JP2010203871A - Sensor device - Google Patents

Sensor device Download PDF

Info

Publication number
JP2010203871A
JP2010203871A JP2009048780A JP2009048780A JP2010203871A JP 2010203871 A JP2010203871 A JP 2010203871A JP 2009048780 A JP2009048780 A JP 2009048780A JP 2009048780 A JP2009048780 A JP 2009048780A JP 2010203871 A JP2010203871 A JP 2010203871A
Authority
JP
Japan
Prior art keywords
detection electrode
electrode
liquid
detection
lead line
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009048780A
Other languages
Japanese (ja)
Inventor
Takeshi Kashiwagi
健 柏木
義典 ▲高▼嶋
Yoshinori Takashima
Motoki Ogata
基樹 緒方
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Original Assignee
Panasonic Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp filed Critical Panasonic Corp
Priority to JP2009048780A priority Critical patent/JP2010203871A/en
Priority to PCT/JP2009/003397 priority patent/WO2010010683A1/en
Priority to US13/054,645 priority patent/US8474315B2/en
Publication of JP2010203871A publication Critical patent/JP2010203871A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Measurement Of Levels Of Liquids Or Fluent Solid Materials (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a sensor device which detects the liquid level and the liquid quality of a measuring object liquid with high accuracy without providing a complicated arithmetic device. <P>SOLUTION: This sensor device includes a first detecting electrode 22 which is always located in the measuring object liquid, a second detecting electrode 23 which measures capacitance between electrodes without being affected by a dielectric constant that the measuring object liquid has, a third detecting electrode 24 which measures the liquid level of the measuring object liquid, and a fourth detecting electrode 25 which is always located outside the measuring object liquid. In the device, a first canceling electrode 32 is disposed along a leader 27 of the first detecting electrode 22 and a second canceling electrode 40 is disposed between a leader 28 of the second detecting electrode and a leader 35 of the third detecting electrode 24, while a third canceling electrode 42 is disposed along a leader 36 of the fourth detecting electrode 25. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、容器内に保管された液体の液位を検出するセンサ装置に関し、特に自動車、建築機械等のエンジンオイルや燃料の液位や液質を検出するセンサ装置に関するものである。   The present invention relates to a sensor device that detects the level of liquid stored in a container, and more particularly to a sensor device that detects the level and quality of engine oil and fuel in automobiles, construction machines, and the like.

自動車、建築機械等のエンジンオイルや燃料の液位を検出するセンサ装置としては図6、図7に示すようなものが知られている(特許文献1参照)。図6は従来のセンサ装置の検出部の正面図を示したもので、この図6において、1は上下に延びる長方形の基板で、この基板1の下端部には櫛歯形状の第1の検出電極2が、略中央部には櫛歯形状の第2の検出電極3がそれぞれ設けられている。そして、前記第1の検出電極2は上下に所定の間隔を置いて配置された複数の線状電極4からなり、これらは基板1の両側縁に沿って上下に延びる引出し線5,6に交互に接続されている。また、前記第2の検出電極3は左右に所定の間隔を置いて上端部から下端部に延びるように配置された複数の線状電極7からなり、かつこれらの線状電極7は上端がリード線8,9に交互に接続されている。   As sensor devices for detecting the level of engine oil or fuel for automobiles, construction machines, etc., those shown in FIGS. 6 and 7 are known (see Patent Document 1). FIG. 6 is a front view of a detection unit of a conventional sensor device. In FIG. 6, reference numeral 1 denotes a rectangular substrate extending vertically, and a first detection of a comb-like shape is provided at the lower end of the substrate 1. The electrode 2 is provided with a comb-shaped second detection electrode 3 at a substantially central portion. The first detection electrode 2 is composed of a plurality of linear electrodes 4 arranged at predetermined intervals in the vertical direction, and these are alternately arranged on lead lines 5 and 6 extending vertically along both side edges of the substrate 1. It is connected to the. The second detection electrode 3 includes a plurality of linear electrodes 7 arranged so as to extend from the upper end portion to the lower end portion at a predetermined interval on the left and right sides, and the upper ends of these linear electrodes 7 are leads. The lines 8 and 9 are alternately connected.

液位測定時には前記検出部は被測定液中に浸漬されるもので、この時、前記第1の検出電極2は常に被測定液中に浸漬するように配置される。一方、前記第2の検出電極3は被測定液面と交差し、かつ液中に浸漬する部分は液位の昇降に伴って増減することになる。   At the time of liquid level measurement, the detection unit is immersed in the liquid to be measured. At this time, the first detection electrode 2 is always arranged to be immersed in the liquid to be measured. On the other hand, the second detection electrode 3 intersects the liquid surface to be measured, and the portion immersed in the liquid increases or decreases as the liquid level rises and falls.

図7は上記検出部を用いた検出回路図を示したもので、発振回路10と処理回路17とよりなる。発振回路10はインバータ11,12,13と、抵抗14とを有し、前記インバータ12,13間にはそれぞれアナログスイッチ15,16を介して前記検出部における第1、第2の検出電極2,3が接続されている。そして、マイクロコンピュータを有する処理回路17は最初にアナログスイッチ15を閉じ、前記抵抗14と、第1の検出電極2の容量で決定される発振周波数から被測定液の誘電率を計算して記憶する。続いて処理回路17は一方のアナログスイッチ15に代えて他方のアナログスイッチ16を閉じ、前記抵抗14と、第2の検出電極3の容量とで決定される発振周波数と前記被測定液の誘電率とから液位を算出するもので、被測定液の誘電率が変動した場合でも正確な液位を知ることができるものである。   FIG. 7 shows a detection circuit diagram using the above-described detection unit, and includes an oscillation circuit 10 and a processing circuit 17. The oscillation circuit 10 includes inverters 11, 12, and 13 and a resistor 14, and the first and second detection electrodes 2 and 2 in the detection unit are connected between the inverters 12 and 13 via analog switches 15 and 16, respectively. 3 is connected. The processing circuit 17 having a microcomputer first closes the analog switch 15 and calculates and stores the dielectric constant of the liquid to be measured from the oscillation frequency determined by the resistor 14 and the capacitance of the first detection electrode 2. . Subsequently, the processing circuit 17 closes the other analog switch 16 in place of the one analog switch 15, and the oscillation frequency determined by the resistor 14 and the capacitance of the second detection electrode 3 and the dielectric constant of the liquid to be measured. The liquid level is calculated from the above, and the accurate liquid level can be known even when the dielectric constant of the liquid to be measured fluctuates.

なお、この出願の発明に関する先行技術文献情報としては、例えば、特許文献1が知られている。
特開昭63−79016号公報
As prior art document information relating to the invention of this application, for example, Patent Document 1 is known.
JP-A-63-79016

しかしながら、上記した従来のセンサ装置においては、常に被測定液中に浸漬される第1の検出電極2間の容量で決定される発振回路10の発振周波数より被測定液の誘電率を算出して記憶した後、被測定液面と交差し、そして、液中に浸漬する部分は液位の昇降に伴って増減する第2の検出電極3間の容量で決定される発振回路10の発振周波数と前記被測定液の誘電率とから被測定液の液位を演算するようにしているため、演算装置が複雑で大がかりになってしまうという問題点を有していた。   However, in the conventional sensor device described above, the dielectric constant of the liquid to be measured is calculated from the oscillation frequency of the oscillation circuit 10 that is always determined by the capacitance between the first detection electrodes 2 immersed in the liquid to be measured. After storing, the oscillation frequency of the oscillation circuit 10 determined by the capacitance between the second detection electrodes 3 that intersects with the liquid surface to be measured and is increased or decreased as the liquid level rises or lowers. Since the liquid level of the liquid to be measured is calculated from the dielectric constant of the liquid to be measured, there is a problem that the calculation device becomes complicated and large.

本発明は上記従来の問題点を解決するもので、複雑な演算装置を設けることなく、被測定液の液位や液質を高精度で検出することができるセンサ装置を提供することを目的とするものである。   The present invention solves the above-described conventional problems, and an object thereof is to provide a sensor device that can detect the liquid level and liquid quality of a liquid to be measured with high accuracy without providing a complicated arithmetic device. To do.

上記目的を達成するために、本発明は以下の構成を有するものである。   In order to achieve the above object, the present invention has the following configuration.

本発明の請求項1に記載の発明は、垂直方向に立設した検出部に、下方から上方にかけて常に被測定液中にある第1の検出電極と、被測定液が有する誘電率の影響を受けることなく電極間の静電容量を測定する第2の検出電極と、被測定液の液位を測定する第3の検出電極と、常に被測定液外にある第4の検出電極を設けるとともに、前記第3の検出電極が被測定液中に浸漬されている部分の長さに比例する時間だけ充電し、かつ前記第3の検出電極が被測定液外にある部分の長さに比例する時間だけ前記充電された電荷を放電するという動作を繰り返す回路を備え、さらに前記第1の検出電極と第2の検出電極の共通引出し線と、前記第3の検出電極と第4の検出電極の共通引出し線とにパルスをそれぞれ入力するパルス発生回路を設けるとともに、前記第1の検出電極と第2の検出電極の共通引出し線に沿って延びる前記第1の検出電極の引出し線に沿って第1のキャンセル電極を、前記第1の検出電極と第2の検出電極の共通引出し線に沿って延びる前記第2の検出電極の引出し線に沿って第2のキャンセル電極を、前記第3の検出電極と第4の検出電極の共通引出し線に沿って延びる前記第3の検出電極の引出し線に沿って第3のキャンセル電極を、前記第3の検出電極と第4の検出電極の共通引出し線に沿って延びる前記第4の検出電極の引出し線に沿って第4のキャンセル電極をそれぞれ配置し、前記第1のキャンセル電極、第2のキャンセル電極、第3のキャンセル電極、第4のキャンセル電極に前記パルスを反転した信号を入力することにより、前記第1の検出電極の引出し線と、前記第1の検出電極と第2の検出電極の共通引出し線との間に蓄積された電荷、前記第2の検出電極の引出し線と、前記第1の検出電極と第2の検出電極の共通引出し線との間に蓄積された電荷、前記第3の検出電極の引出し線と、前記第3の検出電極と第4の検出電極の共通引出し線との間に蓄積された電荷、および前記第4の検出電極の引出し線と、前記第3の検出電極と第4の検出電極の共通引出し線との間に蓄積された電荷をそれぞれキャンセルするようにしたもので、この構成によれば、各検出電極の引出し線間に発生する静電容量をキャンセルすることができるため、複雑な演算装置を設けることなく液位や液質に正確に比例する電圧を出力することができ、これにより、高精度のセンサを容易に提供することができるという作用効果を有するものである。   According to the first aspect of the present invention, the influence of the first detection electrode that is always in the liquid to be measured from the lower side to the upper side and the dielectric constant of the liquid to be measured is applied to the detection unit that is erected in the vertical direction. A second detection electrode that measures the capacitance between the electrodes without receiving, a third detection electrode that measures the liquid level of the liquid to be measured, and a fourth detection electrode that is always outside the liquid to be measured are provided. The third detection electrode is charged for a time proportional to the length of the portion immersed in the liquid to be measured, and the third detection electrode is proportional to the length of the portion outside the liquid to be measured. A circuit that repeats the operation of discharging the charged charge for a period of time, and further includes a common lead line for the first detection electrode and the second detection electrode, and a third detection electrode and a fourth detection electrode. Provide a pulse generation circuit to input pulses to the common lead line. Both the first cancel electrode, the first detection electrode, and the second detection electrode extend along a lead line of the first detection electrode that extends along a common lead line of the first detection electrode and the second detection electrode. The second cancel electrode extends along the common lead line of the third detection electrode and the fourth detection electrode along the lead line of the second detection electrode extending along the common lead line of the second detection electrode. A third cancel electrode extends along a lead line of the third detection electrode, and a third cancel electrode extends along a lead line of the fourth detection electrode extending along a common lead line of the third detection electrode and the fourth detection electrode. A fourth cancel electrode is disposed, and a signal obtained by inverting the pulse is input to the first cancel electrode, the second cancel electrode, the third cancel electrode, and the fourth cancel electrode. 1 detection power , The charge accumulated between the first detection electrode and the common extraction line of the second detection electrode, the extraction line of the second detection electrode, the first detection electrode and the second detection electrode Charge accumulated between the common lead lines of the detection electrodes, and the charge line accumulated between the lead lines of the third detection electrode and the common lead lines of the third detection electrode and the fourth detection electrode. The charge and the charge accumulated between the lead line of the fourth detection electrode and the common lead line of the third detection electrode and the fourth detection electrode are canceled, respectively. Therefore, the capacitance generated between the lead lines of each detection electrode can be canceled, so that a voltage that is accurately proportional to the liquid level and liquid quality can be output without providing a complicated arithmetic unit. This makes it easy to provide highly accurate sensors It has the effect of being able to.

以上のように本発明のセンサ装置は、垂直方向に立設した検出部に、下方から上方にかけて常に被測定液中にある第1の検出電極と、被測定液が有する誘電率の影響を受けることなく電極間の静電容量を測定する第2の検出電極と、被測定液の液位を測定する第3の検出電極と、常に被測定液外にある第4の検出電極を設けるとともに、前記第3の検出電極が被測定液中に浸漬されている部分の長さに比例する時間だけ充電し、かつ前記第3の検出電極が被測定液外にある部分の長さに比例する時間だけ前記充電された電荷を放電するという動作を繰り返す回路を備え、さらに前記第1の検出電極と第2の検出電極の共通引出し線と、前記第3の検出電極と第4の検出電極の共通引出し線とにパルスをそれぞれ入力するパルス発生回路を設けるとともに、前記第1の検出電極と第2の検出電極の共通引出し線に沿って延びる前記第1の検出電極の引出し線に沿って第1のキャンセル電極を、前記第1の検出電極と第2の検出電極の共通引出し線に沿って延びる前記第2の検出電極の引出し線に沿って第2のキャンセル電極を、前記第3の検出電極と第4の検出電極の共通引出し線に沿って延びる前記第3の検出電極の引出し線に沿って第3のキャンセル電極を、前記第3の検出電極と第4の検出電極の共通引出し線に沿って延びる前記第4の検出電極の引出し線に沿って第4のキャンセル電極をそれぞれ配置し、前記第1のキャンセル電極、第2のキャンセル電極、第3のキャンセル電極、第4のキャンセル電極に前記パルスを反転した信号を入力することにより、前記第1の検出電極の引出し線と、前記第1の検出電極と第2の検出電極の共通引出し線との間に蓄積された電荷、前記第2の検出電極の引出し線と、前記第1の検出電極と第2の検出電極の共通引出し線との間に蓄積された電荷、前記第3の検出電極の引出し線と、前記第3の検出電極と第4の検出電極の共通引出し線との間に蓄積された電荷、および前記第4の検出電極の引出し線と、前記第3の検出電極と第4の検出電極の共通引出し線との間に蓄積された電荷をそれぞれキャンセルするようにしているため、各検出電極の引出し線間に発生する静電容量をキャンセルすることができ、これにより、複雑な演算装置を設けることなく液位や液質に正確に比例する電圧を出力することができるため、高精度のセンサを容易に提供することができるという優れた効果を奏するものである。   As described above, the sensor device according to the present invention is affected by the first detection electrode in the liquid to be measured and the dielectric constant of the liquid to be measured from the lower side to the upper side on the detection unit standing in the vertical direction. Without providing a second detection electrode for measuring the capacitance between the electrodes, a third detection electrode for measuring the liquid level of the liquid to be measured, and a fourth detection electrode that is always outside the liquid to be measured; Charging is performed for a time proportional to the length of the portion where the third detection electrode is immersed in the liquid to be measured, and the time is proportional to the length of the portion where the third detection electrode is outside the liquid to be measured. A circuit that repeats the operation of discharging the charged electric charge, and a common lead line for the first detection electrode and the second detection electrode, and a common line for the third detection electrode and the fourth detection electrode. A pulse generation circuit is provided to input pulses to the leader line. And a first cancel electrode extending along a lead line of the first detection electrode extending along a common lead line of the first detection electrode and the second detection electrode, and the first detection electrode and the second detection electrode extending along the lead line of the first detection electrode. The second cancel electrode extends along the common lead line of the third detection electrode and the fourth detection electrode along the lead line of the second detection electrode extending along the common lead line of the second detection electrode. A third cancel electrode extends along a lead line of the third detection electrode, and a third cancel electrode extends along a lead line of the fourth detection electrode extending along a common lead line of the third detection electrode and the fourth detection electrode. A fourth cancel electrode is disposed, and a signal obtained by inverting the pulse is input to the first cancel electrode, the second cancel electrode, the third cancel electrode, and the fourth cancel electrode. 1 detection The charge accumulated between the lead wire of the pole and the common lead wire of the first detection electrode and the second detection electrode, the lead wire of the second detection electrode, the first detection electrode and the first detection electrode The charge accumulated between the common lead lines of the two detection electrodes, the charge accumulated between the lead lines of the third detection electrode and the common lead lines of the third detection electrode and the fourth detection electrode. And the charges accumulated between the lead lines of the fourth detection electrode and the common lead lines of the third detection electrode and the fourth detection electrode are respectively canceled. Capacitance generated between the lead wires of the detection electrode can be canceled, so that a voltage that is accurately proportional to the liquid level and liquid quality can be output without providing a complicated arithmetic unit. It is possible to easily provide a sensor with high accuracy. The effect is achieved.

以下、本発明の一実施の形態におけるセンサ装置について、図面を参照しながら説明する。   Hereinafter, a sensor device according to an embodiment of the present invention will be described with reference to the drawings.

図1は本発明の一実施の形態におけるセンサ装置の検出部の正面図を示したもので、この図1において、21は上下に延びる長方形のポリイミドフィルム等からなる検出部で、この検出部21の下端部には櫛歯形状のカーボン等からなる一対の第1の検出電極22を設けている。また、前記第1の検出電極22の上部には櫛歯形状のカーボン等からなる一対の第2の検出電極23を設け、そして、この第2の検出電極23の上部には同じく櫛歯形状のカーボン等からなる一対の第3の検出電極24を設け、さらに前記第3の検出電極24の上部には同じく櫛歯形状のカーボン等からなる一対の第4の検出電極25を設けている。また、前記第1、第2の検出電極22,23は共通引出し線26と各々の引出し線27,28によって端子29,30,31に接続されているものである。32は端子33に接続され、かつ前記第1の検出電極22の引出し線27に沿って配置した第1のキャンセル電極で、この第1のキャンセル電極32は前記第1の検出電極22の上端部にわたって設けている。また、前記第3、第4の検出電極24,25は共通引出し線34と各々の引出し線35,36によって端子37,38,39に接続されているものである。40は端子41に接続され、かつ前記第2の検出電極23の引出し線28と第3の検出電極24の引出し線35との間に配置した第2のキャンセル電極で、この第2のキャンセル電極は前記第2の検出電極23の上端部と第3の検出電極24の下端部にわたって設けている。42は端子43に接続され、かつ前記第4の検出電極25の引出し線36に沿って配置した第3のキャンセル電極で、この第3のキャンセル電極42は前記第4の検出電極25の下端部にわたって設けている。   FIG. 1 shows a front view of a detection unit of a sensor device according to an embodiment of the present invention. In FIG. 1, reference numeral 21 denotes a detection unit made of a rectangular polyimide film or the like extending vertically. A pair of first detection electrodes 22 made of comb-shaped carbon or the like is provided at the lower end of the first electrode. In addition, a pair of second detection electrodes 23 made of comb-shaped carbon or the like is provided on the upper portion of the first detection electrode 22, and the upper portion of the second detection electrode 23 is similarly comb-shaped. A pair of third detection electrodes 24 made of carbon or the like is provided, and a pair of fourth detection electrodes 25 made of comb-like carbon or the like is provided on the third detection electrode 24. The first and second detection electrodes 22, 23 are connected to terminals 29, 30, 31 by a common lead line 26 and respective lead lines 27, 28. Reference numeral 32 denotes a first cancel electrode which is connected to the terminal 33 and is disposed along the lead line 27 of the first detection electrode 22, and the first cancel electrode 32 is the upper end portion of the first detection electrode 22. It is provided over. The third and fourth detection electrodes 24, 25 are connected to terminals 37, 38, 39 by a common lead line 34 and lead lines 35, 36, respectively. Reference numeral 40 denotes a second cancel electrode which is connected to the terminal 41 and is arranged between the lead line 28 of the second detection electrode 23 and the lead line 35 of the third detection electrode 24. The second cancel electrode Is provided across the upper end of the second detection electrode 23 and the lower end of the third detection electrode 24. Reference numeral 42 denotes a third cancel electrode which is connected to the terminal 43 and is disposed along the lead line 36 of the fourth detection electrode 25. The third cancel electrode 42 is a lower end portion of the fourth detection electrode 25. It is provided over.

図2は図1における第2の検出電極23のA−A線での断面図を示したもので、この図2に示すように、第2の検出電極23は、対向する電極44全体を絶縁物45を介して金属層46で覆うことにより構成しているもので、このような構成とすることにより、対向する電極44間に発生する電気力線は被測定液内を通過しないため、第2の検出電極23で測定される対向する電極44間の静電容量は被測定液が有する誘電率の影響を受けることがなくなるものである。   FIG. 2 is a cross-sectional view taken along line AA of the second detection electrode 23 in FIG. 1. As shown in FIG. 2, the second detection electrode 23 insulates the entire opposing electrode 44. In this configuration, the lines of electric force generated between the opposing electrodes 44 do not pass through the liquid to be measured. The capacitance between the opposing electrodes 44 measured by the two detection electrodes 23 is not affected by the dielectric constant of the liquid to be measured.

なお、前記絶縁物45としては被測定液または被測定液を含浸させた固形物あるいは被測定液と実質的に同じ誘電率温度特性を持つ物質を選択するのが望ましい。これにより、液質測定における温度変化の影響を除去することができるものである。   As the insulator 45, it is desirable to select a liquid to be measured, a solid material impregnated with the liquid to be measured, or a substance having substantially the same dielectric constant temperature characteristics as the liquid to be measured. Thereby, the influence of the temperature change in liquid quality measurement can be removed.

図3は本発明の一実施の形態におけるセンサ装置の検出回路図を示したもので、この図3において、前記検出部21の端子29,37にはパルス発生回路51からのパルスを入力し、かつ前記検出部21の端子33,41,43には各々レベル調整器52,53,54を介して前記パルスを反転させた信号を入力する。この検出回路ではパルス発生回路51の最終段にあるNORゲートの入力から分岐させた信号を前記検出部21の端子33,41,43に入力している。   FIG. 3 shows a detection circuit diagram of the sensor device according to one embodiment of the present invention. In FIG. 3, the pulse from the pulse generation circuit 51 is input to the terminals 29 and 37 of the detection unit 21. In addition, signals obtained by inverting the pulses are input to the terminals 33, 41, and 43 of the detection unit 21 via level adjusters 52, 53, and 54, respectively. In this detection circuit, a signal branched from the input of the NOR gate in the final stage of the pulse generation circuit 51 is input to the terminals 33, 41, 43 of the detection unit 21.

そして、前記検出部21の端子29,37にパルス発生回路51からのパルスを入力すると、前記検出部21の端子29,30間には第1の検出電極22による静電容量に蓄積される電荷と、共通引出し線26と第1の検出電極22の引出し線27間の静電容量に蓄積される電荷が存在し、また、前記検出部21の端子29,31間には第2の検出電極23による静電容量に蓄積される電荷と、共通引出し線26と第2の検出電極23の引出し線28間の静電容量に蓄積される電荷が存在する。これと同様に、前記検出部21の端子37,38間には第3の検出電極24による静電容量に蓄積される電荷と、共通引出し線34と第3の検出電極24の引出し線35間の静電容量に蓄積される電荷が存在し、また、前記検出部21の端子37,39間には第4の検出電極25による静電容量に蓄積される電荷と、共通引出し線34と第4の検出電極25の引出し線36間の静電容量に蓄積される電荷が存在することになる。   When a pulse from the pulse generation circuit 51 is input to the terminals 29 and 37 of the detection unit 21, the electric charge accumulated in the capacitance of the first detection electrode 22 is between the terminals 29 and 30 of the detection unit 21. In addition, there is a charge accumulated in the capacitance between the common lead line 26 and the lead line 27 of the first detection electrode 22, and the second detection electrode is between the terminals 29 and 31 of the detection unit 21. There are electric charges accumulated in the electrostatic capacity 23 and electric charges accumulated in the electrostatic capacity between the common lead line 26 and the lead line 28 of the second detection electrode 23. Similarly, between the terminals 37 and 38 of the detection unit 21, the electric charge accumulated in the electrostatic capacitance by the third detection electrode 24 and the space between the common lead line 34 and the lead line 35 of the third detection electrode 24. The charge accumulated in the capacitance of the fourth detection electrode 25, the common lead line 34, and the first charge are provided between the terminals 37 and 39 of the detection unit 21. There is an electric charge accumulated in the capacitance between the lead lines 36 of the four detection electrodes 25.

そしてまた、本発明の一実施の形態におけるセンサ装置においては、前記第1の検出電極22の引出し線27に沿って第1のキャンセル電極32を、前記第2の検出電極23の引出し線28と第3の検出電極24の引出し線35との間に第2のキャンセル電極40を、前記第4の検出電極25の引出し線36に沿って第3のキャンセル電極42をそれぞれ配置し、前記第1のキャンセル電極32、第2のキャンセル電極40、第3のキャンセル電極42に各々レベル調整器52,53,54を介して前記パルス発生回路51からのパルスを反転させた信号を入力することにより、前記第1の検出電極22の引出し線27と、前記第1の検出電極22と第2の検出電極23の共通引出し線26との間に蓄積された電荷、そして前記第2の検出電極23の引出し線28と、前記第1の検出電極22と第2の検出電極23の共通引出し線26との間に蓄積された電荷、さらに前記第3の検出電極24の引出し線35と、前記第3の検出電極24と第4の検出電極25の共通引出し線34との間に蓄積された電荷、そして前記第4の検出電極25の引出し線36と、前記第3の検出電極24と第4の検出電極25の共通引出し線34との間に蓄積された電荷をそれぞれキャンセルするようにしているものである。   In the sensor device according to the embodiment of the present invention, the first cancel electrode 32 is connected to the lead line 28 of the second detection electrode 23 along the lead line 27 of the first detection electrode 22. A second cancel electrode 40 is disposed between the lead line 35 of the third detection electrode 24 and a third cancel electrode 42 is disposed along the lead line 36 of the fourth detection electrode 25. By inputting a signal obtained by inverting the pulse from the pulse generation circuit 51 to the cancel electrode 32, the second cancel electrode 40, and the third cancel electrode 42 through the level adjusters 52, 53, and 54, respectively, Charges accumulated between the lead line 27 of the first detection electrode 22, the common lead line 26 of the first detection electrode 22 and the second detection electrode 23, and the second detection voltage 23, the charge accumulated between the first detection electrode 22 and the common detection line 26 of the second detection electrode 23, and the extraction line 35 of the third detection electrode 24; Charge accumulated between the third detection electrode 24 and the common lead line 34 of the fourth detection electrode 25, the lead line 36 of the fourth detection electrode 25, the third detection electrode 24, The charge accumulated between the four lead electrodes 34 of the four detection electrodes 25 is canceled.

これにより、端子29,30間、端子29,31間、端子37,38間、端子37,39間で測定される静電容量は各々櫛歯形状の検出電極22,23,24,25部で測定される静電容量のみとなるものである。   As a result, the capacitance measured between the terminals 29 and 30, between the terminals 29 and 31, between the terminals 37 and 38, and between the terminals 37 and 39 is at the comb-shaped detection electrodes 22, 23, 24, and 25, respectively. It is only the capacitance to be measured.

55は第1の差動増幅器で、この第1の差動増幅器55の一端子には前記検出部21の端子30と第1の抵抗56の一端との節点電圧が入力される。これと同様に、第2の差動増幅器57、第3の差動増幅器58、第4の差動増幅器60の一端子の各々には前記検出部21の端子31と第2の抵抗58の一端との節点電圧、前記検出部21の端子38と第3の抵抗59の一端との節点電圧、前記検出部21の端子39と第4の抵抗61との節点電圧が入力されるとともに+端子には図示していない閾値発生手段からの閾値が入力される。なお、本発明の一実施の形態においては、この閾値を電源電圧の1/4としているものである。また、第1、第2、第3、第4の抵抗56,58,59,61の他端は各々第1、第2、第3、第4の差動増幅器55,57,58,60の出力側に接続する。さらに、各々の差動増幅器の入出力間にはダイオードと抵抗とが直列に接続されているものである。   Reference numeral 55 denotes a first differential amplifier. A node voltage between the terminal 30 of the detection unit 21 and one end of the first resistor 56 is input to one terminal of the first differential amplifier 55. Similarly, one terminal of each of the second differential amplifier 57, the third differential amplifier 58, and the fourth differential amplifier 60 is connected to the terminal 31 of the detection unit 21 and one end of the second resistor 58. , The node voltage between the terminal 38 of the detection unit 21 and one end of the third resistor 59, and the node voltage between the terminal 39 and the fourth resistor 61 of the detection unit 21 are input to the + terminal. Is inputted with a threshold value from a threshold value generating means (not shown). In the embodiment of the present invention, this threshold is set to 1/4 of the power supply voltage. The other ends of the first, second, third, and fourth resistors 56, 58, 59, and 61 are connected to the first, second, third, and fourth differential amplifiers 55, 57, 58, and 60, respectively. Connect to the output side. Further, a diode and a resistor are connected in series between the input and output of each differential amplifier.

これにより、第1の検出電極22、第2の検出電極23、第3の検出電極24、第4の検出電極25がそれぞれ第1の抵抗56と第1の差動増幅器55、第2の抵抗58と第2の差動増幅器57、第3の抵抗59と第3の差動増幅器58、第4の抵抗61と第4の差動増幅器60とに接続される。この時、第1、第3、第4の検出電極22,24,25がすべて被測定液外にある状態で第1の検出電極22の電極間容量と第1の抵抗56とで決める時定数と、第3の検出電極24の電極間容量と第3の抵抗59とで決まる時定数と、第4の検出電極25の電極間容量と第4の抵抗61とで決まる時定数は実質的に等しくなるようにしている。そして、第1の検出電極22と第2の検出電極23をともに被測定液中に浸漬させた状態で、第2の検出電極23と第2の抵抗58とで決まる時定数は第1の検出電極22の電極間容量と第1の抵抗56とで決まる時定数よりも小さくなるようにしている。   As a result, the first detection electrode 22, the second detection electrode 23, the third detection electrode 24, and the fourth detection electrode 25 are connected to the first resistor 56, the first differential amplifier 55, and the second resistor, respectively. 58, the second differential amplifier 57, the third resistor 59, the third differential amplifier 58, the fourth resistor 61, and the fourth differential amplifier 60. At this time, a time constant determined by the interelectrode capacitance of the first detection electrode 22 and the first resistor 56 in a state where the first, third, and fourth detection electrodes 22, 24, and 25 are all outside the liquid to be measured. The time constant determined by the interelectrode capacitance of the third detection electrode 24 and the third resistor 59 and the time constant determined by the interelectrode capacitance of the fourth detection electrode 25 and the fourth resistor 61 are substantially equal. To be equal. The time constant determined by the second detection electrode 23 and the second resistor 58 in a state where both the first detection electrode 22 and the second detection electrode 23 are immersed in the liquid to be measured is the first detection value. The time constant determined by the interelectrode capacitance of the electrode 22 and the first resistor 56 is made smaller.

次に、前記第1の差動増幅器55の出力電位は第1の比較手段62において、図示していない閾値発生手段からの閾値と比較される。これと同様に、前記第2の差動増幅器57の出力電位、第3の差動増幅器58の出力電位および第4の差動増幅器60の出力電位はそれぞれコンパレータからなる第2の比較手段63、第3の比較手段64および第4の比較手段65において、図示していない閾値発生手段からの閾値と比較される。なお、本発明の一実施の形態においてはこの閾値を電源電圧の1/2としているものである。   Next, the output potential of the first differential amplifier 55 is compared with a threshold value from a threshold value generating means (not shown) in the first comparison means 62. Similarly, the output potential of the second differential amplifier 57, the output potential of the third differential amplifier 58, and the output potential of the fourth differential amplifier 60 are respectively compared with the second comparing means 63 comprising a comparator. The third comparing means 64 and the fourth comparing means 65 compare with the threshold value from the threshold value generating means (not shown). In the embodiment of the present invention, this threshold is set to ½ of the power supply voltage.

次に、前記第1、第3、第4の比較手段62,64,65の出力信号は論理素子やフリップフロップからなる論理回路66に入力される。この論理回路66の後段には論理回路66の出力信号により開閉制御される第1のアナログスイッチ67と第2のアナログスイッチ68とが第1の電位69と第2の電位70との間に設けられている。71は一端が前記第1のアナログスイッチ67と第2のアナログスイッチ68との中点に接続され、かつ他端が出力端子72に接続された第5の抵抗である。73は一端が第1の電位69と接続され、かつ他端が前記第5の抵抗71と出力端子72との間に接続されたコンデンサである。   Next, the output signals of the first, third and fourth comparing means 62, 64 and 65 are input to a logic circuit 66 comprising a logic element and a flip-flop. A first analog switch 67 and a second analog switch 68 that are controlled to open and close by an output signal of the logic circuit 66 are provided between the first potential 69 and the second potential 70 at the subsequent stage of the logic circuit 66. It has been. Reference numeral 71 denotes a fifth resistor having one end connected to the midpoint of the first analog switch 67 and the second analog switch 68 and the other end connected to the output terminal 72. Reference numeral 73 denotes a capacitor having one end connected to the first potential 69 and the other end connected between the fifth resistor 71 and the output terminal 72.

また、前記第1、第2の比較手段62,63の出力信号は論理素子やフリップフロップからなる論理回路74に入力される。この論理回路74の後段には論理回路74の出力信号により開閉制御される第1のアナログスイッチ67と第2のアナログスイッチ76とが第1の電位69と第2の電位70との間に設けられている。77は一端が前記第1のアナログスイッチ75と第2のアナログスイッチ76との中点に接続され、かつ他端が出力端子78に接続された第6の抵抗である。79は一端が第1の電位69と接続され、かつ他端が前記第6の抵抗77と出力端子78との間に接続されたコンデンサである。   The output signals of the first and second comparing means 62 and 63 are input to a logic circuit 74 composed of logic elements and flip-flops. A first analog switch 67 and a second analog switch 76 that are controlled to open and close by an output signal of the logic circuit 74 are provided between the first potential 69 and the second potential 70 at the subsequent stage of the logic circuit 74. It has been. Reference numeral 77 denotes a sixth resistor having one end connected to the midpoint of the first analog switch 75 and the second analog switch 76 and the other end connected to the output terminal 78. Reference numeral 79 denotes a capacitor having one end connected to the first potential 69 and the other end connected between the sixth resistor 77 and the output terminal 78.

なお、前記検出部21の各端子とパルス発生回路51、抵抗56,58,59,61等との接続は浮遊容量を発生しないよう最小寸法で接続されているものである。   The terminals of the detection unit 21 are connected to the pulse generation circuit 51, the resistors 56, 58, 59, 61 and the like with minimum dimensions so as not to generate stray capacitance.

図4を用いて、本発明の一実施の形態におけるセンサ装置の回路動作を説明する。図4(a)(b)(c)(d)(e)(f)(g)(h)(i)(j)(k)(l)(m)はこのセンサ装置の各部の電圧波形を示したものである。図1に示すセンサ装置の検出部21を図示していないオイルパン中のエンジンオイル等の被測定液に浸漬する。この時、第1の検出電極22と第2の検出電極23は常に被測定液中に浸漬され、かつ第4の検出電極25は常に被測定液外に配置される。そして、第3の検出電極24は被測定液面と交差し、かつ液中に浸漬する部分が液位の昇降に伴って増減するものである。   The circuit operation of the sensor device according to one embodiment of the present invention will be described with reference to FIG. 4 (a), (b), (c), (d), (e), (f), (g), (h), (i), (j), (k), (l), and (m) are voltage waveforms at various parts of the sensor device. Is shown. 1 is immersed in a liquid to be measured such as engine oil in an oil pan (not shown). At this time, the first detection electrode 22 and the second detection electrode 23 are always immersed in the liquid to be measured, and the fourth detection electrode 25 is always disposed outside the liquid to be measured. The third detection electrode 24 intersects with the liquid surface to be measured, and the portion immersed in the liquid increases or decreases as the liquid level rises and falls.

本発明の一実施の形態におけるセンサ装置は、電源投入前の初期状態(t0)においては、第1、第2、第3、第4の検出電極22,23,24,25間に電荷が存在しないため、第1の抵抗56と第1の検出電極22との節点電位、第2の抵抗58と第2の検出電極23との節点電位、第3の抵抗59と第3の検出電極24との節点電位および第4の抵抗61と第4の検出電極25との節点電位はすべて第1の電位69(V1)にある。 In the sensor device according to the embodiment of the present invention, in the initial state (t 0 ) before the power is turned on, electric charges are present between the first, second, third, and fourth detection electrodes 22, 23, 24, 25. Since it does not exist, the node potential between the first resistor 56 and the first detection electrode 22, the node potential between the second resistor 58 and the second detection electrode 23, the third resistor 59 and the third detection electrode 24. And the node potentials of the fourth resistor 61 and the fourth detection electrode 25 are all at the first potential 69 (V 1 ).

電源が投入されると(t0)、図4(a)に示すように前記検出部21の端子29,37にはパルス発生回路51からのパルスが入力される。このパルスは前記第4の抵抗61、第4の検出電極25の電極間容量および第4の差動増幅器60からなる微分回路で微分され、第4の差動増幅器60の出力電位は、図4(b)に示すように第1の電位69(V1)から第2の電位70(V2)に向かって、前記第4の抵抗61と第4の検出電極25の電極間容量とで決まる時定数で指数関数的に上昇する。また、前記第3の抵抗59、第3の検出電極24の電極間容量および第3の差動増幅器58からなる微分回路の出力電位は、図4(c)に示すように第1の電位69(V1)から第2の電位70(V2)に向かって、前記第3の抵抗59と第3の検出電極24の電極間容量とで決まる時定数で指数関数的に上昇する。この時、第3の検出電極24の一部は被測定液中にあるため、前記第3の抵抗59と第3の検出電極24の静電容量とで決まる時定数は、前記第4の抵抗61と第4の検出電極25とで決まる時定数よりも大きくなる。そして、これと同様に、第1の抵抗56、第1の検出電極22の電極間容量および第1の差動増幅器55からなる微分回路の出力電位は、図4(d)に示すように第1の電位69(V1)から第2の電位70(V2)に向かって、前記第1の抵抗56と第1の検出電極22の電極間容量とで決まる時定数で指数関数的に上昇する。この時、第1の検出電極22は常に被測定液中に浸漬されているため、前記第1の抵抗56と第1の検出電極22の静電容量とで決まる時定数は、前記第3の抵抗59と第3の検出電極24とで決まる時定数よりも大きくなる。さらに、第2の抵抗58、第2の検出電極23の電極間容量および第2の差動増幅器57からなる微分回路の出力電位は、図4(e)に示すように第1の電位69(V1)から第2の電位70(V2)に向かって、前記第2の抵抗58と第2の検出電極23の電極間容量とで決まる時定数で指数関数的に上昇する。この時、前記のように第1の検出電極22と第2の検出電極23をともに被測定液中に浸漬させた状態で、第2の検出電極23と第2の抵抗58とで決まる時定数は第1の検出電極22の電極間容量と第1の抵抗56とで決まる時定数よりも小さくなるようにしている。 When the power is turned on (t 0 ), a pulse from the pulse generation circuit 51 is input to the terminals 29 and 37 of the detection unit 21 as shown in FIG. This pulse is differentiated by a differentiation circuit comprising the fourth resistor 61, the interelectrode capacitance of the fourth detection electrode 25 and the fourth differential amplifier 60, and the output potential of the fourth differential amplifier 60 is shown in FIG. As shown in FIG. 5B, the fourth resistor 61 and the interelectrode capacitance of the fourth detection electrode 25 are determined from the first potential 69 (V 1 ) toward the second potential 70 (V 2 ). It rises exponentially with a time constant. Further, the output potential of the differentiation circuit composed of the third resistor 59, the interelectrode capacitance of the third detection electrode 24, and the third differential amplifier 58 is the first potential 69 as shown in FIG. From (V 1 ) toward the second potential 70 (V 2 ), it rises exponentially with a time constant determined by the third resistor 59 and the interelectrode capacitance of the third detection electrode 24. At this time, since a part of the third detection electrode 24 is in the liquid to be measured, the time constant determined by the third resistance 59 and the capacitance of the third detection electrode 24 is the fourth resistance. It becomes larger than the time constant determined by 61 and the fourth detection electrode 25. Similarly to this, the output potential of the differential circuit composed of the first resistor 56, the interelectrode capacitance of the first detection electrode 22, and the first differential amplifier 55 is the first as shown in FIG. 1 exponentially increases from a potential 69 (V 1 ) toward a second potential 70 (V 2 ) with a time constant determined by the capacitance between the first resistor 56 and the first detection electrode 22. To do. At this time, since the first detection electrode 22 is always immersed in the liquid to be measured, the time constant determined by the first resistor 56 and the capacitance of the first detection electrode 22 is the third constant. It becomes larger than the time constant determined by the resistor 59 and the third detection electrode 24. Further, the output potential of the differential circuit composed of the second resistor 58, the interelectrode capacitance of the second detection electrode 23, and the second differential amplifier 57 is the first potential 69 (see FIG. 4E). From V 1 ) to the second potential 70 (V 2 ), it rises exponentially with a time constant determined by the second resistor 58 and the interelectrode capacitance of the second detection electrode 23. At this time, the time constant determined by the second detection electrode 23 and the second resistor 58 in a state where both the first detection electrode 22 and the second detection electrode 23 are immersed in the liquid to be measured as described above. Is smaller than the time constant determined by the interelectrode capacitance of the first detection electrode 22 and the first resistor 56.

前記第4の差動増幅器60の出力電位が図示していない閾値発生手段で決められる閾値電圧Vthに達すると、コンパレータからなる第4の比較手段65の出力は、図4(f)に示すようにハイからローに遷移する(t1)。これと同様に、前記第3の差動増幅器58の出力電位が図示していない閾値発生手段で決められる閾値電圧Vthに達すると、コンパレータからなる第3の比較手段64の出力は、図4(g)に示すようにハイからローに遷移する(t2)。また、前記第2の差動増幅器57の出力電位が図示していない閾値発生手段で決められる閾値電圧Vthに達すると、コンパレータからなる第2の比較手段63の出力は、図4(i)に示すようにハイからローに遷移する(t3)。さらに、前記第1の差動増幅器55の出力電位が図示していない閾値発生手段で決められる閾値電圧Vthに達すると、コンパレータからなる第1の比較手段62の出力は、図4(h)に示すようにハイからローに遷移すると同時に、パルス発生回路51からのパルス発生が停止するため、前記第1の差動増幅器55、第2の差動増幅器57、第3の差動増幅器58、第4の差動増幅器60の出力電圧は第2の電位(V1)まで上昇する(t4)。 When the output potential of the fourth differential amplifier 60 reaches a threshold voltage Vth determined by a threshold generation means (not shown), the output of the fourth comparison means 65 comprising a comparator is shown in FIG. Thus, a transition from high to low is made (t 1 ). Similarly, when the output potential of the third differential amplifier 58 reaches a threshold voltage Vth determined by a threshold generation means (not shown), the output of the third comparison means 64 comprising a comparator is as shown in FIG. As shown in (g), the transition is made from high to low (t 2 ). When the output potential of the second differential amplifier 57 reaches a threshold voltage Vth determined by a threshold generation means (not shown), the output of the second comparison means 63 comprising a comparator is as shown in FIG. Transition from high to low as shown in (t 3 ). Further, when the output potential of the first differential amplifier 55 reaches a threshold voltage Vth determined by a threshold generation means (not shown), the output of the first comparison means 62 comprising a comparator is shown in FIG. Since the pulse generation from the pulse generation circuit 51 stops at the same time as transitioning from high to low as shown in FIG. 3, the first differential amplifier 55, the second differential amplifier 57, the third differential amplifier 58, The output voltage of the fourth differential amplifier 60 rises to the second potential (V 1 ) (t 4 ).

その後、第1の差動増幅器55、第2の差動増幅器57、第3の差動増幅器58、第4の差動増幅器60の入出力間に接続されているダイオードがオンするため、各差動増幅器の出力電圧は急速に低下して、各差動増幅器の+入力に与えられている閾値電位に達すると、各差動増幅器の出力は第1の電位69(V1)に戻る。それと同時に、前記第1、第2、第3、第4の比較手段62,63,64,65の出力はそれぞれ図4(i)(h)(g)(f)に示すようにローからハイに遷移するとともに、図4(a)に示すようにパルス発生回路51からパルスが発生して前記検出部21の端子30,38に入力される(t5)。 After that, the diodes connected between the input and output of the first differential amplifier 55, the second differential amplifier 57, the third differential amplifier 58, and the fourth differential amplifier 60 are turned on. When the output voltage of the dynamic amplifier drops rapidly and reaches the threshold potential applied to the + input of each differential amplifier, the output of each differential amplifier returns to the first potential 69 (V 1 ). At the same time, the outputs of the first, second, third and fourth comparing means 62, 63, 64 and 65 are changed from low to high as shown in FIGS. 4 (i), (h), (g) and (f), respectively. As shown in FIG. 4A, a pulse is generated from the pulse generation circuit 51 and input to the terminals 30 and 38 of the detection unit 21 (t 5 ).

そして、その後、第1の差動増幅器55、第2の差動増幅器57、第3の差動増幅器58、第4の差動増幅器60の出力電位は、再び第1の電位69(t1)から第2の電位70(t2)に向かって、それぞれ図4(d)(e)(c)(b)に示すように、前記第1の抵抗56と第1の検出電極22の電極間容量、前記第2の抵抗58と第2の検出電極23の電極間容量、前記第3の抵抗59と第3の検出電極24の電極間容量、前記第4の抵抗61と第4の検出電極25の電極間容量とで決まる時定数で指数関数的に上昇して、以後、t0からt5の区間と同じ動作を繰り返す。 Thereafter, the output potentials of the first differential amplifier 55, the second differential amplifier 57, the third differential amplifier 58, and the fourth differential amplifier 60 are again the first potential 69 (t 1 ). Toward the second potential 70 (t 2 ), as shown in FIGS. 4D, 4E, 4C, and 4B, respectively, between the first resistor 56 and the first detection electrode 22 Capacitance, capacitance between the second resistor 58 and the second detection electrode 23, capacitance between the third resistor 59 and the third detection electrode 24, the fourth resistor 61 and the fourth detection electrode It rises exponentially with a time constant determined by the interelectrode capacitance of 25, and thereafter the same operation as in the interval from t 0 to t 5 is repeated.

また、上記第1、第3、第4の比較手段62,64,65の出力信号は論理素子やフリップフロップからなる論理回路66に入力されて、第1のアナログスイッチ67には図4(j)に示すように、図4(f)に示すパルスの立ち下がりから図4(g)に示すパルスの立ち下がりまでのパルス幅を持つパルス信号が、また第2のアナログスイッチ68には図4(k)に示すように、図4(g)に示すパルスの立ち下がりから図4(h)に示すパルスの立ち下がりまでのパルス幅を持つパルス信号が出力される。   The output signals of the first, third, and fourth comparison means 62, 64, and 65 are input to a logic circuit 66 composed of logic elements and flip-flops. 4), a pulse signal having a pulse width from the falling edge of the pulse shown in FIG. 4 (f) to the falling edge of the pulse shown in FIG. 4 (g) is supplied to the second analog switch 68. As shown in (k), a pulse signal having a pulse width from the falling edge of the pulse shown in FIG. 4 (g) to the falling edge of the pulse shown in FIG. 4 (h) is output.

そして、この場合、第1のアナログスイッチ67に入力される信号がハイの時、第1のアナログスイッチ67は「閉」、ローの時、「開」となる。また、第2のアナログスイッチ68に入力される信号がハイの時、第2のアナログスイッチ68は「閉」、ローの時「開」となる。これにより、図4の時間t1〜t2およびt6〜t7においては、第1のアナログスイッチ67が「閉」で第2のアナログスイッチ68が「開」となるため、第2の電位70から第5の抵抗71を通してコンデンサ73が充電される。そして、図4の時間t2〜t4およびt7〜t9においては、第1のアナログスイッチ67が「開」で第2のアナログスイッチ68が「閉」となるため、コンデンサ73に蓄積された電荷が第5の抵抗71を通して第1の電位69(V1)に放電される。 In this case, the first analog switch 67 is “closed” when the signal input to the first analog switch 67 is high, and “open” when the signal is low. The second analog switch 68 is “closed” when the signal input to the second analog switch 68 is high, and “open” when the signal is low. As a result, the first analog switch 67 is “closed” and the second analog switch 68 is “open” at times t 1 to t 2 and t 6 to t 7 in FIG. The capacitor 73 is charged from 70 through the fifth resistor 71. Then, during the times t 2 to t 4 and t 7 to t 9 in FIG. 4, the first analog switch 67 is “open” and the second analog switch 68 is “closed”. The charged charges are discharged to the first potential 69 (V 1 ) through the fifth resistor 71.

また、図4の時間t0〜t1およびt4〜t5等においては、第1のアナログスイッチ67、第2のアナログスイッチ68がともに「開」となるため、コンデンサ73に蓄積された電荷は保存される。このようにして、第3の検出電極24が被測定液に浸漬されている部分の長さと被測定液外にある部分の長さにより決まる時間だけ第1のアナログスイッチ67と第2のアナログスイッチ68とを交互に開閉してコンデンサ73を充放電することにより、被測定液の液位をアナログ電圧として出力端子72に出力することができる。 In addition, since the first analog switch 67 and the second analog switch 68 are both “open” at times t 0 to t 1 and t 4 to t 5 in FIG. Is preserved. In this way, the first analog switch 67 and the second analog switch are for a time determined by the length of the portion where the third detection electrode 24 is immersed in the liquid to be measured and the length of the portion outside the liquid to be measured. The liquid level of the liquid to be measured can be output as an analog voltage to the output terminal 72 by alternately opening and closing 68 and charging / discharging the capacitor 73.

図5は第5の抵抗71の抵抗Rを500kΩ、コンデンサ73の容量Cを100pFとした時、充電時間Tcを1μ秒とし、かつ放電時間Tdを4μ秒とした場合、すなわちTcとTdの比、つまり、第3の検出電極24の被測定液に浸漬されている部分の長さと被測定液外にある部分の長さとの比が1:4の場合にコンデンサ73の両端に出力されるアナログ電圧V0をシミュレーションしたものである。 FIG. 5 shows the case where the resistance R of the fifth resistor 71 is 500 kΩ, the capacitance C of the capacitor 73 is 100 pF, the charging time Tc is 1 μsec, and the discharging time Td is 4 μsec, that is, the ratio of Tc to Td. That is, when the ratio of the length of the portion of the third detection electrode 24 immersed in the liquid to be measured and the length of the portion outside the liquid to be measured is 1: 4, the analog output to both ends of the capacitor 73. This is a simulation of the voltage V 0 .

この図5から明らかなように、約500μ秒経過後、1[V]の直流成分にほぼ±0.04[V]振幅のリップルが重畳された出力電圧V0が得られることが分かる。このリップルはローパスフィルタにより除去されるため、電源を投入してから一定時間経過後には被測定液の液位を表す直流電圧が出力端子72に出力されることになる。 As can be seen from FIG. 5, after about 500 μsec, an output voltage V 0 in which a ripple having an amplitude of approximately ± 0.04 [V] is superimposed on a DC component of 1 [V] is obtained. Since this ripple is removed by the low-pass filter, a DC voltage representing the liquid level of the liquid to be measured is output to the output terminal 72 after a predetermined time has elapsed since the power was turned on.

また、上記第1、第2の比較手段62,63の出力信号は論理素子やフリップフロップからなる論理回路74に入力されて、第1のアナログスイッチ75には図4(l)に示すように、図4(i)に示すパルスの立ち下がりから図4(h)に示すパルスの立ち下がりまでのパルス幅を持つパルス信号が、また第2のアナログスイッチ76には図4(m)に示すように、図4(h)に示すパルスの立ち上がりから図4(i)に示すパルスの立ち下がりまでのパルス幅を持つパルス信号が出力される。   Further, the output signals of the first and second comparing means 62 and 63 are inputted to a logic circuit 74 composed of logic elements and flip-flops, and the first analog switch 75 has a signal as shown in FIG. A pulse signal having a pulse width from the falling edge of the pulse shown in FIG. 4 (i) to the falling edge of the pulse shown in FIG. 4 (h) is shown in FIG. 4 (m). Thus, a pulse signal having a pulse width from the rising edge of the pulse shown in FIG. 4 (h) to the falling edge of the pulse shown in FIG. 4 (i) is output.

そして、この場合、各アナログスイッチに入力される信号がハイの時、アナログスイッチは「閉」、ローの時、「開」となる。これにより、図4の時間t3〜t4およびt8〜t9においては、第1のアナログスイッチ75が「閉」で第2のアナログスイッチ76が「開」となるため、第2の電位70から第6の抵抗77を通してコンデンサ79が充電される。そして、図4の時間t0〜t3およびt5〜t8においては、第1のアナログスイッチ75が「開」で第2のアナログスイッチ76が「閉」となるため、コンデンサ79に蓄積された電荷が第6の抵抗77を通して第1の電位69(V1)に放電される。 In this case, the analog switch is “closed” when the signal input to each analog switch is high, and “open” when the signal is low. As a result, the first analog switch 75 is “closed” and the second analog switch 76 is “open” at times t 3 to t 4 and t 8 to t 9 in FIG. The capacitor 79 is charged through the sixth resistor 77 from 70. Then, during the times t 0 to t 3 and t 5 to t 8 in FIG. 4, the first analog switch 75 is “open” and the second analog switch 76 is “closed”. The charged charges are discharged to the first potential 69 (V 1 ) through the sixth resistor 77.

このようにして、常に被測定液中に浸漬され、かつ被測定液が有する誘電率の影響を受ける前記第1の検出電極22で測定される静電容量と、被測定液が有する誘電率の影響を受けることのない前記第2の検出電極23で測定される静電容量との差に比例する時間だけ前記コンデンサ79を充電し、かつ前記第1の検出電極22で測定される静電容量に比例する時間だけ前記コンデンサ79に充電された電荷を放電するという動作を繰り返すことにより、被測定液の液質に比例する電圧を第1の出力端子78に出力することができるものである。   In this way, the capacitance measured by the first detection electrode 22 that is always immersed in the liquid to be measured and is affected by the dielectric constant of the liquid to be measured, and the dielectric constant of the liquid to be measured The capacitor 79 is charged for a time proportional to the difference from the capacitance measured by the second detection electrode 23 that is not affected, and the capacitance measured by the first detection electrode 22. The voltage proportional to the liquid quality of the liquid to be measured can be output to the first output terminal 78 by repeating the operation of discharging the electric charge charged in the capacitor 79 for a time proportional to.

次に、本発明の一実施の形態におけるセンサ装置に設けたキャンセル電極の役割について、さらに説明する。   Next, the role of the cancel electrode provided in the sensor device in one embodiment of the present invention will be further described.

図1に示す本発明の一実施の形態におけるセンサ装置の検出部において、第1のキャンセル電極32を配置しない場合には、被測定液の液面における第3の検出電極24と交差する位置(液位)が変化するとともに、被測定液の液面における共通引出し線28と第1の検出電極22の引出し線27とが交差する位置も変化するために、共通引出し線28と第1の検出電極22の引出し線27との間に発生する静電容量が変化する。これにより、図4(h)に示すパルスの立ち下がりが変化して、液位を表す出力電圧値に誤差が生ずることになる。   In the detection unit of the sensor device according to the embodiment of the present invention shown in FIG. 1, when the first cancel electrode 32 is not disposed, the position (crossing the third detection electrode 24 on the liquid surface of the liquid to be measured ( As the liquid level changes, and the position where the common lead line 28 and the lead line 27 of the first detection electrode 22 intersect on the liquid surface of the liquid to be measured also changes, the common lead line 28 and the first detection are detected. The capacitance generated between the lead wire 27 of the electrode 22 changes. As a result, the fall of the pulse shown in FIG. 4 (h) changes, and an error occurs in the output voltage value representing the liquid level.

また、第2のキャンセル電極40を配置しない場合には、被測定液の液面における第3の検出電極24と交差する位置(液位)が変化するとともに、被測定液の液面における共通引出し線26と第2の検出電極23の引出し線28とが交差する位置も変化するために、共通引出し線26と第2の検出電極23の引出し線28との間に発生する静電容量が変化する。これにより、図4(j)に示すパルスの立ち下がりが変化して、液質を測定するための基準が変動するために液質を表す出力電圧値に誤差が生ずることになる。これと同時に、被測定液の液面における第3の検出電極24と交差する位置(液位)が変化するとともに、被測定液の液面における共通引出し線34と第3の検出電極24の引出し線35とが交差する位置も変化するために、共通引出し線34と第3の検出電極24の引出し線35との間に発生する静電容量が変化する。これにより、図4(j)に示すパルスの立ち下がりと図4(g)に示すパルスの立ち下がりが変化して液位を表す出力電圧値に誤差が生ずることになる。   Further, when the second cancel electrode 40 is not disposed, the position (liquid level) intersecting the third detection electrode 24 on the liquid level of the liquid to be measured changes, and the common extraction on the liquid level of the liquid to be measured is performed. Since the position at which the line 26 and the lead line 28 of the second detection electrode 23 intersect also changes, the capacitance generated between the common lead line 26 and the lead line 28 of the second detection electrode 23 changes. To do. As a result, the trailing edge of the pulse shown in FIG. 4 (j) changes, and the reference for measuring the liquid quality varies, and an error occurs in the output voltage value representing the liquid quality. At the same time, the position (liquid level) intersecting the third detection electrode 24 on the liquid surface of the liquid to be measured changes, and the common lead line 34 and the third detection electrode 24 on the liquid surface of the liquid to be measured are drawn. Since the position where the line 35 intersects also changes, the capacitance generated between the common lead line 34 and the lead line 35 of the third detection electrode 24 changes. As a result, the fall of the pulse shown in FIG. 4 (j) and the fall of the pulse shown in FIG. 4 (g) change, and an error occurs in the output voltage value representing the liquid level.

これと同様に、第3のキャンセル電極42を配置しない場合には、被測定液の液面における第3の検出電極24と交差する位置(液位)が変化するとともに、被測定液の液面における共通引出し線34と第4の検出電極25の引出し線36とが交差する位置も変化するために、共通引出し線34と第4の検出電極25の引出し線36との間に発生する静電容量が変化する。これにより、図4(f)に示すパルスの立ち下がりが変化して、液位を表す出力電圧値に誤差が生ずることになる。   Similarly, when the third cancel electrode 42 is not disposed, the position (liquid level) intersecting the third detection electrode 24 on the liquid level of the liquid to be measured changes, and the liquid level of the liquid to be measured. Since the position where the common lead line 34 and the lead line 36 of the fourth detection electrode 25 cross each other also changes, the electrostatic force generated between the common lead line 34 and the lead line 36 of the fourth detection electrode 25 is changed. The capacity changes. As a result, the trailing edge of the pulse shown in FIG. 4 (f) changes, and an error occurs in the output voltage value representing the liquid level.

これに対し、本発明の一実施の形態におけるセンサ装置においては、第1の検出電極22の引出し線27に沿って第1のキャンセル電極32を、第2の検出電極23の引出し線28と第3の検出電極24の引出し線35との間に第2のキャンセル電極40を、第4の検出電極25の引出し線36に沿って第3のキャンセル電極42をそれぞれ配置し、各々レベル調整器52,53,54を介して前記パルス発生回路51からのパルスを反転させた信号を入力することにより、各検出電極の引出し線と共通引出し線との間に蓄積される電荷をキャンセルするようにして、端子29,30間、端子29,31間、端子37,38間、端子37,39間で測定される静電容量を各々櫛歯形状の検出電極22,23,24,25で測定される静電容量のみとしているものである。これにより、各検出電極で検出される被測定液の静電容量は被測定液の液位に影響されなくなり、その結果、液位や液質を正確に表す出力電圧値が得られることになる。   On the other hand, in the sensor device according to the embodiment of the present invention, the first cancel electrode 32 is connected to the lead line 28 of the second detection electrode 23 along the lead line 27 of the first detection electrode 22. The third cancel electrode 40 is disposed between the third detection electrode 24 and the lead line 35 of the third detection electrode 24, and the third cancel electrode 42 is disposed along the lead line 36 of the fourth detection electrode 25. , 53, 54 to input a signal obtained by inverting the pulse from the pulse generation circuit 51, thereby canceling the electric charge accumulated between the lead lines of the detection electrodes and the common lead line. The capacitance measured between the terminals 29 and 30, between the terminals 29 and 31, between the terminals 37 and 38, and between the terminals 37 and 39 is measured with the comb-shaped detection electrodes 22, 23, 24, and 25, respectively. Capacitance Those that you are only. As a result, the capacitance of the liquid to be measured detected by each detection electrode is not affected by the liquid level of the liquid to be measured, and as a result, an output voltage value that accurately represents the liquid level and liquid quality can be obtained. .

以上の説明から明らかなように、本発明の一実施の形態におけるセンサ装置は、複雑な演算装置を設けることなく液位や液質に正確に比例する電圧を出力することができるため、高精度のセンサを容易に提供することができるものである。   As is clear from the above description, the sensor device according to the embodiment of the present invention can output a voltage that is accurately proportional to the liquid level and the liquid quality without providing a complicated arithmetic device, so that it is highly accurate. This sensor can be easily provided.

本発明に係るセンサ装置は、複雑な演算装置を設けることなく液位や液質に正確に比例する電圧を出力することができ、これにより、高精度のセンサを容易に提供することができるという効果を有するものであり、特に、自動車、建築機械等のエンジンオイルや燃料の液位を検出するセンサ装置として有用なものである。   The sensor device according to the present invention can output a voltage that is accurately proportional to the liquid level and the liquid quality without providing a complicated arithmetic unit, and thus can provide a highly accurate sensor easily. It has an effect, and is particularly useful as a sensor device for detecting the level of engine oil or fuel in automobiles, construction machines and the like.

本発明の一実施の形態におけるセンサ装置の検出部の正面図The front view of the detection part of the sensor apparatus in one embodiment of this invention 図1における第2の検出電極のA−A線での断面図Sectional drawing in the AA line of the 2nd detection electrode in FIG. 同センサ装置の検出回路図Detection circuit diagram of the sensor device (a)〜(m)同センサ装置の回路動作を説明するための波形図(A)-(m) Waveform diagram for demonstrating circuit operation | movement of the sensor apparatus 同センサ装置における第2の検出電極の被測定液に浸漬されている部分の長さと被測定液外にある部分の長さとの比が1:4の場合の出力電圧V0の時間変化を示す特性図The time variation of the output voltage V 0 when the ratio of the length of the portion of the second detection electrode immersed in the liquid to be measured and the length of the portion outside the liquid to be measured in the sensor device is 1: 4 is shown. Characteristics chart 従来のセンサ装置の検出部の正面図Front view of detection unit of conventional sensor device 同センサ装置の検出回路図Detection circuit diagram of the sensor device

21 検出部
22 第1の検出電極
23 第2の検出電極
24 第3の検出電極
25 第4の検出電極
26,34 共通引出し線
27,28,35,36 引出し線
32 第1のキャンセル電極
40 第2のキャンセル電極
42 第3のキャンセル電極
21 detection unit 22 first detection electrode 23 second detection electrode 24 third detection electrode 25 fourth detection electrode 26, 34 common lead line 27, 28, 35, 36 lead line 32 first cancel electrode 40 first 2 cancel electrode 42 3rd cancel electrode

Claims (1)

垂直方向に立設した検出部に、下方から上方にかけて常に被測定液中にある第1の検出電極と、被測定液が有する誘電率の影響を受けることなく電極間の静電容量を測定する第2の検出電極と、被測定液の液位を測定する第3の検出電極と、常に被測定液外にある第4の検出電極を設けるとともに、前記第3の検出電極が被測定液中に浸漬されている部分の長さに比例する時間だけ充電し、かつ前記第3の検出電極が被測定液外にある部分の長さに比例する時間だけ前記充電された電荷を放電するという動作を繰り返す回路を備え、さらに前記第1の検出電極と第2の検出電極の共通引出し線と、前記第3の検出電極と第4の検出電極の共通引出し線とにパルスをそれぞれ入力するパルス発生回路を設けるとともに、前記第1の検出電極と第2の検出電極の共通引出し線に沿って延びる前記第1の検出電極の引出し線に沿って第1のキャンセル電極を、前記第1の検出電極と第2の検出電極の共通引出し線に沿って延びる前記第2の検出電極の引出し線に沿って第2のキャンセル電極を、前記第3の検出電極と第4の検出電極の共通引出し線に沿って延びる前記第3の検出電極の引出し線に沿って第3のキャンセル電極を、前記第3の検出電極と第4の検出電極の共通引出し線に沿って延びる前記第4の検出電極の引出し線に沿って第4のキャンセル電極をそれぞれ配置し、前記第1のキャンセル電極、第2のキャンセル電極、第3のキャンセル電極、第4のキャンセル電極に前記パルスを反転した信号を入力することにより、前記第1の検出電極の引出し線と、前記第1の検出電極と第2の検出電極の共通引出し線との間に蓄積された電荷、前記第2の検出電極の引出し線と、前記第1の検出電極と第2の検出電極の共通引出し線との間に蓄積された電荷、前記第3の検出電極の引出し線と、前記第3の検出電極と第4の検出電極の共通引出し線との間に蓄積された電荷、および前記第4の検出電極の引出し線と、前記第3の検出電極と第4の検出電極の共通引出し線との間に蓄積された電荷をそれぞれキャンセルするようにしたセンサ装置。 The first detection electrode in the liquid to be measured is always measured from the lower part to the upper part on the detection unit standing in the vertical direction, and the capacitance between the electrodes is measured without being affected by the dielectric constant of the liquid to be measured. A second detection electrode, a third detection electrode for measuring the liquid level of the liquid to be measured, and a fourth detection electrode that is always outside the liquid to be measured are provided, and the third detection electrode is in the liquid to be measured. Charging for a time proportional to the length of the portion immersed in the electrode, and discharging the charged charge for a time proportional to the length of the third detection electrode outside the liquid to be measured. Generating a pulse for inputting a pulse to a common lead line for the first detection electrode and the second detection electrode and a common lead line for the third detection electrode and the fourth detection electrode, respectively. A circuit, and a first detection electrode and a first detection electrode; A first cancel electrode extends along a common lead line of the first detection electrode and a second detection electrode along a lead line of the first detection electrode extending along a common lead line of the first detection electrode. A second cancel electrode extends along a lead line of the second detection electrode and a lead line of the third detection electrode extends along a common lead line of the third detection electrode and the fourth detection electrode. A third cancel electrode is disposed along a lead line of the fourth detection electrode extending along a common lead line of the third detection electrode and the fourth detection electrode, respectively. By inputting a signal obtained by inverting the pulse to the first cancel electrode, the second cancel electrode, the third cancel electrode, and the fourth cancel electrode, the lead line of the first detection electrode, and the first cancel electrode, 1 detection power Between the lead wire of the second detection electrode and the common lead wire of the second detection electrode and the charge accumulated between the lead wire of the second detection electrode and the common lead wire of the second detection electrode The accumulated charge, the charge accumulated between the third detection electrode lead line and the third detection electrode common lead line and the fourth detection electrode lead line, and the fourth detection electrode lead A sensor device that cancels the electric charge accumulated between the line and the common lead line of the third detection electrode and the fourth detection electrode, respectively.
JP2009048780A 2008-07-22 2009-03-03 Sensor device Pending JP2010203871A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2009048780A JP2010203871A (en) 2009-03-03 2009-03-03 Sensor device
PCT/JP2009/003397 WO2010010683A1 (en) 2008-07-22 2009-07-21 Liquid-level sensor
US13/054,645 US8474315B2 (en) 2008-07-22 2009-07-21 Capacitive liquid-level sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009048780A JP2010203871A (en) 2009-03-03 2009-03-03 Sensor device

Publications (1)

Publication Number Publication Date
JP2010203871A true JP2010203871A (en) 2010-09-16

Family

ID=42965503

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009048780A Pending JP2010203871A (en) 2008-07-22 2009-03-03 Sensor device

Country Status (1)

Country Link
JP (1) JP2010203871A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013108958A (en) * 2011-11-24 2013-06-06 Toyota Motor Corp Liquid level detector
JP2014219260A (en) * 2013-05-08 2014-11-20 矢崎総業株式会社 Electrostatic capacitance type level sensor and electrostatic capacitance type level measurement method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013108958A (en) * 2011-11-24 2013-06-06 Toyota Motor Corp Liquid level detector
JP2014219260A (en) * 2013-05-08 2014-11-20 矢崎総業株式会社 Electrostatic capacitance type level sensor and electrostatic capacitance type level measurement method

Similar Documents

Publication Publication Date Title
WO2010010683A1 (en) Liquid-level sensor
JP6088521B2 (en) Increasing the linearity of capacitive transducers by performing automatic calibration using on-chip neutralization capacitors and linear actuation
US10338022B2 (en) Sensor circuit and method for measuring a physical or chemical quantity
US20130207674A1 (en) Detecting a Dielectric Article
US10416020B2 (en) Method and apparatus for monitoring fill level of a medium in a container
US20090105975A1 (en) Method and circuit arrangement for measuring a capacitance
JPH06501316A (en) Integrable conductivity measuring device
US11199434B2 (en) Dual polarity mutual capacitive liquid sensing
JPH0468570B2 (en)
CN114616448A (en) Method for monitoring the function of a capacitive pressure measuring cell
WO2006123141A2 (en) Capacitive liquid level sensor
JP2010025782A (en) Liquid level sensor
JP2011107086A (en) Capacitance detection circuit, pressure detector, acceleration detector and transducer for microphone
JP2010203871A (en) Sensor device
JP2010256015A (en) Sensor device
US8030949B2 (en) Measurement method for determining moisture content
JP2010210307A (en) Liquid level sensor
US11879861B2 (en) Method for measuring a conductivity of a medium
Arshad et al. Capacitance-to-voltage converter design to measure small change in capacitance produced by human body movement
JP2010117237A (en) Liquid-level sensor
JP4069158B1 (en) Charge amplifier, charge amplifier device, and bias current compensation method
JP6135924B2 (en) Electromagnetic flow meter
JP5136452B2 (en) Liquid concentration measurement device
JP2011112595A (en) Sensor device
JP4811987B2 (en) CV conversion circuit