JP2010203520A - Apparatus of vaporizing low-temperature liquefied gas and method of vaporizing low-temperature liquefied gas - Google Patents

Apparatus of vaporizing low-temperature liquefied gas and method of vaporizing low-temperature liquefied gas Download PDF

Info

Publication number
JP2010203520A
JP2010203520A JP2009049416A JP2009049416A JP2010203520A JP 2010203520 A JP2010203520 A JP 2010203520A JP 2009049416 A JP2009049416 A JP 2009049416A JP 2009049416 A JP2009049416 A JP 2009049416A JP 2010203520 A JP2010203520 A JP 2010203520A
Authority
JP
Japan
Prior art keywords
gas
vaporizer
type vaporizer
air temperature
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009049416A
Other languages
Japanese (ja)
Other versions
JP5330030B2 (en
Inventor
Yoshihide Morimoto
佳秀 森本
Masahide Iwasaki
正英 岩崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2009049416A priority Critical patent/JP5330030B2/en
Publication of JP2010203520A publication Critical patent/JP2010203520A/en
Application granted granted Critical
Publication of JP5330030B2 publication Critical patent/JP5330030B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Filling Or Discharging Of Gas Storage Vessels (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an apparatus of vaporizing low-temperature liquefied gas and a method of vaporizing the low-temperature liquefied gas, inexpensive in initial equipment cost as compared with a conventional apparatus of vaporizing the low-temperature liquefied gas and reducing an operating cost. <P>SOLUTION: The apparatus of vaporizing the low-temperature liquefied gas includes: a natural ventilation type air temperature vaporizer 10; a hot-water bath vaporizer 40; and an operation control device performing operation of vaporizing the low-temperature liquefied gas by operating the air temperature vaporizer 10 as the vaporizer for a base load, and supplying the vaporized gas to a destination for supply, wherein outlet gas temperature of the temperature vaporizer 10 is measured, the vaporized gas from the air temperature vaporizer 10 is heated by the hot-water bath vaporizer 40 according to the outlet gas temperature and the vaporized gas is supplied to the destination for supply, or operation of vaporizing the low-temperature liquefied gas by the hot-water bath vaporizer 40 in place of the air temperature vaporizer 10 and supplying the vaporized gas to the destination for supply. <P>COPYRIGHT: (C)2010,JPO&amp;INPIT

Description

本発明は、液化天然ガス(LNG)や液化石油ガス(LPG)等の低温液化ガスを、その使用の際に、大気(空気)を熱源とし気化させ再ガス化させるための低温液化ガス気化装置及び低温液化ガスの気化方法に関するものである。   The present invention relates to a low-temperature liquefied gas vaporizer for vaporizing and re-gasifying a low-temperature liquefied gas such as liquefied natural gas (LNG) or liquefied petroleum gas (LPG) using the atmosphere (air) as a heat source when used. And a method for vaporizing a low-temperature liquefied gas.

小規模の液化天然ガス(LNG)サテライト基地では、大気を熱源とする空温式気化器をベースロード用(基幹用)の気化器として使用しているところがほとんどであり、温水を熱源とし、気化運転の応答性が良い温水バス式気化器が、前記空温式気化器のバックアップ用に設置されている。   At small-scale LNG satellite stations, air temperature type vaporizers that use air as the heat source are mostly used as base load (core) vaporizers, and hot water is used as the heat source for vaporization. A hot water bath type vaporizer with good operation responsiveness is installed as a backup for the air temperature type vaporizer.

空温式気化器は、アルミ合金製のフィン付き伝熱管を有する熱交換器で液化天然ガスを大気(外気)と熱交換させることで気化するようにしたものである。この空温式気化器では、液化天然ガスの気化運転を行うと、フィン付き伝熱管表面に大気中の水分が着氷(着霜)成長してしだいに気化性能(伝熱性能)が低下するため、ある一定時間運転した後に一時的に気化運転を停止し、大気の熱又は温水を利用して解氷を行う必要がある。この気化運転停止中は、切替機(スタンバイ機)として当該空温式気化器と並列して設置されているもう1台の空温式気化器への運転の切替えがなされる。そして、前記の解氷は、冬期には散水式解氷設備による散水解氷、冬期を除く季節(温暖期)には外気による自然解氷が一般的である。   The air temperature type vaporizer is a heat exchanger having a finned heat transfer tube made of an aluminum alloy and vaporizes the liquefied natural gas by heat exchange with the atmosphere (outside air). In this air temperature type vaporizer, when vaporized operation of liquefied natural gas is performed, moisture in the atmosphere grows on the surface of the finned heat transfer tube and the vaporization performance (heat transfer performance) decreases gradually. For this reason, it is necessary to temporarily stop the vaporization operation after operating for a certain period of time, and perform ice melting using the heat of the atmosphere or hot water. While this vaporization operation is stopped, the operation is switched to another air temperature type vaporizer installed in parallel with the air temperature type vaporizer as a switching machine (standby machine). The above-mentioned deicing is generally performed by sprinkling with a sprinkling-type ice-melting facility in winter and by natural air in the season (warm season) except for winter.

このように、小規模液化天然ガスサテライト基地では、運転用と切替用との2台の空温式気化器を1ユニットとし、この2台の空温式気化器と散水式解氷設備とを備えた低温液化ガス気化装置が、所定数だけ設置されている。   In this way, at the small-scale liquefied natural gas satellite base, two air temperature type vaporizers for operation and switching are set as one unit, and the two air temperature type vaporizers and the water spray type icebreaker are installed. A predetermined number of low-temperature liquefied gas vaporizers are provided.

図4は、従来の低温液化ガス気化装置の構成を概略的に示すフロー図である。   FIG. 4 is a flowchart schematically showing a configuration of a conventional low-temperature liquefied gas vaporizer.

図4に示すように、従来の低温液化ガス気化装置は、2台の自然通風型の空温式気化器70A,70Bと散水式解氷設備80とを備えている。71は液化天然ガス供給源(図示せず)に連絡する液化天然ガス供給管路である。この液化天然ガス供給管路71から第1の空温式気化器70Aの液化天然ガス入口に管路72aが連絡するとともに、前記液化天然ガス供給管路71から第2の空温式気化器70Bの液化天然ガス入口に管路72bが連絡している。74はガス供給先(図示せず)に連絡する天然ガス送出管路である。第1の空温式気化器70Aの天然ガス出口から前記天然ガス送出管路74に管路73aが連絡し、第2の空温式気化器70Bの天然ガス出口から前記天然ガス送出管路74に管路73bが連絡している。そして、前記天然ガス送出管路74には、空温式気化器70A,70Bからの天然ガス(NG)を加温するための天然ガス加温器75が設けられている。   As shown in FIG. 4, the conventional low-temperature liquefied gas vaporizer includes two naturally ventilated air temperature vaporizers 70 </ b> A and 70 </ b> B and a watering type ice-melting facility 80. Reference numeral 71 denotes a liquefied natural gas supply line communicating with a liquefied natural gas supply source (not shown). A pipe 72a communicates from the liquefied natural gas supply line 71 to the liquefied natural gas inlet of the first air temperature type vaporizer 70A, and the second air temperature type vaporizer 70B is connected to the liquefied natural gas supply line 71. A pipe 72b communicates with the liquefied natural gas inlet. A natural gas delivery pipe 74 communicates with a gas supply destination (not shown). A line 73a communicates from the natural gas outlet of the first air temperature type vaporizer 70A to the natural gas delivery line 74 and from the natural gas outlet of the second air temperature type vaporizer 70B to the natural gas delivery line 74. The pipe line 73b is in communication with. The natural gas delivery pipe 74 is provided with a natural gas heater 75 for heating the natural gas (NG) from the air temperature type vaporizers 70A and 70B.

次に、散水式解氷設備80について説明する。81は散水ピット、82は散水循環用ポンプ、83は散水加温器である。84aは第1の空温式気化器70Aに近接してその上方に設置された第1の散水ヘッダー、84bは第2の空温式気化器70Bに近接してその上方に設置された第2の散水ヘッダーである。また、85は温水をつくるための温水用ボイラ、86は温水循環用ポンプである。   Next, the watering type ice melting facility 80 will be described. 81 is a watering pit, 82 is a watering circulation pump, and 83 is a watering heater. 84a is a first sprinkler header installed close to and above the first air temperature vaporizer 70A, and 84b is a second water spray header installed near and above the second air temperature vaporizer 70B. It is a watering header. Reference numeral 85 is a hot water boiler for producing hot water, and 86 is a hot water circulation pump.

そして、前記散水ピット81からの散水が導かれる前記散水循環用ポンプ82から前記第1の散水ヘッダー84aに散水を供給するための管路87aが連絡している。この管路87aには、前記散水加温器83が設けられている。さらに、この管路87aから分岐して、前記散水循環用ポンプ82と前記第2の散水ヘッダー84bとを連絡し、第2の散水ヘッダー84bに散水を供給するための管路87bが設けられている。88aは第1の空温式気化器70Aで使用された散水を前記散水ピット81へ戻すための管路であり、88bは第2の空温式気化器70Bで使用された散水を散水ピット81へ戻すための管路である。   Further, a pipe line 87a for supplying water to the first watering header 84a communicates from the watering circulation pump 82 through which watering from the watering pit 81 is guided. The sprinkler warmer 83 is provided in the pipe line 87a. Further, a pipe 87b is provided for branching from the pipe 87a to connect the watering circulation pump 82 and the second watering header 84b, and for supplying water to the second watering header 84b. Yes. Reference numeral 88a denotes a pipe for returning the water spray used in the first air temperature type vaporizer 70A to the water spray pit 81, and reference numeral 88b denotes the water spray used in the second air temperature type vaporizer 70B. This is a conduit for returning to

また、前記温水用ボイラ85からの温水が導かれる前記温水循環用ポンプ86から前記散水加温器83に温水を流す管路89aが連絡し、この散水加温器83から前記温水用ボイラ85に使用済みの温水を戻す管路89bが連絡している。   Also, a pipe 89a for flowing hot water from the hot water circulation pump 86 through which the hot water from the hot water boiler 85 is guided to the sprinkler warmer 83 communicates with the hot water boiler 85 from the sprinkler warmer 83. A pipe line 89b for returning the used hot water is in communication.

また、前記天然ガス送出管路74に設けられた前記天然ガス加温器75には、温水用ボイラ85→温水循環用ポンプ86→天然ガス加温器75→温水用ボイラ85の経路で、温水が循環供給されるようになっている。なお、天然ガス加温器75は、温暖期には使用されない場合がある。   The natural gas heater 75 provided in the natural gas delivery line 74 includes a hot water boiler 85, a hot water circulation pump 86, a natural gas heater 75, and a hot water boiler 85. Is circulated and supplied. The natural gas heater 75 may not be used during the warm season.

このように構成される低温液化ガス気化装置では、気化運転中の例えば第2の空温式気化器70Bには、液化天然ガスが液化天然ガス供給管路71、管路72bを通して供給され、空温式気化器70Bからの天然ガスが管路73b、天然ガス送出管路74を通して系外のガス供給先に送出される。一方、解氷中の第1の空温式気化器70Aの第1の散水ヘッダー84aには、散水ピット81→散水循環用ポンプ82→散水加温器83→第1の散水ヘッダー84a→空温式気化器70A→散水ピット81の経路で散水が循環供給される。そして、空温式気化器70Aの熱交換器の上方より散水ヘッダー84aから散水が該熱交換器に散布(噴射)されて、熱交換器のフィン付き伝熱管表面に生じている氷層の解氷が行われる。   In the low-temperature liquefied gas vaporizer configured as described above, the liquefied natural gas is supplied to the second air temperature type vaporizer 70B during the vaporization operation through the liquefied natural gas supply pipe 71 and the pipe 72b, for example. Natural gas from the warm vaporizer 70B is sent to a gas supply destination outside the system through the pipe 73b and the natural gas delivery pipe 74. On the other hand, the first watering header 84a of the first air temperature type vaporizer 70A during ice melting includes a watering pit 81 → watering circulation pump 82 → watering heater 83 → first watering header 84a → air temperature. Sprinkling water is circulated and supplied through the route of the type vaporizer 70 </ b> A → watering pit 81. Then, sprinkling water is sprayed (sprayed) from the water spray header 84a to the heat exchanger from above the heat exchanger of the air temperature type vaporizer 70A, and the ice layer generated on the finned heat transfer tube surface of the heat exchanger is solved. Ice is done.

このように、従来の低温液化ガス気化装置では、一方の空温式気化器70Aが解氷を行っているときには他方の空温式気化器70Bが気化運転を行い、他方の空温式気化器70Bが解氷を行っているときには一方の空温式気化器70Aが気化運転を行うようにして、連続運転がなされていた。   Thus, in the conventional low-temperature liquefied gas vaporizer, when one air temperature type vaporizer 70A is performing ice melting, the other air temperature type vaporizer 70B performs a vaporization operation, and the other air temperature type vaporizer is operated. When 70B is performing ice melting, one of the air temperature type vaporizers 70A performs the vaporization operation, and the continuous operation is performed.

特開2002−5398号公報JP 2002-5398 A

しかし前述した従来の低温液化ガス気化装置では、空温式気化器が解氷のための切替機が必要で、初期設備費の高い空温式気化器を2台で1ユニットとして備える必要があり、また、冬期の解氷用として散水式解氷設備を備える必要もあることから、初期設備費が高価であるという問題があった。   However, in the conventional low-temperature liquefied gas vaporizer described above, the air temperature type vaporizer requires a switching device for de-icing, and it is necessary to provide two units of air temperature type vaporizers with high initial equipment costs as one unit. In addition, since it is necessary to provide a sprinkling type ice-melting equipment for ice-breaking in winter, there is a problem that initial equipment costs are expensive.

そこで、本発明の課題は、2台の自然通風型の空温式気化器を1ユニットとして備えた従来の低温液化ガス気化装置に比べて初期設備費(イニシャルコスト)が安価ですみ、また、運転費(ランニングコスト)の低減を図ることができるようにした、低温液化ガス気化装置及び低温液化ガスの気化方法を提供することにある。   Therefore, the problem of the present invention is that the initial equipment cost (initial cost) is lower than that of a conventional low-temperature liquefied gas vaporizer equipped with two naturally ventilated air temperature type vaporizers as one unit. An object of the present invention is to provide a low-temperature liquefied gas vaporizer and a low-temperature liquefied gas vaporization method capable of reducing operating costs (running costs).

前記の課題を解決するため、本願発明では、次の技術的手段を講じている。   In order to solve the above problems, the present invention takes the following technical means.

請求項1の発明は、フィン付き伝熱管を有する熱交換器で低温液化ガスを気化させ、該気化ガスをガス供給先へ供給する自然通風型の空温式気化器と、温水バス式気化器と、前記空温式気化器をベースロード用気化器として運転して、前記低温液化ガス供給源からの低温液化ガスを前記熱交換器で気化させ、該気化ガスをガス供給先へ供給し、その際に、前記空温式気化器の出口ガス温度を測定し、該出口ガス温度に応じて、前記温水バス式気化器によって前記空温式気化器からの気化ガスを加温し、該気化ガスを前記ガス供給先へ供給する運転、もしくは、前記空温式気化器に替えて前記温水バス式気化器によって前記低温液化ガス供給源からの低温液化ガスを気化させ、該気化ガスを前記ガス供給先へ供給する運転を行う運転制御装置と、を備えたことを特徴とする低温液化ガス気化装置である。   The invention according to claim 1 is a naturally ventilated air temperature type vaporizer for vaporizing a low-temperature liquefied gas by a heat exchanger having finned heat transfer tubes and supplying the vaporized gas to a gas supply destination, and a hot water bath type vaporizer And operating the air temperature type vaporizer as a base load vaporizer, vaporizing the low temperature liquefied gas from the low temperature liquefied gas supply source in the heat exchanger, supplying the vaporized gas to the gas supply destination, At that time, the outlet gas temperature of the air temperature type vaporizer is measured, and the vaporized gas from the air temperature type vaporizer is heated by the hot water bath type vaporizer according to the outlet gas temperature, and the vaporization is performed. The operation of supplying gas to the gas supply destination, or the low temperature liquefied gas from the low temperature liquefied gas supply source is vaporized by the hot water bath type vaporizer instead of the air temperature type vaporizer, and the vaporized gas is converted into the gas An operation control device for performing an operation to supply to the supply destination; A low-temperature liquefied gas vaporizer apparatus characterized by comprising a.

請求項2の発明は、請求項1記載の低温液化ガス気化装置において、前記空温式気化器の前記熱交換器の下方空間に通じる吸引口を有する吸引ファン装置と、前記空温式気化器に近接してその上方に設置され、前記フィン付き伝熱管に沿って下降する下向空気流を前もって加温する空気加温器とを備えたことを特徴とするものである。   According to a second aspect of the present invention, there is provided the low-temperature liquefied gas vaporizer according to the first aspect, wherein a suction fan device having a suction port communicating with a lower space of the heat exchanger of the air temperature type vaporizer, and the air temperature type vaporizer And an air heater that preheats the downward airflow descending along the finned heat transfer tube.

請求項3の発明は、フィン付き伝熱管を有する熱交換器を備えた自然通風型の空温式気化器と、温水バス式気化器とを備え、前記空温式気化器をベースロード用気化器として用い、低温液化ガス供給源からの低温液化ガスを気化させて気化ガスを製造する低温液化ガスの気化方法であって、前記空温式気化器により、前記低温液化ガス供給源からの低温液化ガスを前記熱交換器で気化させ、該気化ガスをガス供給先へ供給し、その際に、前記空温式気化器の出口ガス温度を測定し、該出口ガス温度に応じて、前記温水バス式気化器によって前記空温式気化器からの気化ガスを加温し、該気化ガスを前記ガス供給先へ供給すること、もしくは、前記空温式気化器に替えて前記温水バス式気化器によって前記低温液化ガス供給源からの低温液化ガスを気化し、該気化ガスを前記ガス供給先へ供給することを特徴とする低温液化ガスの気化方法である。   The invention of claim 3 includes a naturally ventilated air temperature type vaporizer equipped with a heat exchanger having finned heat transfer tubes, and a hot water bath type vaporizer, and the air temperature type vaporizer is vaporized for base load. A low-temperature liquefied gas vaporization method for producing a vaporized gas by vaporizing a low-temperature liquefied gas from a low-temperature liquefied gas supply source, wherein the air temperature type vaporizer uses the low-temperature liquefied gas supply temperature The liquefied gas is vaporized by the heat exchanger, and the vaporized gas is supplied to a gas supply destination. At that time, the outlet gas temperature of the air temperature type vaporizer is measured, and the hot water is determined according to the outlet gas temperature. The vaporized gas from the air temperature type vaporizer is heated by a bath type vaporizer, and the vaporized gas is supplied to the gas supply destination, or the hot water bath type vaporizer is used instead of the air temperature type vaporizer. A low temperature liquefied gas from the low temperature liquefied gas supply source. Vaporizing a vaporizing process of the low-temperature liquefied gas and supplying the vaporized gas into the gas supply destination.

本発明の低温液化ガス気化装置又は低温液化ガスの気化方法は、例えば、空温式気化器が標準サイズ、すなわち、気化容量が1時間あたり1トンの場合では、1台の自然通風型の空温式気化器と1台の温水バス式気化器とを1ユニットとして備えたものであるから、温水バス式気化器に比べて初期設備費の高価な自然通風型の空温式気化器を2台備えてこれを1ユニットとする従来のものに比べて初期設備費が安価ですむ。また、前記の1台の自然通風型の空温式気化器をベースロード用気化器として運転するとともに、該空温式気化器での解氷を温水バス式気化器の温水を活用して行うようにしたものであるから、冬期でも散水解氷運転がなく、運転費の低減を図ることができる。   The low-temperature liquefied gas vaporizer or the low-temperature liquefied gas vaporization method of the present invention is, for example, when the air temperature type vaporizer has a standard size, that is, when the vaporization capacity is 1 ton per hour, Since it is equipped with a hot water vaporizer and one hot water bath type vaporizer as a unit, it has 2 natural ventilation type air temperature type vaporizers that have higher initial equipment costs than the hot water bath type vaporizer. The initial equipment cost is lower than the conventional one with a stand and this unit. In addition, the one natural ventilation type air temperature carburetor is operated as a base load carburetor, and the ice melting in the air temperature carburetor is performed by utilizing the hot water of the hot water bath type carburetor. Since it was made like this, there is no sprinkling and de-icing operation even in winter, and the operation cost can be reduced.

本発明の一実施形態による低温液化ガス気化装置の構成を概略的に示すフロー図である。It is a flow figure showing roughly composition of a low-temperature liquefied gas vaporization device by one embodiment of the present invention. 図1における自然通風型の空温式気化器に設置された吸引ファン装置による該空温式気化器の気化運転時の空気の流れを示す図である。It is a figure which shows the flow of the air at the time of the vaporization driving | operation of this air temperature type vaporizer by the suction fan apparatus installed in the natural ventilation type air temperature type vaporizer in FIG. 図1に示す低温液化ガス気化装置において運転制御装置による運転制御の手順の一例を示すフローチャートである。It is a flowchart which shows an example of the procedure of the operation control by an operation control apparatus in the low-temperature liquefied gas vaporizer shown in FIG. 従来の低温液化ガス気化装置の構成を概略的に示すフロー図である。It is a flowchart which shows schematically the structure of the conventional low temperature liquefied gas vaporizer.

以下、図面を参照して、本発明の実施形態について説明する。なお、ここでは、空温式気化器が標準サイズ、すなわち、気化容量が1時間あたりの1トンの場合を例にとって説明する。図1は本発明の一実施形態による低温液化ガス気化装置の構成を概略的に示すフロー図である。   Embodiments of the present invention will be described below with reference to the drawings. Here, the case where the air temperature type vaporizer is a standard size, that is, the vaporization capacity is 1 ton per hour will be described as an example. FIG. 1 is a flowchart schematically showing a configuration of a low-temperature liquefied gas vaporizer according to an embodiment of the present invention.

図1に示すように、本実施形態の低温液化ガス気化装置は、液化天然ガス気化装置であって、多数のフィン付き伝熱管を有する熱交換器(フィン付き伝熱管群)を備え、ベースロード用気化器として用いられる1台の自然通風型の空温式気化器10と、空温式気化器10の前記熱交換器の下方空間に通じる吸引口を有する吸引ファン装置20と、空温式気化器10に近接してその上方に設置され、前記フィン付き伝熱管に沿って下降する下向空気流を前もって加温し、空温式気化器10での解氷用の空気加温器30と、加温用又は気化用に用いられる1台の温水バス式気化器40と、前記空温式気化器10、前記空気加温器30及び前記温水バス式気化器40の運転とその停止を所定の手順に従って行う運転制御装置(図示せず)とを備えている。   As shown in FIG. 1, the low-temperature liquefied gas vaporizer according to the present embodiment is a liquefied natural gas vaporizer, and includes a heat exchanger (a group of finned heat transfer tubes) having a large number of finned heat transfer tubes, and a base load. One naturally ventilated air temperature type vaporizer 10 used as a vaporizer, a suction fan device 20 having a suction port leading to a space below the heat exchanger of the air temperature type vaporizer 10, and an air temperature type An air heater 30 for deicing in the air temperature type vaporizer 10 is installed in the vicinity of the vaporizer 10 and above it, and the downward airflow descending along the finned heat transfer tube is heated in advance. And one hot water bath type vaporizer 40 used for heating or vaporization, and the operation and stop of the air temperature type vaporizer 10, the air warmer 30, and the hot water bus type vaporizer 40. An operation control device (not shown) for performing according to a predetermined procedure That.

前記温水バス式気化器40は、両端が閉じられた円筒状をなす温水バス槽(シェル)を有し、ステンレス製伝熱コイルを温水が外部から循環供給される前記温水バス槽内に設置し、温水との熱交換を行うようにした構造のものである。   The hot water bath type vaporizer 40 has a cylindrical hot water bath tank (shell) closed at both ends, and a stainless steel heat transfer coil is installed in the hot water bath tank to which hot water is circulated and supplied from the outside. In this structure, heat exchange with warm water is performed.

また、液化天然ガス供給源(図示せず)から前記空温式気化器10の液化天然ガス入口に液化天然ガス供給管路51が連絡し、この液化天然ガス供給管路51には弁V1が設けられている。空温式気化器10の天然ガス出口からガス供給先(図示せず)に天然ガス送出管路52が連絡している。この天然ガス送出管路52には、弁V2と、空温式気化器10の出口ガス温度を測定するための温度計(温度センサ)Tとが設けられている。この温度計Tの温度測定値は前記運転制御装置に伝送されるようになっている。   A liquefied natural gas supply line 51 communicates from a liquefied natural gas supply source (not shown) to the liquefied natural gas inlet of the air temperature type vaporizer 10, and the liquefied natural gas supply line 51 has a valve V 1. Is provided. A natural gas delivery line 52 communicates from a natural gas outlet of the air temperature type vaporizer 10 to a gas supply destination (not shown). The natural gas delivery line 52 is provided with a valve V2 and a thermometer (temperature sensor) T for measuring the outlet gas temperature of the air temperature type vaporizer 10. The temperature measurement value of the thermometer T is transmitted to the operation control device.

次に、前記温水バス式気化器40に関する管路について説明する。分岐管路53は、前記液化天然ガス供給管路51における前記弁V1の上流側から分岐して前記温水バス式気化器40の液又はガスの入口に連絡しており、この分岐管路53には、弁V3が設けられている。管路54は、温水バス式気化器40のガス出口と前記天然ガス送出管路52における前記弁V2の下流側とを連絡している。また、管路55は、この天然ガス送出管路52における前記弁V2の上流側から分岐して温水バス式気化器40の液又はガスの入口に連絡している。この管路55には、弁V4が設けられている。   Next, the pipe line related to the hot water bath type vaporizer 40 will be described. The branch line 53 branches from the upstream side of the valve V 1 in the liquefied natural gas supply line 51 and communicates with the liquid or gas inlet of the hot water bath type vaporizer 40. Is provided with a valve V3. The pipe line 54 communicates the gas outlet of the hot water bath type vaporizer 40 and the downstream side of the valve V2 in the natural gas delivery pipe line 52. The pipe 55 branches from the upstream side of the valve V2 in the natural gas delivery pipe 52 and communicates with the liquid or gas inlet of the hot water bath type vaporizer 40. This pipe 55 is provided with a valve V4.

41は温水用ボイラ、42は温水循環用ポンプである。温水用ボイラ41からの温水が導かれる温水循環用ポンプ42から温水バス式気化器40の温水入口に管路56が連絡し、この管路56には弁V5が設けられている。また、温水バス式気化器40の温水出口から温水用ボイラ41に使用済みの温水を戻す管路57が連絡している。   41 is a hot water boiler, and 42 is a hot water circulation pump. A hot water circulation pump 42 through which hot water from the hot water boiler 41 is led leads to a hot water inlet of the hot water bath type vaporizer 40, and a pipe V <b> 5 is provided in the pipe 56. Further, a conduit 57 for returning the used hot water to the hot water boiler 41 communicates from the hot water outlet of the hot water bath type vaporizer 40.

また、管路58は、温水循環用ポンプ42からの温水が流される前記管路56における前記弁V5の上流側から分岐して前記空気加温器30の温水入口に連絡しており、この管路58には弁V6が設けられている。この空気加温器30の温水出口から温水用ボイラ41に使用済みの温水を戻す管路59が連絡している。   The pipe 58 branches from the upstream side of the valve V5 in the pipe 56 through which hot water from the hot water circulation pump 42 flows, and communicates with the hot water inlet of the air warmer 30. The passage 58 is provided with a valve V6. A conduit 59 for returning the used hot water to the hot water boiler 41 communicates from the hot water outlet of the air heater 30.

次に、前記吸引ファン装置20の構成について説明する。図2は図1における自然通風型の空温式気化器に設置された吸引ファン装置による該空温式気化器の気化運転時の空気の流れを示す図である。   Next, the configuration of the suction fan device 20 will be described. FIG. 2 is a view showing the air flow during the vaporizing operation of the air temperature type vaporizer by the suction fan device installed in the natural ventilation type air temperature type vaporizer in FIG.

この吸引ファン装置20には、空温式気化器10で発生する冷気による白煙を消すための機能(消霧機能)と、空温式気化器10での着氷を前記空気加温器30と協働して解氷する機能と、空温式気化器10の下方に滞留する冷気を排除して空温式気化器10の気化性能を高める機能とがある。   The suction fan device 20 has a function (fogging function) for extinguishing white smoke caused by cold air generated in the air temperature type vaporizer 10 and icing in the air temperature type vaporizer 10 in the air heater 30. There is a function of deicing in cooperation with the air temperature, and a function of improving the vaporization performance of the air temperature type vaporizer 10 by eliminating the cool air staying below the air temperature type vaporizer 10.

図2に示すように、空温式気化器10は、多数のフィン付き伝熱管11を有する熱交換器(フィン付き伝熱管群)13を備えている。熱交換器13は、上下方向に延びる多数本のフィン付き伝熱管11をU字ベント管12で直列に順次接続することで、上下に蛇行する上下屈曲伝熱管路を備えてなり、液化天然ガスを大気(外気)との熱交換により気化させて天然ガスを生成するための気化部(蒸発部)13aと、気化部13aで生成された天然ガスを大気との熱交換により加温するための加温部(昇温部)13bとを有している。支持フレーム14は、四角架構で、熱交換器13を設置面G上の所定の高さ位置に支持している。   As shown in FIG. 2, the air temperature type vaporizer 10 includes a heat exchanger (finned heat transfer tube group) 13 having a large number of finned heat transfer tubes 11. The heat exchanger 13 includes a vertically bent heat transfer pipe that meanders up and down by sequentially connecting a large number of finned heat transfer pipes 11 extending in the vertical direction in series with a U-shaped vent pipe 12. For evaporating the gas by heat exchange with the atmosphere (outside air) to generate natural gas, and for heating the natural gas generated in the vaporization unit 13a by heat exchange with the atmosphere And a heating part (temperature raising part) 13b. The support frame 14 is a rectangular frame and supports the heat exchanger 13 at a predetermined height position on the installation surface G.

吸引ファン装置20は、囲繞隔壁21、吸引チャンバー22、吸引ファン23、電動機24及び排気ダクト25により構成されている。空温式気化器10による気化運転が開始されると、電動機24によって吸引ファン23が回転し、吸引チャンバー22を通じて囲繞隔壁21の内側から空気を吸引し、排気ダクト25から排気する。これにより、囲繞隔壁21の内側に到達した白煙(霧)は、吸引チャンバー22内に吸気され、その際、その周囲の空気と共に吸気されることで希釈され、排気ダクト25から大気中に排気されることで拡散され、消霧される(白煙が消される)。矢印a,b,c,dは、空気の流れを示す。   The suction fan device 20 includes a surrounding partition wall 21, a suction chamber 22, a suction fan 23, an electric motor 24, and an exhaust duct 25. When the vaporization operation by the air temperature type vaporizer 10 is started, the suction fan 23 is rotated by the electric motor 24, and air is sucked from the inside of the surrounding partition wall 21 through the suction chamber 22 and exhausted from the exhaust duct 25. Thereby, the white smoke (mist) that has reached the inside of the surrounding partition wall 21 is sucked into the suction chamber 22, and is diluted by being sucked together with the surrounding air, and exhausted from the exhaust duct 25 to the atmosphere. Is diffused and fogged (white smoke is extinguished). Arrows a, b, c, and d indicate the flow of air.

次に、図3に示すフローチャートに従って、前記運転制御装置による運転制御の一例を説明する。   Next, an example of operation control by the operation control device will be described according to the flowchart shown in FIG.

まず、ステップ101で運転開始指令が入力されると、ステップ102に進み、弁V1及びV2を開き、空温式気化器10の気化運転が開始される。また、同時に吸引ファン装置20の運転が開始される。空温式気化器10の気化運転により、液化天然ガス供給源から液化天然ガス供給管路51を通じて供給される液化天然ガスが熱交換器13で気化されて、天然ガスが天然ガス送出管路52を通じてガス供給先へ供給される。   First, when an operation start command is input in step 101, the process proceeds to step 102, the valves V1 and V2 are opened, and the vaporization operation of the air temperature type carburetor 10 is started. At the same time, the operation of the suction fan device 20 is started. By the vaporization operation of the air temperature type vaporizer 10, the liquefied natural gas supplied from the liquefied natural gas supply source through the liquefied natural gas supply line 51 is vaporized in the heat exchanger 13, and the natural gas is supplied to the natural gas delivery line 52. It is supplied to the gas supply destination.

空温式気化器10の気化運転の時間経過に伴い、熱交換器13への着氷が進行する。そして、ステップ103で、前記温度計Tによって測定される空温式気化器10の出口ガス温度tが予め定められた設定温度T1(例えば、T1=−10℃)以下となったか否かが判定される。   As the time of vaporization operation of the air temperature type vaporizer 10 elapses, icing to the heat exchanger 13 proceeds. In step 103, it is determined whether or not the outlet gas temperature t of the air temperature type vaporizer 10 measured by the thermometer T is equal to or lower than a preset temperature T1 (for example, T1 = −10 ° C.). Is done.

出口ガス温度tが設定温度T1以下となった(ステップ103でYES)場合には、ステップ104に進み、温水バス式気化器40による加温運転が開始される。すなわち、弁V4が開かれて、空温式気化器10からの天然ガスが、弁V4を有する管路55を通して温水バス式気化器40に導かれ、温水バス式気化器40によって加温された後、管路54と天然ガス送出管路52を経てガス供給先へ供給される。弁V2は弁V4の開弁後に閉じられる。温水バス式気化器40には、温水が、温水用ボイラ41→温水循環用ポンプ42→弁V5→温水バス式気化器40→温水用ボイラ41の経路で循環供給される。   When the outlet gas temperature t becomes equal to or lower than the set temperature T1 (YES in Step 103), the process proceeds to Step 104, and the heating operation by the hot water bath type vaporizer 40 is started. That is, the valve V4 is opened, and the natural gas from the air temperature type vaporizer 10 is led to the hot water bath type vaporizer 40 through the pipe 55 having the valve V4, and is heated by the hot water bath type vaporizer 40. Thereafter, the gas is supplied to the gas supply destination through the pipeline 54 and the natural gas delivery pipeline 52. The valve V2 is closed after the valve V4 is opened. Hot water is circulated and supplied to the hot water bath type vaporizer 40 through a route of the hot water boiler 41 → the hot water circulation pump 42 → the valve V 5 → the hot water bath type vaporizer 40 → the hot water boiler 41.

次いで、ステップ105で、空気加温器30の運転が開始され、空気加温器30によって気化運転中の空温式気化器10での解氷が開始される。すなわち、吸引ファン装置20の前記運転により、空温式気化器10の熱交換器13のフィン付き伝熱管11に沿って下降する下向空気流が生じており、空気加温器30の運転によってこの下向空気流を前もって加温することにより、熱交換器13での解氷が開始される。空気加温器30には、温水バス式気化器40と同様に温水が供給され、温水が、温水用ボイラ41→温水循環用ポンプ42→弁V6→空気加温器30→温水用ボイラ41の経路で循環供給される。   Next, in step 105, the operation of the air warmer 30 is started, and the ice warming in the air temperature type vaporizer 10 during the vaporization operation is started by the air warmer 30. That is, due to the operation of the suction fan device 20, a downward air flow descending along the finned heat transfer tube 11 of the heat exchanger 13 of the air temperature type vaporizer 10 is generated, and the air heater 30 is operated. By de-warming this downward air flow in advance, de-icing in the heat exchanger 13 is started. The hot water is supplied to the air heater 30 in the same manner as the hot water bath type vaporizer 40, and the hot water is supplied from the hot water boiler 41 → the hot water circulation pump 42 → the valve V6 → the air warmer 30 → the hot water boiler 41. Circulated by route.

次いで、ステップ106で、出口ガス温度tが、前記設定温度T1に所定温度αを加えた値、例えば、(T1+5℃)を超えて上昇したか否かが判定される。気化運転中の空温式気化器10での空気加温器30による解氷が進み、出口ガス温度tが(T1+5℃)を超える(ステップ106でYES)と、ステップ107で、温水バス式気化器40による加温運転を停止する。これにより、弁V4は弁V2を開弁した後に閉じられ、空温式気化器10からの天然ガスが、弁V2を介してガス供給先へ供給される。   Next, in step 106, it is determined whether or not the outlet gas temperature t has exceeded a value obtained by adding the predetermined temperature α to the set temperature T1, for example, (T1 + 5 ° C.). When the defrosting by the air heater 30 in the air temperature type vaporizer 10 during the vaporization operation proceeds and the outlet gas temperature t exceeds (T1 + 5 ° C.) (YES in step 106), in step 107, the hot water bath type vaporization is performed. The heating operation by the vessel 40 is stopped. Thus, the valve V4 is closed after the valve V2 is opened, and the natural gas from the air temperature type vaporizer 10 is supplied to the gas supply destination via the valve V2.

また、出口ガス温度tが(T1+5℃)を超える(ステップ106でYES)と、気化運転中の空温式気化器10での解氷が終了したとみなし、ステップ108で、空気加温器30の運転を停止し、弁V6を閉じる。   When the outlet gas temperature t exceeds (T1 + 5 ° C.) (YES in step 106), it is considered that the ice melting in the air temperature type vaporizer 10 during the vaporization operation has been completed, and in step 108, the air heater 30 Is stopped and the valve V6 is closed.

次いで、この低温液化ガス気化装置の運転を続行する(ステップ109でNO)場合は、前記ステップ103に戻る。一方、停止する(ステップ109でYES)場合には、ステップ110に進み、所定の運転終了処理がなされる。   Next, when the operation of the low-temperature liquefied gas vaporizer is continued (NO in Step 109), the process returns to Step 103. On the other hand, when the vehicle stops (YES in step 109), the process proceeds to step 110, and a predetermined operation end process is performed.

一方、冬期など外気温が低く、前記ステップ106でNOの場合は、ステップ201に進み、前記温度計Tによって測定される空温式気化器10の出口ガス温度tが所定の設定温度T2(例えば、T2=−20℃)以下となったか否かが判定される。ステップ201で、出口ガス温度tが前記設定温度T2にまで低下していない(ステップ201でNO)場合には、再び前記ステップ106に戻る。   On the other hand, if the outside air temperature is low such as in winter and the result of step 106 is NO, the process proceeds to step 201 where the outlet gas temperature t of the air temperature type vaporizer 10 measured by the thermometer T is a predetermined set temperature T2 (for example, , T2 = −20 ° C.) or less. In step 201, when the outlet gas temperature t has not decreased to the set temperature T2 (NO in step 201), the process returns to step 106 again.

そして、空温式気化器10の気化運転の時間経過に伴い、出口ガス温度tが前記設定温度T2以下となった(ステップ201でYES)場合には、ステップ202で、温水バス式気化器40を気化運転に切替え、ステップ203で空温式気化器10の気化運転を停止する。   If the outlet gas temperature t becomes equal to or lower than the set temperature T2 (YES in step 201) with the elapse of time of the vaporizing operation of the air temperature type vaporizer 10, the hot water bath type vaporizer 40 is obtained in step 202. Is switched to the vaporizing operation, and in step 203, the vaporizing operation of the air temperature type vaporizer 10 is stopped.

このステップ202とステップ203での、気化運転を空温式気化器10から温水バス式気化器40へ切替える切替操作は、例えば、次のようにして行われる。液化天然ガス供給管路51の弁V1の開度を制御して、空温式気化器10に供給する液化天然ガスの供給量を100%から徐々に0%まで減少させて行き弁V4を閉じ、これを並行して、分岐管路53の弁V3を開き、弁V3の開度を制御して、温水バス式気化器40に供給する液化天然ガスの供給量を0%から徐々に100%まで増加させて行き、空温式気化器10の気化運転停止、及び温水バス式気化器40の気化運転に入る。なお、切替え時、液化天然ガスが管路55に逆流しないように逆止弁V7が設けられている。   The switching operation in step 202 and step 203 for switching the vaporization operation from the air temperature type vaporizer 10 to the hot water bath type vaporizer 40 is performed as follows, for example. By controlling the opening degree of the valve V1 of the liquefied natural gas supply line 51, the supply amount of the liquefied natural gas supplied to the air temperature type carburetor 10 is gradually reduced from 100% to 0%, and the going valve V4 is closed. In parallel with this, the valve V3 of the branch pipe 53 is opened, the opening degree of the valve V3 is controlled, and the supply amount of the liquefied natural gas supplied to the hot water bath type vaporizer 40 is gradually increased from 0% to 100%. The vaporization operation of the air temperature type vaporizer 10 is stopped, and the vaporization operation of the hot water bath type vaporizer 40 is entered. Note that a check valve V7 is provided so that the liquefied natural gas does not flow back into the pipeline 55 at the time of switching.

ここで、気化運転が空温式気化器10から温水バス式気化器40へ切替えられた後にも、吸引ファン装置20と空気加温器30の運転は継続されており(ステップ204)、気化運転停止中の空温式気化器10での解氷が継続されている。   Here, even after the vaporization operation is switched from the air temperature type vaporizer 10 to the hot water bath type vaporizer 40, the operation of the suction fan device 20 and the air warmer 30 is continued (step 204). De-icing is continued in the stopped air temperature type vaporizer 10.

そして、ステップ205において、空気加温器30の運転開始から予め定められた所定時間T(例えば、T=2時間)が経過し、気化運転停止中の空温式気化器10での解氷が終了する(ステップ205でYES)と、ステップ206で空温式気化器10の運転が開始されるとともに、ステップ207で空気加温器30の運転が停止されて弁V6が閉じられ、さらに、ステップ208で、温水バス式気化器40の気化運転が停止される。   In step 205, a predetermined time T (for example, T = 2 hours) elapses from the start of the operation of the air warmer 30, and the defrosting in the air temperature type vaporizer 10 in which the vaporization operation is stopped is performed. When completed (YES in step 205), the operation of the air temperature carburetor 10 is started in step 206, the operation of the air warmer 30 is stopped in step 207, and the valve V6 is closed. At 208, the vaporizing operation of the hot water bath vaporizer 40 is stopped.

ここで、ステップ206とステップ208での、気化運転を温水バス式気化器40から空温式気化器10へ切替える切替操作は、例えば、次のようにして行われる。まず、弁V2を開弁する。次に、分岐管路53の弁V3の開度を制御して、温水バス式気化器40に供給する液化天然ガスの供給量を100%から徐々に0%まで減少させて行き、これを並行して、液化天然ガス供給管路51の弁V1の開度を制御して、空温式気化器10に供給する液化天然ガスの供給量を0%から徐々に100%まで増加させて行き、切替えの完了後に、分岐管路53の弁V3を閉じる。気化運転を温水バス式気化器40から空温式気化器10へ切替えると、前記ステップ103に戻る。   Here, the switching operation for switching the vaporization operation from the hot water bath type vaporizer 40 to the air temperature type vaporizer 10 in step 206 and step 208 is performed as follows, for example. First, the valve V2 is opened. Next, by controlling the opening degree of the valve V3 of the branch pipe 53, the supply amount of the liquefied natural gas supplied to the hot water bath type vaporizer 40 is gradually decreased from 100% to 0%, and this is performed in parallel. Then, by controlling the opening degree of the valve V1 of the liquefied natural gas supply line 51, the supply amount of the liquefied natural gas supplied to the air temperature type vaporizer 10 is gradually increased from 0% to 100%, After completion of the switching, the valve V3 of the branch line 53 is closed. When the vaporization operation is switched from the hot water bath type vaporizer 40 to the air temperature type vaporizer 10, the process returns to Step 103.

以上のように、本発明の低温液化ガス気化装置又は低温液化ガスの気化方法は、1台の自然通風型の空温式気化器10と1台の温水バス式気化器40とを1ユニットとして備えたものであるから、温水バス式気化器40に比べて初期設備費の高価な自然通風型の空温式気化器10を2台設置してこれを1ユニットとする従来のものに比べて初期設備費が安価ですむ。また、前記の1台の自然通風型の空温式気化器10をベースロード用気化器として運転するとともに、該空温式気化器10での解氷を温水バス式気化器40の温水を活用して行うようにしたものであるから、冬期でも散水解氷運転がなく、運転費の低減を図ることができる。   As described above, the low-temperature liquefied gas vaporizer or the low-temperature liquefied gas vaporization method of the present invention includes one naturally ventilated air temperature type vaporizer 10 and one hot water bath type vaporizer 40 as one unit. Compared to the conventional one in which two naturally ventilated air temperature type vaporizers 10 are installed, which are expensive compared to the hot water bath type vaporizer 40 and have a high initial facility cost. The initial equipment cost is low. In addition, the one natural ventilation type air temperature carburetor 10 is operated as a base load carburetor, and the deicing in the air temperature carburetor 10 is performed using the hot water of the hot water bath carburetor 40. Therefore, there is no sprinkling and de-icing operation even in winter, and the operation cost can be reduced.

10…自然通風型の空温式気化器
11…フィン付き伝熱管
13…熱交換器 13a…気化部 13b…加温部
14…支持フレーム
20…吸引ファン装置
30…空気加温器
40…温水バス式気化器
41…温水用ボイラ
42…温水循環用ポンプ
51…液化天然ガス供給管路
52…天然ガス送出管路
53…分岐管路
54〜59…管路
V1〜V7…弁
T…温度計
DESCRIPTION OF SYMBOLS 10 ... Natural ventilation type air temperature type vaporizer 11 ... Heat transfer tube with fin 13 ... Heat exchanger 13a ... Vaporization part 13b ... Heating part 14 ... Support frame 20 ... Suction fan apparatus 30 ... Air warmer 40 ... Hot water bath Type vaporizer 41 ... Hot water boiler 42 ... Hot water circulation pump 51 ... Liquefied natural gas supply line 52 ... Natural gas delivery line 53 ... Branch line 54-59 ... Pipe line V1-V7 ... Valve T ... Thermometer

Claims (3)

フィン付き伝熱管を有する熱交換器で低温液化ガスを気化させ、該気化ガスをガス供給先へ供給する自然通風型の空温式気化器と、
温水バス式気化器と、
前記空温式気化器をベースロード用気化器として運転して、前記低温液化ガス供給源からの低温液化ガスを前記熱交換器で気化させ、該気化ガスをガス供給先へ供給し、その際に、前記空温式気化器の出口ガス温度を測定し、該出口ガス温度に応じて、前記温水バス式気化器によって前記空温式気化器からの気化ガスを加温し、該気化ガスを前記ガス供給先へ供給する運転、もしくは、前記空温式気化器に替えて前記温水バス式気化器によって前記低温液化ガス供給源からの低温液化ガスを気化させ、該気化ガスを前記ガス供給先へ供給する運転を行う運転制御装置と、を備えたことを特徴とする低温液化ガス気化装置。
A naturally ventilated air temperature type vaporizer that vaporizes a low-temperature liquefied gas in a heat exchanger having a finned heat transfer tube and supplies the vaporized gas to a gas supply destination;
With hot water bath vaporizer,
The air temperature type vaporizer is operated as a base load vaporizer, the low temperature liquefied gas from the low temperature liquefied gas supply source is vaporized by the heat exchanger, and the vaporized gas is supplied to the gas supply destination. The outlet gas temperature of the air temperature type vaporizer is measured, and the vaporized gas from the air temperature type vaporizer is heated by the hot water bath type vaporizer according to the outlet gas temperature, and the vaporized gas is Operation to supply to the gas supply destination, or a low temperature liquefied gas from the low temperature liquefied gas supply source is vaporized by the hot water bath type vaporizer instead of the air temperature type vaporizer, and the vaporized gas is supplied to the gas supply destination. A low-temperature liquefied gas vaporizer, comprising:
前記空温式気化器の前記熱交換器の下方空間に通じる吸引口を有する吸引ファン装置と、前記空温式気化器に近接してその上方に設置され、前記フィン付き伝熱管に沿って下降する下向空気流を前もって加温する空気加温器とを備えたことを特徴とする請求項1記載の低温液化ガス気化装置。   A suction fan device having a suction port that communicates with the space below the heat exchanger of the air temperature type vaporizer, and installed above and adjacent to the air temperature type vaporizer, descending along the finned heat transfer tube The low-temperature liquefied gas vaporizer according to claim 1, further comprising an air heater that preheats the downward air flow. フィン付き伝熱管を有する熱交換器を備えた自然通風型の空温式気化器と、温水バス式気化器とを備え、前記空温式気化器をベースロード用気化器として用い、低温液化ガス供給源からの低温液化ガスを気化させて気化ガスを製造する低温液化ガスの気化方法であって、
前記空温式気化器により、前記低温液化ガス供給源からの低温液化ガスを前記熱交換器で気化させ、該気化ガスをガス供給先へ供給し、その際に、前記空温式気化器の出口ガス温度を測定し、該出口ガス温度に応じて、前記温水バス式気化器によって前記空温式気化器からの気化ガスを加温し、該気化ガスを前記ガス供給先へ供給すること、もしくは、前記空温式気化器に替えて前記温水バス式気化器によって前記低温液化ガス供給源からの低温液化ガスを気化し、該気化ガスを前記ガス供給先へ供給することを特徴とする低温液化ガスの気化方法。
A natural ventilation type air temperature type vaporizer equipped with a heat exchanger having finned heat transfer tubes and a hot water bath type vaporizer, and using the air temperature type vaporizer as a base load vaporizer, a low-temperature liquefied gas A low-temperature liquefied gas vaporization method for producing a vaporized gas by vaporizing a low-temperature liquefied gas from a supply source,
By the air temperature type vaporizer, the low temperature liquefied gas from the low temperature liquefied gas supply source is vaporized by the heat exchanger, and the vaporized gas is supplied to a gas supply destination. Measuring the outlet gas temperature, and heating the vaporized gas from the air temperature type vaporizer by the hot water bath type vaporizer according to the outlet gas temperature, and supplying the vaporized gas to the gas supply destination; Alternatively, the low temperature liquefied gas from the low temperature liquefied gas supply source is vaporized by the hot water bath type vaporizer instead of the air temperature type vaporizer, and the vaporized gas is supplied to the gas supply destination. A method for vaporizing liquefied gas.
JP2009049416A 2009-03-03 2009-03-03 Low temperature liquefied gas vaporizer and low temperature liquefied gas vaporization method Expired - Fee Related JP5330030B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009049416A JP5330030B2 (en) 2009-03-03 2009-03-03 Low temperature liquefied gas vaporizer and low temperature liquefied gas vaporization method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009049416A JP5330030B2 (en) 2009-03-03 2009-03-03 Low temperature liquefied gas vaporizer and low temperature liquefied gas vaporization method

Publications (2)

Publication Number Publication Date
JP2010203520A true JP2010203520A (en) 2010-09-16
JP5330030B2 JP5330030B2 (en) 2013-10-30

Family

ID=42965202

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009049416A Expired - Fee Related JP5330030B2 (en) 2009-03-03 2009-03-03 Low temperature liquefied gas vaporizer and low temperature liquefied gas vaporization method

Country Status (1)

Country Link
JP (1) JP5330030B2 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012229860A (en) * 2011-04-26 2012-11-22 Tokyo Gas Chemicals Co Ltd Coupled liquefied natural gas carburetor
KR20150057684A (en) * 2013-11-20 2015-05-28 대우조선해양 주식회사 System for using very low temperature energy of lng, and very large floating structure comprising the same
JP2015165156A (en) * 2014-02-06 2015-09-17 日本液炭株式会社 Vaporization method and vaporization device for liquefied gas
JP2016037933A (en) * 2014-08-08 2016-03-22 川崎重工業株式会社 Vessel
WO2019008923A1 (en) * 2017-07-05 2019-01-10 川崎重工業株式会社 Ship
JP7025592B1 (en) 2021-10-21 2022-02-24 東京瓦斯株式会社 Air temperature type evaporator
CN114353574A (en) * 2021-12-14 2022-04-15 新兴铸管股份有限公司 Liquid oxygen pump water bath type vaporizing device
WO2022191915A1 (en) * 2021-03-11 2022-09-15 Praxair Technology, Inc. System and method for cryogenic vaporization with parallel vaporizer arrangements
CN115135920A (en) * 2020-02-20 2022-09-30 梅塞尔集团有限公司 Device and method for generating a temperature-controlled cold gas flow
US11953159B2 (en) 2021-03-11 2024-04-09 Praxair Technology, Inc. System and method for cryogenic vaporization with parallel vaporizer arrangements
US11976789B2 (en) 2021-03-11 2024-05-07 Praxair Technology, Inc. System and method for cryogenic vaporization using ambient air vaporizer

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63312599A (en) * 1987-06-15 1988-12-21 Mitsubishi Kakoki Kaisha Ltd Hot water heating type evaporator for liquefied natural gas
JP2001182894A (en) * 1999-12-24 2001-07-06 Seibu Gas Co Ltd Forced circulation type air-temperature liquefied gas vaporizer and method of vaporazing liquefied gas
JP2002005398A (en) * 2000-06-19 2002-01-09 Kobe Steel Ltd Vaporization equipment for low temperature liquefied gas and vaporizing method therefor
JP2006029356A (en) * 2004-07-12 2006-02-02 Kobe Steel Ltd Low temperature liquefied gas vaporizing device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63312599A (en) * 1987-06-15 1988-12-21 Mitsubishi Kakoki Kaisha Ltd Hot water heating type evaporator for liquefied natural gas
JP2001182894A (en) * 1999-12-24 2001-07-06 Seibu Gas Co Ltd Forced circulation type air-temperature liquefied gas vaporizer and method of vaporazing liquefied gas
JP2002005398A (en) * 2000-06-19 2002-01-09 Kobe Steel Ltd Vaporization equipment for low temperature liquefied gas and vaporizing method therefor
JP2006029356A (en) * 2004-07-12 2006-02-02 Kobe Steel Ltd Low temperature liquefied gas vaporizing device

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012229860A (en) * 2011-04-26 2012-11-22 Tokyo Gas Chemicals Co Ltd Coupled liquefied natural gas carburetor
KR20150057684A (en) * 2013-11-20 2015-05-28 대우조선해양 주식회사 System for using very low temperature energy of lng, and very large floating structure comprising the same
KR102167803B1 (en) * 2013-11-20 2020-10-19 대우조선해양 주식회사 System for using very low temperature energy of lng
JP2015165156A (en) * 2014-02-06 2015-09-17 日本液炭株式会社 Vaporization method and vaporization device for liquefied gas
JP2016037933A (en) * 2014-08-08 2016-03-22 川崎重工業株式会社 Vessel
WO2019008923A1 (en) * 2017-07-05 2019-01-10 川崎重工業株式会社 Ship
CN115135920A (en) * 2020-02-20 2022-09-30 梅塞尔集团有限公司 Device and method for generating a temperature-controlled cold gas flow
WO2022191915A1 (en) * 2021-03-11 2022-09-15 Praxair Technology, Inc. System and method for cryogenic vaporization with parallel vaporizer arrangements
US11953159B2 (en) 2021-03-11 2024-04-09 Praxair Technology, Inc. System and method for cryogenic vaporization with parallel vaporizer arrangements
US11976789B2 (en) 2021-03-11 2024-05-07 Praxair Technology, Inc. System and method for cryogenic vaporization using ambient air vaporizer
JP7025592B1 (en) 2021-10-21 2022-02-24 東京瓦斯株式会社 Air temperature type evaporator
JP2023062263A (en) * 2021-10-21 2023-05-08 東京瓦斯株式会社 Air temperature type evaporator
CN114353574A (en) * 2021-12-14 2022-04-15 新兴铸管股份有限公司 Liquid oxygen pump water bath type vaporizing device
CN114353574B (en) * 2021-12-14 2023-04-28 新兴铸管股份有限公司 Liquid oxygen pump water bath type vaporization device

Also Published As

Publication number Publication date
JP5330030B2 (en) 2013-10-30

Similar Documents

Publication Publication Date Title
JP5330030B2 (en) Low temperature liquefied gas vaporizer and low temperature liquefied gas vaporization method
JP5354543B2 (en) Outside air type vaporizer
CN107210072B (en) It is passive except hot system from pressurized water reactor by steam generator
JP2002340296A (en) Liquefied gas vaporizing and heating device
JP6397853B2 (en) System for vaporizing cryogenic liquids
US20110192174A1 (en) Method for regasifying liquefied natural gas with previously dehumidified ambient air
JP2015534024A (en) Environmental Air Vaporizer and Configuration and Method for Cold Use
WO2007076031A2 (en) Fluid heating system
JP2001182894A (en) Forced circulation type air-temperature liquefied gas vaporizer and method of vaporazing liquefied gas
TWI781329B (en) Reverse osmosis treatment method and system
JP4035566B2 (en) Forced circulation air temperature type liquefied gas vaporizer
JP3720160B2 (en) Low temperature liquefied gas vaporization method and equipment
JP2002039695A (en) Liquefied gas vaporization system utilizing waste heat, and waste heat supply method
JP2006029356A (en) Low temperature liquefied gas vaporizing device
CN106091376A (en) The broken empty heat blower of vacuum glass equipment
JP3209642U (en) Plant factory system using vaporized cold energy
JP2005098480A (en) Vaporizing device of liquified gas
JP4621379B2 (en) Evaporator
CN207214470U (en) Antifreezing hot water heater device
JP2004108759A (en) Heat storage type low-temperature energy saving thermal energy utilizing system for highly heat insulated and highly airtight housing
JP3987245B2 (en) Liquefied gas vaporizer with cold heat generation function
JP5617641B2 (en) LNG vaporization equipment
JPH0429920B2 (en)
CN107676985A (en) Antifreezing hot water heater device
JP5306058B2 (en) Hot water supply system and operation method thereof

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20110414

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20110414

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110901

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121213

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130122

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130319

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130723

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130725

R150 Certificate of patent or registration of utility model

Ref document number: 5330030

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees