JP2010203864A - Object detection device - Google Patents

Object detection device Download PDF

Info

Publication number
JP2010203864A
JP2010203864A JP2009048506A JP2009048506A JP2010203864A JP 2010203864 A JP2010203864 A JP 2010203864A JP 2009048506 A JP2009048506 A JP 2009048506A JP 2009048506 A JP2009048506 A JP 2009048506A JP 2010203864 A JP2010203864 A JP 2010203864A
Authority
JP
Japan
Prior art keywords
light
light emitting
emitting element
detected
object detection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009048506A
Other languages
Japanese (ja)
Other versions
JP5243996B2 (en
Inventor
Yoshiaki Yasuda
喜昭 安田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Stanley Electric Co Ltd
Original Assignee
Stanley Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Stanley Electric Co Ltd filed Critical Stanley Electric Co Ltd
Priority to JP2009048506A priority Critical patent/JP5243996B2/en
Publication of JP2010203864A publication Critical patent/JP2010203864A/en
Application granted granted Critical
Publication of JP5243996B2 publication Critical patent/JP5243996B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a microminiature object detection device capable of detecting not only existence, a direction or a distance of a detection object but also a shape or a size thereof. <P>SOLUTION: This object detection device 1 includes: a rotation driving means for rotating a light emitting element 3, and a diffraction optical element 4 for changing light irradiated therefrom into linear light; an imaging element 5 for generating a pattern of reflected light by receiving the reflected light reflected from a detection object existing in a detection domain formed by scanning by the linear light in a direction orthogonal to the linear direction; and a detection circuit 6 for detecting the existence, the direction, the shape or the size of the detection object from the pattern of the reflected light generated by the imaging element. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、可視光或いは近赤外、遠赤外光を利用して人体、自動車、障害物などの物体(被検知物)を検知する物体検知装置に関し、特にMEMS(Micro Electro Mechanical Systems)技術によって形成される小型の光偏向器を利用して小型化される物体検知装置に関する。   The present invention relates to an object detection apparatus that detects an object (detected object) such as a human body, an automobile, or an obstacle using visible light, near-infrared light, or far-infrared light, and in particular, MEMS (Micro Electro Mechanical Systems) technology. The object detection apparatus is miniaturized using a small optical deflector formed by the above.

従来、MEMS技術を用いて超小型に形成された光偏向器を使用して、物体検知装置を小型化することが提案されている。   Conventionally, it has been proposed to reduce the size of an object detection device using an optical deflector formed in an ultra-small size using the MEMS technology.

例えば、特許文献1に示す物体検知装置は、光を被検知領域に照射する発光素子と、被検知領域にある被検知物から反射された反射光を受光する受光素子と、前記受光素子を回転させる回転駆動手段と、前記受光素子により受光された反射光の強度分布を得る検知手段と備えている。   For example, the object detection apparatus disclosed in Patent Document 1 is a light emitting element that irradiates a detection area with light, a light reception element that receives reflected light reflected from an object to be detected in the detection area, and rotates the light reception element. And a rotation driving means for detecting and a detection means for obtaining an intensity distribution of the reflected light received by the light receiving element.

前記回転駆動手段は、少なくとも一対の圧電ユニモルフ振動板と、前記圧電ユニモルフ振動板の一端を固定して支持する空洞部を有する支持体と、前記圧電ユニモルフ振動板に弾性体を介して接続され、前記圧電ユニモルフ振動板の圧電駆動により前記空洞部内で回転振動する基板とで構成されており、前記基板上に前記受光素子を配置している。   The rotational driving means is connected to at least a pair of piezoelectric unimorph diaphragms, a support body having a hollow portion for fixing and supporting one end of the piezoelectric unimorph diaphragms, and the piezoelectric unimorph diaphragms via elastic bodies, The piezoelectric unimorph diaphragm is configured to include a substrate that rotates and vibrates in the cavity by piezoelectric driving, and the light receiving element is disposed on the substrate.

前記検知手段は、前記基板の回転角度に対する前記反射光の強度分布から前記被検知物の存在とその方向を検知する。   The detection means detects the presence and direction of the detected object from the intensity distribution of the reflected light with respect to the rotation angle of the substrate.

この物体検知装置によれば、発光素子として発光ダイオードを用いて、被検知物の存在とその方向を検知することができる。また、前記受光素子を同一平面上に複数設けることによって、当該平面から被検知物までの距離を求めることもできる。   According to this object detection device, it is possible to detect the presence and direction of an object to be detected using a light emitting diode as a light emitting element. Further, by providing a plurality of the light receiving elements on the same plane, the distance from the plane to the object to be detected can be obtained.

特開2008−249412号公報JP 2008-249212 A

しかしながら、上記のような物体検知装置では、前記被検知物の存在とその方向及び距離だけでなく、被検知物の形状及び大きさも検知することが望まれる。また、受光素子を複数設置することなく被検知物までの距離を求めることができれば、物品検知装置のさらなる小型化を達成できる。   However, in the object detection apparatus as described above, it is desired to detect not only the presence, direction and distance of the detected object, but also the shape and size of the detected object. Further, if the distance to the object to be detected can be obtained without installing a plurality of light receiving elements, further downsizing of the article detection apparatus can be achieved.

本発明の目的は、被検知物の存在、方向、または距離だけでなく、形状や大きさをも検知することができる超小型物体検知装置を提供することにある。   An object of the present invention is to provide an ultra-small object detection apparatus that can detect not only the presence, direction, or distance of an object to be detected, but also the shape and size.

本発明の物体検知装置は、発光素子と、発光素子から照射された光を線状光に変換する回折光学素子と、前記発光素子と前記回折光学素子とを回転させる回転駆動手段と、前記線状光をその線方向と直交する方向に走査することによって形成される検知領域にある被検知物から反射された反射光を受けて前記反射光のパターンを生成する撮像素子と、前記撮像素子により生成された前記反射光のパターンから前記被検知物の存在、その方向、形状又は大きさを検知する検知手段とを備え、前記回転駆動手段は、少なくとも一対の圧電ユニモルフ振動板と、前記圧電ユニモルフ振動板の一端を固定して支持する支持体と、前記圧電ユニモルフ振動板に接続されかつ該圧電ユニモルフ振動板の圧電駆動により回転振動する基板とで構成され、前記基板上に前記発光素子と前記回折光学素子とが配設されることを特徴とする。   The object detection apparatus of the present invention includes a light emitting element, a diffractive optical element that converts light emitted from the light emitting element into linear light, a rotation driving unit that rotates the light emitting element and the diffractive optical element, and the line. An image sensor that receives reflected light reflected from an object to be detected in a detection region formed by scanning the light in a direction orthogonal to the line direction, and generates a pattern of the reflected light by the image sensor Detecting means for detecting the presence, direction, shape, or size of the object to be detected from the generated reflected light pattern, and the rotation driving means includes at least a pair of piezoelectric unimorph diaphragms, and the piezoelectric unimorphs. A support that fixes and supports one end of the diaphragm, and a substrate that is connected to the piezoelectric unimorph diaphragm and that vibrates and rotates by piezoelectric driving of the piezoelectric unimorph diaphragm. Characterized in that said light emitting element on the plate and the diffractive optical element is disposed.

本発明の物体検知装置によれば、発光素子から照射された光は、回折光学素子により線状光に変換される。この線状光は、圧電ユニモルフ振動板の圧電駆動により回転振動されながら、その線方向と直交する方向に走査されることによって、面状の線状光のパターンを形成する。   According to the object detection device of the present invention, the light emitted from the light emitting element is converted into linear light by the diffractive optical element. The linear light is scanned in a direction orthogonal to the linear direction while being rotationally oscillated by the piezoelectric drive of the piezoelectric unimorph diaphragm, thereby forming a planar linear light pattern.

このとき、被検知領域内に物体が存在すると、撮像素子で生成される線状光の反射光のパターンが物体の形状および大きさに応じて歪むので、この反射光のパターンの歪み位置、歪み範囲を検知手段で検知すれば、物体の形状や大きさもわかる。すなわち、従来の複雑な画像処理をすることなく、物体の存在、方向に加えて、その形状と大きさも検知することができる。   At this time, if there is an object in the detection area, the reflected light pattern of the linear light generated by the image sensor is distorted according to the shape and size of the object. If the range is detected by the detection means, the shape and size of the object can also be known. That is, the shape and size of an object can be detected in addition to the presence and direction of an object without performing conventional complicated image processing.

また、本発明の物体検知装置によれば、前記反射光のパターンの歪みに基づいて、物体の形状等を検出するので、撮像素子の解像度は、一般的なカメラ用撮像素子よりも低い解像度でも足り、その分安価な撮像素子を用いて、装置の製造コストを抑えることができる。また、物体の検知に必要な反射光のパターンは低い解像度で生成できるので、撮像の画素数を低く設定することにより感度を上げることができる。これにより、発光素子から照射される光が弱い場合であっても物体の形状等を検知することが可能となる。   Further, according to the object detection device of the present invention, since the shape of the object is detected based on the distortion of the reflected light pattern, the resolution of the image sensor is lower than that of a general camera image sensor. As a result, the manufacturing cost of the apparatus can be reduced by using an inexpensive image sensor. Further, since the reflected light pattern necessary for detecting the object can be generated with a low resolution, the sensitivity can be increased by setting the number of pixels for imaging low. This makes it possible to detect the shape of the object even when the light emitted from the light emitting element is weak.

本発明の物体検知装置において、前記発光素子は、前記撮像素子の撮影周波数と同期したパルス光を照射するように制御することが好ましい。   In the object detection device according to the aspect of the invention, it is preferable that the light emitting element is controlled to emit pulsed light synchronized with the imaging frequency of the imaging element.

この場合、パルス光を被検知物にあて、その反射光を受光するまでの時間を測定することで、受光素子を複数備えることなく、被検知物までの距離を算出することができる。さらに、この距離の算出結果と前記物体の形状の算出結果を合算することにより、被検出物の正確な大きさを算出することができる。   In this case, the distance to the detected object can be calculated without providing a plurality of light receiving elements by applying the pulsed light to the detected object and measuring the time until the reflected light is received. Further, by adding the calculation result of the distance and the calculation result of the shape of the object, it is possible to calculate the exact size of the detection object.

本発明の好ましい態様では、前記発光素子として、発光ダイオード(LED)を用いることができる。例えば、レーザ源とこれを駆動するための装置は構造が複雑で高価であり、また、レーザ光はその高い指向性や収束性により、人の目に入ると網膜を傷つけるおそれがある。これに対し、LEDは、レーザ源よりも構造が簡単で安価であることに加え、発光素子として指向性や収束性が低いため、アイセーフの面で安全性に優れている。   In a preferred embodiment of the present invention, a light emitting diode (LED) can be used as the light emitting element. For example, a laser source and a device for driving the laser source have a complicated structure and are expensive, and laser light may damage the retina when it enters the human eye due to its high directivity and convergence. On the other hand, in addition to being simpler and less expensive than a laser source, an LED has excellent directivity and convergence as a light-emitting element, and thus has excellent safety in terms of eye-safety.

また、本発明では発光素子から照射される光が弱くても物体検知をすることができるため、大光量を出射するときに問題となるLEDの温度上昇による性能劣化の問題を回避することができる。   Further, in the present invention, since the object can be detected even if the light emitted from the light emitting element is weak, it is possible to avoid the problem of performance deterioration due to the temperature rise of the LED, which is a problem when emitting a large amount of light. .

また、発光素子としては、垂直共振器面発光レーザ(VCSEL)を使用することもできる。VCSELの場合には、発散角がLEDより小さいので、遠方までの検知が可能となる。また、出力は一般的な端面出射型のレーザに比べて低いので、アイセーフの問題も緩和される。   Further, as the light emitting element, a vertical cavity surface emitting laser (VCSEL) can be used. In the case of a VCSEL, since the divergence angle is smaller than that of the LED, it is possible to detect far away. Further, since the output is lower than that of a general edge-emitting laser, the eye-safe problem is alleviated.

本発明の物体検知装置においては、前記発光素子の発光頻度または前記回転駆動手段の回転速度を制御する制御手段を備え、該制御手段は、被検知物の有無を走査するための第1の制御モードと、被検知物の種類を走査するための第2の制御モードとを有することが望ましい。第1の制御モードでは、発光素子の発光頻度または回転駆動手段の回転速度を相対的に低く制御し、第2の制御モードでは、発光素子の発光頻度または回転駆動手段の回転速度を相対的に高く制御する。   The object detection apparatus of the present invention includes a control unit that controls a light emission frequency of the light emitting element or a rotation speed of the rotation driving unit, and the control unit performs a first control for scanning the presence / absence of an object to be detected. It is desirable to have a mode and a second control mode for scanning the type of object to be detected. In the first control mode, the light emission frequency of the light emitting element or the rotation speed of the rotation driving means is controlled to be relatively low, and in the second control mode, the light emission frequency of the light emitting element or the rotation speed of the rotation driving means is relatively controlled. High control.

この制御手段による第1のモードは、物体の存在の有無のみを検出するモードであり、走査線の数はそれほど必要としない。この第1のモードにおいて、検知領域内に物体が存在すると、走査線状光の歪みから物体の存在がわかる。   The first mode by this control means is a mode for detecting only the presence / absence of an object, and the number of scanning lines is not so required. In the first mode, when an object is present in the detection area, the presence of the object is known from the distortion of the scanning line light.

次に、前記制御手段による第2のモードでは、第1モードと比較して、発光素子の発光頻度または回転駆動手段の回転速度を相対的に高くし、走査線の数を増やすことにより、撮像素子における画像データの解像度を高め、物体の方向、距離、形状及び大きさを検知することができる。   Next, in the second mode by the control unit, imaging is performed by relatively increasing the light emission frequency of the light emitting element or the rotation speed of the rotation driving unit and increasing the number of scanning lines as compared with the first mode. The resolution of the image data in the element can be increased, and the direction, distance, shape and size of the object can be detected.

結果として、この制御手段を備えると、第1のモードによるラフスキャンによって、物体の存在とその距離を検知し、その後の第2のモードによるファインスキャンによって、物体の形状・大きさを検知することができる。このため、検知手段として用いられる演算素子の能力を十分に活用することが可能となる。すなわち、処理能力の低い安価な演算素子を用いても物体検知ができ、製造コストを抑えることができる。   As a result, with this control means, the presence and distance of an object are detected by rough scanning in the first mode, and the shape and size of the object are detected by fine scanning in the second mode thereafter. Can do. For this reason, it becomes possible to fully utilize the capability of the arithmetic element used as a detection means. That is, even if an inexpensive arithmetic element with low processing capability is used, the object can be detected, and the manufacturing cost can be suppressed.

本発明の一実施形態の物体検知装置を示す斜視図。The perspective view which shows the object detection apparatus of one Embodiment of this invention. 本発明の一実施形態の光スキャナを示す斜視図。1 is a perspective view showing an optical scanner according to an embodiment of the present invention. (a)は光スキャナの静止時を示す斜視図、(b)は光スキャナの駆動時を示す説明的斜視図。FIG. 4A is a perspective view showing the optical scanner when stationary, and FIG. 4B is an explanatory perspective view showing when the optical scanner is driven. 光スキャナの基板を示す説明的平面図。An explanatory plan view showing a substrate of an optical scanner. 図4のV−V線に沿う断面図。Sectional drawing which follows the VV line | wire of FIG. 光源から出た光が線状光に変換されることを示す説明図。Explanatory drawing which shows that the light emitted from the light source is converted into linear light. 本発明の一実施形態の物体検知装置の線状光パターンの照射を示す説明的斜視図。BRIEF DESCRIPTION OF THE DRAWINGS Explanatory perspective view which shows irradiation of the linear light pattern of the object detection apparatus of one Embodiment of this invention. 本発明の物体検知の原理を示す説明図であり、(a)は被検知領域に被検知物がない場合の反射光のパターン図、(b)は被検知領域に被検知物がある場合の反射光のパターン図。It is explanatory drawing which shows the principle of the object detection of this invention, (a) is a pattern figure of the reflected light when a to-be-detected area does not have a to-be-detected area, (b) is a case in which a to-be-detected object exists in a to-be-detected area. Reflected light pattern diagram. 本発明の一実施形態の物体検知装置によるパルス光の照射を示す説明的斜視図。BRIEF DESCRIPTION OF THE DRAWINGS Explanatory perspective view which shows irradiation of the pulsed light by the object detection apparatus of one Embodiment of this invention.

図1に示すように、本実施形態の物体検知装置1は、MEMSによる光スキャナ2を備えている。この光スキャナ2の回転振動する基板12(図4)上には、発光素子3と、発光素子3からの光を線状光16(図6、図7)に変換する回折光学素子4とが接合されている。   As shown in FIG. 1, the object detection apparatus 1 of this embodiment includes an optical scanner 2 using MEMS. A light emitting element 3 and a diffractive optical element 4 for converting light from the light emitting element 3 into linear light 16 (FIGS. 6 and 7) are provided on a substrate 12 (FIG. 4) that rotates and vibrates in the optical scanner 2. It is joined.

また、本実施形態の物体検知装置1は、発光素子3からの線状光16を被検知領域にある被検知物W(図9参照)が反射した反射光17を生成する撮像素子5と、撮像素子5により生成された反射光17を検知する検知回路6とを備えている。   In addition, the object detection device 1 of the present embodiment includes the imaging element 5 that generates the reflected light 17 reflected from the detection object W (see FIG. 9) in the detection area of the linear light 16 from the light emitting element 3; And a detection circuit 6 that detects the reflected light 17 generated by the image sensor 5.

発光素子3は、安価で扱いやすいインコヒーレント光を発生するLEDからなり、これによって可視光又は近赤外光を被検知領域に照射する。   The light emitting element 3 is composed of an LED that generates incoherent light that is inexpensive and easy to handle, and irradiates the detection region with visible light or near infrared light.

撮像素子5は、一般的なビデオカメラで使われるCMOS撮像素子を使用することができる。物体検出の場合にはフルカラーである必要はないので、監視カメラ用のモノクロCMOS撮像素子で足りる。その撮像素子の解像度も、VGA以下の低解像度のものが使えるので、製造コストを抑えることができる。   As the image sensor 5, a CMOS image sensor used in a general video camera can be used. In the case of object detection, since it is not necessary to be full color, a monochrome CMOS image sensor for a surveillance camera is sufficient. The resolution of the image sensor can also be a low resolution less than VGA, so that the manufacturing cost can be reduced.

発光素子3の発光中心軸と撮像素子5の撮像中心軸とは、一致するように配置される。   The light emission central axis of the light emitting element 3 and the image pickup central axis of the image pickup element 5 are arranged to coincide with each other.

撮像素子5の実装方法は、ダイアタッチ剤でダイボンドしたのちにワイヤーボンディングでパッケージと電気的に接続する一般的な方法でよい。ただし、貫通電極付きのCMOS撮像素子であれば、ハンダのボール・グリッド・アレイ(以下BGA)で接続することも可能である。   The image sensor 5 may be mounted by a general method in which the image sensor 5 is electrically connected to the package by wire bonding after die bonding with a die attach agent. However, if it is a CMOS image sensor with a through electrode, it can be connected by a solder ball grid array (hereinafter referred to as BGA).

次に、図2及び図3を用いて、光スキャナ2の回転振動原理を説明する。   Next, the principle of rotational vibration of the optical scanner 2 will be described with reference to FIGS.

光スキャナ2は、チタン酸ジルコン酸鉛(以下PZT)等の圧電体薄膜をシリコンウエハ上に成膜し、このシリコンウエハをカンチレバー構造にエッチング加工したものを、電圧印加による圧電体の伸縮をカンチレバーの先端変位として取り出す圧電ユニモルフ振動板8を駆動源の基本としている。   The optical scanner 2 is formed by forming a piezoelectric thin film such as lead zirconate titanate (hereinafter PZT) on a silicon wafer, etching the silicon wafer into a cantilever structure, and expanding and contracting the piezoelectric body by applying a voltage. The piezoelectric unimorph diaphragm 8 taken out as the tip displacement is used as a basic driving source.

光スキャナ2は、図2に示すように、複数の圧電ユニモルフ振動板8を折り返しながら連結した圧電振動部9,10と、各圧電振動部9,10の一端を固定して支持する支持体11と、一対の圧電振動部9,10に挟まれる形で接続された回転振動する基板12とを備えている。   As shown in FIG. 2, the optical scanner 2 includes piezoelectric vibrating portions 9 and 10 in which a plurality of piezoelectric unimorph diaphragms 8 are connected while being folded back, and a support 11 that fixes and supports one end of each piezoelectric vibrating portion 9 and 10. And a substrate 12 that rotationally vibrates and is connected between the pair of piezoelectric vibrating portions 9 and 10.

図3(a)に示すように、各圧電振動部9,10を構成する折り返された圧電ユニモルフ振動板8は、一つ飛ばしで2系統の電気配線が形成されている。   As shown in FIG. 3A, the folded piezoelectric unimorph diaphragm 8 constituting each of the piezoelectric vibrating portions 9 and 10 is skipped by one to form two lines of electrical wiring.

基板12の偏向原理は、図3(b)に示すように、奇数番および偶数番の圧電ユニモルフ振動板8にそれぞれ逆向きの印加電圧を加えることで、個々の圧電ユニモルフ振動板8が上下交互に歪曲し、圧電振動部9,10の先端部に大きな偏向角を発生させるものである。   As shown in FIG. 3 (b), the deflection principle of the substrate 12 is such that the piezoelectric unimorph diaphragms 8 are alternately turned up and down by applying reverse applied voltages to the odd-numbered and even-numbered piezoelectric unimorph diaphragms 8 respectively. And a large deflection angle is generated at the tip portions of the piezoelectric vibrating portions 9 and 10.

圧電ユニモルフ振動板8単体の変位量は微量だが、それを積算することで大きな偏向角を与えることができ、機械的共振を利用しなくても、実用上十分な偏向角が得ることができる。   Although the displacement amount of the piezoelectric unimorph diaphragm 8 itself is very small, a large deflection angle can be given by integrating the displacement, and a practically sufficient deflection angle can be obtained without using mechanical resonance.

基板12は、図4及び図5に示すように、電極配線13を備え、この電極配線上に発光素子3をフリップチップ実装により接続する。この接続は、例えば、AuSn共晶接合、Au-Au固相拡散接合、又は図示のAuバンプ15による接合によって行うことができる。この接合によれば、公知のワイヤーボンディングと比較して、発光素子3の上に回折光学素子4を配設するのが容易であるとともに、基板12が回転振動してもワイヤーボンディングのワイヤーが断線するおそれが低いという利点がある。もっとも、ワイヤーボンディングで実装しても良い。   As shown in FIGS. 4 and 5, the substrate 12 includes an electrode wiring 13, and the light emitting element 3 is connected to the electrode wiring by flip chip mounting. This connection can be performed by, for example, AuSn eutectic bonding, Au-Au solid phase diffusion bonding, or bonding by the illustrated Au bump 15. According to this bonding, it is easy to dispose the diffractive optical element 4 on the light emitting element 3 as compared with the known wire bonding, and the wire bonding wire is disconnected even when the substrate 12 rotates and vibrates. There is an advantage that there is a low risk of doing so. But you may mount by wire bonding.

発光素子3の接合はチップをダイボンダーで基板12上にマウントしてもよいし、ウエハレベルで光スキャナ2の加工ウエハ上に接合してもよい。   The light emitting element 3 may be bonded by mounting a chip on the substrate 12 with a die bonder, or may be bonded on a processed wafer of the optical scanner 2 at a wafer level.

また、通常のフリップチップ実装では、成長基板であるGaAsやサファイアが最上面に位置するが、10μm以下の厚みの発光素子3に対して100μm以上の厚みをもつ成長基板の存在は、発光素子3と回折光学素子4との接合の妨げになる場合がある。   In normal flip chip mounting, the growth substrate GaAs or sapphire is positioned on the uppermost surface. However, the presence of the growth substrate having a thickness of 100 μm or more with respect to the light emitting device 3 having a thickness of 10 μm or less is the light emitting element 3. And diffractive optical element 4 may be obstructed.

これを避けるために、基板12上に発光素子3としてLEDを接合した後に、成長基板を除去してエピ成長発光部のみを残す、いわゆる薄膜LEDの形態にしてもよい。薄膜LEDの場合には、基板12の質量にほとんど変化が生じないため、光スキャナ2の設計通りに基板12が回転振動することができる。   In order to avoid this, after bonding the LED as the light emitting element 3 on the substrate 12, the growth substrate may be removed to leave only the epi-growth light emitting portion, so-called thin film LED may be used. In the case of the thin-film LED, the substrate 12 can be oscillated and rotated according to the design of the optical scanner 2 because the mass of the substrate 12 hardly changes.

回折光学素子4は、ガラスウエハまたはプラスチック基板上にコートされた透明樹脂を微細加工された型で押し込んで、表面に複雑な凹凸パターンを形成した平面光学素子であり、基板12に接合された発光素子3上に配設される。   The diffractive optical element 4 is a planar optical element in which a transparent resin coated on a glass wafer or a plastic substrate is pressed with a finely processed mold to form a complex concavo-convex pattern on the surface, and light emission bonded to the substrate 12 Arranged on the element 3.

回折光学素子4を配設するためには、例えば、図示のように光学接着剤14を介して発光素子3上に直接接着する方法と、発光素子3とは接着せずに基板12のみと接着する方法とがある。いずれを選ぶかは、全体の寸法、LEDの発光波長、回折光学素子の材料、線状化率等を考慮して決める。   In order to dispose the diffractive optical element 4, for example, as shown in the drawing, a method of directly adhering to the light emitting element 3 via the optical adhesive 14, and an adhesion to only the substrate 12 without adhering to the light emitting element 3. There is a way to do it. Which one is selected is determined in consideration of the overall dimensions, the light emission wavelength of the LED, the material of the diffractive optical element, the linearization rate, and the like.

この回折光学素子4は、図6(a)〜(f)に示すように、発光素子3からのランバーシアン配向光を、一次元的な配向である線状光16へと変換する。例えば、LEDの場合にはレーザに比べてコヒーレント性が小さいので、厳密な意味の線形状にはならないが、基本発光パターン(図6(a)、(b))に比べると明らかに線状の配向に見える程度の配向(図6(e)、(f))を形成することが可能である。   As shown in FIGS. 6A to 6F, the diffractive optical element 4 converts Lambertian alignment light from the light emitting element 3 into linear light 16 having a one-dimensional alignment. For example, in the case of an LED, since the coherency is small compared to a laser, it does not have a strict sense of a linear shape, but is clearly linear compared to a basic light emission pattern (FIGS. 6A and 6B). It is possible to form an orientation (FIGS. 6E and 6F) that is visible to the orientation.

次に物体検知の原理について説明する。   Next, the principle of object detection will be described.

まず、図7に示すように、発光素子3と回折光学素子4とで形成された線状光16は、光スキャナ2によって回転振動されながら、線状光16の線方向と直交する方向に走査され、面状の線状光16のパターンを形成する。   First, as shown in FIG. 7, the linear light 16 formed by the light emitting element 3 and the diffractive optical element 4 is scanned in a direction orthogonal to the linear direction of the linear light 16 while being rotationally oscillated by the optical scanner 2. Thus, a pattern of planar linear light 16 is formed.

この線状光16のパターンは、被検知領域に物体がない場合には、線状光16の反射光17のパターンとして、乱れなくそのままの形状で撮像素子5に生成される(図8(a))。これに対し、被検知領域に物体が存在するときには、線状光16の反射光17のパターンは、物体の形状、大きさに応じて各線状光16のパターンに歪みが生じた状態で撮像素子5に生成される(図8(b))。   When there is no object in the detection area, the pattern of the linear light 16 is generated in the image pickup device 5 as a pattern of the reflected light 17 of the linear light 16 without being disturbed (FIG. 8A )). On the other hand, when an object is present in the detection area, the pattern of the reflected light 17 of the linear light 16 is such that the pattern of each linear light 16 is distorted according to the shape and size of the object. 5 (FIG. 8B).

この撮像された各線状光16の反射光17の歪み位置、歪み範囲を検知手段により検知することで、複雑な画像処理をすることなく、物体の存在、方向のみならず、その形状と大きさも検知することができる。   By detecting the distortion position and distortion range of the reflected light 17 of each imaged linear light 16 by the detection means, not only the presence and direction of the object but also the shape and size thereof without complicated image processing. Can be detected.

このとき、図9に示すように、発光素子3の発光を撮像素子5の撮影周波数と同期したパルス光とすると、光が物体で反射されて撮像素子に戻ってくるまでの時間を測定することができ、このようなタイムオブフライト(TOF)の原理で物体までの距離を算出することが可能となる。   At this time, as shown in FIG. 9, when the light emission of the light emitting element 3 is a pulsed light synchronized with the imaging frequency of the imaging element 5, the time until the light is reflected by the object and returns to the imaging element is measured. It is possible to calculate the distance to the object based on the principle of time of flight (TOF).

また、距離と物体の形状の結果を合算することで、物体の大きさを正確に検出することができる。   Moreover, the size of the object can be accurately detected by adding the results of the distance and the shape of the object.

本実施形態においては、発光素子3の発光頻度または光スキャナ2による基板12の回転速度を制御する制御手段として、CPUを備えた検知回路6が設けられている。CPUは、被検知物の有無を走査するための第1の制御モードと、被検知物の種類を走査するための第2の制御モードとを有する。第1の制御モードは、発光素子3の発光頻度または光スキャナ2による基板12の回転速度を相対的に低く制御し、第2の制御モードでは、当該発光頻度または当該回転速度を相対的に高く制御する。   In the present embodiment, a detection circuit 6 having a CPU is provided as a control means for controlling the light emission frequency of the light emitting element 3 or the rotation speed of the substrate 12 by the optical scanner 2. The CPU has a first control mode for scanning the presence / absence of the detected object and a second control mode for scanning the type of the detected object. In the first control mode, the light emission frequency of the light emitting element 3 or the rotation speed of the substrate 12 by the optical scanner 2 is controlled relatively low, and in the second control mode, the light emission frequency or the rotation speed is relatively high. Control.

この第1の制御モードは、物体の存在の有無のみを検出するモードであり、走査線の数はそれほど必要としないので、例えば走査周波数を10Hzに設定し線状光16を走査すればよい。第1の制御モードにおいて、検知領域内に物体が存在すると、線状光16の歪みから物体の存在がわかる。   This first control mode is a mode for detecting only the presence / absence of an object, and does not require a large number of scanning lines. For example, the scanning frequency may be set to 10 Hz and the linear light 16 may be scanned. In the first control mode, when an object is present in the detection area, the presence of the object is known from the distortion of the linear light 16.

第2の制御モードでは、第1モードと比較して、前記発光頻度または前記回転速度を相対的に高く、例えば走査周波数を100Hzに設定し走査線の数を増やすことにより、撮像素子における画像データの解像度を高め、物体の方向、距離、形状及び大きさを検知することができる。   In the second control mode, compared with the first mode, the light emission frequency or the rotation speed is relatively high. For example, by setting the scanning frequency to 100 Hz and increasing the number of scanning lines, the image data in the image sensor is increased. Can be detected and the direction, distance, shape and size of the object can be detected.

この結果、第1の制御モードによるラフスキャンによって、物体の存在とその距離を検知し、その後の第2の制御モードによるファインスキャンによって、物体の形状・大きさを検知することができ、演算素子の能力を十分に活用することが可能となる。すなわち、処理能力の低い安価な演算素子を用いても物体検知ができ、製造コストを抑えることができる。   As a result, the presence and distance of the object can be detected by the rough scan in the first control mode, and the shape and size of the object can be detected by the fine scan in the second control mode thereafter. It is possible to make full use of these capabilities. That is, even if an inexpensive arithmetic element with low processing capability is used, the object can be detected, and the manufacturing cost can be suppressed.

本発明の小型物体検知装置は、以下の分野で好適に用いられる。
・自動車の助手席の乗員検知(大人/子供、人間/犬の相違を判別)
・自動車のプリクラッシュ検知システム
・異種混合ラインでの製品仕分け
The small object detection device of the present invention is suitably used in the following fields.
・ Detection of passengers in the passenger seat of a car (Difference between adult / child and human / dog)
・ Automobile pre-crash detection system ・ Product sorting in different types of mixed lines

基板のサイズが2mm角、チップサイズが4mm角のMEMS光スキャナの基板上に300μm角、発光波長830nmのAlGaAs系LEDチップをフリップチップ実装し、その上からガラスウエハ上にモールド形成された回折光学素子をUV硬化樹脂によって接着した。この光スキャナと別行程で作成された30万画素のモノクロCMOS撮像素子をHTCCパッケージに光軸を合わせて実装した。最後に830nmの波長に対する両面ARコート付きのガラスで同パッケージを封止した。 A diffractive optical element in which an AlGaAs LED chip having a substrate size of 2 mm square and a chip size of 4 mm square is flip-chip mounted with a 300 μm square and an emission wavelength of 830 nm is molded on a glass wafer. The device was bonded with a UV curable resin. This optical scanner and a 300,000 pixel monochrome CMOS image sensor produced in a separate process were mounted on an HTCC package with the optical axis aligned. Finally, the package was sealed with glass with a double-sided AR coating for a wavelength of 830 nm.

このパッケージと制御回路および電源部とを一つの匡体にまとめてマッチ箱程度と非常に小型の物体検知装置を作製した。   This package, the control circuit, and the power supply unit were combined into a single housing to produce an extremely small object detection device that is about the size of a match box.

この装置を自動車の乗員検知、すなわち助手席に人間が座っているかどうかを検出する用途に適用した。   This device was applied to the detection of an occupant of an automobile, that is, an application for detecting whether a person is sitting in a passenger seat.

走査周波数はラフスキャン時が10Hz、ファインスキャン時が100Hz、発光出力は5mWとした。走査角は光学全角で60°とした。撮像素子には可視光カットフィルタを設けて、走査線状光の光のみを撮像するように設定した。   The scanning frequency was 10 Hz during rough scanning, 100 Hz during fine scanning, and the light emission output was 5 mW. The scanning angle was 60 ° in all optical angles. The imaging element was provided with a visible light cut filter and set to capture only the scanning line light.

その結果、人間が座っているか否かはもちろんのこと、大人か子供、子供か犬の違いまでもが線状光の歪みによって判別でき、乗員検知として十分に使用できることがわかった。   As a result, it was found that not only whether a person is sitting, but also whether it is an adult or a child, a child or a dog, can be discriminated by the distortion of the linear light and can be used sufficiently for occupant detection.

1…物体検知装置、2…光スキャナ、3…発光素子、4…回折光学素子、5…撮像素子、6…検知回路、8…圧電ユニモルフ振動板、9…圧電振動部、10…圧電ユニモルフ振動板群、11…支持体、12…基板、13…電極配線、14…光学接着剤、15…Auバンプ、16…線状光、17…反射光、W…被検知物。
DESCRIPTION OF SYMBOLS 1 ... Object detection apparatus, 2 ... Optical scanner, 3 ... Light emitting element, 4 ... Diffraction optical element, 5 ... Imaging element, 6 ... Detection circuit, 8 ... Piezoelectric unimorph diaphragm, 9 ... Piezoelectric vibration part, 10 ... Piezoelectric unimorph vibration Group of plates, 11 ... support, 12 ... substrate, 13 ... electrode wiring, 14 ... optical adhesive, 15 ... Au bump, 16 ... linear light, 17 ... reflected light, W ... detected object.

Claims (4)

発光素子と、
前記発光素子から照射された光を線状光に変換する回折光学素子と、
前記発光素子と前記回折光学素子とを回転させる回転駆動手段と、
前記線状光をその線方向と直交する方向に走査することによって形成される検知領域にある被検知物から反射された反射光を受けて前記反射光のパターンを生成する撮像素子と、
前記撮像素子により生成された前記反射光のパターンから前記被検知物の存在、その方向、形状又は大きさを検知する検知手段とを備え、
前記回転駆動手段は、少なくとも一対の圧電ユニモルフ振動板と、前記圧電ユニモルフ振動板の一端を固定して支持する支持体と、前記圧電ユニモルフ振動板に接続されかつ該圧電ユニモルフ振動板の圧電駆動により回転振動する基板とで構成され、前記基板上に前記発光素子と前記回折光学素子とが配設されることを特徴とする物体検知装置。
A light emitting element;
A diffractive optical element that converts light emitted from the light emitting element into linear light;
Rotation driving means for rotating the light emitting element and the diffractive optical element;
An imaging device that receives reflected light reflected from an object to be detected in a detection region formed by scanning the linear light in a direction perpendicular to the linear direction, and generates a pattern of the reflected light;
Detecting means for detecting the presence, direction, shape or size of the object to be detected from the pattern of the reflected light generated by the image sensor;
The rotation driving means includes at least a pair of piezoelectric unimorph diaphragms, a support that fixes and supports one end of the piezoelectric unimorph diaphragm, and is connected to the piezoelectric unimorph diaphragm and is driven by piezoelectric driving of the piezoelectric unimorph diaphragm. An object detection apparatus comprising: a substrate that rotates and vibrates, wherein the light emitting element and the diffractive optical element are disposed on the substrate.
前記発光素子は、前記撮像素子の撮影周波数と同期したパルス光を照射するものであることを特徴とする請求項1記載の物体検知装置。   The object detection apparatus according to claim 1, wherein the light emitting element emits pulsed light synchronized with a photographing frequency of the image pickup element. 前記発光素子は、発光ダイオードであることを特徴とする請求項1または請求項2に記載の物体検知装置。   The object detection device according to claim 1, wherein the light emitting element is a light emitting diode. 請求項1乃至3のいずれか1項記載の物体検知装置において、
少なくとも前記発光素子の発光頻度または前記回転駆動手段の回転速度を制御する制御手段を備え、
該制御手段は、被検知物の有無を走査するための第1の制御モードと、被検知物の種類を走査するための第2の制御モードとを有し、
前記第1の制御モードでは、前記発光素子の発光頻度または前記回転駆動手段の回転速度を相対的に低く制御し、前記第2の制御モードでは、前記発光素子の発光頻度または前記回転駆動手段の回転速度を相対的に高く制御することを特徴とする物体検知装置。
The object detection device according to any one of claims 1 to 3,
Control means for controlling at least the light emission frequency of the light emitting element or the rotational speed of the rotation driving means
The control means has a first control mode for scanning the presence / absence of an object to be detected and a second control mode for scanning the type of the object to be detected,
In the first control mode, the light emission frequency of the light emitting element or the rotation speed of the rotation driving unit is controlled to be relatively low, and in the second control mode, the light emission frequency of the light emitting element or the rotation driving unit of the rotation driving unit is controlled. An object detection apparatus characterized by controlling a rotational speed to be relatively high.
JP2009048506A 2009-03-02 2009-03-02 Object detection device Active JP5243996B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009048506A JP5243996B2 (en) 2009-03-02 2009-03-02 Object detection device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009048506A JP5243996B2 (en) 2009-03-02 2009-03-02 Object detection device

Publications (2)

Publication Number Publication Date
JP2010203864A true JP2010203864A (en) 2010-09-16
JP5243996B2 JP5243996B2 (en) 2013-07-24

Family

ID=42965496

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009048506A Active JP5243996B2 (en) 2009-03-02 2009-03-02 Object detection device

Country Status (1)

Country Link
JP (1) JP5243996B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013213794A (en) * 2012-04-04 2013-10-17 Mitsubishi Electric Corp Obstacle detection system
CN103376474A (en) * 2012-04-20 2013-10-30 东莞巨扬电器有限公司 Detection device and implementation mode thereof
JP2019502107A (en) * 2015-11-25 2019-01-24 ベロダイン ライダー, インク. 3D LIDAR system with target field of view
WO2020214201A1 (en) 2019-04-17 2020-10-22 Carnegie Mellon University Agile depth sensing using triangulation light curtains
JP2021518536A (en) * 2018-03-23 2021-08-02 カーネギー メロン ユニバーシティ Programmable light curtain
US11747135B2 (en) 2015-02-13 2023-09-05 Carnegie Mellon University Energy optimized imaging system with synchronized dynamic control of directable beam light source and reconfigurably masked photo-sensor
CN116884250A (en) * 2023-07-12 2023-10-13 凉山州交通运输应急指挥中心 Early warning method based on laser radar and expressway early warning system
US11972586B2 (en) 2019-09-25 2024-04-30 Carnegie Mellon University Agile depth sensing using triangulation light curtains

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11132713A (en) * 1997-10-30 1999-05-21 Oki Electric Ind Co Ltd Distance measuring device and automatic focus control and photographing device, and recessed and projecting part detector
JP2003254732A (en) * 2002-03-04 2003-09-10 Wakayama Univ Grid projection shape measurement method and device therefor based on frequency modulation grid
JP2004251699A (en) * 2003-02-19 2004-09-09 Ricoh Co Ltd Shape measuring device and three-dimensional position sensor
JP2006308416A (en) * 2005-04-28 2006-11-09 Sharp Corp Multi-beam optical distance measuring sensor and self-running type cleaner and air-conditioner equipped with it
JP2008157888A (en) * 2006-12-26 2008-07-10 Nikon Corp Apparatus for measuring three-dimensionals
JP2008157718A (en) * 2006-12-22 2008-07-10 Sharp Corp Optical device and electronic apparatus
JP2009003165A (en) * 2007-06-21 2009-01-08 Konica Minolta Opto Inc Micro scanner and optical scanning apparatus with the same

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11132713A (en) * 1997-10-30 1999-05-21 Oki Electric Ind Co Ltd Distance measuring device and automatic focus control and photographing device, and recessed and projecting part detector
JP2003254732A (en) * 2002-03-04 2003-09-10 Wakayama Univ Grid projection shape measurement method and device therefor based on frequency modulation grid
JP2004251699A (en) * 2003-02-19 2004-09-09 Ricoh Co Ltd Shape measuring device and three-dimensional position sensor
JP2006308416A (en) * 2005-04-28 2006-11-09 Sharp Corp Multi-beam optical distance measuring sensor and self-running type cleaner and air-conditioner equipped with it
JP2008157718A (en) * 2006-12-22 2008-07-10 Sharp Corp Optical device and electronic apparatus
JP2008157888A (en) * 2006-12-26 2008-07-10 Nikon Corp Apparatus for measuring three-dimensionals
JP2009003165A (en) * 2007-06-21 2009-01-08 Konica Minolta Opto Inc Micro scanner and optical scanning apparatus with the same

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013213794A (en) * 2012-04-04 2013-10-17 Mitsubishi Electric Corp Obstacle detection system
CN103376474A (en) * 2012-04-20 2013-10-30 东莞巨扬电器有限公司 Detection device and implementation mode thereof
CN103376474B (en) * 2012-04-20 2017-01-18 东莞巨扬电器有限公司 Detection device and implementation mode thereof
US11747135B2 (en) 2015-02-13 2023-09-05 Carnegie Mellon University Energy optimized imaging system with synchronized dynamic control of directable beam light source and reconfigurably masked photo-sensor
JP2019502107A (en) * 2015-11-25 2019-01-24 ベロダイン ライダー, インク. 3D LIDAR system with target field of view
US11867790B2 (en) 2015-11-25 2024-01-09 Velodyne Lidar Usa, Inc. Three dimensional LIDAR system with targeted field of view
JP2021518536A (en) * 2018-03-23 2021-08-02 カーネギー メロン ユニバーシティ Programmable light curtain
EP3956631A4 (en) * 2019-04-17 2022-12-28 Carnegie Mellon University Agile depth sensing using triangulation light curtains
JP7403860B2 (en) 2019-04-17 2023-12-25 カーネギー メロン ユニバーシティ Agile depth sensing using triangulation light curtains
WO2020214201A1 (en) 2019-04-17 2020-10-22 Carnegie Mellon University Agile depth sensing using triangulation light curtains
US11972586B2 (en) 2019-09-25 2024-04-30 Carnegie Mellon University Agile depth sensing using triangulation light curtains
CN116884250A (en) * 2023-07-12 2023-10-13 凉山州交通运输应急指挥中心 Early warning method based on laser radar and expressway early warning system
CN116884250B (en) * 2023-07-12 2024-01-26 凉山州交通运输应急指挥中心 Early warning method based on laser radar and expressway early warning system

Also Published As

Publication number Publication date
JP5243996B2 (en) 2013-07-24

Similar Documents

Publication Publication Date Title
JP5243996B2 (en) Object detection device
US10483722B2 (en) Devices with ultra-small vertical cavity surface emitting laser emitters incorporating beam steering
US10598771B2 (en) Depth sensing with multiple light sources
KR101704160B1 (en) Gimbaled scanning mirror array
US11906726B2 (en) Micromachined mirror assembly having micro mirror array and hybrid driving method thereof
US10330922B2 (en) Biaxial optical deflector including multiple mirror units, laser radar system, and manufacturing method
US11662570B2 (en) Mems scanner suspension system enabling high frequency and high mechanical tilt angle for large mirrors
JPWO2021100227A1 (en) A vibrating device and an imaging unit equipped with the vibrating device
US11620805B2 (en) Integrated electronic module for 3D sensing applications, and 3D scanning device including the integrated electronic module
TW202041883A (en) Mounting configurations for optoelectronic components in lidar systems
JPWO2021100228A1 (en) A vibrating device and an imaging unit equipped with the vibrating device
US20070222953A1 (en) Determining the Displacement of Micromirrors in a Projection System
WO2019021887A1 (en) Optical radar device
CN109384193B (en) Tilting chip assembly for optical device
JP2011179969A (en) Light scanning device and laser radar device
JP2009128238A (en) Laser radar equipment
JP2007292919A (en) Optical scanner
JP2009152463A (en) Semiconductor apparatus, identification device of semiconductor apparatus and manufacturing device of semiconductor apparatus
JP2008249412A (en) Object detection device
US11971537B2 (en) Light deflection device, distance measurement device, and mobile body
US20230359019A1 (en) Micromechanical resonator wafer assembly and method of fabrication thereof
US20230204943A1 (en) Two-axis scanning mirror using piezoelectric drivers
US20200174249A1 (en) Light deflection device, distance measurement device, and mobile body
JPH04140707A (en) Area photoelectric sensor
JP2022071666A (en) Optical device, measuring device, robot, electronic apparatus, and molding device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120213

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130312

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130319

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130405

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160412

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5243996

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250