JP2010203848A - Monitoring device of battery - Google Patents

Monitoring device of battery Download PDF

Info

Publication number
JP2010203848A
JP2010203848A JP2009048161A JP2009048161A JP2010203848A JP 2010203848 A JP2010203848 A JP 2010203848A JP 2009048161 A JP2009048161 A JP 2009048161A JP 2009048161 A JP2009048161 A JP 2009048161A JP 2010203848 A JP2010203848 A JP 2010203848A
Authority
JP
Japan
Prior art keywords
battery
metal layer
exterior member
communication
connection line
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009048161A
Other languages
Japanese (ja)
Inventor
Kazuya Ogawa
和也 小川
Takeshi Morita
剛 森田
Noritoshi Ueda
文紀 上田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2009048161A priority Critical patent/JP2010203848A/en
Publication of JP2010203848A publication Critical patent/JP2010203848A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Tests Of Electric Status Of Batteries (AREA)
  • Secondary Cells (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a battery monitoring device constituted so as to be able to easily detect a shot-circuit between an electrode terminal or a conductive material and an exterior body. <P>SOLUTION: This device includes a battery 11 wherein a power generation element 111 is sealed by exterior members 114, 115 including a metal layer and an insulating layer, a detection part 6 for detecting a battery state, a control part 7 for receiving a detection result detected by the detection part, and a communication line for connecting the battery 11, the detection part 6 and the control part 7 together. The insulating layer insulates the power generation element 111 from the metal layer, and the detection part 6 transmits the battery 11 state as a transmission signal to the control part 7 through the communication line, and the metal layer is connected electrically to the communication line through a connection line. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、電池の監視装置に関する。     The present invention relates to a battery monitoring device.

ラミネートシートで覆われた二次電池において、陰極とラミネートシートの金属がショートすることを検知するために、陽極とラミネートの金属を接続する電池が知られている(特許文献1)。   In a secondary battery covered with a laminate sheet, in order to detect a short circuit between the cathode and the metal of the laminate sheet, a battery that connects the anode and the metal of the laminate is known (Patent Document 1).

特開2000−353502号公報JP 2000-353502 A

しかしながら、従来の二次電池の構成では、微少な短絡が検知できないおそれがあった。   However, in the configuration of the conventional secondary battery, there is a possibility that a minute short circuit cannot be detected.

そこで、本発明は、微少な短絡も検知できる電池の監視装置を提供する。   Therefore, the present invention provides a battery monitoring device that can detect even a slight short circuit.

本発明は、外装材と通信線との間を接続する接続線を設け、電池内でショートが生じた場合に、通信線を通る通信信号の状態の変化を検知することによって上記課題を解決する。 The present invention solves the above-mentioned problems by providing a connection line that connects the exterior material and the communication line, and detecting a change in the state of the communication signal passing through the communication line when a short circuit occurs in the battery. .

本発明によれば、電池内でショートが生じた場合に、発電要素又は電極端子と接続線が電気的に接続され、通信信号が接続線を導通することで生じる通信信号の変化を検知するため、電極端子又は発電要素と外装部材の間のショートを容易に検知することができる。   According to the present invention, when a short circuit occurs in the battery, the power generation element or the electrode terminal and the connection line are electrically connected, and the communication signal detects a change in the communication signal caused by conducting the connection line. In addition, it is possible to easily detect a short circuit between the electrode terminal or the power generation element and the exterior member.

発明の実施形態に係る電池監視装置を示すブロック図である。It is a block diagram which shows the battery monitoring apparatus which concerns on embodiment of invention. 図1の監視装置の検出部を示す電気回路図である。It is an electric circuit diagram which shows the detection part of the monitoring apparatus of FIG. 図1の電池を示す平面図である。It is a top view which shows the battery of FIG. 図3のA−A断面図である。It is AA sectional drawing of FIG. 発明の他の実施形態に係る電池を示す図3のB−B断面に相当する断面図である。It is sectional drawing equivalent to the BB cross section of FIG. 3 which shows the battery which concerns on other embodiment of invention.

以下、発明の実施形態を図面に基づいて説明する。
《第1実施形態》
図1は、発明の実施形態に係る電池監視装置5を示す図であり、モータ4の駆動システムを示すブロック図である。また図2は、図1の電圧検出回路6と電池11の接続を示す回路図である。図3は図1の電池11を示す平面図であり、接続線8及び通信配線69と電池11との接続を示す図である。図4は、図3の電池11の端部における接続線8及び通信配線69の接続を示す図であり、図3のA―A線に沿う断面図である。
Hereinafter, embodiments of the invention will be described with reference to the drawings.
<< First Embodiment >>
FIG. 1 is a diagram showing a battery monitoring device 5 according to an embodiment of the invention, and is a block diagram showing a drive system of a motor 4. 2 is a circuit diagram showing the connection between the voltage detection circuit 6 and the battery 11 in FIG. FIG. 3 is a plan view showing the battery 11 of FIG. 1 and shows the connection between the connection line 8 and the communication wiring 69 and the battery 11. 4 is a diagram showing the connection of the connection line 8 and the communication wiring 69 at the end of the battery 11 of FIG. 3, and is a cross-sectional view taken along the line AA of FIG.

図1に示す組電池1は、複数の電池11を直列に接続することにより構成され、その両極は電力供給線2を介してインバータ3に接続される。モータ4は、インバータ3に接続され、インバータ3により変換された交流電流によって駆動する。   The assembled battery 1 shown in FIG. 1 is configured by connecting a plurality of batteries 11 in series, and both electrodes thereof are connected to an inverter 3 via a power supply line 2. The motor 4 is connected to the inverter 3 and is driven by an alternating current converted by the inverter 3.

なお、同図に示す組電池1によるモータ4の駆動システムは、本実施形態に係る電池監視装置5を説明するための一例であって、本例のように複数の電池11を直列に接続して組電池1を構成する以外にも、複数の電池11を直列及び/又は並列に接続して組電池1を構成することもできる。また、組電池1による電力の供給対象が直流モータの場合はインバータ3を省略することができ、さらに電力の供給対象はモータ4以外の負荷とすることもできる。   The driving system of the motor 4 by the assembled battery 1 shown in the figure is an example for explaining the battery monitoring device 5 according to this embodiment, and a plurality of batteries 11 are connected in series as in this example. In addition to configuring the assembled battery 1, the assembled battery 1 can also be configured by connecting a plurality of batteries 11 in series and / or in parallel. Further, when the power supply target of the assembled battery 1 is a DC motor, the inverter 3 can be omitted, and the power supply target can be a load other than the motor 4.

電池監視装置5は、それぞれの電池11に接続された電圧検出装置6と、電圧検出装置6からの信号を受け、各電池11に対して充放電を制御する制御回路7を有する。本例の電圧検出装置6が発明の検出部に、制御回路7が制御部に相当する。   The battery monitoring device 5 includes a voltage detection device 6 connected to each battery 11 and a control circuit 7 that receives a signal from the voltage detection device 6 and controls charging / discharging of each battery 11. The voltage detection device 6 of this example corresponds to the detection unit of the invention, and the control circuit 7 corresponds to the control unit.

電圧検出装置6は、各電池11の状態を検出し、各電池の状態を通信信号たる交流信号により制御回路7へ送信するマイクロプロセッサユニット(以下MPUと略す。)61を有し、電池11の電圧を検出するための配線68aと68bと、検出した電池の状態を交流信号として送信するため通信配線69を有する。配線68aは電池11の正極に、配線68bは電池11の負極に接続され、通信配線69は電池11の正極側に接続される。MPU61は通信配線69cによりアース設置されている。   The voltage detection device 6 includes a microprocessor unit (hereinafter abbreviated as MPU) 61 that detects the state of each battery 11 and transmits the state of each battery to the control circuit 7 using an AC signal as a communication signal. Wiring 68a and 68b for detecting the voltage, and communication wiring 69 for transmitting the detected battery state as an AC signal are provided. The wiring 68 a is connected to the positive electrode of the battery 11, the wiring 68 b is connected to the negative electrode of the battery 11, and the communication wiring 69 is connected to the positive electrode side of the battery 11. The MPU 61 is grounded by a communication wiring 69c.

直流成分を除去するためのカップリングコンデンサ62及び63が、通信配線69、69cにそれぞれ接続されている。電池11が直列接続され、それぞれの電池に対して通信配線69が接続された場合、各電池11の電位に応じた異なる直流成分が通信配線69を流れる信号に載るため、制御回路7が当該交流信号を認識することが困難となる。そこで本例では、当該直流成分を除去するために、通信配線69、69cにカップリングコンデンサ62及び63を接続した。   Coupling capacitors 62 and 63 for removing a direct current component are connected to communication wires 69 and 69c, respectively. When the batteries 11 are connected in series and the communication wiring 69 is connected to each battery, a different direct current component corresponding to the potential of each battery 11 is placed on a signal flowing through the communication wiring 69, so that the control circuit 7 It becomes difficult to recognize the signal. Therefore, in this example, coupling capacitors 62 and 63 are connected to the communication wires 69 and 69c in order to remove the DC component.

なお、本例は、通信信号として交流信号を用いているが、例えばデジタル信号でもよく、また配線68a、68b及び69cを必ずしも全ての電池に対し設けなくてもよい。   In this example, an AC signal is used as a communication signal. However, for example, a digital signal may be used, and the wirings 68a, 68b, and 69c are not necessarily provided for all batteries.

制御回路7は、電圧検出装置6から送信される組電池1の状態の通信信号を受信し、受信した通信信号に基づき各電池11の出力を制御するMPU71を有し、MPU71と電力供給線2を接続する配線72と、MPU71をアース設置する配線74を有する。また配線72の間は、直流成分を除去するためにカップリングコンデンサ73が接続されている。   The control circuit 7 has an MPU 71 that receives the communication signal of the state of the assembled battery 1 transmitted from the voltage detection device 6 and controls the output of each battery 11 based on the received communication signal. The MPU 71 and the power supply line 2 And a wiring 74 for grounding the MPU 71. Further, a coupling capacitor 73 is connected between the wirings 72 in order to remove a direct current component.

MPU71は、各MPU61に対して電池11の電圧を検出させる信号を、配線72、電力供給線2及び通信配線69を介してMPU61に送信する。これを受信したMPU61は、配線68a及び68bを通じて電池11の電圧を検出し、検出した電圧の値を交流信号として、通信配線69、電力供給線2及び配線72を通じて、MPU71へ送信する。   The MPU 71 transmits a signal for causing each MPU 61 to detect the voltage of the battery 11 to the MPU 61 via the wiring 72, the power supply line 2, and the communication wiring 69. Receiving this, the MPU 61 detects the voltage of the battery 11 through the wirings 68a and 68b, and transmits the detected voltage value to the MPU 71 through the communication wiring 69, the power supply line 2 and the wiring 72 as an AC signal.

ここで、MPU61からMPU71へ送信させる通信信号は電池11を通って送信されるが、当該通信信号が交流信号であり電池11からの出力は直流信号であるため、それぞれの信号を同じ配線で送信できる。そして、通信信号を受信したMPU71は、当該通信信号に基づき各電池11の容量を把握することができる。   Here, a communication signal to be transmitted from the MPU 61 to the MPU 71 is transmitted through the battery 11, but since the communication signal is an AC signal and an output from the battery 11 is a DC signal, each signal is transmitted through the same wiring. it can. And MPU71 which received the communication signal can grasp | ascertain the capacity | capacitance of each battery 11 based on the said communication signal.

また、MPU71は、組電池1の中である電池11の電池容量が他の電池11の電池容量より低い場合は、その他の電池11に対して放電の指示を出して、組電池1の各電池11の容量を均一にする。このように、MPU71は、各電池11の電池容量を把握し、過充電又は過充電の防止し、さらに電池11の容量の出力管理をする。   In addition, when the battery capacity of the battery 11 in the assembled battery 1 is lower than the battery capacity of the other batteries 11, the MPU 71 issues a discharge instruction to the other batteries 11 and each battery of the assembled battery 1. 11 capacity is made uniform. In this way, the MPU 71 grasps the battery capacity of each battery 11, prevents overcharge or overcharge, and further manages the output of the capacity of the battery 11.

接続線8は、電池11と通信配線69との間に接続されており、接続線8の一端は電池11の外装材114に、接続線8の他端はMPU61とカップリングコンデンサ62の間に接続されている。なお、発電要素111及び外装材114は図1に示されておらず図3を参照する。外装材114と電池11の発電要素111との間が絶縁されているため、接続線8は本図で示す駆動システムの回路の一部として常時機能することはない。本図において、接続線8は常時、システム回路の一部として機能しないため、外装材114との接続部分を点線で示している。   The connection line 8 is connected between the battery 11 and the communication wiring 69, one end of the connection line 8 is between the exterior material 114 of the battery 11, and the other end of the connection line 8 is between the MPU 61 and the coupling capacitor 62. It is connected. The power generation element 111 and the exterior material 114 are not shown in FIG. 1 and refer to FIG. Since the exterior material 114 and the power generation element 111 of the battery 11 are insulated, the connection line 8 does not always function as a part of the circuit of the drive system shown in the figure. In this figure, since the connection line 8 does not always function as a part of the system circuit, a connection portion with the exterior material 114 is indicated by a dotted line.

一方、電池11内でショートが起こり電池11の発電要素111と外装材114が電気的に導通した場合に、電池11と接続線8間が電気的に導通される。これにより、電池11の発電要素111と外装材114が導通していない場合、接続線8は導線として機能しないため、通信配線69を通る通信信号が接続線8を流れることなく、MPU61又はMPU71が正常に通信信号を受信する。しかし、例えば、電池11内の絶縁層に亀裂等が入ることでショートが起こり電池11の発電要素と外装材が電気的に導通した場合、通信配線69を通る通信信号は接続線8にも流れる。そのため、MPU71又はMPU61が受信する通信信号のゲインが、正常に通信信号を受信したときと比べて下がる。これによって、制御回路7は、通信信号のゲインより電池11内でのショートを把握することができる。なお、接続線8と電池11の外装材114の接続の具体的構成は後述する。   On the other hand, when a short circuit occurs in the battery 11 and the power generation element 111 of the battery 11 and the exterior material 114 are electrically connected, the battery 11 and the connection line 8 are electrically connected. Thus, when the power generation element 111 of the battery 11 and the exterior material 114 are not conductive, the connection line 8 does not function as a conducting wire, so that the communication signal passing through the communication wiring 69 does not flow through the connection line 8, and the MPU 61 or MPU 71 The communication signal is received normally. However, for example, when a short circuit occurs due to a crack or the like in the insulating layer in the battery 11 and the power generation element of the battery 11 and the exterior material are electrically connected, a communication signal passing through the communication wiring 69 also flows through the connection line 8. . Therefore, the gain of the communication signal received by the MPU 71 or MPU 61 is lower than that when the communication signal is normally received. Thereby, the control circuit 7 can grasp the short circuit in the battery 11 from the gain of the communication signal. In addition, the specific structure of the connection of the connection line 8 and the exterior material 114 of the battery 11 will be described later.

異常信号送信手段9は、MPU71に接続され、MPU71からの信号に基づいて電池11に異常が生じていることを示す信号を駆動システムの外部へ送信する。そして異常信号送信手段9から発せられる信号に基づき例えば警告ランプを点灯させたりすることで、車両の運転者は組電池1に異常が生じていることを容易に認識することができる。   The abnormality signal transmission means 9 is connected to the MPU 71 and transmits a signal indicating that an abnormality has occurred in the battery 11 based on a signal from the MPU 71 to the outside of the drive system. The vehicle driver can easily recognize that an abnormality has occurred in the assembled battery 1 by, for example, turning on a warning lamp on the basis of a signal emitted from the abnormality signal transmission means 9.

なお、同図に示す異常信号送信手段9は、制御回路7と別構成としているが、制御手段の一部の構成としてもよい。また本システムの使用者へ異常を報知する手段は、警告ランプに限らず、例えば音声等により知らせてもよい。本例の電力供給線2、通信配線69及び配線72が本発明の「通信線」に相当する。   The abnormal signal transmission means 9 shown in the figure is configured separately from the control circuit 7, but may be a partial configuration of the control means. The means for notifying the user of the system of the abnormality is not limited to the warning lamp, but may be notified by voice or the like, for example. The power supply line 2, the communication wiring 69, and the wiring 72 of this example correspond to the “communication line” of the present invention.

次に、図2を用いて、電圧検出回路6の具体的構成を示しつつ、電池11との接続回路の構成を説明する。電圧検出回路6は、電池11の正極端子に接続された配線611と負極端子に接続された配線612とを有し、配線611はマイクロプロセッサ61(以下、MPU61と略す。)の電源入力端子Vccに接続され、配線612はMPU61の接地端子GND1に接続されている。これにより、MPU61に駆動電力が供給される。   Next, the configuration of the connection circuit with the battery 11 will be described using FIG. 2 while showing the specific configuration of the voltage detection circuit 6. The voltage detection circuit 6 has a wiring 611 connected to the positive terminal of the battery 11 and a wiring 612 connected to the negative terminal. The wiring 611 is a power input terminal Vcc of the microprocessor 61 (hereinafter abbreviated as MPU 61). The wiring 612 is connected to the ground terminal GND1 of the MPU 61. As a result, driving power is supplied to the MPU 61.

また、電池11の正極端子に接続された配線611には、配線68aが並列に接続されるとともに、負極端子に接続された配線612には、配線68bが並列に接続されている。そして、電池11の正極端子に接続された配線68aには、電池11の電圧を検出するための抵抗641,642が設けられ、配線68aの他端は、MPU61の電圧検出端子VD1,VD2に接続されている。また、電池11の負極端子に電気的に接続された配線68bにはコンデンサ643が設けられ、当該配線68aの他端は電圧検出端子VD1に接続された配線68aに接続されている。これら2つの抵抗641,642及びコンデンサ643により電池11の端子間電圧が検出されることになる。   Further, the wiring 68a is connected in parallel to the wiring 611 connected to the positive terminal of the battery 11, and the wiring 68b is connected in parallel to the wiring 612 connected to the negative terminal. The wiring 68a connected to the positive terminal of the battery 11 is provided with resistors 641 and 642 for detecting the voltage of the battery 11, and the other end of the wiring 68a is connected to the voltage detection terminals VD1 and VD2 of the MPU 61. Has been. Further, a capacitor 643 is provided in the wiring 68b electrically connected to the negative electrode terminal of the battery 11, and the other end of the wiring 68a is connected to the wiring 68a connected to the voltage detection terminal VD1. The two resistors 641 and 642 and the capacitor 643 detect the voltage between the terminals of the battery 11.

ここで検出された電池11の端子間電圧値は、MPU61の内部機能によって特定周波数帯域の交流信号に変換され、通信信号出力端子Outから通信配線69a,69,611及び電力供給線2を介して制御回路7へ送出される。このとき、この交流通信信号の基準電位を定めるために、MPU61の通信信号用接地端子GND2には通信配線69cが接続され、カップリングコンデンサ63を介して、本例の組電池1を収納する電池ケースなどの接地点に接続されている。電池ケースなどの接地点は各電池11において同一電位であることから、何れの電圧検出回路6においても通信信号出力端子Outから制御回路7へ送出される交流通信信号の基準電位が等しくなる。MPU61によって変換された交流信号の周波数帯域は、インバータ3、DC/DCコンバータ(不図示)から発せられる交流信号と混成しない帯域が設定されている。また本実施形態の電池監視装置が車両等に搭載させると、車両の振動に伴うノイズも影響するおそれがあり、かかるノイズ成分の周波数帯域も避けて設定されている。   The detected inter-terminal voltage value of the battery 11 is converted into an AC signal of a specific frequency band by the internal function of the MPU 61, and is transmitted from the communication signal output terminal Out via the communication wires 69 a, 69, 611 and the power supply line 2. It is sent to the control circuit 7. At this time, in order to determine the reference potential of the AC communication signal, the communication wiring 69 c is connected to the communication signal ground terminal GND 2 of the MPU 61, and the battery that houses the assembled battery 1 of this example via the coupling capacitor 63. Connected to a grounding point such as a case. Since the ground point of the battery case or the like has the same potential in each battery 11, the reference potential of the AC communication signal sent from the communication signal output terminal Out to the control circuit 7 is equal in any voltage detection circuit 6. The frequency band of the AC signal converted by the MPU 61 is set so as not to be mixed with the AC signal generated from the inverter 3 and the DC / DC converter (not shown). Further, when the battery monitoring device of the present embodiment is mounted on a vehicle or the like, there is a possibility that noise accompanying the vibration of the vehicle may also affect, and the frequency band of such noise components is set to be avoided.

電池11の正極端子に接続された配線611には通信配線69が並列に接続され、この通信配線69にカップリングコンデンサ62が設けられている。また、カップリングコンデンサ62の他端側の通信配線69は、2つの通信配線69a,69bに並列に分岐され、一方の通信配線69aはMPU61の通信信号出力端子Outに接続され、他方の通信配線69bはMPU61の通信信号入力端子Inに接続されている。   A communication wiring 69 is connected in parallel to the wiring 611 connected to the positive terminal of the battery 11, and a coupling capacitor 62 is provided on the communication wiring 69. Further, the communication wiring 69 on the other end side of the coupling capacitor 62 is branched in parallel to the two communication wirings 69a and 69b, and one communication wiring 69a is connected to the communication signal output terminal Out of the MPU 61, and the other communication wiring. 69b is connected to the communication signal input terminal In of the MPU 61.

MPU61の通信信号入力端子Inに接続された通信配線69bには、バンドパ
スフィルタ65を構成する抵抗651,652及びコンデンサ653が設けられている。このバンドパスフィルタ65は、低周波数帯域のノイズを除去して高周波数帯域の信号のみを抽出するハイパスフィルタと、高周波数帯域のノイズを除去して低周波数帯域の信号のみを抽出するローパスフィルタの両方の機能を有するフィルタ回路である。なお、同図に示す符号654は整流用ダイオードである。これにより、インバータ3、DC/DCコンバータ(不図示)から発せられる交流信号と混成しない帯域を抽出し、さらに本実施形態の電池監視装置が車両等に搭載させた場合の車両のノイズ成分をより軽減することができる。
The communication wiring 69 b connected to the communication signal input terminal In of the MPU 61 is provided with resistors 651 and 652 and a capacitor 653 that constitute the band-pass filter 65. This band pass filter 65 includes a high pass filter that removes low frequency band noise and extracts only a high frequency band signal, and a low pass filter that removes high frequency band noise and extracts only a low frequency band signal. This is a filter circuit having both functions. In addition, the code | symbol 654 shown in the figure is a rectifier diode. Thereby, the band which is not mixed with the AC signal generated from the inverter 3 and the DC / DC converter (not shown) is extracted, and further, the noise component of the vehicle when the battery monitoring device of this embodiment is mounted on the vehicle or the like is further increased. Can be reduced.

なお、発明の検出部として、本実施形態において電圧検出装置6を用いて、電池11の端子間電圧を検出するが、端子間電圧に限らず、端子間の電流を測定してもよい。電流を検知する場合、MPU61は、例えば電流積算回路を用いて、配線68a及び68bを流れる所定時間の電流値を計測し、その電流値に基づいて電池11の容量を把握することができる。そして本実施形態と同様に、その電流値に基づく電池容量を通信信号として送信すればよい。   In addition, although the voltage detection apparatus 6 is used in this embodiment as a detection part of invention and the voltage between the terminals of the battery 11 is detected, you may measure not only a voltage between terminals but the current between terminals. When detecting the current, the MPU 61 can measure the current value of the predetermined time flowing through the wires 68a and 68b using, for example, a current integrating circuit, and can grasp the capacity of the battery 11 based on the current value. As in the present embodiment, the battery capacity based on the current value may be transmitted as a communication signal.

次に、図3及び図4を用いて、図1の電池11の具体的構成と電池11と通信配線69及び接続線8の具体的な接続例を説明する。電池11は、発電要素111を覆う上部外装材114と下部外装材115と、正電極タブ112と負電極タブ113を有する。発電要素111は、詳細な図示は省略するが、正電極タブ112に接続され正極活物質が塗布された正極層と、負電極タブ113に接続され負極活物質が塗布された負極層とを、絶縁性セパレータを介して積層したものである。正極層は、アルミニウム等からなる集電体に、リチウムマンガン酸化物、二酸化マンガン又はリチウムニッケル酸化物等の正極材料を結着させた構造を有す。負極層は、銅などからなる集電体に、黒鉛、カーボンブラック、活性炭、コークス等の負極材料を結着させて構造を有する。セパレータには、ポリオレフィン系微多孔質セパレータ等を用いている。   Next, a specific configuration of the battery 11 of FIG. 1 and a specific connection example of the battery 11, the communication wiring 69, and the connection line 8 will be described with reference to FIGS. The battery 11 includes an upper exterior material 114 and a lower exterior material 115 that cover the power generation element 111, a positive electrode tab 112, and a negative electrode tab 113. Although not shown in detail in the power generation element 111, a positive electrode layer connected to the positive electrode tab 112 and coated with a positive electrode active material, and a negative electrode layer connected to the negative electrode tab 113 and coated with a negative electrode active material, These are laminated via an insulating separator. The positive electrode layer has a structure in which a positive electrode material such as lithium manganese oxide, manganese dioxide, or lithium nickel oxide is bound to a current collector made of aluminum or the like. The negative electrode layer has a structure in which a negative electrode material such as graphite, carbon black, activated carbon, and coke is bound to a current collector made of copper or the like. As the separator, a polyolefin microporous separator or the like is used.

上部外装部材114と下部外装部材115は、図4に示すように、たとえばアルミニウム箔等の金属箔の一方の面(電池11の内側面)をポリエチレン、変性ポリエチレン、ポリプロピレン、変性ポリプロピレン又はアイオノマー等の樹脂でラミネートし、他方の面(電池11の外側面)をポリアミド系樹脂又はポリエステル系樹脂でラミネートしたものであり、可撓性を有する。上部外装部材114の金属箔を金属層1141、上部外装部材114の電池の外側面を絶縁層1142、上部外装部材114の電池の内側面を絶縁層1143、下部外装部材115の金属箔を金属層1151、下部外装部材115の電池の外側面を絶縁層1152、下部外装部材115の電池の内側面を絶縁層1153として示す。上部外装部材114は一方の正極層又は負極層の主面に積層されて、下部外装部材115は他方の正極層又は負極層の主面に積層される。   As shown in FIG. 4, the upper exterior member 114 and the lower exterior member 115 are made of, for example, polyethylene, modified polyethylene, polypropylene, modified polypropylene, or ionomer on one surface (inner surface of the battery 11) of a metal foil such as an aluminum foil. It is laminated with a resin and the other surface (the outer surface of the battery 11) is laminated with a polyamide-based resin or a polyester-based resin, and has flexibility. The metal foil 1141 of the upper exterior member 114 is the metal layer 1141, the outer surface of the battery of the upper exterior member 114 is the insulating layer 1142, the inner surface of the battery of the upper exterior member 114 is the insulating layer 1143, and the metal foil of the lower exterior member 115 is the metal layer. 1151, the outer surface of the battery of the lower exterior member 115 is shown as an insulating layer 1152, and the inner surface of the battery of the lower exterior member 115 is shown as an insulating layer 1153. The upper exterior member 114 is laminated on the main surface of one positive electrode layer or the negative electrode layer, and the lower exterior member 115 is laminated on the main surface of the other positive electrode layer or negative electrode layer.

そして、これら上部外装部材114及び下部外装部材115によって、上述した発電要素111、正電極タブ112の一部及び負電極タブ113の一部を包み込み、当該外装部材114,115により形成される空間に、有機液体溶媒に過塩素酸リチウム、ホウフッ化リチウムや六フッ化リン酸リチウム等のリチウム塩を溶質とした液体電解質を注入しながら、この空間を吸引して真空状態とした後に、外装部材114,115の外周端部の全周を熱プレスにより熱融着して封止する。この熱融着により上部外装部材114と下部外装部材115が接合ざれた部分を図3に接合部116として示す。   The upper exterior member 114 and the lower exterior member 115 enclose the power generation element 111, a part of the positive electrode tab 112 and a part of the negative electrode tab 113, and form a space formed by the exterior members 114 and 115. After injecting a liquid electrolyte having a lithium salt such as lithium perchlorate, lithium borofluoride, or lithium hexafluorophosphate as a solute into the organic liquid solvent, this space is sucked to be in a vacuum state, and then the exterior member 114 , 115 is sealed by heat-sealing the entire periphery of the outer peripheral end portion of the substrate by hot pressing. A portion where the upper exterior member 114 and the lower exterior member 115 are joined by this heat fusion is shown as a joint portion 116 in FIG.

なお、本例の金属層1141、1151と絶縁層1142,1143,1152,1153が発明の外装部材の金属層及び絶縁層にそれぞれ相当する。   Note that the metal layers 1141 and 1151 and the insulating layers 1142, 1143, 1152, and 1153 in this example correspond to the metal layer and the insulating layer of the exterior member of the invention, respectively.

正電極タブ112には電力供給線2が電気的に接続されており、通信配線69はカップリングコンデンサ62を介して電力供給線2に接続されている。通信配線69の他端はMPU61と接続され、電力供給線2の他端は、インバータ3、MPU71に接続されている。   The power supply line 2 is electrically connected to the positive electrode tab 112, and the communication wiring 69 is connected to the power supply line 2 via the coupling capacitor 62. The other end of the communication wiring 69 is connected to the MPU 61, and the other end of the power supply line 2 is connected to the inverter 3 and the MPU 71.

上部外装部材114の絶縁層1142には切り欠き部118が設けられており、上部外装部材114の金属層1141の一部が当該切り欠き部118から露出する。そして接続線8の一端を、切り欠き部118から露出する金属層1141の一部と電気的に接続する。さらに、接続線8と金属層1141との接続点を含む電池11の端部をシール部材117で覆う。これにより、接続線8は、電池11の外装部材114と接続される。また接続線8の他端は、通信配線69に接続されており、カップリングコンデンサ62とMPU71との間に接続されている。   The insulating layer 1142 of the upper exterior member 114 is provided with a notch 118, and a part of the metal layer 1141 of the upper exterior member 114 is exposed from the notch 118. Then, one end of the connection line 8 is electrically connected to a part of the metal layer 1141 exposed from the notch 118. Further, the end portion of the battery 11 including the connection point between the connection line 8 and the metal layer 1141 is covered with a seal member 117. Thereby, the connection line 8 is connected to the exterior member 114 of the battery 11. The other end of the connection line 8 is connected to a communication line 69 and is connected between the coupling capacitor 62 and the MPU 71.

なお図4で示す接続線8は外装部材114の金属層1141に接続する場合に限らず、外装部材1151に接続してもよい。また接続線8と金属層1141又は金属層1151との接続部分は、図4で示す構成に限らない。例えば、接続線8との接続用に、予め外装部材の金属層1141にタブを設けておき、そのタブと接続線を接続することも可能である。さらに、このタブは必ずしも金属層1141と別構成の電極タブとする必要はなく、金属層の一部をタブとして利用し、外装部材114から露出する形状にすることも可能である。   Note that the connection line 8 shown in FIG. 4 is not limited to being connected to the metal layer 1141 of the exterior member 114 but may be connected to the exterior member 1151. Moreover, the connection part of the connection line 8 and the metal layer 1141 or the metal layer 1151 is not restricted to the structure shown in FIG. For example, a tab may be provided in advance on the metal layer 1141 of the exterior member for connection with the connection line 8, and the tab and the connection line may be connected. Further, the tab does not necessarily need to be an electrode tab having a different structure from the metal layer 1141, and a part of the metal layer can be used as a tab and can be formed to be exposed from the exterior member 114.

図4において、正極タブ112と外装部材114の金属層1141の間には、絶縁層1143があるため、正極タブ112と金属層1141は絶縁されている。そのため、接続線8の経路のインピーダンスは非常に高く、通信配線69を通る通信信号が接続線8にも分岐され流れない。しかし、絶縁層1143に亀裂が生じる等により外装部材内でショートが生じ、金属層1141と正極タブ112の間が電気的に導通すると、接続線8の経路のインピーダンスが下がり、通信信号は接続線8にも分岐して流れる。そのため、通信信号のゲインが下がってしまう。   In FIG. 4, since there is an insulating layer 1143 between the positive electrode tab 112 and the metal layer 1141 of the exterior member 114, the positive electrode tab 112 and the metal layer 1141 are insulated. Therefore, the impedance of the path of the connection line 8 is very high, and the communication signal passing through the communication wiring 69 is not branched and does not flow to the connection line 8. However, when a short circuit occurs in the exterior member due to a crack in the insulating layer 1143 and the metal layer 1141 and the positive electrode tab 112 are electrically connected, the impedance of the path of the connection line 8 is lowered, and the communication signal is transmitted to the connection line. 8 also branches and flows. For this reason, the gain of the communication signal is lowered.

このように、MPU71は、各電池11の電気容量を、それぞれの電池11に接続されるMPU61を用いて管理するが、組電池1の中である電池11に上述するショートが生じた場合、ショートが生じた電池に接続されたMPU61が送信する通信信号のゲインが下がったことを把握することができる。具体的には、MPU71は、ゲインが減少したことを、他の正常な電池電圧の通信信号のゲインと比較することにより把握することができる。   As described above, the MPU 71 manages the electric capacity of each battery 11 by using the MPU 61 connected to each battery 11. However, when the short circuit described above occurs in the battery 11 in the assembled battery 1, the short circuit occurs. It is possible to grasp that the gain of the communication signal transmitted by the MPU 61 connected to the battery in which the battery has occurred has decreased. Specifically, the MPU 71 can grasp that the gain has decreased by comparing the gain of the communication signal with another normal battery voltage.

またはMPU71は、ショートする前の電池11のゲインをメモリ等で記憶し、設定以上のゲイン変化が生じたときに電池11にショートが生じたと判断することでショートの有無を把握することもできる。あるいは、MPU71は、本例の駆動システムの設計時に正常な電池11に基づく通信信号ゲインとして予め設定値として有しており、当該設定値より通信ゲインが下がった時に、ショート等により電池11に異常が生じたと判断することも可能である。   Alternatively, the MPU 71 can store the gain of the battery 11 before short-circuiting in a memory or the like, and can determine the presence or absence of a short-circuit by determining that a short-circuit has occurred in the battery 11 when a gain change greater than the setting occurs. Alternatively, the MPU 71 has a preset value as a communication signal gain based on the normal battery 11 when the drive system of this example is designed. When the communication gain falls below the set value, the MPU 71 malfunctions due to a short circuit or the like. It is also possible to determine that this has occurred.

なお、本例では、電極タブと外装材とのショートを電池内のショートの例として説明したが、電極タブに限らず、例えば発電要素11と外装材114の金属層1141との間でショートが生じた場合も接続線8は導通し、MPU71は通信信号のゲインの変化を検知することで、当該ショートを検知することができる。またMPU71がゲインの変化を検知することを例に説明したが、MPU61によって電池11のショートに基づくゲインの変化を検知することができる。つまり、MPU61が例えばMPU71から送信される電池11の検出開始を示す通信信号を受信する時、ショートが電池内11で生じていなければ、当該通信信号は接続線8を通らず通信配線69を介してMPU61に流れる。しかしショートが生じると、当該通信信号が接続線8にも分岐してしまうため、MPU61に流れる通信信号のゲインも下がってしまう。これによりMPU61も、通信信号のゲイン変化の有無に基づいて、電池11内のショートを検知することができる。   In this example, a short between the electrode tab and the exterior material has been described as an example of a short in the battery. However, the short circuit is not limited to the electrode tab, for example, between the power generation element 11 and the metal layer 1141 of the exterior material 114. Even if it occurs, the connection line 8 becomes conductive, and the MPU 71 can detect the short circuit by detecting the change in the gain of the communication signal. Moreover, although the MPU 71 has been described as an example of detecting a change in gain, the MPU 61 can detect a change in gain based on a short circuit of the battery 11. That is, when the MPU 61 receives a communication signal indicating the start of detection of the battery 11 transmitted from the MPU 71, for example, if no short circuit occurs in the battery 11, the communication signal does not pass through the connection line 8 and passes through the communication wiring 69. Flow to the MPU 61. However, when a short circuit occurs, the communication signal also branches to the connection line 8, so that the gain of the communication signal flowing through the MPU 61 also decreases. Accordingly, the MPU 61 can also detect a short circuit in the battery 11 based on whether or not the gain of the communication signal has changed.

ここで、本例の電池監視装置の実施例として、電池11を1個あたり1セルとして割り当て、各セルあたりのセル電圧を3.8V、セル容量を50Ahとして、100セルの直列のバッテリーシステム(総電圧380V)を作製した。またカップリングコンデンサ62の容量は4700pFとし、通信信号の周波数は2MHzと設定した。そして、電池11内を擬似的にショートさせるために、図1に示される、組電池1の正極側から2番目の電池11のセルについて、負極タブ113と外装部材114の金属層1151の間を15Ωの抵抗で接続した。この状態で、本例の駆動システムに通信信号を流し、通信信号のゲインを計測したところ、通信信号のゲインは、当該15Ωの抵抗を接続する前の通信信号と比較して約40%減少した。     Here, as an embodiment of the battery monitoring apparatus of this example, a battery 11 is assigned as one cell per cell, a cell voltage per cell is set to 3.8 V, a cell capacity is set to 50 Ah, and a series battery system of 100 cells ( A total voltage of 380 V) was produced. The capacitance of the coupling capacitor 62 was 4700 pF, and the frequency of the communication signal was set to 2 MHz. And in order to make the inside of the battery 11 pseudo-short, between the negative electrode tab 113 and the metal layer 1151 of the exterior member 114 for the cell of the second battery 11 from the positive electrode side of the assembled battery 1 shown in FIG. Connected with a resistance of 15Ω. In this state, when a communication signal was passed through the drive system of this example and the gain of the communication signal was measured, the gain of the communication signal was reduced by about 40% compared to the communication signal before connecting the 15Ω resistor. .

また短絡による通信信号のゲイン減少の割合は、カップリングコンデンサ62のインピーダンスの大きさで設定できる。つまり、電池11内がショートすることで生じる短絡抵抗のインピーダンスをXとし、カップリングコンデンサ62のインピーダンスをZとすると、X=Zの時、ゲインの減少率は50%となり、X=Z/10の時、ゲインの減少率は10%未満となる。よって、通信信号の周波数又はカップリングコンデンサの容量を調整することで、検出したい短絡抵抗を設定することができる。   Further, the rate of decrease in the gain of the communication signal due to the short circuit can be set by the magnitude of the impedance of the coupling capacitor 62. That is, assuming that the impedance of the short-circuit resistance caused by the short circuit in the battery 11 is X and the impedance of the coupling capacitor 62 is Z, when X = Z, the gain reduction rate is 50%, and X = Z / 10 In this case, the gain reduction rate is less than 10%. Therefore, the short-circuit resistance to be detected can be set by adjusting the frequency of the communication signal or the capacitance of the coupling capacitor.

上記の通り、本実施の形態に係る電池監視装置は、接続線8を電池11の外装部材114又は外装部材115と通信配線69の間に接続することにより、電池11内でショートが生じると通信配線69だけではなく接続線8にも通信信号が流れるため、接続線に8に通信信号が流れる前と流れ始めた後の通信信号の変化を検知することで、電池11内のショートを把握することができる。   As described above, the battery monitoring device according to the present embodiment communicates when a short circuit occurs in the battery 11 by connecting the connection line 8 between the exterior member 114 or the exterior member 115 of the battery 11 and the communication wiring 69. Since a communication signal flows not only in the wiring 69 but also in the connection line 8, a short circuit in the battery 11 can be grasped by detecting a change in the communication signal before and after the communication signal flows through the connection line 8. be able to.

接続線8が電気的に接続されている外装部材114と発電要素111が絶縁する状態であれば、接続線8のインピーダンスは非常に高く、通信信号が接続線8に流れることはないが、電池11内のショートにより、当該外装部材114と発電要素111が導通すると、接続線の8のインピーダンスが減少し、通信信号が接続線8にも流れ出す。よって本実施の形態では、電池内のわずかなショートであっても、当該外装部材114と発電要素111が導通前後のインピーダンス変化は大きく、通信信号のゲインが変化するため、ハードショートに限らず、微少なショートでも検知することできる。   If the exterior member 114 to which the connection line 8 is electrically connected and the power generation element 111 are insulated, the impedance of the connection line 8 is very high, and no communication signal flows through the connection line 8. When the exterior member 114 and the power generation element 111 are brought into conduction due to a short circuit in 11, the impedance of the connection line 8 decreases and a communication signal also flows out to the connection line 8. Therefore, in the present embodiment, even if the short in the battery is a short, the impedance change before and after the exterior member 114 and the power generation element 111 is large, and the gain of the communication signal changes. Even small shorts can be detected.

さらに、本例の駆動システムが車両等に搭載され、車両の振動等を起因とした経時的に生じる電池11内のショートも検知することができる。また、車両用の電池など多くの電池11を接続し容量の大きい組電池とする場合、各電池の端子間の電圧検知では端子間電圧の変化が低くショートが確実に検知できないおそれがあるが、本実施の形態は、電力線通信の信号線のゲイン変化を利用してショートの検知を行うため、容量の大きい電池の駆動システムで特に有効である。   Furthermore, the drive system of this example is mounted on a vehicle or the like, and it is possible to detect a short circuit in the battery 11 that occurs with time due to the vibration of the vehicle or the like. In addition, when connecting a large number of batteries 11 such as a vehicle battery to make a battery pack with a large capacity, the voltage detection between the terminals of each battery has a low change in the voltage between the terminals, and there is a possibility that the short circuit cannot be reliably detected. This embodiment is particularly effective in a battery driving system having a large capacity because a short circuit is detected using a gain change of a signal line of power line communication.

また、本実施の形態では、接続線8の他端はカップリングコンデンサ62と電圧検出装置6の間の通信配線69に接続されるため、カップリングコンデンサ62の容量又は通信信号の周波数を調整することで、電圧検出装置6又は制御回路7が検知する電池11内のショートによる短絡抵抗を設定することができる。これにより、組電池1に用いられる電池11の特性に合わせて、ショート時の短絡抵抗を設定することができため、本例の電池監視装置は、より確実に電池11内でのショートを検知することができる。   In the present embodiment, since the other end of the connection line 8 is connected to the communication wiring 69 between the coupling capacitor 62 and the voltage detection device 6, the capacitance of the coupling capacitor 62 or the frequency of the communication signal is adjusted. Thereby, the short circuit resistance by the short in the battery 11 which the voltage detection apparatus 6 or the control circuit 7 detects can be set. Thereby, since the short circuit resistance at the time of a short circuit can be set according to the characteristic of the battery 11 used for the assembled battery 1, the battery monitoring apparatus of this example detects the short circuit in the battery 11 more reliably. be able to.

また本実施の形態では、異常信号送信手段9を有するため、通信信号のゲインが変化し電池11内でショートが発生した時に、使用者に対して電池11に異常が生じていることを知らせることができるため、組電池にショートが生じたことをより早く使用者に知らせることができる。   Further, in the present embodiment, since the abnormality signal transmitting means 9 is provided, when the gain of the communication signal changes and a short circuit occurs in the battery 11, the user is notified that the abnormality has occurred in the battery 11. Therefore, the user can be notified more quickly that a short circuit has occurred in the assembled battery.

また本実施の形態で、通信線にバンドパスフィルタ65を有するため、車両の振動によるノイズやインバータ3等が発する信号をフィルタリングして、通信配線69を通る通信信号を送受信することができる。   Further, in the present embodiment, since the communication line has the band-pass filter 65, it is possible to filter the noise generated by the vibration of the vehicle, the signal generated by the inverter 3 and the like, and transmit / receive the communication signal passing through the communication wiring 69.

また本実施の形態は、接続線8と外装部材との接続点をシール部材117で覆っているため、外装部材内の気密性をより確保することができる。   In the present embodiment, since the connection point between the connection line 8 and the exterior member is covered with the seal member 117, the airtightness in the exterior member can be further ensured.

《第2実施形態》
図5は、発明の他の実施例に係る電池11の断面図であって、図3のB―B線に沿う断面図である。本例では上述した第1実施形態に対して、電池検出装置を含む駆動システムに変わりはないが、電池11の接合部116において、上部外装部材114の金属層1141と下部外装部材115の金属層1151を接続する点が異なる。これ以外の構成は上述した第1実施形態と同じであるため、その記載を援用する。
<< Second Embodiment >>
FIG. 5 is a cross-sectional view of a battery 11 according to another embodiment of the invention, and is a cross-sectional view taken along line BB of FIG. In this example, the drive system including the battery detection device is not different from the first embodiment described above, but the metal layer 1141 of the upper exterior member 114 and the metal layer of the lower exterior member 115 at the joint 116 of the battery 11. The difference is that 1151 is connected. Since the other configuration is the same as that of the first embodiment described above, the description thereof is incorporated.

本例では、絶縁層1143及び絶縁層1153は、金属層1141及び金属層1151に比べ短く形成されており、外装材114と外装材115が接合部116で封止されると、当該金属層1141及び金属層1151の一端が接合される。そして、絶縁層1142及び絶縁層1152は、金属層1141と金属層1151との接合部分を覆い融着される。これにより金属層1141と金属層1151が外装部材内で、電気的に接続された状態で封止される。また図4に示すように、電極タブ112を含む電極端部において、接続線8は金属層1141と電気的に接続されているため、接続線8は、金属層1141に加えて金属層1151とも電気的に接続されることとなる。これにより、例えば下部外装側に配置される発電要素111の導電材と金属層1151との間でショートが生じたとしても、通信信号は接続線8を導通するため、上部外装材114内のショートに加えて下部外部材内115のショートも検知することでき、発電要素114と発電要素114を覆う金属層1141、1151の間のショートを検知することができる。   In this example, the insulating layer 1143 and the insulating layer 1153 are formed to be shorter than the metal layer 1141 and the metal layer 1151, and when the exterior material 114 and the exterior material 115 are sealed by the joint portion 116, the metal layer 1141. And one end of the metal layer 1151 is joined. Then, the insulating layer 1142 and the insulating layer 1152 are fused so as to cover a joint portion between the metal layer 1141 and the metal layer 1151. As a result, the metal layer 1141 and the metal layer 1151 are sealed in an electrically connected state in the exterior member. Further, as shown in FIG. 4, since the connection line 8 is electrically connected to the metal layer 1141 at the electrode end including the electrode tab 112, the connection line 8 is connected to the metal layer 1151 in addition to the metal layer 1141. It will be electrically connected. Thereby, for example, even if a short circuit occurs between the conductive material of the power generation element 111 arranged on the lower exterior side and the metal layer 1151, the communication signal is conducted through the connection line 8, so that the short circuit in the upper exterior material 114 is performed. In addition, a short circuit in the lower outer member 115 can be detected, and a short circuit between the power generation element 114 and the metal layers 1141 and 1151 covering the power generation element 114 can be detected.

なお、本例における上部外装部材114は発明の第1外装部材に相当し、下部外装部材115は発明の第2外装部材に相当する。また上部外装部材114及び下部外装部材115は必ずしも別構成とする必要はなく、一体とした構成でも良い。また金属層1141と金属層1151との電気的な接続箇所は、図3で示す層状の電池11の端部の長辺に渡って設けられる必要はなく、一部分でも接続箇所があればよい。さらに当該接続箇所は、層状の電池11の短編側の端部に設けてもよい。   The upper exterior member 114 in this example corresponds to the first exterior member of the invention, and the lower exterior member 115 corresponds to the second exterior member of the invention. The upper exterior member 114 and the lower exterior member 115 are not necessarily configured separately, and may be integrated. Further, the electrical connection place between the metal layer 1141 and the metal layer 1151 does not need to be provided over the long side of the end portion of the layered battery 11 shown in FIG. Further, the connection location may be provided at the end of the layered battery 11 on the short side.

1…組電池
11…電池
111…発電要素
112,113…電極タブ
114,115…外装部材
116…接合部
117…シール部材
118…切り欠き部
2…電力供給線
3…インバータ
4…モータ
5…電池監視装置
6…電圧検出回路
61…マイクロプロセッサユニット
62,63…カップリングコンデンサ
65…バンドパスフィルタ
651、652…抵抗
653…コンデンサ
654…整流用ダイオード
66…容量調整用抵抗
67…メモリ
68…配線
69…通信配線
611、612…配線
641、642…抵抗
643…コンデンサ
7…制御回路
71…マイクロプロセッサユニット
72、74…配線
73…カップリングコンデンサ
8…接続線
9…異常信号送信手段
DESCRIPTION OF SYMBOLS 1 ... Assembled battery 11 ... Battery 111 ... Power generation element 112, 113 ... Electrode tab 114, 115 ... Exterior member 116 ... Joint part 117 ... Seal member 118 ... Notch part 2 ... Power supply line 3 ... Inverter 4 ... Motor 5 ... Battery Monitoring device 6 ... Voltage detection circuit 61 ... Microprocessor unit 62, 63 ... Coupling capacitor 65 ... Band pass filter 651, 652 ... Resistance 653 ... Capacitor 654 ... Rectifier diode 66 ... Capacitance adjustment resistor 67 ... Memory 68 ... Wiring 69 ... Communication wiring 611, 612 ... Wiring 641, 642 ... Resistance 643 ... Capacitor 7 ... Control circuit 71 ... Microprocessor unit 72, 74 ... Wiring 73 ... Coupling capacitor 8 ... Connection line 9 ... Abnormal signal transmission means

Claims (8)

発電要素が金属層と絶縁層を含む外装部材により封止された電池と、
前記電池の状態を検出する検出部と、
前記検出部により検出された検出結果を受信する制御部と、
前記電池と前記検出部と前記制御部とを電気的に接続する通信線を備え、
前記絶縁層は前記発電要素と前記金属層を絶縁し、
前記検出部は前記電池の状態を通信信号として前記通信線を介して前記制御部に送信し、
前記金属層と前記通信線との間が接続線により電気的に接続されていることを特徴とする
電池監視装置。
A battery in which a power generation element is sealed by an exterior member including a metal layer and an insulating layer;
A detection unit for detecting the state of the battery;
A control unit for receiving a detection result detected by the detection unit;
A communication line that electrically connects the battery, the detection unit, and the control unit;
The insulating layer insulates the power generating element and the metal layer;
The detection unit transmits the state of the battery as a communication signal to the control unit via the communication line,
The battery monitoring apparatus, wherein the metal layer and the communication line are electrically connected by a connection line.
前記通信線の間にカップリングコンデンサを接続し、
前記接続線の一端は、前記カップリングコンデンサと前記検出部の間の前記通信線に接続される
請求項1記載の電池監視装置。
A coupling capacitor is connected between the communication lines,
The battery monitoring apparatus according to claim 1, wherein one end of the connection line is connected to the communication line between the coupling capacitor and the detection unit.
前記金属層及び前記絶縁層は層状であり、
複数の前記絶縁層の間に前記金属層を狭持し、
前記接続線の他端は、前記金属層に接続される
請求項1又は2記載の電池監視装置。
The metal layer and the insulating layer are layered,
Sandwiching the metal layer between a plurality of the insulating layers;
The battery monitoring device according to claim 1, wherein the other end of the connection line is connected to the metal layer.
前記制御部又は前記検出部は、前記通信信号が前記通信線及び前記接続線を通ることによる通信信号のゲイン変化を検出する
請求項1〜3のいずれか1項に記載の電池監視装置。
The battery monitoring device according to any one of claims 1 to 3, wherein the control unit or the detection unit detects a gain change of the communication signal caused by the communication signal passing through the communication line and the connection line.
前記通信信号のゲインの変化に基づき電池の異常信号を送信する異常信号送信手段を有する
請求項1〜4のいずれか一項に記載する電池監視装置。
The battery monitoring apparatus according to any one of claims 1 to 4, further comprising an abnormality signal transmission unit that transmits an abnormality signal of a battery based on a change in gain of the communication signal.
前記通信線にバンドパスフィルタを設ける
請求項1〜5のいずれか一項に記載する電池監視装置。
The battery monitoring device according to any one of claims 1 to 5, wherein a band-pass filter is provided on the communication line.
前記接続線と前記金属層との接続点は、前記電池の端部に設けられ、
前記接続点を含む電池の端部は、シール部材により覆われている
請求項1〜6のいずれか1項に記載の電池監視装置。
A connection point between the connection line and the metal layer is provided at an end of the battery,
The battery monitoring device according to claim 1, wherein an end portion of the battery including the connection point is covered with a seal member.
前記外装部材は、第1外装部材と第2外装部材を有し、
前記第1外装部材の金属層と前記第2階外装部材の金属層は、電気的に接続され、
前記接続線の他端は、前記第1外装部材の金属層又は前記第2外装部材の金属層に電気的に接続する
請求項1〜7のいずれか1項に記載の電池監視装置。
The exterior member has a first exterior member and a second exterior member,
The metal layer of the first exterior member and the metal layer of the second floor exterior member are electrically connected,
The battery monitoring device according to claim 1, wherein the other end of the connection line is electrically connected to a metal layer of the first exterior member or a metal layer of the second exterior member.
JP2009048161A 2009-03-02 2009-03-02 Monitoring device of battery Pending JP2010203848A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009048161A JP2010203848A (en) 2009-03-02 2009-03-02 Monitoring device of battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009048161A JP2010203848A (en) 2009-03-02 2009-03-02 Monitoring device of battery

Publications (1)

Publication Number Publication Date
JP2010203848A true JP2010203848A (en) 2010-09-16

Family

ID=42965483

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009048161A Pending JP2010203848A (en) 2009-03-02 2009-03-02 Monitoring device of battery

Country Status (1)

Country Link
JP (1) JP2010203848A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012124141A (en) * 2010-11-19 2012-06-28 Sony Corp Secondary battery cell, battery pack, and power consumption device
JP2012129183A (en) * 2010-11-26 2012-07-05 Sony Corp Secondary battery cell, battery pack, and electricity consumption device
JP2013250086A (en) * 2012-05-30 2013-12-12 Gs Yuasa Corp Power storage device system and communication method of power storage device system
JP2017139082A (en) * 2016-02-02 2017-08-10 株式会社ケーヒン Power storage system and voltage detection device
WO2019073757A1 (en) * 2017-10-13 2019-04-18 パナソニックIpマネジメント株式会社 Battery system
WO2023119967A1 (en) * 2021-12-23 2023-06-29 株式会社村田製作所 Power supply system and electronic device

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012124141A (en) * 2010-11-19 2012-06-28 Sony Corp Secondary battery cell, battery pack, and power consumption device
JP2012129183A (en) * 2010-11-26 2012-07-05 Sony Corp Secondary battery cell, battery pack, and electricity consumption device
US9350051B2 (en) 2010-11-26 2016-05-24 Sony Corporation Secondary battery cell, battery pack, and electric power consumption device
JP2013250086A (en) * 2012-05-30 2013-12-12 Gs Yuasa Corp Power storage device system and communication method of power storage device system
DE102013210058A1 (en) 2012-05-30 2015-02-26 Gs Yuasa International Ltd. Electricity storage device system and communication method in the electricity storage device system
JP2017139082A (en) * 2016-02-02 2017-08-10 株式会社ケーヒン Power storage system and voltage detection device
WO2019073757A1 (en) * 2017-10-13 2019-04-18 パナソニックIpマネジメント株式会社 Battery system
JPWO2019073757A1 (en) * 2017-10-13 2020-09-17 パナソニックIpマネジメント株式会社 Battery system
US11283277B2 (en) 2017-10-13 2022-03-22 Panasonic Intellectual Property Management Co., Ltd. Battery system
WO2023119967A1 (en) * 2021-12-23 2023-06-29 株式会社村田製作所 Power supply system and electronic device

Similar Documents

Publication Publication Date Title
JP5521409B2 (en) battery
US8962168B2 (en) Storage battery module
JP5338806B2 (en) Battery monitoring device
CN101615694B (en) Electrode assembly and lithium secondary battery using the same
CN101552350B (en) Laminate type battery and battery module incorporating the laminate type battery
TWI441373B (en) Battery cell with an integrated pouch metal foil terminal
CN102208593B (en) Secondary battery
JP2010203848A (en) Monitoring device of battery
US9118091B2 (en) Secondary battery
JP4111043B2 (en) Bipolar secondary battery
TWI466366B (en) Flat type battery
WO2008010349A1 (en) Electric storage device
US10707542B2 (en) Non-aqueous electrolyte secondary battery cell and assembled battery using same
KR101985762B1 (en) RECHARGEABLE BATTERY With Improved Connection Structure of Terminal AND BATTERY MODULE Comprising the Same
JP6322088B2 (en) Battery system
JP2004055490A (en) Thin battery module
JP2013065515A (en) Secondary battery
JP2011034952A (en) Lithium ion secondary battery, vehicle, and battery-mounting apparatus
US9673487B2 (en) Battery with a monitoring circuit and for use in a motor vehicle
JP7148870B2 (en) secondary battery
JP4683722B2 (en) Electric double layer capacitor module
US9202633B2 (en) Laminate type energy device and method of manufacturing the same
JP2018032606A (en) Secondary battery
JP2005166581A (en) Secondary battery and charge and discharge control method of battery pack using secondary battery
WO2022163480A1 (en) Secondary battery, electronic device, and electric tool