JP2010203896A - Abrasion testing method and abrasion testing equipment - Google Patents

Abrasion testing method and abrasion testing equipment Download PDF

Info

Publication number
JP2010203896A
JP2010203896A JP2009049258A JP2009049258A JP2010203896A JP 2010203896 A JP2010203896 A JP 2010203896A JP 2009049258 A JP2009049258 A JP 2009049258A JP 2009049258 A JP2009049258 A JP 2009049258A JP 2010203896 A JP2010203896 A JP 2010203896A
Authority
JP
Japan
Prior art keywords
powder
actual machine
fluid gas
wear
test
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009049258A
Other languages
Japanese (ja)
Other versions
JP5239943B2 (en
Inventor
Takamasa Ito
隆政 伊藤
Masahiro Narikawa
正広 成川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp filed Critical IHI Corp
Priority to JP2009049258A priority Critical patent/JP5239943B2/en
Publication of JP2010203896A publication Critical patent/JP2010203896A/en
Application granted granted Critical
Publication of JP5239943B2 publication Critical patent/JP5239943B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Testing Of Devices, Machine Parts, Or Other Structures Thereof (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an abrasion testing method for predicting an abrasion place in a short period of time even in the case where the concentration of the powder in a fluid gas is low, and for observing abrasion resistant characteristics even in the complicated shape and arrangement of an actual machine. <P>SOLUTION: In evaluating the abrasion resistant characteristics of the actual machine exposed to a powder containing fluid gas environment, a powder slurry is applied to the surface of the actual machine or a test object simulating the actual machine and the coated surface is dried to form a powder layer. The actual machine or the test object to which the powder layer is formed is exposed to the fluid gas environment to observe the peel place of the powder layer formed on the surface of the actual machine or the test object. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、粉体を含んだ流体ガス環境下に晒される実機の耐摩耗特性を観測する摩耗試験方法および摩耗試験装置に関するものである。   The present invention relates to a wear test method and a wear test apparatus for observing wear resistance characteristics of an actual machine exposed to a fluid gas environment containing powder.

一般に、粉体を含んだ流体ガス環境下に晒される実機は、機械的強度の他に、粉体を含んだ流体ガスに対する耐摩耗特性が要求されることから、これら実機の耐摩耗特性を予め知っておくことが望ましい。   In general, actual machines that are exposed to a fluid gas environment containing powders are required to have wear resistance characteristics against fluid gases containing powder in addition to mechanical strength. It is desirable to know.

従来、これら実機の耐摩耗特性を試験する方法および装置としては、例えば、所定の位置に設置された試験片に重量落下あるいは圧縮空気などにより加速された粉体供給源からの粉体を所定時間衝突させ、その後の試験片の重量、または表面の摩耗深さなどを測定して試験片、すなわち実機の耐摩耗特性を試験する方法および装置が一般的である(例えば、特許文献1参照)。   Conventionally, as a method and apparatus for testing the wear resistance characteristics of these actual machines, for example, powder from a powder supply source accelerated by weight drop or compressed air is applied to a test piece installed at a predetermined position for a predetermined time. A method and an apparatus for testing the wear resistance characteristics of a test piece, that is, an actual machine by measuring the weight of the test piece after the collision, the wear depth of the surface, and the like are generally used (see, for example, Patent Document 1).

特開平8−62114号公報JP-A-8-62114

しかしながら、従来の試験方法および試験装置では、実機環境下で耐摩耗特性を観測できない問題がある。すなわち、流体ガス中の粉体濃度が薄い、粉体が小さい、流体ガスの速度が遅いなどの場合には試験片が摩耗せず、耐摩耗特性を観測できない。試験片が摩耗する場合でも、耐摩耗特性を試験するのに相当の試験時間が必要である。   However, the conventional test method and test apparatus have a problem that the wear resistance characteristics cannot be observed in an actual machine environment. That is, when the powder concentration in the fluid gas is thin, the powder is small, or the fluid gas is slow, the test piece does not wear and the wear resistance characteristics cannot be observed. Even when the specimen wears, considerable test time is required to test the wear resistance characteristics.

また、実機は流体ガスに対して一様な摩耗環境に晒される訳ではなく、特定の箇所のみ摩耗する傾向にある。すなわち、材料の形状・配列(例えばボイラの配列群など)の影響により摩耗しやすい箇所と摩耗しにくい箇所がある。   Further, the actual machine is not exposed to a uniform wear environment with respect to the fluid gas, and tends to wear only at a specific location. That is, there are a part that is easily worn and a part that is not easily worn due to the influence of the shape / arrangement of the material (for example, an array group of boilers).

しかし、従来の試験方法および試験装置では、試験片を用いて耐摩耗特性を試験していたので、耐摩耗特性に対する材料の形状・配列の影響が把握できない問題がある。   However, in the conventional test method and test apparatus, since the wear resistance characteristic is tested using the test piece, there is a problem that the influence of the shape and arrangement of the material on the wear resistance characteristic cannot be grasped.

そこで、本発明の目的は、流体ガス中の粉体濃度が薄いなどの場合であっても、短時間で摩耗箇所を予測でき、また、実機などの複雑形状・配列であっても耐摩耗特性を観測することができる摩耗試験方法および摩耗試験装置を提供することにある。   Therefore, the object of the present invention is to be able to predict wear points in a short time even when the powder concentration in the fluid gas is thin, and wear resistance characteristics even in complex shapes and arrangements such as actual machines. It is an object of the present invention to provide a wear test method and a wear test apparatus capable of observing the above.

本発明は上記目的を達成するために創案されたものであり、請求項1の発明は、粉体を含んだ流体ガス環境下に晒される実機の耐摩耗特性を評価するに際して、実機または実機を模した試験体の表面に、粉末スラリを塗布した後乾燥させて粉末層を形成し、その粉末層を形成した実機または試験体を前記流体ガス環境下に晒して実機または試験体表面に形成した粉末層の剥がれ箇所を観察する摩耗試験方法である。   The present invention was devised in order to achieve the above-mentioned object, and the invention of claim 1 relates to an actual machine or an actual machine when evaluating the wear resistance characteristics of an actual machine exposed to a fluid gas environment containing powder. A powder slurry was applied to the surface of the simulated specimen and then dried to form a powder layer. The actual machine or specimen on which the powder layer was formed was exposed to the fluid gas environment and formed on the actual machine or specimen surface. This is a wear test method for observing the peeled off part of the powder layer.

請求項2の発明は、前記粉末スラリは、土、粘土、シルト、泥、小麦粉、石灰、砥の粉、アルミナ、炭酸カルシウム、硫酸カルシウムから選ばれる粉末を水で希釈してなる請求項1に記載の摩耗試験方法である。   According to a second aspect of the present invention, in the powder slurry, the powder selected from soil, clay, silt, mud, wheat flour, lime, abrasive powder, alumina, calcium carbonate, and calcium sulfate is diluted with water. This is a wear test method.

請求項3の発明は、前記粉末スラリの粉末の平均粒径d1は、前記流体ガス中の粉体の平均粒径をd2としたとき、その粉体の平均粒径d2より小さくされる請求項1または2に記載の摩耗試験方法である。   According to a third aspect of the present invention, the average particle diameter d1 of the powder of the powder slurry is smaller than the average particle diameter d2 of the powder when the average particle diameter of the powder in the fluid gas is d2. The wear test method according to 1 or 2.

請求項4の発明は、前記試験体が、塩化ビニル樹脂で形成した熱交換器の模型からなり、その模型の表面に粉末スラリを塗布して乾燥させ、その後石炭灰を含む流体ガスを前記模型に流して剥がれ箇所を観察する請求項1〜3いずれかに記載の摩耗試験方法である。   According to a fourth aspect of the present invention, the test body comprises a heat exchanger model formed of a vinyl chloride resin, a powder slurry is applied to the surface of the model and dried, and then the fluid gas containing coal ash is supplied to the model. The wear test method according to any one of claims 1 to 3, wherein the peeled portion is flowed through the surface and observed.

請求項5の発明は、粉体を含んだ流体ガス環境下に晒される実機の耐摩耗特性を評価するための摩耗試験装置において、表面に粉末スラリを塗布した後乾燥させて粉末層を形成した実機または試験体が設置されたケーシングと、そのケーシングの上流側に設けられ、粉体を含んだ流体ガスを前記ケーシング内に均一に分配して流すための流体ガス供給手段とを備えた摩耗試験装置である。   According to a fifth aspect of the present invention, in a wear test apparatus for evaluating the wear resistance characteristics of an actual machine exposed to a fluid gas environment containing powder, a powder layer is formed by applying a powder slurry to the surface and then drying. A wear test comprising a casing in which an actual machine or a test body is installed, and a fluid gas supply means provided on the upstream side of the casing for distributing and flowing a fluid gas containing powder uniformly in the casing. Device.

本発明によれば、流体ガス中の粉体濃度が薄いなどの場合であっても、短時間で摩耗箇所を予測でき、また、実機などの複雑形状・配列であっても耐摩耗特性を観測することができる。   According to the present invention, even when the powder concentration in the fluid gas is low, the wear location can be predicted in a short time, and the wear resistance characteristics can be observed even in complex shapes and arrangements of actual machines. can do.

図1(a)は、熱交換器の摩耗試験に用いる摩耗試験装置の一例を示す概略的な側断面図であり、図1(b)は、その概略的な正面図であり、図1(c)は、熱交換器を構成する伝熱管の概略図である。FIG. 1 (a) is a schematic side sectional view showing an example of a wear test apparatus used for a heat test of a heat exchanger, and FIG. 1 (b) is a schematic front view thereof. c) is the schematic of the heat exchanger tube which comprises a heat exchanger.

以下、本発明の好適な実施の形態を添付図面にしたがって説明する。   Preferred embodiments of the present invention will be described below with reference to the accompanying drawings.

本実施の形態に係る摩耗試験方法は、粉体を含んだ流体ガス環境下に晒される実機の耐摩耗特性を評価するに際して、実機を模した試験体の表面(実機において耐摩耗特性を評価したい箇所)に、粉末スラリを塗布した後乾燥させて粉末層を形成し、その粉末層を形成した試験体を流体ガス環境下に晒して試験体表面に形成した粉末層の剥がれ箇所を観察する方法である。   When the wear test method according to the present embodiment evaluates the wear resistance characteristics of an actual machine that is exposed to a fluid gas environment containing powder, the surface of the test body imitating the actual machine (we want to evaluate the wear resistance characteristics in the actual machine). A method of observing the peeled part of the powder layer formed on the surface of the specimen by exposing the specimen on which the powder layer is formed to a fluid gas environment after applying a powder slurry to the place and drying it. It is.

評価対象の実機としては、例えば、ガスタービンブレード、ファンブレード、インペラ、プロペラ、サイクロン、サンドブラストのノズル、熱交換器などが挙げられる。試験体として、これら実機を模した試験体を用いることができる。   Examples of actual machines to be evaluated include gas turbine blades, fan blades, impellers, propellers, cyclones, sandblast nozzles, heat exchangers, and the like. As a test body, a test body simulating these actual machines can be used.

粉末スラリは、土、粘土、シルト、泥、小麦粉、石灰、砥の粉、アルミナ、炭酸カルシウム、硫酸カルシウムから選ばれる粉末を水で希釈したものである。なお、この他にも試験体に均一に塗布でき、かつ乾燥させたときに適度に剥がれやすいものであれば粉末として利用できる。   The powder slurry is obtained by diluting a powder selected from soil, clay, silt, mud, wheat flour, lime, abrasive powder, alumina, calcium carbonate, and calcium sulfate with water. In addition to this, any material that can be uniformly applied to a test body and that is easily peeled off when dried can be used as a powder.

粉末を水で希釈する際には、試験体の材質や形状に合わせ、これら試験体に均一に塗布できるように希釈倍率を調整するとよい。   When diluting the powder with water, it is preferable to adjust the dilution ratio so that it can be uniformly applied to the specimens according to the material and shape of the specimens.

また、粉末スラリの粉末の平均粒径d1は、流体ガス中の粉体の平均粒径をd2としたとき、その粉体の平均粒径d2より小さいとよい。これは、粉末スラリの粉末の平均粒径d1が流体ガス中の粉体の平均粒径d2より大きいと、試験体を流体ガス環境下に晒したときに、流体ガス中の粉体が試験体表面の粉末層の粉末粒子間の僅かな凹凸に堆積し、正確な耐摩耗特性の評価が困難となるからである。   The average particle diameter d1 of the powder of the powder slurry is preferably smaller than the average particle diameter d2 of the powder, where d2 is the average particle diameter of the powder in the fluid gas. This is because when the average particle diameter d1 of the powder of the powder slurry is larger than the average particle diameter d2 of the powder in the fluid gas, the powder in the fluid gas is exposed to the test body when the test body is exposed to the fluid gas environment. This is because a slight unevenness between the powder particles of the surface powder layer is deposited, making it difficult to accurately evaluate the wear resistance.

試験体の表面に、粉末スラリを塗布する際には、なるべく均一に塗布するとよい。これも、正確な耐摩耗特性の評価を行うためである。   When applying the powder slurry to the surface of the test body, it is preferable to apply it as uniformly as possible. This is also for accurate evaluation of wear resistance.

粉末スラリの塗布には、様々な方法を用いることができ、特に限定するものではないが、例えば、エアーブラシで吹き付けたり、試験体を粉末スラリ中に浸して塗布するとよい。   Various methods can be used for applying the powder slurry, and the method is not particularly limited. For example, the powder slurry may be sprayed with an air brush, or the test specimen may be immersed in the powder slurry.

次に、本実施の形態に係る摩耗試験方法の作用を説明する。   Next, the operation of the wear test method according to the present embodiment will be described.

試験体の表面に粉末層を形成した後、その試験体を実機と同様の配列で、流体ガス環境下に晒すと、試験体表面の粉末層が流体ガス中の粉体の衝突によって剥がれる。試験体に塗布される粉末としては、上述したように剥がれやすいものを用いているため、粉体を含んだ流体ガスを衝突させると、短時間で剥がれる。   After the powder layer is formed on the surface of the test body, when the test body is exposed to the fluid gas environment in the same arrangement as the actual machine, the powder layer on the surface of the test body is peeled off by the collision of the powder in the fluid gas. Since the powder applied to the specimen is easily peeled as described above, the powder is peeled off in a short time when the fluid gas containing the powder collides.

よって、この粉末層の剥がれ箇所を観察することで、実際には数年かかって観察される摩耗箇所を、数時間で観察することができる。   Therefore, by observing the peeling part of this powder layer, the wear part actually observed over several years can be observed in several hours.

また、流体ガス中の粉体濃度が薄い、粉体が小さい、流体ガスの速度が遅いなどの従来観測しにくかった環境下でも、試験体の表面の粉末層が剥がれやすいため、摩耗箇所を予測することができる。   In addition, it is easy to peel off the powder layer on the surface of the test specimen even in environments where it was difficult to observe in the past, such as when the powder concentration in the fluid gas is thin, the powder is small, or the fluid gas is slow. can do.

さらに、本発明では、従来のように試験片を用いず、実機を模した試験体を用いて、その摩耗箇所を観測することができるので、複雑形状・配列の耐摩耗特性への影響を把握することができる。   Furthermore, according to the present invention, the wear location can be observed using a test specimen that mimics an actual machine without using a test piece as in the prior art, so the influence on the wear resistance characteristics of complex shapes and arrangements can be grasped. can do.

また、試験体の剥がれ箇所を所定時間毎に観察することで、摩耗しやすい箇所(=粉末層が剥がれやすい箇所)、摩耗しにくい箇所(=粉末層が剥がれにくい箇所)を把握することができる。   In addition, by observing the peeling part of the specimen every predetermined time, it is possible to grasp the part that is easy to wear (= the part where the powder layer is easy to peel off) and the part that is difficult to wear (= the part where the powder layer is difficult to peel off). .

以上要するに、本実施の形態に係る摩耗試験方法によれば、実機を模した試験体の表面に、粉末スラリを塗布した後乾燥させて試験体の表面に粉末層を形成し、その粉末層を形成した試験体を流体ガス環境下に晒して試験体表面に形成した粉末層の剥がれ箇所を観察することで、流体ガス中の粉体濃度が薄いなどの場合であっても、試験体に形成された粉末層が剥がれるため、短時間で摩耗箇所を予測でき、また、実機を模した試験体を用いて観測を行えるので、実機と同様の複雑形状・配列であっても耐摩耗特性を評価することができる。   In short, according to the wear test method according to the present embodiment, a powder slurry is applied to the surface of a test body that simulates an actual machine and then dried to form a powder layer on the surface of the test body. The formed specimen is exposed to a fluid gas environment, and the powder layer formed on the specimen surface is observed to observe the peeled off part. Even if the powder concentration in the fluid gas is low, the specimen is formed on the specimen. The wear layer can be predicted in a short time because the powder layer is peeled off, and observations can be made using a specimen that simulates the actual machine, so wear resistance characteristics can be evaluated even with the same complex shape and arrangement as the actual machine. can do.

本発明では粉末スラリとして、土、粘土、シルト、泥、小麦粉、石灰、砥の粉、アルミナ、炭酸カルシウム、硫酸カルシウムから選ばれる粉末を用いているため、試験体の表面に均一に塗布することができ、また、乾燥させたときに適度に剥がれて正確な耐摩耗特性の評価を行うことができる。   In the present invention, the powder slurry is a powder selected from soil, clay, silt, mud, wheat flour, lime, abrasive powder, alumina, calcium carbonate, and calcium sulfate, so that it can be uniformly applied to the surface of the specimen. Moreover, when it dries, it peels moderately and can perform accurate evaluation of an abrasion resistance characteristic.

この粉末スラリの粉末の平均粒径d1を、流体ガス中の粉体の平均粒径をd2としたとき、その粉体の平均粒径d2より小さくすることで、試験体に塗布した粉末粒子間の僅かな凹凸に、流体ガス中の粉体が堆積するのを防止できる。これにより、正確な耐摩耗特性の評価を行うことができる。   By setting the average particle diameter d1 of the powder of this powder slurry to be smaller than the average particle diameter d2 of the powder when the average particle diameter of the powder in the fluid gas is d2, the distance between the powder particles applied to the specimen is measured. It is possible to prevent the powder in the fluid gas from being deposited on the slight unevenness. This makes it possible to accurately evaluate wear resistance characteristics.

上述の実施の形態においては、実機を模した試験体を用い、その表面に形成した粉末層の剥がれを観察したが、実機自体の表面に粉末層を形成し、その剥がれを観察してもよい。この場合も、短時間で摩耗箇所を予測できる。   In the above-described embodiment, the test specimen simulating an actual machine was used to observe the peeling of the powder layer formed on the surface. However, the powder layer may be formed on the surface of the actual machine itself, and the peeling may be observed. . Also in this case, the wear part can be predicted in a short time.

次に、熱交換器の耐摩耗特性を評価する場合について、その評価に用いる本発明の摩耗試験装置と共に説明する。   Next, the case of evaluating the wear resistance characteristics of the heat exchanger will be described together with the wear test apparatus of the present invention used for the evaluation.

図1(a)は、熱交換器の摩耗試験に用いる本発明の摩耗試験装置の一例を示す概略的な側断面図であり、図1(b)は、その概略的な正面図であり、図1(c)は、熱交換器を構成する伝熱管の概略図である。   FIG. 1 (a) is a schematic side sectional view showing an example of the wear test apparatus of the present invention used for the wear test of a heat exchanger, and FIG. 1 (b) is a schematic front view thereof. FIG.1 (c) is the schematic of the heat exchanger tube which comprises a heat exchanger.

摩耗試験に用いる本発明の摩耗試験装置をその動作と共に図1(a)、(b)により説明する。   The wear test apparatus of the present invention used for the wear test will be described with reference to FIGS. 1A and 1B together with its operation.

本発明の摩耗試験装置10は、ケーシング11内に設置した実機を模した試験体12を、実機と同様の流体ガス環境下に晒し、実機の耐摩耗特性を評価するための装置である。   The wear test apparatus 10 of the present invention is an apparatus for evaluating a wear resistance characteristic of an actual machine by exposing a test body 12 simulating an actual machine installed in a casing 11 to a fluid gas environment similar to that of the actual machine.

先ず、試験体12として、図1(c)に示すように塩化ビニル樹脂で形成した伝熱管模型13をある間隔で配列させた熱交換器の模型を用意する。この他にも様々な形状の拡張フィンを有する伝熱管を配列させた熱交換器の模型、あるいは実機を用いることができる。   First, as a test body 12, a heat exchanger model is prepared in which heat transfer tube models 13 formed of vinyl chloride resin are arranged at a certain interval as shown in FIG. In addition to this, a heat exchanger model in which heat transfer tubes having expansion fins of various shapes are arranged, or an actual machine can be used.

塩化ビニル樹脂は撥水性が大きく、粉末スラリの塗布が困難であるので、金属の錆止めなどを下地として使用したり、表面にヤスリなどで傷を付けるとよい。   Since the vinyl chloride resin has a large water repellency and it is difficult to apply a powder slurry, it is preferable to use a metal rust preventive or the like as a base or scratch the surface with a file.

熱交換器が晒される流体ガス環境として、例えば石炭灰を含んだ流体ガス環境がある。この石炭灰を含んだ流体ガス環境下での耐摩耗特性を評価したい場合、石炭灰の平均粒径は50μmと小さいので、粉末スラリの粉末としては平均粒径が50μmより小さい砥の粉を用いるとよい。   As a fluid gas environment to which the heat exchanger is exposed, for example, there is a fluid gas environment containing coal ash. When it is desired to evaluate the wear resistance in a fluid gas environment containing coal ash, the average particle size of coal ash is as small as 50 μm, so it is better to use abrasive powder with an average particle size of less than 50 μm as the powder slurry. .

砥の粉を水で希釈して粉末スラリを生成し、これを試験体12の各伝熱管模型13表面に均一に塗布し、これを乾燥させる。   Abrasive powder is diluted with water to produce a powder slurry, which is uniformly applied to the surface of each heat transfer tube model 13 of the test body 12 and dried.

この試験体12を設置するケーシング11は、主に試験体12が設置される設置ダクト11aからなり、その設置ダクト11aの上流側には、フランジFを介して上部助走ダクト16と粒子分配ダクト17が順次接続され、設置ダクト11aの下流側には、フランジFを介して下部助走ダクト18と排気ダクト19が順次接続される。   The casing 11 in which the test body 12 is installed mainly includes an installation duct 11a in which the test body 12 is installed, and an upper run-up duct 16 and a particle distribution duct 17 are connected to the upstream side of the installation duct 11a via a flange F. Are sequentially connected, and a lower auxiliary duct 18 and an exhaust duct 19 are sequentially connected to the downstream side of the installation duct 11a via a flange F.

設置ダクト11aには、フタ11bが取り付けられており、簡単に試験体12の各伝熱管模型13を設置あるいは取り出すことができるようになっている。   A lid 11b is attached to the installation duct 11a so that each heat transfer tube model 13 of the test body 12 can be easily installed or removed.

流体ガス供給手段GINは、粒子分配ダクト17内に設けられたアッシュ分配管20と、そのアッシュ分配管20に接続され、粉体(ここでは砥の粉)を空送する粉体供給ライン21と、アッシュ分配管20にボール弁23を介して接続され、流体ガスとしての空気を導入する導入管22とで構成される。 The fluid gas supply means GIN is connected to the ash distribution pipe 20 provided in the particle distribution duct 17, and a powder supply line 21 connected to the ash distribution pipe 20 to air-feed powder (here, abrasive powder). It is connected to the ash distribution pipe 20 via a ball valve 23, and includes an introduction pipe 22 for introducing air as a fluid gas.

この流体ガス供給手段GINは、粉体供給ライン21より所望の粉体をアッシュ分配管20に供給し、同時に導入管22から空気をアッシュ分配管20に供給することで、粉体を含んだ流体ガスを試験体12へ流す。 This fluid gas supply means G IN supplies powder by supplying desired powder from the powder supply line 21 to the ash distribution pipe 20 and simultaneously supplying air from the introduction pipe 22 to the ash distribution pipe 20. A fluid gas is flowed to the specimen 12.

設置ダクト11a内の試験体12に粉体を含む流体ガスが均一に流れるように上部助走ダクト16内部はハニカム構造にされる。また、下部助走ダクト18も、排気ダクト19によって流体ガスの偏流を防止するために、内部をハニカム構造にするとよい。   The inside of the upper run-up duct 16 has a honeycomb structure so that the fluid gas containing powder flows uniformly to the test body 12 in the installation duct 11a. Further, in order to prevent the fluid gas from drifting by the exhaust duct 19, the lower auxiliary duct 18 may have a honeycomb structure inside.

排気ダクト19には、流体ガス中の粉体を回収・除去するためのバグフィルタ24が接続されており、粉体が外部に流出しないようになっている。   A bag filter 24 for collecting / removing powder in the fluid gas is connected to the exhaust duct 19 so that the powder does not flow outside.

このような構造の摩耗試験装置10を用いることで、実機の流体ガス環境を模擬できる。   By using the wear test apparatus 10 having such a structure, the actual fluid gas environment can be simulated.

この摩耗試験装置10を用いて熱交換器の耐摩耗特性を評価するには、試験体12を実機と同様のガス環境下に晒すべく、アッシュ分配管20に粉体供給ライン21から所望濃度の粉体を供給すると共に導入管22から空気を導入し、かつ実機を模してその流体ガスの流量を適宜変えることで、試験体12に粉体を含んだ流体ガスを流して実機と同様の流体ガス環境下に晒す。   In order to evaluate the wear resistance characteristics of the heat exchanger using the wear test apparatus 10, the ash distribution pipe 20 is supplied with a desired concentration from the powder supply line 21 in order to expose the test body 12 to the same gas environment as the actual machine. The powder is supplied and air is introduced from the introduction pipe 22 and the flow rate of the fluid gas is changed as appropriate by imitating the actual machine. Exposure to fluid gas environment.

この際、流体ガスに含まれる粉体は、試験体12の各伝熱管模型13の表面に接触し、各伝熱管模型13の表面に形成された粉末層を削りながら流れるので、粉末層は、流体ガスの粉体がより多く接触する部分から剥がれる。   At this time, the powder contained in the fluid gas is in contact with the surface of each heat transfer tube model 13 of the test body 12 and flows while cutting the powder layer formed on the surface of each heat transfer tube model 13. The fluid gas powder is peeled off from the portion where more contact is made.

この剥がれ箇所は、実機においての摩耗箇所と見なすことができ、実際には数年かかって観察される摩耗箇所を、数時間で確認することができる。   This peeling point can be regarded as a wear point in an actual machine, and a wear point actually observed over several years can be confirmed in a few hours.

試験体12を所定時間、例えば2時間流体ガス環境下に晒した後、流体ガスを流すのを止め、設置ダクト11aから試験体12の各伝熱管模型13を取り出すなどして、粉末層の剥がれ箇所を観察することができる。   After the test body 12 is exposed to the fluid gas environment for a predetermined time, for example, 2 hours, the flow of the fluid gas is stopped, and each heat transfer tube model 13 of the test body 12 is taken out from the installation duct 11a. The place can be observed.

また、剥がれ箇所を観察した試験体12の各伝熱管模型13を再び設置ダクト11aに設置し、流体ガスを流して流体ガス環境下に晒し、試験体12の各伝熱管模型13の剥がれ箇所を、例えば4時間後、8時間後というように所定時間毎に観測し、摩耗箇所の経時変化を観察することで、どの部分が摩耗しやすいのか、またどの部分が摩耗しにくいのかといった耐摩耗特性を把握することができる。   In addition, each heat transfer tube model 13 of the test body 12 in which the peeled portion is observed is placed again in the installation duct 11a, and is exposed to a fluid gas environment by flowing a fluid gas, so that the heat transfer tube model 13 of the test body 12 is peeled off. Wear resistance characteristics such as which part is easy to wear and which part is hard to wear by observing at every predetermined time, for example, after 4 hours and after 8 hours, and observing the change of wear part over time. Can be grasped.

以上要するに、本発明の摩耗試験装置10によれば、試験体12に粉体を含んだ流体ガスを流して実機と同様の流体ガス環境下に晒し、粉末層の剥がれ箇所を観察することで、実機の摩耗箇所を短時間で確認することができ、また粉末層の剥がれ箇所を経時的に観察することで、実機の耐摩耗特性を評価することができる。   In short, according to the wear test apparatus 10 of the present invention, by flowing a fluid gas containing powder to the test body 12 and exposing it to a fluid gas environment similar to that of an actual machine, by observing the peeling part of the powder layer, The wear point of the actual machine can be confirmed in a short time, and the wear resistance characteristic of the actual machine can be evaluated by observing the peeled part of the powder layer over time.

10 摩耗試験装置
11 ケーシング
12 試験体
13 伝熱管模型
16 上部助走ダクト
17 粒子分配ダクト
18 下部助走ダクト
19 排気ダクト
20 アッシュ分配管
21 粉体供給ライン
22 導入管
23 ボール弁
24 バグフィルタ
IN 流体ガス供給手段
DESCRIPTION OF SYMBOLS 10 Abrasion test apparatus 11 Casing 12 Specimen 13 Heat transfer tube model 16 Upper run-up duct 17 Particle distribution duct 18 Lower run-up duct 19 Exhaust duct 20 Ash distribution pipe 21 Powder supply line 22 Introduction pipe 23 Ball valve 24 Bag filter G IN fluid gas Supply means

Claims (5)

粉体を含んだ流体ガス環境下に晒される実機の耐摩耗特性を評価するに際して、実機または実機を模した試験体の表面に、粉末スラリを塗布した後乾燥させて粉末層を形成し、その粉末層を形成した実機または試験体を前記流体ガス環境下に晒して実機または試験体表面に形成した粉末層の剥がれ箇所を観察することを特徴とする摩耗試験方法。   When evaluating the wear resistance characteristics of an actual machine that is exposed to a fluid gas environment containing powder, a powder slurry is applied to the surface of the actual machine or a test specimen that simulates the actual machine and then dried to form a powder layer. A wear test method characterized by observing a peeling portion of a powder layer formed on the surface of an actual machine or a test body by exposing the actual machine or the test body on which the powder layer is formed to the fluid gas environment. 前記粉末スラリは、土、粘土、シルト、泥、小麦粉、石灰、砥の粉、アルミナ、炭酸カルシウム、硫酸カルシウムから選ばれる粉末を水で希釈してなる請求項1に記載の摩耗試験方法。   The abrasion test method according to claim 1, wherein the powder slurry is obtained by diluting a powder selected from soil, clay, silt, mud, wheat flour, lime, abrasive powder, alumina, calcium carbonate, and calcium sulfate with water. 前記粉末スラリの粉末の平均粒径d1は、前記流体ガス中の粉体の平均粒径をd2としたとき、その粉体の平均粒径d2より小さくされる請求項1または2に記載の摩耗試験方法。   The wear according to claim 1 or 2, wherein the average particle diameter d1 of the powder of the powder slurry is smaller than the average particle diameter d2 of the powder when the average particle diameter of the powder in the fluid gas is d2. Test method. 前記試験体が、塩化ビニル樹脂で形成した熱交換器の模型からなり、その模型の表面に粉末スラリを塗布して乾燥させ、その後石炭灰を含む流体ガスを前記模型に流して剥がれ箇所を観察する請求項1〜3いずれかに記載の摩耗試験方法。   The test specimen consists of a model of a heat exchanger made of vinyl chloride resin. A powder slurry is applied to the surface of the model and dried, and then a flue gas containing coal ash is flowed through the model to observe the peeling location. The wear test method according to any one of claims 1 to 3. 粉体を含んだ流体ガス環境下に晒される実機の耐摩耗特性を評価するための摩耗試験装置において、表面に粉末スラリを塗布した後乾燥させて粉末層を形成した実機または試験体が設置されたケーシングと、そのケーシングの上流側に設けられ、粉体を含んだ流体ガスを前記ケーシング内に均一に分配して流すための流体ガス供給手段とを備えたことを特徴とする摩耗試験装置。   In a wear test device for evaluating the wear resistance characteristics of an actual machine exposed to a fluid gas environment containing powder, an actual machine or test body in which a powder layer is formed by applying a powder slurry to the surface and then drying is installed. A wear test apparatus, comprising: a casing, and a fluid gas supply means provided on the upstream side of the casing for distributing and flowing a fluid gas containing powder uniformly in the casing.
JP2009049258A 2009-03-03 2009-03-03 Wear test method and wear test apparatus Active JP5239943B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009049258A JP5239943B2 (en) 2009-03-03 2009-03-03 Wear test method and wear test apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009049258A JP5239943B2 (en) 2009-03-03 2009-03-03 Wear test method and wear test apparatus

Publications (2)

Publication Number Publication Date
JP2010203896A true JP2010203896A (en) 2010-09-16
JP5239943B2 JP5239943B2 (en) 2013-07-17

Family

ID=42965525

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009049258A Active JP5239943B2 (en) 2009-03-03 2009-03-03 Wear test method and wear test apparatus

Country Status (1)

Country Link
JP (1) JP5239943B2 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5728304U (en) * 1980-07-23 1982-02-15
JPS60182518A (en) * 1984-02-29 1985-09-18 Fujitsu Ltd Method for evaluating durability of magnetic disk
JPH07293818A (en) * 1994-04-25 1995-11-10 Ishikawajima Harima Heavy Ind Co Ltd Bed material for fluidized bed plant
JPH0862114A (en) * 1994-08-25 1996-03-08 Ishikawajima Harima Heavy Ind Co Ltd High temperaure blast erosion test equipment
JP2000074807A (en) * 1998-08-28 2000-03-14 Mazda Motor Corp Paint film scratching test method and test device
JP2004012323A (en) * 2002-06-07 2004-01-15 Ebara Corp Method of predicting wear speed of composite coating film, and coating method using the method
JP2007024597A (en) * 2005-07-13 2007-02-01 Nissan Motor Co Ltd Inspection method and inspection device for tooth contact state of gear wheel component

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5728304U (en) * 1980-07-23 1982-02-15
JPS60182518A (en) * 1984-02-29 1985-09-18 Fujitsu Ltd Method for evaluating durability of magnetic disk
JPH07293818A (en) * 1994-04-25 1995-11-10 Ishikawajima Harima Heavy Ind Co Ltd Bed material for fluidized bed plant
JPH0862114A (en) * 1994-08-25 1996-03-08 Ishikawajima Harima Heavy Ind Co Ltd High temperaure blast erosion test equipment
JP2000074807A (en) * 1998-08-28 2000-03-14 Mazda Motor Corp Paint film scratching test method and test device
JP2004012323A (en) * 2002-06-07 2004-01-15 Ebara Corp Method of predicting wear speed of composite coating film, and coating method using the method
JP2007024597A (en) * 2005-07-13 2007-02-01 Nissan Motor Co Ltd Inspection method and inspection device for tooth contact state of gear wheel component

Also Published As

Publication number Publication date
JP5239943B2 (en) 2013-07-17

Similar Documents

Publication Publication Date Title
CN106000007B (en) A kind of simulation system and analogy method in wet desulphurization flow field
Desale et al. Particle size effects on the slurry erosion of aluminium alloy (AA 6063)
Grewal et al. Design and development of high-velocity slurry erosion test rig using CFD
Houser et al. The factors influencing the abrasion efficiency of saltating grains on a clay‐crusted playa
CN105868501B (en) Thermal barrier coating erosion rate model and the erosion working condition simulation method of turbo blade containing coating
CN110333043B (en) Convenient and small near-ground atmospheric boundary layer wind tunnel and application thereof in crowd risk exposure assessment
CN108414432A (en) A kind of experimental rig and test method of the spray corrosion of simulation rock sample
More et al. Study of the parametric performance of solid particle erosion wear under the slurry pot test rig
JP5239943B2 (en) Wear test method and wear test apparatus
Sommer et al. Wind tunnel experiments: saltation is necessary for wind-packing
Fossum et al. On the use of computational fluid dynamics to investigate aerosol dispersion in an industrial environment: a case study
Pagalthivarthi et al. Applications of materials wear testing to solids transport via centrifugal slurry pumps
CN212722503U (en) Dust fall agent dust fall effect evaluation device
Chen et al. A microclimate model to simulate neutral salt spray testing for corrosion inhibitor evaluation and functional coating development
Isomidinov et al. Hydrodynamics and aerodynamics of rotor filter cleaner for cleaning dusty gases
CN105352879B (en) A kind of japanning shaft tower coating corrosion residue lifetime estimation method
JP7249145B2 (en) Conduit health diagnostic method
Noui-Mehidi et al. Study of erosion behaviour of paint layers for multilayer paint technique applications in slurry erosion
Van Pelt et al. Portable wind tunnels for fields testing of soils and natural surfaces
Kumar et al. Performance analysis of CA6NM hydro-turbine steel under accelerated conditions by using an indigenously developed slurry erosion tester
JP5182035B2 (en) Method for testing atmospheric corrosion of steel
JP2019105448A (en) Prediction method of powder dust behavior in building
Naess et al. Experimental investigation of particulate fouling in waste heat recovery from the aluminum industry
CN105547985A (en) Closed type wire sandstorm erosion simulation test device and closed type wire sandstorm erosion simulation test method
Maghirang et al. Relative ventilation effectiveness in a mechanically ventilated airspace under isothermal conditions

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120126

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121218

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121225

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130208

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130305

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130318

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160412

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 5239943

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160412

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250