JP2010205412A - 光ディスク、情報記録方法、情報再生方法 - Google Patents

光ディスク、情報記録方法、情報再生方法 Download PDF

Info

Publication number
JP2010205412A
JP2010205412A JP2010113583A JP2010113583A JP2010205412A JP 2010205412 A JP2010205412 A JP 2010205412A JP 2010113583 A JP2010113583 A JP 2010113583A JP 2010113583 A JP2010113583 A JP 2010113583A JP 2010205412 A JP2010205412 A JP 2010205412A
Authority
JP
Japan
Prior art keywords
recording
area
data
layer
recorded
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010113583A
Other languages
English (en)
Inventor
Kazuyo Umezawa
和代 梅澤
Seiji Morita
成二 森田
Koji Takazawa
孝次 高澤
Hideo Ando
秀夫 安東
Yasuaki Odera
泰章 大寺
Naomasa Nakamura
直正 中村
Naoki Morishita
直樹 森下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2010113583A priority Critical patent/JP2010205412A/ja
Publication of JP2010205412A publication Critical patent/JP2010205412A/ja
Pending legal-status Critical Current

Links

Images

Abstract

【課題】青系の短波長レーザで良好な記録再生が可能な追記型光ディスクを得る。
【解決手段】この光ディスクは、変調された短波長レーザのパワーにより、スペースを挟んで複数のマークの記録が行われる記録層(L0、L1等)を持つ。この光ディスクの記録層には、記録されたマークの領域内で記録層の物理的な変形あるいは変化(例えば体積変化)が実質的に生じない(例えば変化が10%以下)有機色素材料を用いる。
【選択図】 図22

Description

この発明は、情報の記録再生を可能とした追記型光ディスク等の情報記録媒体に関する。
光ディスクには、大きく分けて再生専用のROMディスク、追記型のRディスク、書き換え型のRWまたはRAMディスクの3種類がある。情報の大容量化に伴い、光ディスクにおいても、更なる大容量化が求められている。光ディスクを大容量化するためには、レーザ波長を短くする、あるいは開口数NAを大きくするなどしてビームスポットを絞り込み記録密度を上げる方法、あるいはディスクの片面に複数の記録層を設けた多層構造とする方法などがある(特許文献1)。
このうち、多層構造をとる光ディスクは、主に再生専用の2層ROMディスクが市場に出ているが、最近ではレーザ波長650nmを用いた追記型の2層ディスク(DVD−R:DL)においても製品化されている。DVD−Rなど、記録層に有機色素材料を用いた光ディスクを記録再生する方法では、レーザ光のパワーを変調することにより、色素の反射率変化を引き起こした記録マークを形成し、記録マークと未記録部の反射率差を利用して情報記録が行われる。レーザ光のパワー変調方法については、例えばDVD−Rではマルチパルスで行われる(特許文献2)。
特開2004−206849号公報(段落0036〜0041、図1参照) 特開平9−282660号公報(要約参照)
波長が405nm前後の青系レーザを用いて記録が可能となる色素には、最大吸収波長がレーザ波長である405nmよりも短い色素と長い色素の2種類がある。ここで、最大吸収波長が405nmよりも長い色素を用いると、記録前の低反射率から記録後に高反射率となる、いわゆるLtoHディスクとなる。
ところが、このLtoHディスクにおいて、記録層が単層の追記型光ディスクでは良好な特性を得ることが可能であったが、片面2層の記録層を備えた追記型光ディスクで特性を調べてみると、特性が非常に悪くなることが判明した。特に、この現象はレーザ受光面に近い記録層(L0層)で顕著であった。
この発明の課題の1つは、特に620nmより短い波長の光で記録を行った場合において、記録層が単層であるか多層であるかに係わらず良好な記録/再生が可能な有機色素材料を用いた情報記録媒体(追記型光ディスク)を提供することである。
この発明の一実施の形態に係る光ディスクは、変調されたレーザパワーにより、スペースを挟んで複数のマークの記録が行われる記録層(L0、L1等)を持つ。この光ディスクにおいて、記録された前記マークの領域内で前記記録層の物理的な変形あるいは変化(体積または断面積の変化)が実質的に生じない(例えば変形あるいは変化が10%以下)有機色素材料(図2〜図4等)を、前記記録層に用いる。
単層のみならず多層の追記型光ディスクにおいても、良好な記録再生を行うことが可能となる。
この発明の一実施の形態に係る多層光ディスクの構成例を説明する図。 記録層用有機材料の金属錯体部分の具体例を示す図。 記録層用有機材料の色素部分の一例を示す図。 記録層用有機材料の色素部分の他例を示す図。 現行DVD−Rディスクに用いられている有機色素記録材料の光吸収スペクトル特性の一例の説明図。 相変化記録膜と有機色素記録膜でのプリピット領域またはプリグルーブ領域10での記録膜の形成形状比較を示す図。 従来の有機色素材料を用いた追記形情報記憶媒体における記録マーク9位置での具体的な透明基板2−2の塑性変形状況を示す図。 “L→H”記録膜における未記録状態での光吸収スペクトル特性の説明図。 “L→H”記録膜における既記録状態と未記録状態での光吸収スペクトル特性変化を表す図。 書替え形情報記憶媒体上に記録される書替え可能データのデータ記録方法を示す図。 書替え形情報記憶媒体上に記録される書替え可能データのデータランダムシフト説明図。 追記形情報記憶媒体上に記録される追記形データの追記方法の説明図。 “H→L”記録膜と“L→H”記録膜の光反射率範囲を示す図。 POインターリーブ後のECCブロックの詳細構造を示す図。 記録位置管理データRMD内のデータ構造を示す図。 追記形情報記憶媒体におけるボーダー領域の構造を説明する図。 この発明の一実施の形態と現行DVD−Rとの比較を示す図。 情報再生装置もしくは情報記録再生装置における情報記憶媒体装着直後の処理手順を示すフローチャート図。 情報記録再生装置における追記形情報記憶媒体への情報の追記方法を説明するためのフローチャート図。 拡張可能な記録位置管理ゾーンRMZの設定方法の概念を示す図。 図20の詳細を示す図。 この発明の一実施の形態に係る光ディスクにおいて、記録されたマークの体積変化量(またはマークとその周囲との界面の状態変化)とエラーレートとの関係を説明する図。 この発明の一実施の形態に係る光ディスクにおいて、記録されたマーク間のスペースからの再生信号レベルの変化量とエラーレートとの関係を説明する図。 この発明の一実施の形態に係る光ディスクを用いた記録方法を説明するフローチャート図。 この発明の一実施の形態に係る光ディスクを用いた再生方法を説明するフローチャート図。 図1の光ディスクにおける物理セクタレイアウト例を説明する図。 図1の光ディスクにおけるリードイン領域の構成例を説明する図。 図27のコントロールデータゾーンの構成例を説明する図。 図28の構成例を説明する図。 図29の物理フォーマット情報の一例を説明する図。 図30の物理フォーマット情報内のデータ領域配置の一例を説明する図。 図29の物理フォーマット情報の一部(L0関連)の構成例を説明する図。 図29の物理フォーマット情報の他部(L1関連)の構成例を説明する図。 記録パルスの波形(ライトストラテジ)の例を説明する図。
上記した課題を解決するため種々検討したところ、単層のディスクに記録再生を行った際に得られる電気信号から若干のマーク歪みが観測される色素を用いたときに2層ディスクの特性が悪くなり、マーク歪みがほとんど観測されない色素を用いれば、2層ディスクとしたときにも良好な特性を得ることができることを見出した。
マーク歪みが生じる色素を用いると2層ディスクの特性が悪くなる原因は、2層にすると、L0層の反射膜106を半透過反射膜としなければならず、充分な放熱が得られないため、余計に歪みが大きくなるためと考えられる。
ここで、半透過反射膜を使用したときのマーク歪みは、記録の際のレーザ発光波形を変えても歪みがない状態にすることはできず、マーク部と接するスペース部の反射率も上がることから、記録マークの後部で色素体積や界面状態など物理的変化が生じることで発生すると考えられる。ディスク100の記録膜表面をSEMで観察すると、記録前より記録後のほうが表面が荒れており、記録により色素の体積変化が生じていると考えられる。
一方、マーク歪みがほとんどない色素を用いたディスク100の記録膜表面をSEMで観察すると、記録後の表面も荒れていなかった。
また、マーク歪みのない色素について、記録後のディスクから色素を抽出し、記録前のディスクから抽出した色素とHPLCで分析比較を行ったが、全く違いは見受けられなかった。また、NMR、IR、MSでの分析も行ったが、こちらも全く違いは見受けられず、化学的な変化により記録が行われているのではないことが判明した。
従って、課題を解決するには、記録層(L0および/またはL1)の材料に有機色素を用いた情報記録媒体(単層または多層の追記型光ディスク)において、情報を記録する際にはレーザのパワーを変調することによって行い、情報を記録したときに記録マーク領域内で記録層の変形がほとんど生じないような有機色素材料を選択すればよい。
具体的には、記録マーク領域における記録層の体積変化あるいは記録層界面状態の変化が10%以下に収まるような色素材料を用いることが好ましい。さらに、情報を記録したときに記録層が化学的変化を起こさない色素材料を用いることが好ましい。より具体的には、記録層として使用する有機色素のうち、少なくとも一部が中心金属に銅CuまたはニッケルNiを用いたアゾ金属錯体を含むことが好ましい。
また、記録マーク領域における記録層の体積変化あるいは記録層界面状態の変化がある状態では、長いマーク・スペースの繰り返しパターン(例えば11Tパターン)を記録したときに再生信号の歪みが生じやすい。従って、マーク長、スペース長共に1.2*λ/NA(λ:記録に用いるレーザ波長、NA:開口数)よりも長いパターンを記録したときの信号を再生したとき、スペース部の信号レベルの最大値と最小値の差([I11Lmax-I11Lmin])が最小値(I11min)の10%以下とするとより好ましい。
以下、図面を参照してこの発明の種々な実施の形態を説明する。図1は、この発明の一実施の形態に係る光ディスク(具体例として追記型の片面2層光ディスク)100の構成例を説明する図である。図1(a)(b)に例示されるように、この光ディスク100は、例えばポリカーボネート(PC)等の合成樹脂材料で円盤状に形成された透明樹脂基板101を備えている。この透明樹脂基板101には、同心円状またはらせん状に溝(グルーブ)が形成されている。この透明樹脂基板101は、スタンパを用いて射出成形により製造することができる。
ここで、ポリカーボネート等の0.59mm厚透明樹脂基板101上に第1層目(L0)の有機色素記録層105および光半透過反射層106を順に積層し、その上にフォトポリマー(2P樹脂)104をスピンコートする。そして、その上に第2層目(L1)の溝(グルーブ)形状を転写して第2層目の有機色素記録層107および銀または銀合金等の反射膜108を順に積層する。こうしてL0およびL1の記録層が積層されたものに、他の0.59mm厚の透明樹脂基板(あるいはダミー基板)102が、UV硬化樹脂(接着層)103を介して貼り合わされる。上記有機色素の記録膜(記録層105および107)は、半透過反射層106及び中間層104を挟む2層構造となっている。こうして出来上がった貼り合わせ光ディスクの合計厚は、ほぼ1.2mmとなる。
ここで、透明樹脂基板101上には、例えばトラックピッチ0.4μm、深さ60nmのらせん状グルーブが(L0とL1の各層に)形成されている。このグルーブはウォブルしており、アドレス情報はこのウォブル上に記録されている。そして、この透明樹脂基板101上に、そのグルーブを充填するように、有機色素を含む記録層105、107が形成される。
この記録層105、107を形成する有機色素としては、その最大吸収波長領域が記録波長(例えば405nm)よりも長波長側にシフトしているものを用いることができる。また、記録波長領域において吸収が消滅しているのではなく、その長波長領域(例えば450nm〜600nm)でも相当の光吸収を有するように設計される。
上記有機色素(具体例は後述)は、溶媒に溶かすことで液体とし、スピンコート法により透明樹脂基板面に容易に塗布することができる。この場合、溶媒による希釈率、スピン塗布時の回転数を制御することにより、膜厚を高精度に管理することができる。
なお、情報記録前のトラック上を記録用レーザ光によりフォーカシングまたはトラッキングした場合は、低光反射率である。その後、レーザ光により色素の分解反応が生じ、光吸収率が低下することにより、記録マーク部分の光反射率が上昇する。このため、レーザ光を照射して形成した記録マーク部分の光反射率が、レーザ光照射前の光反射率よりも高くなるという、いわゆるLow−to−High(またはL to H)の特性を実現している。
なお、記録レーザの照射で発生する熱により、透明樹脂基板101、特に(L0またはL1の)グルーブ底部に変形を伴なうこともある。この場合、記録後の再生時におけるレーザ反射光に(熱変形を伴わない場合と比較して)位相差が生じることもある。しかし、この発明の実施の形態により記録マークの変形を抑制または防止すれば、この位相差発生の問題を抑制または回避できる。
この発明の一実施の形態において、透明樹脂基板101およびフォトポリマー(2P樹脂)104上に存在するL0層およびL1層に適用される物理フォーマットとしては、例えば以下のものがある。すなわち、追記型片面2層ディスクの一般パラメータは1層ディスクの一般パラメータとほとんど同じであるが、以下の点で異なる。ユーザが使用可能な記録容量は30GBであり、データ領域の内半径がレイヤー0(L0層)では24.6mmであり、レイヤー1(L1層)では24.7mmであり、データ領域の外半径が58.1mm(レイヤー0、レイヤー1共通)である。
図1(a)の光ディスク100において、システムリードイン領域SLAは、図1(c)に例示されるようにコントロールデータセクションを含み、このコントロールデータセクションは、物理フォーマット情報等の一部として、記録パワー(ピークパワー)、バイアスパワー等の記録に関するパラメータを、L0およびL1それぞれに対して含んでいる。
また、光ディスク100のデータ領域DA内のトラックには、図1(d)に例示されるように、所定の記録パワー(ピークパワー)およびバイアスパワーを伴うレーザにより、マーク/スペース記録が行われる。このマーク/スペース記録により、図1(e)に例示されるように、例えば高精細TV放送番組等のオブジェクトデータ(VOB等)とその管理情報(VMG)が、データ領域DA内の(L0および/またはL1の)トラック上に記録される。
この発明の一実施の形態において使用できる有機色素としては、シアニン色素、スチリル色素、アゾ色素等がある。特に、シアニン色素、スチリル色素は、記録波長に対する吸収率の制御がしやすく好適である。また、アゾ色素は、アゾ化合物単体で用いても良いし、アゾ化合物1分子またはそれ以上の分子と金属との錯体としても良い。
この発明の一実施の形態において使用できるアゾ金属錯体は、その中心金属Mとして、コバルト、ニッケル、あるいは銅を使用して光安定性を高めている。しかし、それに限らず、スカンジウム、イットリウム、チタン、ジルコニウム、ハフニウム、バナジウム、ニオブ、タンタル、クロム、モリブデン、タングステン、マンガン、テクネチウム、レニウム、鉄、ルテニウム、オスミウム、ロジウム、イリジウム、パラジウム、白金、銀、金、亜鉛、カドミウム、水銀などを、アゾ金属錯体の中心金属Mとして使っても良い。
アゾ化合物は芳香環を持っており、その芳香環の構造はもちろんのこと、芳香環に様々な置換基を持たせることで、記録特性や保存特性、再生安定性などを最適化することが可能となる。この置換基は、嵩高いほど再生光耐久性が向上する傾向にあるが、記録時の感度も悪くなる傾向にあるため、どちらの特性も良好となるような置換基の選択が重要となる。また、この置換基は、溶剤への溶解度にも関与している。
これまで(記録レーザ波長が620nmより長いもの)の色素系情報記録媒体の記録メカニズムと異なり、本願発明が関係する短波長レーザ記録(記録波長が例えば405nm)ではその記録メカニズムが基板や色素膜体積の物理的変化でない。再生時、色素に記録時よりも弱いレーザを照射することによって、熱または光により記録層内の色素分子の配向変化、あるいは、色素分子内の立体配座の変化が徐々に生じてしまうが、色素分子内に嵩高い置換基が存在することにより、これらの変化を生じにくくする効果があると考えられる。これが、嵩高い置換基が再生光耐久性向上に寄与する理由である。
このときの嵩高い置換基とは、色素分子内芳香環に置換している炭素3つ以上からなる置換基を指し、例えば、n-プロピル基、イソプロピル基、n-ブチル基、1−メチルプロピル基、2−メチルプロピル基、n-ペンチル基、1−エチルプロピル基、1−メチルブチル基、2−メチルブチル基、3−メチルブチル基、1,1−ジメチルプロピル基、1,2−ジメチルプロピル基、2,2−ジメチルプロピル基、シクロペンチル基、n-ヘキシル基、1−メチルペンチル基、2−メチルペンチル基、3−メチルペンチル基、4−メチルペンチル基、1,1−ジメチルブチル基、1,2−ジメチルブチル基、1,3−ジメチルブチル基、2,2−ジメチルブチル基、2,3−ジメチルブチル基、3,3−ジメチルブチル基、1−エチルブチル基、2−エチルブチル基、シクロヘキシル基、フェニル基などがある。ここで、置換基の中には、酸素、硫黄、窒素、珪素、フッ素、臭素、塩素、ヨウ素など炭素以外の原子を含んでも良い。
図2は、記録層用有機材料の金属錯体部分の具体例を示す図である。図示するアゾ金属錯体の中心金属Mを中心とした円形の周辺領域が発色領域8となる。この発色領域8をレーザ光が通過すると、この発色領域8内の局在電子がレーザ光の電場変化に共鳴(共振)して、レーザ光のエネルギーを吸収する。この局在電子が最も共鳴(共振)してエネルギーを吸収し易い電場変化の周波数をレーザ光の波長に換算した値を最大吸収波長λmaxで表す。図示するような発色領域8(共鳴範囲)の長さが長くなる程、最大吸収波長λmaxが長波長側にシフトする。また、中心金属Mの原子を代える事で中心金属M周辺の局在電子の局在範囲(中心金属Mが局在電子をどれだけ中心付近に引き寄せられるか)が変化し、最大吸収波長λmaxの値が変化する。例えばλmaxが405nm付近になるものを選択すれば、波長405nmに感度(光吸収)を持つ有機材料が得られることになる。
波長405nmに光吸収を持つ記録層(例えばL0またはL1)用色素材料としては、図2に一般構造式を示した有機金属錯体部と図示しない色素材料部を組み合わせた構造を持つ有機色素材料を用いることができる。有機金属錯体の中心金属Mとしては、一般に、コバルトあるいはニッケル(その他スカンジウム、イットリウム、チタン、ジルコニウム、ハフニウム、バナジウム、ニオブ、タンタル、クロム、モリブデン、タングステン、マンガン、テクネチウム、レニウム、鉄、ルテニウム、オスミウム、ロジウム、イリジウム、パラジウム、白金、銅、銀、金、亜鉛、カドミウム、水銀など)を用いることができる。また、色素材料部分としては図示しないがシアニン色素、スチリル色素、モノメチンシアニン色素を用いることができる。
ここで、現行DVD−Rディスクで解釈されている記録原理について説明しておく。現行DVD−Rディスクでは記録膜にレーザ光7を照射すると、記録層3−2が局所的にレーザ光7のエネルギーを吸収して高熱になる。特定温度を越えると、透明基板2−2が局所的に変形する。透明基板2−2の変形を誘発するメカニズムはDVD−Rディスクの製造メーカーにより異なるが、
(1)記録層3−2の気化エネルギーによる局所的に透明基板2−2が塑性変形や
(2)記録層3−2から熱が透明基板2−2に伝わり、その熱により局所的に透明基板2−2が塑性変形
が原因と言われている。透明基板2−2が局所的に塑性変形すると、透明基板2−2を通過して光反射層4−2で反射し、再度透明基板2−2を通過して戻って来るレーザ光7の光学的距離が変化する。局所的に塑性変形した透明基板2−2の部分を通過して戻ってくる記録マーク内からのレーザ光7と、変形して無い透明基板2−2の部分を通過して戻ってくる記録マーク周辺部からのレーザ光7との間に位相差が生じるので、両者間の干渉により反射光の光量変化が生じる。また、特に、上記(1)のメカニズムが生じた場合には、記録層3−2の記録マーク内が気化(蒸発)により空洞化して生じる実質的な屈折率n32の変化、あるいは記録マーク内での有機色素記録材料の熱分解により生じる屈折率n32の変化も上記の位相差発生に寄与する。現行DVD−Rディスクでは、透明基板2−2が局所的に変形するまで記録層3−2が高温(上記(1)のメカニズムでは記録層3−2の気化温度、(2)のメカニズムでは透明基板2−2を塑性変形させるために必要な記録層3−2内温度)になる必要や、記録層3−2の一部を熱分解または気化(蒸発)させるために高温にする必要が有り、記録マークを形成させるためにはレーザ光7の大きなパワーが必要となる。
記録マークを形成するには第1段階として記録層3−2がレーザ光7のエネルギーを吸収できる必要が有る。記録層3−2内の光吸収スペクトルが有機色素記録膜の記録感度に大きく影響を及ぼす。記録層3−2を形成する有機色素記録材料内での光の吸収原理を本実施形態の(A3)を用いて説明する。
図2は上記した情報記憶媒体構成要素の具体的内容“(A3)アゾ金属錯体+Cu”の具体的な構造式を示している。図2に示したアゾ金属錯体の中心金属Mを中心とした円形の周辺領域が発色領域8となる。この発色領域8をレーザ光7が通過すると、この発色領域8内の局在電子がレーザ光7の電場変化に共鳴(共振)してレーザ光7のエネルギーを吸収する。この局在電子が最も共鳴(共振)してエネルギーを吸収し易い電場変化の周波数に対してレーザ光7の波長に換算した値を最大吸収波長と呼び、λmaxで表す。図2に示すような発色領域8(共鳴範囲)の長さが長くなる程、最大吸収波長λmaxが長波長側にシフトする。また、図2において中心金属Mの原子を代える事で中心金属M周辺の局在電子の局在範囲(中心金属Mが局在電子をどれだけ中心付近に引き寄せられるか)が変化し、最大吸収波長λmaxの値が変化する。
絶対零度でかつ純度が高く発色領域8が一箇所しか無い場合の有機色素記録材料の光吸収スペクトルは最大吸収波長λmax近傍で幅の狭い線スペクトルを描く事が予想されるが、常温で不純物を含み更に、複数の光吸収領域を含んだ一般的な有機色素記録材料の光吸収スペクトルは最大吸収波長λmaxを中心とした光の波長に対する幅の広い吸光特性を示している。現行DVD−Rディスクに用いられている有機色素記録材料の光吸収スペクトルの一例を図5に示す。図5において有機色素記録材料を塗布して形成した有機色素記録膜に対して照射する光の波長を横軸に取り、それぞれの波長の光を有機色素記録膜に照射した時の吸光度を縦軸に取ってある。吸光度とは追記形情報記憶媒体として完成した状態(あるいは透明基板2−2上に記録層3−2が形成されたのみの状態(光反射層が形成される前の状態)に対して透明基板2−2側から入射強度Ioのレーザ光を入射させ、反射したレーザ光強度Ir(記録層3−2側から透過したレーザ光の光強度It)を測定して得られる値で有る。吸光度Ar(At)は
Ar≡−log10(Ir/Io) (A−1)
At≡−log10(It/Io) (A−2)
で表される。今後特に断らない限り吸光度としては(A−1)式で表させる反射形の吸光度Arの事を示して説明を行うが、本実施形態においてはそれに限らず、(A−2)式で表させる透過形の吸光度Atとして考える事も出来る。図5に示した実施形態では発色領域8を含む光吸収領域が複数存在しているため、吸光度が極大になる位置が複数存在する。この場合には、吸光度が極大値を取る時の最大吸収波長λmaxが複数存在する。現行DVD−Rディスクにおける記録用レーザ光の波長は650nmになっている。本実施形態において最大吸収波長λmaxが複数存在した場合には、記録用レーザ光の波長に最も波長が近い最大吸収波長λmaxの値が重要になって来る。従って、本実施形態説明文中に限り、記録用レーザ光の波長に最も近い位置にある最大吸収波長λmaxの値を“λmax write”と定義し、他のλmax(λmax 0)と区別する。
2−2)プリピット/プリグルーブ領域内での光反射層形状の違い…光反射層形状(スピンコートとスパッタ蒸着の違い)、再生信号に及ぼす影響
プリピット領域またはプリグルーブ領域10での記録膜の形成形状比較を図6に示す。図6(a)は相変化記録膜に対する形状を示している。下地中間層5、記録層3−1、上側中間層6、光反射層4−1いずれの層を形成する場合にも真空中でスパッタ蒸着、真空蒸着またはイオンプレーティングのいずれかの方法を用いる。その結果、全ての層で透明基板2−1の凹凸形状を比較的忠実に複製する。例えば、透明基板2−1のプリピット領域またはプリグルーブ領域10での断面形状が矩形または台形になっていた場合には、記録層3−1と光反射層4−1の断面形状も概略矩形または台形となる。
図6(b)は有機色素記録膜を用いた場合の記録膜として従来技術である現行DVD−Rディスクの一般的記録膜断面形状を示す。この場合の記録膜3−2の形成方法としては図6(a)とは異なりスピンコーティング(またはスピナーコーディング)と言う全く異なる方法を用いる。スピンコーティングとは記録層3−2を形成する有機色素記録材料を有機溶剤に溶かして透明基板2−2上に塗布した後、透明基板2−2を高速で回転させて遠心力で塗布剤を透明基板2−2の外周側へ広げ、有機溶剤を気化させる事で記録層3−2を形成する方法である。この方法を用いると有機溶剤の塗布工程を用いるため、記録層3−2表面(光反射層2−2との界面)が平坦になり易い。その結果、光反射層2−2と記録層3−2との間の界面での断面形状は透明基板2−2の表面(透明基板2−2と記録層3−2との界面)形状とは異なった形状となる。例えば、透明基板2−2の表面(透明基板2−2と記録層3−2との界面)の断面形状が矩形または台形となっているプリグルーブ領域では光反射層2−2と記録層3−2との間の界面での断面形状は概略V字形の溝形状に、プリピット領域では概略円錐の側面形状になる。更に、スピンコーティング時に有機溶剤が凹部に溜まり易いため、プリピット領域またはプリグルーブ領域10内での記録層3−2の厚みDg(図6(b)に示すようにプリピット領域またはプリグルーブ領域10の底面から光反射層2−2との界面の最も低くなった位置までの距離)がランド領域12内での厚みDlよりも大幅に厚く(Dg>Dlと)なる。その結果、プリピット領域またはプリグルーブ領域10での透明基板2−2と記録層3−2との界面の凹凸量が透明基板2−2と記録層3−2との界面での凹凸量より大幅に少なくなっている。
このように光反射層2−2と記録層3−2との間の界面での凹凸形状が鈍るとともに凹凸量も大幅に小さくなるため、記録膜形成方法の違いにより透明基板2表面(プリピット領域またはプリグルーブ領域10)の凹凸形状と寸法が同じ場合には、レーザ光を照射した時の有機色素記録膜からの反射光の回折強度が相変化記録膜からの反射光の回折強度より大幅に劣化する。その結果、透明基板2表面(プリピット領域またはプリグルーブ領域10)の凹凸形状と寸法が同じ場合には、従来の有機色素記録膜を用いた場合には相変化記録膜を用いた場合に比べて
(1)プリピット領域からの光再生信号の変調度が小さく、プリピット領域からの信号再生信頼性が悪い
(2)プリグルーブ領域からのプッシュプル法による充分大きなトラックずれ検出信号が得辛い
(3)プリグルーブ領域がウォブリング(蛇行)した場合の充分に大きなウォブル検出信号が得辛い
と言う特徴が有る。
また、DVD−Rディスクではアドレス情報等の特定情報がランド領域12に微少な凹凸(ピット)形状で記録されているため、プリピット領域またはプリグルーブ領域10の幅Wgよりもランド領域12の幅Wlが広く(Wg>Wl)なっている。
第3章 本実施形態における有機色素記録膜の特徴説明
3−1)従来の有機色素材料を用いた追記記録膜(DVD−R)での高密度化に対する問題点
“2−1)記録原理/記録膜構造の違いと再生信号生成に関する基本的な考え方の違い”で既に説明したように、従来の有機色素材料を用いた追記形情報記憶媒体である現行のDVD−RとCD−Rの一般的な記録原理は“透明基板2−2の局所的な塑性変形”あるいは“記録層3−2内の局所的な熱分解や気化”を伴っている。従来の有機色素材料を用いた追記形情報記憶媒体における記録マーク9位置での具体的な透明基板2−2の塑性変形状況を図7に示す。代表的な塑性変形状況は2種類存在し、図7(a)に示すように記録マーク9位置でのプリグルーブ領域の底面14の深さ(隣接するランド領域12との間の段差量)が未記録領域でのプリグルーブ領域11の底面の深さと異なる場合(図7(a)に示した例では記録マーク9位置でのプリグルーブ領域の底面14の深さが未記録領域よりも浅くなっている)と、図7(b)に示すように記録マーク9位置でのプリグルーブ領域の底面14が歪み微少に湾曲する(底面14の平坦性が崩れる:図7(b)に示した例では記録マーク9位置でのプリグルーブ領域の底面14が下側に向かって微少に湾曲している)場合が有る。いずれの場合でも記録マーク9位置での透明基板2−2の塑性変形範囲が広い領域に及ぶ特徴が有る。従来技術である現行のDVD−Rディスクではトラックピッチが0.74μm、チャネルビット長が0.133μmとなっている。この程度の大きな値の場合には記録マーク9位置での透明基板2−2の塑性変形範囲が広い領域に及んでも比較的安定な記録処理と再生処理が行える。
しかし。トラックピッチを上記の0.74μmより狭くしていくと、記録マーク9位置での透明基板2−2の塑性変形範囲が広い領域に及ぶために隣接トラックへの悪影響が現れ、隣接トラックまで記録マーク9が広がる“クロスライト”や多重書きにより既に存在している隣接トラックの記録マーク9を実質的に消してしまう(再生不能にする)“クロスイレーズ”の現象が発生する。また、トラックに沿った方向(円周方向)においてチャネルビット長を0.133μmより狭くすると、符号間干渉が現れ、再生時のエラーレイトが大幅に増加して再生の信頼性が低下するという問題が発生する。
3−2)本実施形態における有機色素記録膜に共通する基本的特徴説明
3−2−A〕本実施形態の技術の適用を必要とする範囲
図7に示すように透明基板2−2の塑性変形あるいは記録層3−2内の局所的な熱分解や気化現象を伴う従来の追記形情報記憶媒体(CD−RやDVD−R)においてどの程度トラックピッチを詰めると悪影響が現れるか、あるいはどの程度チャネルビット長を詰めると悪影響が現れるか、及びその理由について技術的な検討を行った結果を以下に説明する。従来の記録原理を利用した場合に悪影響が出始める範囲が本実施形態に示す新規の記録原理により効果を発揮する(高密度化に適した)範囲を示している。
(1)記録層3−2の厚みDgの条件
許容チャネルビット長の下限値や許容トラックピッチの下限値を理論的に割り出すために熱解析を行おうとすると、実質的に可能な記録層3−2の厚みDgの範囲が重要となる。図7に示すような透明基板2−2の塑性変形を伴う従来の追記形情報記憶媒体(CD−RやDVD−R)において、情報再生用集光スポットが記録マーク9内に有る場合と、記録層3−2の未記録領域内に有る場合の光反射量の変化は“記録マーク9内と未記録領域内での光学的距離の違いによる干渉効果”の要因が最も大きい。また、その光学的距離の違いは主に“透明基板2−2の塑性変形による物理的な記録層3−2の厚みDg(透明基板2−2と記録層3−2の界面から記録層3−2と光反射層4−2の界面までの物理的な距離)の変化”と、“記録マーク9内での記録層3−2の屈折率n32の変化”が起因している。従って、記録マーク9内と未記録領域内との間で充分な再生信号(光反射量の変化)を得るためには、レーザ光の真空中の波長をλとした時、未記録領域での記録層3−2の厚みDgの値がλ/n32と比較して有る程度の大きさを持っている必要が有る。そうで無いと、記録マーク9内と未記録領域内との間での光学的距離の差(位相差)が現れず、光の干渉効果が薄くなる。実際には最低でも
Dg≧λ/8n32 (1)
望ましくは
Dg≧λ/4n32 (2)
の条件が必要となる。
取りあえず、現在の検討の時点ではλ=405nm近傍を仮定する。405nmにおける有機色素記録材料の屈折率n32の値は一般的に1.3〜2.0の範囲に有る。従って、記録層3−2の厚みDgの値としては(1)式にn32=2.0を代入する結果、
Dg≧25nm (3)
が必須の条件となる。なお、ここでは透明基板2−2の塑性変形を伴う従来の追記形情報記憶媒体(CD−RやDVD−R)の有機色素記録層を405nmの光に対応させた時の条件について検討を行っている。後述するように本実施形態では透明基板2−2の塑性変形を起こさず、吸収係数k32の変化を記録原理の主要因として説明するが、記録マーク9からDPD(Differential Phase Detection)法を用いてトラックずれ検出をする必要が有るので、実際には記録マーク9内で屈折率n32の変化を起こしている。従って、(3)式の条件は透明基板2−2の塑性変形を起こさない本実施形態に於いても満たすべき条件となっている。
別の観点からも記録層3−2の厚みDgの範囲を指定できる。図6(a)に示した相変化記録膜の場合には透明基板の屈折率をn21とした時、プッシュプル法を用いて最もトラックずれ検出信号が大きく出る時のプリピット領域とランド領域間の段差量はλ/(8n21)となる。しかし、図6(b)に示した有機色素記録膜の場合には前述したように、記録層3−2と光反射層4−2の界面での形状が鈍り段差量も小さくなるので、透明基板2−2上でのプリピット領域とランド領域間の段差量はλ/(8n22)より大きくする必要が有る。透明基板2−2の材質として例えば、ポリカーボネートを用いた場合の405nmでの屈折率はn22≒1.62なので、プリピット領域とランド領域間の段差量は31nmより大きくする必要が有る。スピンコーティング法を用いる場合、プリグルーブ領域内の記録層3−2の厚みDgを透明基板2−2上でのプリピット領域とランド領域間の段差量より大きくしないとランド領域12での記録層3−2の厚みDlが無くなる危険性が有る。したがって上記の検討結果から
Dg≧31nm (4)
と言う条件も満足する必要が有る。(4)式の条件も透明基板2−2の塑性変形を起こさない本実施形態に於いても満たすべき条件となっている。(3)式、(4)式で下限値の条件を示したが、熱解析に用いた記録層3−2の厚みDgとしては(2)式の等号部にn32=1.8を代入して得た値Dg≒60nmを利用した。
そして、透明基板2−2の材料として標準的に用いられているポリカーボネートを仮定し、透明基板2−2側の熱変形温度の見積もり値としてポリカーボネートのカラス転移温度である150℃を設定した。熱解析を用いた検討には405nmにおける有機色素記録膜3−2の吸収係数の値としてk32=0.1〜0.2の値を想定した。さらに、集光用対物レンズのNA値及び対物レンズ通過時の入射光強度分布を従来のDVD−Rフォーマットでの前提条件であるNA=0.60及びHフォーマット(NA=0.65)の場合を検討した。
(2)チャネルビット長の下限値条件
記録パワーを変化させた時の記録層3−2に接する透明基板2−2側の熱変形温度に達する領域のトラックに沿った方向での長さ変化を調べ、再生時のウィンドマージンも考慮した許容チャネルビット長さの下限値を検討した。その結果、チャネルビット長を105nmより小さくするとわずかな記録パワーの変化に応じて透明基板2−2側の熱変形温度に達する領域のトラックに沿った方向での長さ変化が発生して充分なウィンドマージンが取れないと考えられる。熱解析の検討上ではNAの値として0.60、0.65、0.85いずれの場合も類似した傾向を示している。NA値を変える事で集光スポットサイズは変化するが、熱の広がり範囲が広い(記録層3−2に接する透明基板2−2側の温度分布の勾配が比較的なだらか)のが原因と考えられる。上記熱解析では記録層3−2に接する透明基板2−2側の温度分布を検討しているため、記録層3−2の厚みDgの影響は現れない。
更に、図7に示す透明基板2−2の形状変化が生じた場合には基板変形領域の境界位置がぼやけている(曖昧)ため、より一層ウィンドマージンを低下させている。記録マーク9が形成されている領域の断面形状を電子顕微鏡で観察すると、基板変形領域の境界位置のぼけ量は記録層3−2の厚みDgの値が大きくなるほど広がると考えれる。上記記録パワー変化による熱変形領域長さの影響にこの基板変形領域の境界位置のぼけを考慮すると、充分なウィンドマージンが確保できるための許容されるチャネルビット長の下限値は記録層3−2の厚みDgの2倍程度が必要と考えられ、120nmより大きい事が望ましい。
上記では透明基板2−2の熱変形が生じる場合の熱解析による検討に付いて主に説明した。従来の追記形情報記憶媒体(CD−RやDVD−R)での他の記録原理(記録マーク9の形成メカニズム)として透明基板2−2の塑性変形が非常にわずかで記録層3−2内での有機色素記録材料の熱分解や気化(蒸発)が中心の場合も存在するので、その場合についても付加説明する。有機色素記録材料の気化(蒸発)温度は有機色素材料により異なるが、一般的には220℃〜370℃の範囲内に有り、熱分解温度はそれより低い。上記検討では基板変形時の到達温度としてポリカーボネート樹脂のガラス転移温度150℃を前提としていたが、150℃と220℃との間の温度差は小さく、透明基板2−2が150℃に到達する時には記録層3−2内部では220℃を越えている。従って、有機色素記録材料による例外は有るが、透明基板2−2の塑性変形が非常にわずかで記録層3−2内での有機色素記録材料の熱分解や気化(蒸発)が中心の場合でも上記検討結果とほぼ同じ結果が得られている。
上記チャネルビット長に関する検討結果をまとめると透明基板2−2の塑性変形を伴う従来の追記形情報記憶媒体(CD−RやDVD−R)ではチャネルビット長を120nmより狭くして行くとウィンドマージンの低下が発生し、更に、105nmより小さいと安定な再生が難しくなると考えられる。すなわち、チャネルビットが120nm(105nm)より小さくなる時には本実施形態に示す新規記録原理を用いる事の効果が発揮される。
(3)トラックピッチの下限値条件
記録パワーで記録層3−2を露光すると、記録層3−2内でエネルギーを吸収して高温になる。従来の追記形情報記憶媒体(CD−RやDVD−R)では透明基板2−2側が熱変形温度に達するまで記録層3−2内でエネルギーを吸収させる必要が有る。記録層3−2内で有機色素記録材料の構造変化が起こり屈折率n32や吸収係数k32の値が変化を開始する温度は透明基板2−2が熱変形を開始するための到達温度より遙かに低い。従って、透明基板2−2側が熱変形している記録マーク9の周辺の記録層3−2内の比較的広い領域で屈折率n32や吸収係数k32の値が変化し、これが隣接トラックへの“クロスライト”や“クロスイレーズ”の原因と思われる。透明基板2−2側が熱変形温度を超えた時の記録層3−2内での屈折率n32や吸収係数k32を変化させる温度に到達する領域の広さで“クロスライト”や“クロスイレーズ”を起こさないトラックピッチの下限値を設定できる。上記の視点からトラックピッチが500nm以下の所で“クロスライト”や“クロスイレーズ”が生じる考えられる。更に、情報記憶媒体の反りや傾きの影響や記録パワーの変化(記録パワーマージン)も考慮すると、透明基板2−2側が熱変形温度に達するまで記録層3−2内でエネルギーを吸収させる従来の追記形情報記憶媒体(CD−RやDVD−R)ではトラックピッチを600nm以下にするのは難しいと結論できる。上述したようにNA値を0.60、0.65、0.85と変化させても、中心部で透明基板2−2側が熱変形温度に達した時の周囲の記録層3−2内での温度分布の勾配が比較的なだらかで熱の広がり範囲が広いためほぼ同様の傾向を示している。従来の追記形情報記憶媒体(CD−RやDVD−R)での他の記録原理(記録マーク9の形成メカニズム)として透明基板2−2の塑性変形が非常にわずかで記録層3−2内での有機色素記録材料の熱分解や気化(蒸発)が中心の場合でも、既に“(2)チャネルビット長の下限値条件”の所で説明したように“クロスライト”や“クロスイレーズ”が始まるトラックピッチの値はほぼ類似した結果が得られる。以上の理由からトラックピッチを600nm(500nm)以下にする時に本実施形態に示す新規記録原理を用いる事の効果が発揮される。
3−2−B〕本実施形態における有機色素記録材料に共通する基本的特徴
上述したように従来の追記形情報記憶媒体(CD−RやDVD−R)での記録原理(記録マーク9の形成メカニズム)として透明基板2−2の塑性変形を伴う場合や記録層3−2内で局所的に熱分解や気化(蒸発)が発生する場合には、記録マーク9の形成時に記録層3−2内部や透明基板2−2表面が高温に達するためにチャネルビット長やトラックピッチを狭くできないと言う問題が発生する。上記問題の解決策として本実施形態では基板変形や記録層3−2内での気化(蒸発)を起こす事無く
『比較的低温で発生する記録層3−2内での局所的な光学特性変化を記録原理とする』
“有機色素材料の発明”と上記記録原理が生じ易い“環境(記録膜構造や形状)の設定”を行った所に大きな特徴が有る。本実施形態の具体的な特徴として以下の内容を上げることができる。
α〕記録層3−2内部の光学特性変化方法として
・発色特性変化
… 発色領域8(図2)の質的変化による光吸収断面積の変化やモル分子吸光係数の変化
発色領域8が部分的に破壊されたり、発色領域8のサイズが変わる事により実質的な光吸収断面積が変化する事で光吸収スペクトル(図5)プロファイル(特性)自体は保存されたままλmax write位置での振幅(吸光度)が記録マーク9内で変化する
・発色現象に寄与する電子に対する電子構造(電子軌道)の変化
… 局所的な電子軌道の切断(局所的な分子結合の解離)による脱色作用や発色領域8(図2)の寸法や構造の変化に基付く光吸収スペクトル(図5)変化
・分子内(または分子間)の配向や配列の変化
… 例えば、図2に示したアゾ金属錯体内部の配向変化に基付く光学特性変化
・分子内部での分子構造変化
… 例えば、アニオン部とカチオン部との間の結合解離や、アニオン部またはカチオン部のどちらか一方の熱分解、あるいは分子構造自体が破壊され、炭素原子が析出するタール化(黒色のコールタールに変質する)のいずれかを起こす有機色素材料を考案する。その結果、記録マーク9内の屈折率n32や吸収係数k32を未記録領域に対して変化させて光学的再生を可能にする。
β〕上記〔α〕の光学特性変化を安定に起こし易い記録膜構造や形状の設定を行う
… この技術に関する具体的内容については“3−2−C〕本実施形態に示した記録原理を発生させ易い理想的な記録膜構造”以降で詳細に説明する。
γ〕記録層内や透明基板表面が比較的低温の状態で記録マークを形成させるために記録パワーを下げる
… 上記〔α〕で示す光学特性変化は透明基板2−2の変形温度や記録層3−2内での気化(蒸発)温度より低い温度で生じる。そのため、記録時の露光量(記録パワー)を低くして透明基板2−2表面で変形温度を越えたり記録層3−2内で気化(蒸発)温度を越えるのを防止する。この内容については“3−3)本実施形態における有機色素記録膜に共通する記録特性”で詳細に後述する。また、逆に記録時の最適パワーの値を調べる事で上記〔α〕で示す光学特性変化が起きているかの判定も可能となる。
δ〕発色領域での電子構造を安定化させ、紫外線や再生光照射に対する構造分解が生じ辛くする
… 記録層3−2に対して紫外線を照射したり、再生時に再生光を記録層3−2に照射すると記録層3−2内の温度上昇が起きる。その温度上昇に対する特性劣化を防止すると共に、基板変形温度や記録層3−2内での気化(蒸発)温度より低い温度で記録すると言う温度特性上は一見矛盾する性能が要求される。本実施形態では“発色領域での電子構造を安定化”させる事で上記の一見矛盾する性能を確保する。この具体的技術内容については“第4章 本実施形態における有機色素記録膜の具体的実施形態説明”の所で説明を行う。
ε〕紫外線や再生光照射による再生信号劣化が万一発生した場合に備えて再生情報の信頼性を向上させる
… 本実施形態では“発色領域での電子構造を安定化”させるための技術的工夫を行っているが、透明基板2−2表面の塑性変形や気化(蒸発)により生じた記録層3−2内の局所的な空洞から比べると本実施形態に示した記録原理で形成される記録マーク9の信頼性は原理的に低下すると言わざるを得ない。その対策として本実施形態では“第7章 Hフォーマットの説明”と“第8章 Bフォーマットの説明”で後述するように強力なエラー訂正能力(新規なECCブロック構造)との組み合わせにより高密度化と記録情報の信頼性確保を同時に達成する効果を発揮する。更に、本実施形態では“4−2)本実施形態での再生回路の説明”で説明するように再生方法としてPRML(Pertial Response Maximum Likelyhood)法を採用し、ML復調時のエラー訂正技術と組み合わせる事でより一層の高密度化と記録情報の信頼性確保を同時に達成している。
5−2)本実施形態の“L→H”記録膜に関する光吸収スペクトルの特徴…最大吸収波長λmax writeの値、Al405の値とAh405の値の設定条件
“3−4)本実施形態における“H→L”記録膜に関する特徴説明”で説明したように“H→L”記録膜では未記録領域での相対的な吸光度が基本的に低いため、再生時に再生光を照射された時にその再生光のエネルギーを吸収して生じる光学特性変化が起こりにくい。仮に吸光度が高い記録マーク内で再生光のエネルギーを吸収して光学特性変化(記録作用の更新)が生じたとしても記録マーク内からの光反射率が下がる一方なので、再生信号の振幅(I11≡I11H−I11L)が増加する方向に働き、再生信号処理への悪影響は少ない。
それに比べて、“L→H”記録膜は“未記録部の光反射率が記録マーク内より低い”と言う光学的特性を持つ。この事は、記録マーク内より未記録部の吸光度が高い事を意味している。そのため、“L→H”記録膜は“H→L”記録膜に比べると再生時の信号劣化が起こり易い。“3−2−B〕本実施形態における有機色素記録材料に共通する基本的特徴”内で説明したように、“ε〕紫外線や再生光照射による再生信号劣化が万一発生した場合に備えて再生情報の信頼性を向上させる”必要が有る。
有機色素記録材料の特性を詳細に調べた結果、再生光のエネルギーを吸収して光学特性変化を起こすメカニズムと紫外線照射による光学特性変化のメカニズムがほぼ類似している事が分かった。その結果、未記録領域での紫外線照射に対する耐久性を向上させる構造を持たせると再生時の信号劣化が起き辛くなる。そのため、“L→H”記録膜ではλmax write(記録光の波長に最も近い極大吸収波長)の値を記録光または再生光の波長(405nm近傍)よりも長くした所に本実施形態の大きな特徴がある。これにより紫外線に対する吸収率を低くでき、紫外線照射に対する耐久性を大幅に向上できる。図9から分かるように、λmax write近傍での既記録部と未記録部間での吸光度の違いが小さく、λmax write近傍の波長光で再生した場合の再生信号変調度(信号振幅)が小さくなる。半導体レーザ光源の波長変動も視野に入れると、355nm〜455nmの範囲では充分に大きな再生信号変調度(信号振幅)を取れる事が望ましい。従って、本実施形態においてλmax writeの波長は355nm〜455nmの範囲外(すなわち、455nmよりも長波長側)に存在するように記録膜3−2の設計を行っている。
本実施形態での“L→H”記録膜における光吸収スペクトルの一例を図8に示す。“5−1)本実施形態における“L→H”記録膜に関する特徴説明”で説明したように、仮に本実施形態において“L→H”記録膜の非記録部(“L”部)の光反射率の下限値βを18%、上限値γを32%に設定してみると、1−0.32=0.68より上記条件を満足するためには405nmにおける未記録領域での吸光度の値Al405として
Al405≧68% (36)
を満足すべきなのが直感的に理解できる。光反射層4−2の405nmにおける光反射率は100%より若干低下するが、説明の簡略化のためほぼ100%に近いと仮定する。従って、吸光度Al=0の時の光反射率はほぼ100%になる。図8においてλmax writeの波長での記録膜全体としての光反射率をRλmax writeで表す。この時の光反射率がゼロ(Rλmax write≒0)と仮定して(36)式を導いているが、実際には“0”とはならないので、より厳密な式を導く必要が有る。“L→H”記録膜の非記録部(“L”部)の光反射率の上限値γを32%に設定する厳密な条件式は
1−Al405×(1−Rλmax write)≦0.32 (37)
で与えられる。従来の追記形情報記憶媒体は全て“H→L”記録膜を使用しており、“L→H”記録膜に関する情報の蓄積が無いが、“5−3)アニオン部:アゾ金属錯体+カチオン部:色素”で後述する本実施形態を使用した場合には(37)式を満たす最も厳しい条件として
Al405≧80% (38)
となる。上記実施形態で後述する有機色素記録材料を使用した場合には、製造時の特性ばらつきや記録層3−2の厚み変化などのマージンも含めて記録膜の光学設計を行うと“5−1)本実施形態における“L→H”記録膜に関する特徴説明”で説明した反射率を満足する最低限の条件としては
Al405≧40% (39)
を満足すれば良い事が分かった。さらに
Al355≧40% (40)
Al455≧40% (41)
のいずれかを満足する事で355nmから405nmの範囲あるいは405nmから455nmの範囲(両方の式が同時に満足する場合には355nmから455nmの範囲)で光源の波長が変化しても安定な記録特性または再生特性を確保できる。
本実施形態の“L→H”記録膜における記録後の光吸収スペクトル変化状況を図9に示す。記録マーク内での最大吸収波長λlmaxの値がλmax writeの波長からずれており、分子間の配列変化(例えば、アゾ金属錯体同士の配列変化)が生じていると考えられる。更に、λlmaxの所での吸光度と405nmでの吸光度Al405のいずれもが低下していると共に光吸収スペクトルの広がり自体が広がっている所から平行して脱色作用(局所的な電子軌道の切断(局所的な分子結合の解離))が起きていると考えられる。
本実施形態の“L→H”記録膜においても(20)、(21)、(22)、(23)の各式を満足させる事で“L→H”記録膜と“H→L”記録膜どちらに対しても同一の信号処理回路を使えるようにして信号処理回路の簡素化と低価格化を図っている。(20)式において
11/I11H≡(I11H−I11L)/I11H≧0.4 (42)
を変形すると
11H≧/I11L/0.6 (43)
となる。既に説明したように本実施形態において“L→H”記録膜の未記録部(“L”部)の光反射率の下限値βを18%に設定しており、この値がI11Lに対応する。更に、概念的に
11H≒1−Ah405×(1−Rλmax write) (44)
と対応するので、(43)式と(44)式から
1−Ah405×(1−Rλmax write)≧0.18/0.6 (45)
となる。1−Rλmax write≒0の時は(45)式は
Ah405≦0.7 (46)
で得られる。上記(46)式と(36)式を比較すると吸光度の値として68%〜70%近傍を境にAl405とAh405の値を設定すれば良さそうな事が分かる。更に、Al405の値として(39)式の範囲になる場合と、信号処理回路の性能安定性を考えると、厳しい条件として
Ah405≦0.4 (47)
がある。なお、可能で有れば
Ah405≦0.3 (48)
を満足する事が望ましい。
この発明の一実施の形態に係る追記型2層光ディスク100の評価ディスクは、次のようにして作製できる。すなわち、透明樹脂基板101上に、有機色素の1.2wt%TFP溶液をスピンコートにより塗布してL0記録層105を形成する。塗布後の色素のグルーブ底からの厚みは60nmとする。この色素塗布基板にAg合金の反射膜106をスパッタリングにより25nm積層し、2P(photo polymer)樹脂の中間層104を25μmの厚さにスピンコートする。ここで、別に作製したポリカーボネートスタンパを貼り合わせて溝形状を転写させてからスタンパを剥がす。このようにして形成された2P樹脂の中間層104上に有機色素の1.2wt%TFP溶液をスピンコートにより塗布してL1記録層107を形成する。その上に、Ag合金の反射膜108をスパッタリングにより100nm積層する。その上に、UV硬化樹脂103を用いて0.59mm厚の透明樹脂基板102を貼り合わせる。
以上のようにして作製した情報記録媒体(片面2層Rの評価ディスク)を用いて再生信号の評価実験を行った。評価に用いた装置は、パルステック社製の光ディスク評価装置ODU−1000であり、この装置のレーザの波長は405nm、NAは0.65である。記録及び再生時の線速度は6.61m/sとした。記録信号は8−12変調されたランダムデータであり、図34に示すような、一定の記録パワー(ピークパワー)と2種類のバイアスパワー1,2を含むレーザ波形を用いて情報の記録を行った。その際の記録条件を、以下に述べる。
・記録条件(ライトストラテジ:Write Strategyの情報)の説明
最適な記録パワーを調べる時に使用する記録波形(記録時の露光条件)について図34を用いて説明する。記録時の露光レベルとして記録パワー(ピークパワー:Peak power)、バイアスパワー1(Bias power 1)、バイアスパワー2(Bias power 2)、バイアスパワー3(Bias power 3)の4レベルを持ち、長さの長い(4T以上の)記録マーク9形成時には記録パワー(ピークパワー:Peak power)とバイアスパワー3(Bias power 3)の間でマルチパルスの形で変調される。この実施の形態では“Hフォーマット”、“Bフォーマット”いずれの方式もチャネルビット長Tに対する最小マーク長は2Tとなっている。この2Tの最小マークを記録する場合には、図34に示すように、バイアスパワー1(Bias power 1)の後で記録パワー(ピークパワー:Peak power)レベルの1個のライトパルスを使用し、ライトパルスの直後は一度バイアスパワー2(Bias power 2)になる。3Tの長さの記録マーク9を記録する場合には、バイアスパワー1(Bias power 1)の後に来る記録パワー(ピークパワー:Peak power)レベルのファーストパルスとラストパルスの2個のライトパルスを露光した後、一旦バイアスパワー2(Bias power 2)になる。4T以上の長さの記録マーク9を記録する場合には、マルチパルスとラストパルスで露光した後、バイアスパワー2(Bias power 2)になる。
図34における縦の破線はチャネルクロック周期(T)を示す。2Tの最小マークを記録する場合にはクロックエッジからTSFP遅れた位置から立ち上がり、その1クロック後のエッジからTELP後ろの位置で立ち下がる。その直後のバイアスパワー2(Bias power 2)になる期間をTLCと定義する。TSFPとTELP及びTLCの値は、Hフォーマットの場合には制御データゾーンCDZ内の物理フォーマット情報PFI内に記録されている。
3T以上の長い記録マーク形成時の場合には、クロックエッジからTSFP遅れた位置から立ち上がり、最後にラストパルスで終わる。ラストパルスの直後はTLCの期間バイアスパワー2(Bias power 2)になるが、ラストパルスの立ち上がり/立ち下がりタイミングのクロックエッジからのずれ時間をTSLP,TELPで定義する。また、先頭パルスの立ち下がりタイミングのクロックエッジから測った時間をTEFPで、さらに1個のマルチパルスの間隔をTMPで定義する。
ELP−TSFP、TMP、TELP−TSLP、TLCの各間隔は、最大値に対する半値幅で定義する。また、この実施の形態では、上記パラメーターの設定範囲を
0.25T≦TSFP≦1.50T (eq.01)
0.00T≦TELP≦1.00T (eq.02)
1.00T≦TEFP≦1.75T (eq.03)
−0.10T≦TSLP≦1.00T (eq.04)
0.00T≦TLC ≦1.00T (eq.05)
0.15T≦TMP ≦0.75T (eq.06)
とする。
さらに、この実施の形態では、記録マークの長さ(Mark length)とその直前/直後のスペース長(Leading/Trailing space length)に応じて、上記各パラメーターの値を変化できるようにしている。
この実施の形態に示した記録原理で記録される追記形情報記録媒体の最適な記録パワーを調べた時の各パラメーターは、バイアスパワー1(Bias power 1)、バイアスパワー2(Bias power 2)、バイアスパワー3(Bias power 3)の値はそれぞれ2.6mW、1.7mW、1.7mWであり、再生パワーは0.4mWである。
以上のようにして割り出した各パラメーターの値等に基づき、「ドライブテストゾーンにおいて試し書きを行った装置(ドライブ)でその記憶媒体に対して最適な記録条件(ライトストラテジ:Write Strategyの情報)」を定めることができる。
また、記録信号のデータとしては、上記の他に11Tマーク11Tスペースの繰り返しパターンも用いた。以下の実施例で用いた透明樹脂基板101およびフォトポリマー樹脂104上の記録層(L0、L1)に存在する物理フォーマットは、図26〜図34を参照して説明した通りである。
<実施例1>
色素として、図4の化学式で示されるものを用いた光ディスク100を作製し、ランダムデータの情報記録を行った。L0層のエラーレートSbERを測定すると、5.4e-6と、(実用レベルよりは高いハードルの)目標値である5.0e-5より充分小さく良好な値を得ることができた。また、11Tマーク11Tスペースの繰り返しパターンを記録し、再生したところ波形の歪みはほとんど観測されず、(11Tスペースを再生したときの)スペースレベルであるI11Lの最大値と最小値の差([I11Lmax-I11Lmin]/I11min)は2%であった。ここで、11Tのマーク長は1.12μmであり、1.2*Na/λは0.74μmとなっており、充分長いマークとなっていた。この色素について、記録前・記録後のIR、MS、NMRそれぞれの分析を行ったが、違いは見られなかった。
<比較例>
色素として、図3の化学式で示されるものを用いた情報記録媒体を作製し、情報記録を行った。L0層のエラーレートSbERを測定すると、6.3e-4と、目標値である5.0e-5より大きく、ドライブでの情報の読み取りが困難となり得る値であった。このとき、11Tマーク11Tスペースの繰り返しパターンを記録し、再生したところ波形歪みが大きく、スペースレベルであるI11Lの最大値と最小値の差([I11Lmax-I11Lmin]/I11min)は14%であった。
以上の結果と図23の「スペースからの再生信号レベルの変化量とエラーレートとの関係」から、I11Lの最大値と最小値の差([I11Lmax-I11Lmin]/I11min)が10%以下になるような色素材料の選択を、この発明を実施するに当たっての指標とすることができる。
<実施例2>
図10は、書替え形情報記憶媒体上に記録される書替え可能データのデータ記録方法を示す図である。図10に示すように、本実施形態では1ECCブロックデータ412の前後にガード領域442、443の一部を付加して1個のデータセグメント490を構成し、1個以上(n個)のデータセグメントに拡張ガードフィールド258、259を付加して追記もしくは書き換え単位のレコーディングクラスタ540、542を構成する。記録位置管理データRMDを記録する場合には1個のデータセグメント(1個のECCブロック)のみを含むレコーディングクラスタ540、542として記録位置管理ゾーンRMZ内に順次追記する。図示しないが、1個のデータセグメント531を記録する場所の長さは7個の物理セグメント550〜556から構成される1個の物理セグメントブロックの長さに一致している。
図11は、書替え形情報記憶媒体上に記録される書替え可能データのデータランダムシフト説明図である。図11に示すように物理セグメントの先頭位置から24ウォブル以降に次のVFO領域522と拡張ガードフィールド528の重なり部分が来る。図示しないが、物理セグメント550の先頭から16ウォブルまではウォブルシンク領域580となるが、それ以降68ウォブル分は無変調領域590内になる。したがって、24ウォブル以降の次のVFO領域522と拡張ガードフィールド528が重なる部分は無変調領域590内となる。このように物理セグメントの先頭位置24ウォブル以降にデータセグメントの先頭位置が来るようにすることにより、重複箇所が無変調領域590内になるだけでなくウォブルシンク領域580の検出時間と記録処理の準備時間が相応に取れるので、安定でかつ精度の良い記録処理を保証できる。
本実施形態における書替え形情報記憶媒体の記録膜は相変化形記録膜を用いている。相変化形記録膜では書き替え開始/終了位置近傍で記録膜の劣化が始まるので、同じ位置での記録開始/記録終了を繰り返すと記録膜の劣化による書き替え回数の制限が発生する。本実施形態では上記問題を軽減するため、書き替え時には図11に示すように(Jm+1/12)データバイト分ずらし、ランダムに記録開始位置をずらしている。
図10の(c),(d)では基本概念を説明するため、拡張ガードフィールド528の先頭位置とVFO領域522の先頭位置が一致しているが、本実施形態では厳密に言うと図11のようにVFO領域522の先頭位置がランダムにずれている。
現行の書替え形情報記憶媒体であるDVD-RAMデイスクでも記録膜として相変化形記録膜を使用し、書替え回数向上のためにランダムに記録開始/終了位置をずらしている。現行のDVD-RAMディスクでのランダムなずらしを行った時の最大ずらし量範囲は8データバイトに設定してある。現行のDVD-RAMディスクでの(ディスクに記録される変調後のデータとして)チャネルビット長は平均0.143μmに設定されている。本実施形態の書替え形情報記憶媒体実施形態ではチャネルビットの平均長さは
(0.087+0.093)÷2=0.090μm (6)
となる。物理的なずらし範囲の長さを現行のDVD-RAMディスクに合わせた場合には、本実施形態でのランダムなずらし範囲として最低限必要な長さは上記の値を利用して
8バイト×(0.143μm÷0.090μm)=12.7バイト (7)
となる。本実施形態では再生信号検出処理の容易性を確保するため、ランダムなずらし量の単位を変調後の“チャネルビット”に合わせた。本実施形態では変調に8ビットを12ビットに変換するETM変調(Eight to Twelve modulation)を用いているので、ランダムなずらし量を表す数式表現としてデータバイトを基準として
Jm/12 データバイト (8)
で表す。Jmの取り得る値としては(7)式の値を用いて
12.7×12=152.4 (9)
なので、Jmは0から152となる。以上の理由から(9)式を満足する範囲で有ればランダムなずらしの範囲長さは現行DVD-RAMディスクと一致し、現行DVD-RAMディスクと同様な書き替え回数を保証できる。本実施形態では現行以上の書き替え回数を確保するため(7)式の値に対してわずかにマージンを持たせ、
ランダムなずらし範囲の長さを14データバイト (10)
に設定した。(10)式の値を(8)式に代入すると、14×12=168なので
Jmの取り得る値は0〜167 (11)
と設定した。上記のようにランダムシフト量をJm/12(0≦Jm≦154)より大きな範囲とすることにより、(9)式を満足し、ランダムシフト量に対する物理的な範囲の長さが現行DVD-RAMと一致するため、現行DVD-RAMと同様な繰り返し記録回数を保証できると言う効果がある。
図10において記録用クラスタ540内でのバッファ領域547とVFO領域532の長さは一定となっている。同一の記録用クラスタ540内では全てのデータセグメント529、530のランダムずらし量Jmは至る所同じ値になっている。内部に多量のデータセグメントを含む1個の記録用クラスタ540を連続して記録する場合には、記録位置をウォブルからモニターしている。すなわち、ウォブルシンク領域580の位置検出をしたり、無変調領域590、591内ではウォブルの数を数えながら情報記憶媒体上の記録位置の確認を記録と同時に行う。この時にウォブルのカウントミスや情報記憶媒体を回転させている回転モータ(例えば図示しないスピンドルモータ)の回転ムラによりウォブルスリップ(1ウォブル周期分ずれた位置に記録する事)が生じ、情報記憶媒体上の記録位置がずれる事が希にある。本実施形態の情報記憶媒体では、上記のように生じた記録位置ずれが検出された場合には、図10の書替え形のガード領域461内、あるいは図示しない追記形ガード領域452で調整を行い、記録タイミングの修正を行う所に特徴がある。図10においてポストアンブル領域546、エキストラ領域544、プリシンク領域533ではビット欠落やビット重複が許容できない重要な情報が記録されるが、バッファ領域547、VFO領域532では特定パターンの繰り返しになっているため、この繰り返し境界位置を確保している限りでは1パターンのみの欠落や重複が許容される。したがって、本実施形態ではガード領域461の中で特にバッファ領域547またはVFO領域532で調整を行い、記録タイミングの修正を行う。
図11に示すように本実施形態では位置設定の基準となる実際のスタートポイント位置はウォブル振幅“0”の(ウォブルの中心)位置と一致するように設定される。しかし、ウォブルの位置検出精度は低いので本実施形態では図11内の“±1 max ”と記載されているように、実際のスタートポイント位置は最大
±1データバイト”までのずれ量 (12)
を許容している。
図10および図11においてデータセグメント530でのランダムシフト量をJmとし(上述したように記録用クラスタ540内は全てのデータセグメント529のランダムシフト量は一致する)、その後に追記するデータセグメント531のランダムシフト量をJm+1とする。(11)式に示すJmとJm+1の取り得る値として例えば中間値を取り、Jm=Jm+1=84であり、実際のスタートポイントの位置精度が充分高い場合には、図10に示すように拡張ガードフィールド528の開始位置とVFO領域522の開始位置が一致する。
これに対してデータセグメント530が最大限後位置に記録され、後で追記または書き替えられるデータセグメント531が最大限前位置に記録された場合には(10)式に明示した値と(12)式の値からVFO領域522の先頭位置がバッファ領域537内へ最大15データバイトまで入り込む事がある。バッファ領域537の直前のエキストラ領域534には特定の重要情報が記録されている。したがって、本実施形態において
バッファ領域537の長さは15データバイト以上 (13)
必要となる。図10に示した実施形態では1データバイトの余裕を加味し、バッファ領域537のデータサイズを16データバイトに設定している。
ランダムシフトの結果、拡張ガード領域528とVFO領域522の間に隙間が生じると、片面2記録層構造を採用した場合に、その隙間による再生時の層間クロストークが発生する。そのため、ランダムシフトを行っても必ず拡張ガードフィールド528とVFO領域522の一部が重なり、隙間が発生しない工夫がされている。したがって、本実施形態において(13)式の同様な理由から拡張ガードフィールド528の長さは15データバイト以上に設定する必要がある。後続するVFO領域522は71データバイトと充分に長く取ってあるので、拡張ガードフィールド528とVFO領域522の重なり領域が多少広くなっても信号再生時には支障が無い(重ならないVFO領域522で再生用基準クロックの同期を取る時間が充分確保されるため)。したがって、拡張ガードフィールド528は15データバイトよりもより大きな値に設定する事が可能である。連続記録時に希にウォブルスリップが発生し、1ウォブル周期分記録位置がずれる場合がある事を既に説明した。(5)式に示すように1ウォブル周期は7.75(約8)データバイトに相当するので(13)式にこの値も考慮して本実施形態では
拡張ガードフィールド528の長さを(15+8=)23データバイト以上
(14)
に設定している。図10に示した実施形態ではバッファ領域537と同様に1データバイトの余裕を加味し、拡張ガードフィールド528の長さを24データバイトに設定している。
図10の(e)において記録用クラスタ541の記録開始位置を正確に設定する必要がある。本実施形態の情報記録再生装置では書替え形または追記形情報記憶媒体に予め記録されたウォブル信号を用いてこの記録開始位置を検出する。ウォブルシンク領域580以外は全て4ウォブル単位でパターンがNPWからIPWに変化している。それに比べてウォブルシンク領域580ではウォブルの切り替わり単位が部分的に4ウォブルからずれているため、ウォブルシンク領域580が最も位置検出し易い。そのため、本実施形態の情報記録再生装置ではウォブルシンク領域580位置を検出後、記録処理の準備を行い、記録を開始する。そのためレコーディングクラスタ541の開始位置はウォブルシンク領域580の直後の無変調領域590の中に来る必要がある。図11ではその内容を示している。物理セグメント(Physical segment)の切り替わり直後にウォブルシンク領域580が配置されている。ウォブルシンク領域580の長さは16ウォブル周期分になっている。そのウォブルシンク領域580を検出後、記録処理の準備にマージンを見越して8ウォブル周期分必要となる。したがって、図11に示すようにレコーディングクラスタ541の先頭位置に存在するVFO領域522の先頭位置がランダムシフトを考慮していも物理セグメントの切り替わり目位置から24ウォブル以上後方に配置される必要がある。
図10に示すように書替え時の重複箇所541では何度も記録処理が行われる。書替えを繰り返すとウォブルグルーブまたはウォブルランドの物理的な形状が変化(劣化)し、そこからのウォブル再生信号品質が低下する。本実施形態では図10の(f)に示すように、書替え時あるいは追記時の重複箇所541がウォブルシンク領域580やウォブルアドレス領域586内に来るのを避け、無変調領域590内に記録されるように工夫している。無変調領域590は一定のウォブルパターン(NPW)が繰り返されるだけなので、部分的にウォブル再生信号品質が劣化しても前後のウォブル再生信号を利用して補間できる。このように書替え時あるいは追記時の重複箇所541位置を無変調領域590内に来るように設定したため、ウォブルシンク領域580またはウォブルアドレス領域586内での形状劣化によるウォブル再生信号品質の劣化を防止し、ウォブルアドレス情報610からの安定なウォブル検出信号を保証できると言う効果が生じる。
図12は、追記形情報記憶媒体上に記録される追記形データの追記方法の説明図である。追記形情報記憶媒体においては1回のみの記録になるので、上記に説明したランダムシフトを必要としない。追記形情報記憶媒体においても図11に示したように物理セグメントの先頭位置24ウォブル以降にデータセグメントの先頭位置が来るように設定し、重ね書きの場所がウォブルの無変調領域に来るようになっている。
本実施形態では“H→L”記録膜と“L→H”記録膜の両方の使用を許容している。本実施形態で規定している“H→L”記録膜と“L→H”記録膜の光反射率範囲を図13に示す。本実施形態では“H→L”記録膜の非記録部での反射率下限値が“L→H”記録膜の非記録部での上限値より高くなるように規定している所に特徴がある。情報記録再生装置あるいは情報再生装置に上記情報記憶媒体を装着した時、図示しないスライスレベル検出部132、またはPR等化回路130で非記録部の光反射率を測定し、瞬時に“H→L”記録膜か“L→H”記録膜の判別が出来るので、記録膜の種別判別が非常に容易になる。多くの製造条件を変えて作成した“H→L”記録膜と“L→H”記録膜を作成して測定した結果、“H→L”記録膜の非記録部での反射率下限値と“L→H”記録膜の非記録部での上限値の間の光反射率αを36%にすると記録膜の製造性が高く、媒体の低価格化が容易である事が分かった。“L→H”記録膜の非記録部(“L”部)の光反射率範囲801を再生専用形情報記憶媒体における片面2記録層の光反射率範囲803に一致させ、“H→L”記録膜の非記録部(“H”部)の光反射率範囲802を再生専用形情報記憶媒体における片面単層の光反射率範囲804に一致させると、再生専用形情報記憶媒体との互換性が良く、情報再生装置の再生回路を兼用化出来るので情報再生装置を安価に作ることができる。多くの製造条件を変えて作成した“H→L”記録膜と“L→H”記録膜を測定した結果、記録膜の製造性を高めて媒体の低価格化を容易にするために、本実施形態では“L→H”記録膜の非記録部(“L”部)の光反射率の下限値βを18%、上限値γを32%とし、“H→L”記録膜の非記録部(“H”部)の光反射率下限値δを40%、上限値εを70%にした。
図13は、“H→L”記録膜と“L→H”記録膜の光反射率範囲を示す図である。図13のように非記録部での光反射率範囲を規定することにより、グルーブレベルを基準として“L→H”記録膜ではエンボス領域(システムリードインSYLDIなど)と記録マーク領域(データリードイン/アウトDTLDI、DTLDOやデータ領域DTA)で同じ方向に信号が現れる。同様に、“H→L”記録膜ではグルーブレベルを基準としてエンボス領域(システムリードインSYLDIなど)と記録マーク領域(データリードイン/アウトDTLDI、DTLDOやデータ領域DTA)で反対方向に信号が現れる。この現象を利用し、“L→H”記録膜と“H→L”記録膜間での記録膜識別に使えるだけでなく、“L→H”記録膜と“H→L”記録膜に対応した検出回路設計が容易となる。
図14は、POインターリーブ後のECCブロックの詳細構造を示す図である。図14に示したように、本実施形態では64KBのデータで1ECCブロックを構成するため、記録位置管理データRMDのデータサイズを1ECCブロックサイズに合わせることにより、追記処理の簡素化を図っている。
同一のデータフレーム内を複数の小ECCブロックに分散配置する所に本実施形態の特徴がある。具体的には本実施形態では2個の小ECCブロックで大きな1ECCブロックを構成し、同一のデータフレーム内をこの2個の小ECCブロック内に交互に分散配置する。中央に記載された10バイトサイズのPIは、その左側に配置されている172バイトに対して付加され、右端に記載された10バイトサイズのPIは、その左側で中央に配置されている172バイトに対して付加される。つまり左端から172バイトと連続する10バイトのPIで左側(Left 側)の小ECCブロックを構成し、中央の172バイトから右端の10バイトのPIで右側(Right 側)の小ECCブロックを構成している。
それに対応して各枠内の記号が設定されている。例えば“2−R”などの意味はデータフレーム番号と左右の小ECCブロックのどちらに属するか(例えば2番目のデータフレーム内で Right 側の小ECCブロックに属する)を表している。また、最終的に構成される物理セクタ毎に同一物理セクタ内のデータも交互に左右の小ECCブロック内に分散配置される(図14に示した左側の小ECCブロックA)内に含まれ、右半分の列は右側の小ECCブロック(図14に示した右側の小ECCブロックB)内に含まれる。
このように同一のデータフレーム内を複数の小ECCブロックに分散配置すると、物理セクタ内データのエラー訂正能力を向上させる事による記録データの信頼性向上が図れる。例えば、記録時にトラックが外れて既記録データ上をオーバーライトしてしまい、1物理セクタ分のデータが破壊された場合を考える。本実施形態では1セクタ内の破壊データを2個の小ECCブロックを用いてエラー訂正を行うため、1個のECCブロック内でのエラー訂正の負担が軽減され、より性能の良いエラー訂正が保証される。また、本実施形態ではECCブロック形成後でも各セクタの先頭位置にデータIDが配置される構造になっているため、アクセス時のデータ位置確認が高速で行える。
図15は、記録位置管理データRMD内のデータ構造を示す図である。本実施形態では最初のボーダー内領域BRDA#1に対するボーダーインBRDIをデータリードインDTLDIと一部兼用しているため、データリードイン領域DTLDI内の記録位置管理ゾーンRMZには最初のボーダー内領域に対応する記録位置管理データRMD#1〜RMD#3が記録されている。データ領域DTA内に全くデータが記録されて無い場合、記録位置管理ゾーンRMZ内は全てデータが未記録状態である予約領域273になる。データ領域DTA内にデータが追記される毎に、更新された記録位置管理データRMDが予約領域273内の最初の場所に記録され、記録位置管理ゾーンRMZ内の最初のボーダー内領域に対応した記録位置管理データRMDが順次追記されて行く。記録位置管理ゾーンRMZ内に一回毎に追記される記録位置管理データRMDのサイズは64Kバイトにしている。
1個の記録位置管理データRMD#1内のデータ構造を図15(c)に示す。図15(c)ではデータリードイン領域DTLDI内の記録位置管理データRMD#1内のデータ構造を示しているが、それに限らず、RMDディプリケーションゾーンRDZ内に記録する記録位置管理データRMD#A、RMD#Bや後述するボーダーインBRDI内に記録される(拡張)記録位置管理データRMD(図16の(d))やRゾーン内に記録される(拡張)記録位置管理データRMD内のデータ構造、およびボーダーアウトBRDO内に記録するRMDのコピーCRMD(図16の(d))も同じ構造を取る。図15の(c)に示すように1個の記録位置管理データRMD内はリザーブ領域と“0”から“21”までのRMDフィールドから構成されている。本実施形態では64KBのユーザデータから構成される1個のECCブロック内に32個の物理セクタが含まれており、1個の物理セクタ内には2KB(厳密には2048バイト)のユーザデータがそれぞれ記録されている。1個の物理セクタ内に記録されるユーザデータサイズに合わせて各RMDフィールドはそれぞれ2048バイト毎に割り振られ、相対的な物理セクタ番号が設定されている。この相対的な物理セクタ番号順に追記形情報記憶媒体上にRMDフィールドが記録される。各RMDフィールド内に記録されるデータ内容の概要は
・RMDフィールド0…ディスク状態に関する情報とデータエリアアロケーション(データ領域内の各種データの配置場所に関する情報)
・RMDフィールド1…使用したテストゾーンに関する情報と推奨の記録波形に関する情報
・RMDフィールド2…ユーザが使用できるエリア
・RMDフィールド3…ボーダーエリアの開始位置情報と拡張RMZ位置に関する情報
・RMDフィールド4〜21…Rゾーンの位置に関する情報
となっている。
なお、追記形情報記憶媒体ではRMDディプリケーションゾーンRDZと記録位置管理ゾーンRMZ、R物理情報ゾーンR-PFIZが独自に存在する。記録位置管理ゾーンRMZ内にはデータの追記処理により更新されるデータの記録位置に関する管理情報である記録位置管理データRMD(Recording Management Data)が記録される。本実施形態では各ボーダー内領域BRDA毎にそれぞれ記録位置管理ゾーンRMZを設定し、記録位置管理ゾーンRMZの領域の拡張を可能としている。その結果、追記頻度が増加して必要とする記録位置管理データRMD領域が増加しても、逐次、記録位置管理ゾーンRMZを拡張することにより対応可能なため、追記回数を大幅に増やせると言う効果が生まれる。この場合、本実施形態では各ボーダー内領域BRDAに対応した(各ボーダー内領域BRDAの直前に配置された)ボーダーインBRDI内に記録位置管理ゾーンRMZを配置する。本実施形態では、最初のボーダー内領域BRDA#1に対応したボーダーインBRDIとデータリードイン領域DTLDIとを兼用化し、データ領域DTA内での最初のボーダーインBRDIの形成を省略して、データ領域DTAの有効活用を行っている。すなわち、データリードイン領域DTLDI内の記録位置管理ゾーンRMZは最初のボーダー内領域BRDA#1に対応した記録位置管理データRMDの記録場所として利用されている。
RMDディプリケーションゾーンRDZは記録位置管理ゾーンRMZ内の下記の条件を満足する記録位置管理データRMDの情報を記録する場所で、本実施形態のように記録位置管理データRMDを重複して持つことにより、記録位置管理データRMDの信頼性を高めている。すなわち、追記形情報記憶媒体の表面に付いたゴミや傷の影響で記録位置管理ゾーンRMZ内の記録位置管理データRMDが読み取り不可能になった場合、RMDディプリケーションゾーンRDZ内に記録された記録位置管理データRMDを再生し、更に残りの必要な情報をトレーシングにより収集することにより、最新の記録位置管理データRMDの情報を復元できる。
RMDディプリケーションゾーンRDZ内にはボーダー(複数のボーダーも含む)をクローズする時点での記録位置管理データRMDが記録される。1個のボーダーをクローズし、次の新たなボーダー内領域を設定する毎に新たな記録位置管理ゾーンRMZを定義するので、新たな記録位置管理ゾーンRMZを作成する毎に、その前のボーダー内領域に関係した最後の記録位置管理データRMDをRMDディプリケーションゾーンRDZ内に記録すると言っても良い。追記形情報記憶媒体上に記録位置管理データRMDを追記する毎に同じ情報をRMDディプリケーションゾーンRDZに記録すると、比較的少ない追記回数でRMDディプリケーションゾーンRDZが一杯になってしまうため追記回数の上限値が小さくなってしまう。それに比べて本実施形態のようにボーダーをクローズした時や、ボーダーインBRDI内の記録位置管理ゾーンRMZ内が一杯になりRゾーンを用いて新たな記録位置管理ゾーンRMZを形成する時などの新たに記録位置管理ゾーンRMZを作る場合に、今までの記録位置管理ゾーンRMZ内の最後の記録位置管理データRMDのみをRMDディプリケーションゾーンRDZ内に記録することにより、RMDディプリケーションゾーンRDZ内を有効活用して追記可能回数を向上できる効果がある。
例えば、追記途中の(ボーダークローズする前の)ボーダー内領域BRDAに対応した記録位置管理ゾーンRMZ内の記録位置管理データRMDが追記形情報記憶媒体の表面に付いたゴミや傷の影響で再生不可能になった場合には、RMDディプリケーションゾーンRDZ内の最後に記録された記録位置管理データRMDを読み取ることにより、既にクローズされたボーダー内領域BRDAの場所が分かる。したがって、情報記憶媒体のデータ領域DTA内のそれ以外の場所をトレースすることにより、追記途中の(ボーダークローズする前の)ボーダー内領域BRDAの場所とそこに記録された情報内容を収集でき、最新の記録位置管理データRMDの情報を復元できる。
図16は、追記形情報記憶媒体におけるボーダー領域の構造を説明する図である。RDZリードインRDZLIの領域のサイズと上記1個の記録位置管理データRMDのサイズが64KBすなわち、1個のECCブロック内のユーザデータサイズの整数倍になっている所に本実施形態の特徴がある。追記形情報記憶媒体の場合、1個のECCブロック内のデータの一部を変更後に情報記憶媒体に変更後のECCブロックのデータを書き替えると言う処理が出来ない。したがって、特に追記形情報記憶媒体の場合には、1個のECCブロックを含むデータセグメントの整数倍で構成されるレコーディングクラスタ(b)単位で記録される。したがって、RDZリードインRDZLIの領域のサイズと上記1個の記録位置管理データRMDのサイズがECCブロック内のユーザデータサイズと異なると、レコーディングクラスタ単位に合わせるためのパディング領域またはスタッフィング領域が必要となり、実質的な記録効率が低下する。本実施形態のようにRDZリードインRDZLIの領域のサイズと上記1個の記録位置管理データRMDのサイズが64KBの整数倍に設定することにより、記録効率の低下を防止できる。
次に、対応RMZ最後の記録位置管理データRMD記録領域271についての説明を行う。リードイン領域の内側に記録中断時の中間情報を記録する方法がある。この場合には記録を中断する毎あるいは追記処理を行う毎に、この領域に中間情報(本実施形態では記録位置管理データRMD)を逐次追記する必要がある。そのため、頻繁に記録中断または追記処理が繰り返されると、この領域が直ぐに満杯となり更なる追加処理が不可能になると言う問題が発生する。この問題を解決するために、本実施形態では特定の条件を満たす時にのみ、更新された記録位置管理データRMDを記録できる領域としてRMDディプリケーションゾーンRDZを設定し、特定条件の下で間引かれた記録位置管理データRMDを記録する事を特徴とする。このようにRMDディプリケーションゾーンRDZ内に追記される記録位置管理データRMDの頻度を低下させることにより、RMDディプリケーションゾーンRDZ内が満杯になるのを防ぎ、追記形情報記憶媒体に対する追記可能な回数を大幅に向上できると言う効果がある。
これと並行して、追記処理毎に更新される記録位置管理データRMDは、図16に示すボーダーインBRDI内(最初のボーダー内領域BRDA#1に関してはデータリードイン領域DTLDI内)の記録位置管理ゾーンRMZ、あるいはRゾーンを利用した記録位置管理ゾーンRMZ内に、逐次追記される。そして、次のボーダー内領域BRDAを作成(新たなボーダーインBRDIを設定)したり、Rゾーン内に新たな記録位置管理ゾーンRMZを設定する等、新たな記録位置管理ゾーンRMZを作る時に、最後の(新たな記録位置管理ゾーンRMZを作る直前の状態での最新の)記録位置管理データRMDをRMDディプリケーションゾーンRDZ(の中の対応RMZ最後の記録位置管理データRMD記録領域271)内に記録する。これにより、追記形情報記憶媒体への追記可能回数が大幅に増大するだけでなく、この領域を利用することにより、最新のRMD位置検索が容易になると言う効果が生まれる。
図17は、この発明の一実施の形態と現行DVD−Rとの比較を示す図である。図17に本実施形態と現状のDVD−Rとの比較を示す。本実施形態はボーダークローズの時間を短くしたいので、最小記録容量(ボーダークローズ時)の記録幅を現状のDVD−Rに比べて短く(1.65mmから1.0mm)している。これにより、無駄な記録情報を少なくして、ファイナライズ時間を短縮した。本実施形態は記録容量が現状のDVD−Rに比べて大幅に増えている(4.7GBから15GB)ので、Rゾーンの最大数をほぼ2倍(2302から4606)としている。記録単位は現状のDVD−Rでは1ECCブロックであるが、本実施形態では1物理セグメントである。1物理セグメントブロックは1ECCブロックの前後にVFO領域、プリシンク領域、ポストアンブル領域、エキストラ領域、バッファ領域の余分な領域をつけて一つのデータセグメント531とする。このデータセグメントの組合せでデータ記録の単位である物理セグメントが作られる。
1ECCブロックの前後に余分な領域(ガード領域)をつけているので、追記の時にECCブロックの最後から連続して記録できない。これは、ECCブロックの最後から追記しようとしても、ディスクの回転むら等で記録位置が多少ずれることがあるからである。記録位置が前にずれる分には、上書きにより既記録データの最後部分が消えてしまうが、消えたデータはエラー訂正により復元できるので、問題はあまりないが、後ろにずれると、ディスク上に未記録部分が生じるので、プレーヤでは再生できなくなり、大問題になる。そのため、現状では追記する際は、記録位置を多少前にずらして既記録データの最後部分に上書きし、最後のデータを壊している。本実施形態では、ECCブロックの前後にガード領域を持っているので、ガード領域内で重ね書きし、ユーザデータは安定して壊すことなく追記できる。このため、本願のデータ構造は記録データの信頼性を上げることができる。
ボーダークローズする際には、第1、第2Rゾーン(オープンRゾーン)(内周側から第1、第2、第3ゾーンと呼ばれる)の未記録部分が“00h”で埋められ、第3Rゾーン(インコンプリートRゾーン)の記録データの外側にボーダーアウトが記録される。ボーダーアウトの外側にボーダーインが記録され、その中に拡張記録位置管理ゾーンEX.RMZが記録される。図17に示すように、記録管理位置データRMDはボーダーインの拡張記録位置管理ゾーンEX.RMZを使用して392回以上(16384回)更新可能である。しかし、ボーダーインの拡張記録位置管理ゾーンEX.RMZを使用する前に、ボーダーはクローズしなければならず、時間がかかる。
図18は、情報再生装置もしくは情報記録再生装置における情報記憶媒体装着直後の処理手順を示すフローチャートである。ディスクが装置に装着されると、バーストカッティング領域BCAが再生される(ST22)。本実施形態はHD_DVD−Rディスクをサポートし、ディスクの媒体極性は“L-to-H”と“H-to-L”の両方をサポートする。システムリードイン領域を再生し(ST24)、RMDディプリケーションゾーンRDZを再生する(ST26)。ブランクではないディスクはRMDディプリケーションゾーンRDZに記録位置管理データRMDが記録されている。記録位置管理データRMDの記録の有無に応じて、ブランクディスクか否かを判断する(ST28)。ブランクディスクの場合(ST28Y)は本処理は終了する。ブランクディスクでない場合(ST28N)は最新の記録位置管理データRMDを検索し(ST30)、現在使用している追記可能なRゾーンの番号、Rゾーンの開始物理セグメント番号、最後の記録位置LRAを求める。なお、追記可能なRゾーン3つまで設定可能である。ブランクではないディスクを排出する時は、ボーダークローズ、あるいはファイナライズを実行する。
図19は、情報記録再生装置における追記形情報記憶媒体への情報の追記方法を説明するためのフローチャートである。ホストから記録指示(write(10))が与えられると、記録位置管理データRMDを記録する記録位置管理ゾーンRMZの残量が十分であるか否かを判断する(ST32)。残量が十分でない場合(ST32N)は、図示しないホストへ“RMZの残量小”を報告する(ST34)。この場合は、記録位置管理ゾーンRMZの拡張が想定される。
残量が十分である場合(ST32Y)は、OPC(どこまで試し書きしたかを記録する処理)が必要であるか否かを判断する(ST36)。必要である場合(ST36Y)は、OPCを実行し(ST38)、ステップST40で記録位置管理データRMDの更新が必要か否か判断する(ST40)。更新が必要な場合(ST40Y)とは、Rゾーン予約直後の記録指示の場合と、最新RMD中の最終記録位置NWAと実際の最終記録位置NWAとの差が16MB以上である場合である。記録位置管理データRMDの更新が行われ(ST42)、データが記録され(ST44)、ホストに記録終了が報告され(ST46)、動作を終了する。
図20は、拡張可能な記録位置管理ゾーンRMZの設定方法の概念を示す図である。当初はデータリードイン領域に記録位置管理データRMDを保存するための記録位置管理ゾーンRMZが設定されている。記録位置管理ゾーンRMZを使い切ると、データ領域が空いていても、ディスクへのデータの記録が不可能となるので、記録位置管理ゾーンRMZの残量が少なくなると、拡張記録位置管理ゾーンEX.RMZを設定する。拡張記録位置管理ゾーンEX.RMZはユーザデータが記録されるボーダー内領域に設定してもよいし、ボーダーゾーン(隣接するボーダーアウトとボーダーインからなる)に設定してもよい。すなわち、ボーダー内領域内の拡張記録位置管理ゾーンEX.RMZとボーダーイン内の拡張記録位置管理ゾーンEX.RMZとはディスク内で混在可能である。拡張記録位置管理ゾーンEX.RMZが設定されると、最新の記録位置管理データRMDが1物理セグメントブロックとしてRMDディプリケーションゾーンRDZにコピーされる。RMDディプリケーションゾーンRDZは拡張記録位置管理ゾーンEX.RMZの位置を管理するために使用される。RMDディプリケーションゾーンRDZは128物理セグメントブロックからなるので、記録位置管理ゾーンRMZはディスク内で127回拡張可能であり、ディスク内のボーダーゾーンの数は最大128個である。ボーダー内領域の127個の拡張記録位置管理ゾーンEX.RMZを使って記録位置管理データRMDは16348回まで拡張可能である。
図21は、図20の詳細を示す図である。すなわち、ボーダー内領域の拡張記録位置管理ゾーンEX.RMZは隣接するRゾーンの間に設定される。ボーダーゾーンに拡張される場合は、通常はボーダーインの末尾に設定される。
上述のフォーマットを用いた情報記録媒体を作製し、ランダムデータの情報の記録を行った。その結果、L0ジッターは6.2%と非常に良好な特性が得られた。また、7Tマーク7Tスペースの繰り返しパターンを記録再生したところ、波形歪みは非常に小さく、(再生信号のうちの)スペースレベルであるI11Lの最大値と最小値の差([I11Lmax-I11Lmin]/I11min)は3%であった。この差(違い)は、10%以下であれば、図23に例示されるようにエラーレート(SbER)が1.0e-04以下となり、実用性は充分である。また、記録後のマーク部分の物理的な歪(体積変化やマークとその周囲との間の界面状態変化)が10%以下に収まる有機色素材料を記録層に用いると、図22に例示されるように、エラーレート(SbER)が1.0e-04以下となり、実用性あることが確認される。
図24は、この発明の一実施の形態に係る光ディスク(記録後のマークに変形あるいは変化が生じないような有機色素材料を記録層に用いたディスク)100を用いた記録方法を説明するフローチャートである。図示しないディスクドライブの光ピックアップから、例えば波長405nmの変調されたレーザをディスク100の記録対象層(L0またはL1)に照射して、オブジェクトデータ(DVDまたはHD_DVDでは、VOB等)を記録する(ST100)。この記録が終了すると(ST102Y)、記録されたオブジェクトデータに関する管理情報(DVDまたはHD_DVDでは、VMG)がディスク100に書き込まれて(ST104)、1回の記録が終了する。
図25は、この発明の一実施の形態に係る光ディスク(記録後のマークに変形あるいは変化が生じないような有機色素材料を記録層に用いたディスク)100を用いた再生方法を説明するフローチャートである。図24のような処理でオブジェクトデータおよび管理情報が記録されたディスク100から、例えば波長405nmのレーザにより、管理情報が読み取られる(ST200)。読み取られた管理情報は、図示しない再生機器のワークメモリに一旦記憶される。この再生機器は、記憶した管理情報内の再生手順に関する情報等を参照して、記録されたオブジェクトデータを再生する(ST202)。この再生は、ユーザが再生終了を指示するか、管理情報内の再生手順情報が再生終了を示すところまで再生が進むと、終了する(ST204Y)。
図26は、図1の光ディスク100における物理セクタレイアウトの一例を説明する図である。図26に例示されるように、2層のレイヤーにわたって設けられる情報領域は、7つの領域:システムリードイン領域、コネクション領域、データリードイン領域、データ領域、データリードアウト領域、システムリードアウト領域、ミドル領域からなる。各レイヤーにミドル領域が設けられることにより、再生ビームをレイヤー0(L0)からレイヤー1(L1)に移動させることができる。データ領域DAはメインデータ(図1(e)の例では管理情報VMG、オブジェクトデータVOB等)を記録する。システムリードイン領域SLAは制御データと参照(リファレンス)コード等を含む。データリードアウト領域は連続するスムーズな読み出しを可能とする。
《リードアウト領域》
システムリードイン領域とシステムリードアウト領域はエンボスピットからなるトラックを含む。レイヤー0(L0)のデータリードイン領域、データ領域、ミドル領域と、レイヤー1(L1)のミドル領域、データ領域、データリードアウト領域は、グルーブトラックを含む。グルーブトラックはレイヤー0のデータリードイン領域の開始位置からミドル領域の終了位置まで連続であり、レイヤー1のミドル領域の開始位置からデータリードアウト領域の終了位置まで連続である。なお、片面2層ディスク基板を1対用意して張り合わせると、2つの読み出し面を有する両面4層ディスクとなる。
図27は、図1の光ディスクにおけるリードイン領域の構成例を説明する図である。図27に例示されるように、レイヤー0(L0)のシステムリードイン領域SLAは内周側から順にイニシャルゾーン、バッファーゾーン、制御(コントロール)データゾーン、バッファーゾーンからなる。レイヤー0のデータリードイン領域は内周側から順にブランクゾーン、ガードトラックゾーン、ドライブテストゾーン、ディスクテストゾーン、ブランクゾーン、RMD(Recording Management Data)デュプリケーションゾーン、L−RMZ(記録位置管理データ)、R物理フォーマット情報ゾーン、参照コードゾーンからなる。レイヤー0(L0)のデータ領域の開始アドレス(内周側)とレイヤー1のデータ領域の終了アドレス(内周側)とはクリアランスの分だけずれており、レイヤー1(L1)のデータ領域の終了アドレス(内周側)の方がレイヤー0のデータ領域の開始アドレス(内周側)より外周側である。
《リードイン領域の構造》
図27はレイヤー0(L0)のリードイン領域の構造を例示している。システムリードイン領域は内周側から順にイニシャルゾーン、バッファーゾーン、コントロールデータゾーン、バッファーゾーンが配置される。データリードイン領域は内周側から順にブランクゾーン、ガードトラックゾーン、ドライブテストゾーン、ディスクテストゾーン、ブランクゾーン、RMDデュプリケーションゾーン、データリードイン領域内の記録位置管理(レコーディングマネージメント)ゾーン(L−RMZ)、R物理フォーマット情報ゾーン、参照コードゾーンが配置される。
《システムリードイン領域の詳細》
イニシャルゾーンは、エンボスされたデータセグメントを含む。イニシャルゾーンのデータセグメントとして記録されたデータフレームのメインデータは、“00h”に設定される。バッファーゾーンは、32個のデータセグメントからの1024の物理セクタで構成される。このゾーンのデータセグメントとして記録されたデータフレームのメインデータは、“00h”に設定される。コントロールデータゾーンは、エンボスされたデータセグメントを含む。データセグメントはエンボスされた制御データを含む。コントロールデータは、PSN 123904(01 E400h)を起点とする192のデータセグメントから構成される。
コントロールデータゾーンの構成例を図28に示す。また、コントロールデータセクションのデータセグメントの構成例を図29に示す。コントロールデータセクションの最初のデータセグメントの内容は、16回繰り返される。各データセグメントの最初の物理セクタは、物理フォーマット情報を含む。各データセグメントの2番目の物理セクタは、ディスク製造情報を含む。各データセグメントの3番目の物理セクタは、著作権保護情報を含む。各データセグメントの他の物理セクタの内容は、システム使用のためにリザーブ領域とされる。
図30はコントロールデータセクション内の物理フォーマット情報の一例を説明する図であり、図31はこの物理フォーマット情報内のデータ領域配置の一例を説明する図である。この物理フォーマット情報の各バイト位置(BP)の記述内容は以下のようになっている。BP132からBP154に示すリードパワー、記録速度、データ領域の反射率、プッシュプル信号、オントラック信号の値は一例である。これらの実際の値は、エンボス情報の規定、記録後のユーザデータの特性の規定を満足する値の中からディスク製造者が選ぶことができる。BP4〜BP15に記述されたデータ領域配置の内容は、例えば図31のようになる。
図30のBP149、BP152は、レイヤー0、レイヤー1のデータ領域の反射率を指定する。例えば、0000 1010bは5%を示す。実際の反射率は次の式で指定される:
実際の反射率=値×(1/2)。
BP150、BP153は、レイヤー0、レイヤー1のプッシュプル信号を指定する。これらのBP各々において、図示しないビットb7は各レイヤーのディスクのトラック形状を指定し、図示しないビットb6〜b0はプッシュプル信号の振幅を指定する:
トラック形状:0b(グルーブ上のトラック)
1b(ランド上のトラック)
プッシュプル信号:例えば、010 1000bは0.40を示す。
プッシュプル信号の実際の振幅は次の式で指定される:
プッシュプル信号の実際の振幅=値×(1/100)。
BP151、BP154はレイヤー0、レイヤー1のオントラック信号の振幅を指定する:
オントラック信号:例えば、0100 0110bは0.70を示す。
オントラック信号の実際の振幅は次の式で指定される:
オントラック信号の実際の振幅=値×(1/100)
なお、物理フォーマット情報のBP512〜BP543には図32に例示するようなL0の記録関連パラメータを記述することができ、L0層の記録を行う際の当初のピークパワーやバイアスパワー等の情報は、図32の記述から取り出すことができる。また、物理フォーマット情報のBP544〜BP2047には図33に例示するようなL1の記録関連パラメータを記述することができ、L1層の記録を行う際の当初のピークパワーやバイアスパワー等の情報は、図33の記述から取り出すことができる。
<まとめ>
(1)この発明の一実施の形態に係る光ディスクは、変調されたレーザパワーにより、スペースを挟んで複数のマークの記録が行われる記録層(L0、L1等)を持つものであって、記録された前記マークの領域内で前記記録層の物理的な変形あるいは変化(体積または断面積の変化)が実質的に生じない(例えば変形あるいは変化が10%以下)有機色素材料(図2〜図4等参照)を、前記記録層に用いている。
(2)前記記録層の物理的な変形あるいは変化が実質的に生じないということは、前記マークの領域における前記記録層の体積変化が10%以下である(図22等参照)ことに対応する。
(3)あるいは、前記記録層の物理的な変形あるいは変化が実質的に生じないということは、前記マークの領域における前記記録層の界面状態または前記記録層の断面積の変化が10%以下である(図22等参照)ことに対応する。
(4)前記記録層には、前記マーク記録が行われたときに化学的な変化を起こさない有機色素材料(例えば図4の色素)を用いることができる。
(5)前記記録層に用いる前記有機色素材料の少なくとも一部は、中心金属に銅(Cu)またはコバルト(Co)またはニッケル(Ni)を用いたアゾ金属錯体(図2〜図4等参照)を含むことができる。
(6)前記有機色素材料(アゾ金属錯体)は、色素分子内芳香環に置換している炭素3つ以上からなる置換基を(嵩高い置換基として)含むことができる。
(7)記録に用いるレーザの波長をλとし、レーザを前記記録層に集光する対物レンズの開口数をNAとし、マークの長さおよびスペースの長さを共に1.2*λ/NAよりも長いパターンで記録し、このスペースからの再生信号レベルの最大値をI11Lmaxで表しその最小値をI11Lminで表しこの再生信号レベルの最大値と最小値の違いを[I11Lmax-I11Lmin]/I11minで表すときに、この[I11Lmax-I11Lmin]/I11minが10%以下となる(図23参照)ように構成できる。
(8)スペースを挟んで複数のマークの記録が行われる記録層(L0、L1等)を持つものであって、記録された前記マークの領域内で前記記録層の物理的な変形あるいは変化(体積または断面積の変化)が実質的に生じない(例えば図22または図23の変化が10%以下)有機色素材料を前記記録層に用いた光ディスク(100)に情報記録を行う方法において、変調されたレーザパワーにより前記記録層にオブジェクトデータ(図1のVOB等)を記録し(ST100)、変調されたレーザパワーにより前記記録層に前記オブジェクトデータの管理情報(図1のVMG)を記録する(ST104)ことができる。
(9)上記の記録方法において、前記記録に用いるレーザの波長をλとし、前記レーザを前記記録層に集光する対物レンズの開口数をNAとし、前記マークの長さおよび前記スペースの長さを共に1.2*λ/NAよりも長いパターンで記録したときに、このスペースからの再生信号レベルの最大値と最小値の違い([I11Lmax-I11Lmin]/I11min)が10%以下となるように構成できる。
(10)スペースを挟んで複数のマークの記録が行われる記録層を持つものであって、記録された前記マークの領域内で前記記録層の物理的な変形あるいは変化(体積または断面積の変化)が実質的に生じない(例えば変形あるいは変化が10%以下)有機色素材料を前記記録層に用いた光ディスク(100)から情報再生を行う方法において、所定波長(例えば405nm)のレーザにより前記記録層(例えばL0またはL1)から管理情報(図1のVMG)を再生し(ST200)、前記レーザにより前記記録層から前記管理情報で管理されているオブジェクトデータ(図1のVOB等)を再生する(ST202)ことができる。
なお、この発明は前述した実施の形態に限定されるものではなく、現在または将来の実施段階では、その時点で利用可能な技術に基づき、その要旨を逸脱しない範囲で種々に変形することが可能である。たとえば、この発明は単層ディスクや2層ディスクだけでなく将来実用化されるであろう3層以上の記録層を持つ光ディスクにおいても実施可能である。
また、各実施形態は可能な限り適宜組み合わせて実施してもよく、その場合組み合わせた効果が得られる。さらに、上記実施形態には種々の段階の発明が含まれており、開示される複数の構成要件における適当な組み合わせにより種々の発明が抽出され得る。例えば、実施形態に示される全構成要件からいくつかの構成要件が削除されても、この構成要件が削除された構成が発明として抽出され得る。
100…光ディスク(具体例として片面2層の追記型光ディスク);101…L0層側のポリカーボネート基板;102…L1層側のポリカーボネート基板(ダミー基板);103…紫外線硬化樹脂(接着層);104…中間層;105…L0記録層;106…L0反射層(レーザ光に対して半透過性);107…L1記録層;108…L1反射層(片面3層ならレーザ光に対して半透過性、片面2層ならレーザ光を完全反射)。

Claims (4)

  1. 変調された光により、スペースを挟んで複数のマークの記録が行われる記録層を持つ光ディスクにおいて、
    前記記録層に前記マークを記録する際に用いるチャネルクロック周期をTとするとき、
    2T以上の長さの前記マークが記録可能であり、
    3T以上の長い前記マークを記録する際には複数のパルスが利用され、
    前記3T以上の長い前記マークの記録に利用される前記複数のパルスの末尾に来るラストパルスの幅のとり得る値が所定の範囲内となるようにして前記記録マークが記録され、
    前記記録層の波長405nmにおける吸光度が40%以上である光ディスク。
  2. 請求項1に記載の光ディスクに情報記録を行う方法において、
    前記変調された光により前記記録層にオブジェクトデータを記録し、
    前記変調された光により前記記録層に前記オブジェクトデータの管理情報を記録する記録方法。
  3. 請求項1に記載の光ディスクから情報再生を行う方法において、
    所定波長の光により前記記録層から管理情報を再生し、
    前記光により前記記録層から前記管理情報で管理されているオブジェクトデータを再生する再生方法。
  4. 前記記録は、開口数NAが0.60、0.65、または0.85の対物レンズを介して行われる。
JP2010113583A 2010-05-17 2010-05-17 光ディスク、情報記録方法、情報再生方法 Pending JP2010205412A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010113583A JP2010205412A (ja) 2010-05-17 2010-05-17 光ディスク、情報記録方法、情報再生方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010113583A JP2010205412A (ja) 2010-05-17 2010-05-17 光ディスク、情報記録方法、情報再生方法

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2006151584A Division JP2007323719A (ja) 2006-05-31 2006-05-31 光ディスク、情報記録方法、情報再生方法

Related Child Applications (2)

Application Number Title Priority Date Filing Date
JP2011162526A Division JP2011243277A (ja) 2011-07-25 2011-07-25 光ディスク、情報記録方法、情報再生方法
JP2011162527A Division JP2011210370A (ja) 2011-07-25 2011-07-25 光ディスク、情報記録方法、情報再生方法

Publications (1)

Publication Number Publication Date
JP2010205412A true JP2010205412A (ja) 2010-09-16

Family

ID=42966719

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010113583A Pending JP2010205412A (ja) 2010-05-17 2010-05-17 光ディスク、情報記録方法、情報再生方法

Country Status (1)

Country Link
JP (1) JP2010205412A (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002208227A (ja) * 1999-02-18 2002-07-26 Toshiba Corp ストリーム情報処理システム
JP2004185796A (ja) * 2002-11-21 2004-07-02 Matsushita Electric Ind Co Ltd 記録再生方法および記録再生装置
JP2005092942A (ja) * 2003-09-16 2005-04-07 Hitachi Ltd 光ディスク記録方法、光ディスク装置、及び光ディスク
JP2005293773A (ja) * 2004-04-02 2005-10-20 Toshiba Corp 追記型情報記録媒体

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002208227A (ja) * 1999-02-18 2002-07-26 Toshiba Corp ストリーム情報処理システム
JP2004185796A (ja) * 2002-11-21 2004-07-02 Matsushita Electric Ind Co Ltd 記録再生方法および記録再生装置
JP2005092942A (ja) * 2003-09-16 2005-04-07 Hitachi Ltd 光ディスク記録方法、光ディスク装置、及び光ディスク
JP2005293773A (ja) * 2004-04-02 2005-10-20 Toshiba Corp 追記型情報記録媒体

Similar Documents

Publication Publication Date Title
US7411888B2 (en) Information storage medium, recording method, reproducing method, and reproducing apparatus
JP4575211B2 (ja) 記憶媒体、再生方法及び記録方法
US7366070B2 (en) Storage medium including a burst cutting area (BCA)
JP2006236421A (ja) 記憶媒体、再生方法及び記録方法
US20120195179A1 (en) Optical disc, information recording method, and information reproducing method
JP4560009B2 (ja) 光記録媒体、情報記録方法、および情報再生方法
JP2007323776A (ja) 光記録媒体、情報記録方法、情報再生方法
JP2006351114A (ja) 記憶媒体、再生方法及び記録方法
JP2007323774A (ja) 光記録媒体、情報記録方法、情報再生方法
JP2007323775A (ja) 光記録媒体、情報記録方法、情報再生方法
JP2008310922A (ja) 情報記録媒体及びこの媒体を用いたディスク装置
JP2010067344A (ja) 光記録媒体、情報記録方法、および情報再生方法
JP2010205412A (ja) 光ディスク、情報記録方法、情報再生方法
JP2011210370A (ja) 光ディスク、情報記録方法、情報再生方法
JP2011243277A (ja) 光ディスク、情報記録方法、情報再生方法
JP4806080B2 (ja) 光記録媒体、情報記録方法、情報再生方法
JP5106654B2 (ja) 記憶媒体、再生方法及び記録方法
JP2012061860A (ja) 光記録材料、光記録媒体、情報記録方法、および情報再生方法
JP2012018755A (ja) 光記録材料、光記録媒体、情報記録方法、情報再生方法
JP2011138606A (ja) 光記録媒体、情報記録方法、情報再生方法
JP2012150880A (ja) 光記録媒体、情報記録方法、情報再生方法
JP2010146724A (ja) 光記録媒体、情報記録方法、情報再生方法
JP2009283130A (ja) 記憶媒体、再生方法及び記録方法
JP2010118142A (ja) 光記録媒体、情報記録方法、情報再生方法
JP2010044862A (ja) 光記録媒体、情報記録方法、情報再生方法

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110519

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110524

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110725

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120522