Similar Documents

Publication Publication Date Title
US7310024B2 (en) High stability double oven crystal oscillator
EP2062361B1 (en) Apparatus and method for temperature compensation of crystal oscillators
JP6118091B2 (en) Oscillator
JP5381162B2 (en) Temperature compensated oscillator
JP5072418B2 (en) Temperature-compensated crystal oscillator for surface mounting
JP2010119031A (en) Constant-temperature type crystal oscillator
JP5218169B2 (en) Piezoelectric oscillator and method for measuring ambient temperature of this piezoelectric oscillator
US9013244B2 (en) Oscillating device, oscillating element and electronic apparatus
JP2003309432A (en) Highly stable piezoelectric oscillator
JP6377192B2 (en) Temperature compensated crystal oscillator
JP5970275B2 (en) High stability oscillator
JP2010258601A (en) Temperature compensated crystal oscillator, printed-circuit board mounted with temperature compensated crystal oscillator, and electronic equipment mounted with temperature compensated crystal oscillator
JP5673044B2 (en) Temperature compensated piezoelectric oscillator, frequency correction system, frequency drift correction method
JP2009027451A (en) Surface-mounting type crystal oscillator
JP2007097036A (en) Piezoelectric oscillator
JP2008258710A (en) Temperature compensation piezoelectric oscillator, and temperature compensating method thereof
US11522496B2 (en) Oscillator
JP2008141347A (en) Temperature compensation oscillator
JP5100211B2 (en) Crystal oscillator for surface mounting
JP2013017074A (en) Temperature compensation oscillator and electronic apparatus
JP7272009B2 (en) Oscillators, electronic devices and moving bodies
JP5854769B2 (en) Temperature compensated oscillator and temperature compensation method for temperature compensated oscillator
JP2009272734A (en) Piezoelectric oscillator
JP5213845B2 (en) Temperature compensated crystal oscillator
JP2010056986A (en) Temperature control method and apparatus for crystal oscillator

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20100705

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120203

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120203

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130228

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130312

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130510

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130604

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130722

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130903

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130916

R150 Certificate of patent or registration of utility model

Ref document number: 5381162

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350