JP2010203366A - Control device for compression ignition type internal combustion engine - Google Patents

Control device for compression ignition type internal combustion engine Download PDF

Info

Publication number
JP2010203366A
JP2010203366A JP2009051051A JP2009051051A JP2010203366A JP 2010203366 A JP2010203366 A JP 2010203366A JP 2009051051 A JP2009051051 A JP 2009051051A JP 2009051051 A JP2009051051 A JP 2009051051A JP 2010203366 A JP2010203366 A JP 2010203366A
Authority
JP
Japan
Prior art keywords
pressure
intake pressure
fuel injection
intake
injection timing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009051051A
Other languages
Japanese (ja)
Other versions
JP4985680B2 (en
Inventor
Akikazu Kojima
昭和 小島
Atsushi Kawamura
淳 川村
Takahiro Ono
貴博 小野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2009051051A priority Critical patent/JP4985680B2/en
Priority to DE102010000624A priority patent/DE102010000624A1/en
Publication of JP2010203366A publication Critical patent/JP2010203366A/en
Application granted granted Critical
Publication of JP4985680B2 publication Critical patent/JP4985680B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0025Controlling engines characterised by use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D41/0047Controlling exhaust gas recirculation [EGR]
    • F02D41/0077Control of the EGR valve or actuator, e.g. duty cycle, closed loop control of position
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D35/00Controlling engines, dependent on conditions exterior or interior to engines, not otherwise provided for
    • F02D35/02Controlling engines, dependent on conditions exterior or interior to engines, not otherwise provided for on interior conditions
    • F02D35/023Controlling engines, dependent on conditions exterior or interior to engines, not otherwise provided for on interior conditions by determining the cylinder pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D35/00Controlling engines, dependent on conditions exterior or interior to engines, not otherwise provided for
    • F02D35/02Controlling engines, dependent on conditions exterior or interior to engines, not otherwise provided for on interior conditions
    • F02D35/028Controlling engines, dependent on conditions exterior or interior to engines, not otherwise provided for on interior conditions by determining the combustion timing or phasing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/04Engine intake system parameters
    • F02D2200/0406Intake manifold pressure
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Abstract

<P>PROBLEM TO BE SOLVED: To provide a control device for a compression ignition type internal combustion engine capable of maintaining excellent drivability by preventing an increase in NOx and the noise even if the intake pressure is low. <P>SOLUTION: An engine control system is constructed for a four-cylinder engine as a vehicular engine, and the fuel injection control or the like is executed by an ECU 60 as the center. The ECU 60 detects the intake pressure (S1), and decides the target ignition timing based on the detected intake pressure (S2). A control map wherein the intake pressure and the target ignition timing correspond to each other is housed in a ROM. The control map of this embodiment is set so that the target ignition timing is delayed as the intake pressure is lowered and that the injected fuel is burned at the same pressure grade as the pressure grade before the intake pressure is lowered. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、圧縮着火式内燃機関の制御装置に関する。   The present invention relates to a control device for a compression ignition type internal combustion engine.

従来、リーン燃焼のときには排出されたNOxを吸蔵し、吸蔵したNOxが所定値以上となった場合にリッチ燃焼を実施することで、吸蔵したNOxをパージしてNOx浄化率を保つNOx吸蔵還元触媒を備える内燃機関が提案されている(特許文献1、2参照)。   Conventionally, the NOx occlusion reduction catalyst that occludes the exhausted NOx during lean combustion and performs rich combustion when the occluded NOx exceeds a predetermined value to purge the occluded NOx and maintain the NOx purification rate. Has been proposed (see Patent Documents 1 and 2).

特許第2658756号公報Japanese Patent No. 2658756 特許第3427731号公報Japanese Patent No. 3427731

エンジン吸気系の概略図を図6に示す。吸気管101は、外部からの吸入空気をエンジンの吸気ポートに送るための管であり、排ガスの一部をEGRガスとして還流させるEGR配管102と、スロットルバルブ103と、などからなる。エンジン吸気は、スロットルバルブの絞りによって外部側の上流圧Paと、エンジン側の下流圧Pbとの間に圧力差ΔPを生じる。   A schematic diagram of the engine intake system is shown in FIG. The intake pipe 101 is a pipe for sending intake air from the outside to the intake port of the engine, and includes an EGR pipe 102 that recirculates a part of the exhaust gas as EGR gas, a throttle valve 103, and the like. In the engine intake air, a pressure difference ΔP is generated between the upstream pressure Pa on the outside side and the downstream pressure Pb on the engine side due to the throttle valve throttle.

リッチ燃焼を実施する場合には、燃料量に見合った空気(酸素)が燃焼室に吸入されないと燃焼が不完全になりトルクが維持できなくなってしまうため、トルクを維持するためには、燃料量に見合った空気(酸素)量を得る必要がある。しかし、高地など吸気圧力が低い場合には上流圧Paが低下する結果、圧力差ΔPが小さくなり、過給器による過給が間に合わず吸気量が低下してしまう場合がある。   When performing rich combustion, if air (oxygen) commensurate with the amount of fuel is not sucked into the combustion chamber, the combustion will be incomplete and torque will not be maintained. It is necessary to obtain an amount of air (oxygen) commensurate with However, when the intake pressure is low, such as at high altitudes, the upstream pressure Pa is reduced. As a result, the pressure difference ΔP becomes small, and supercharging by the supercharger may not be in time, and the intake amount may decrease.

圧力差ΔPを通常(低地)の場合と同等に維持するためにはスロットルバルブの下流圧Pbを下げる必要があり、そのためにはEGRガス量を減らすことが考えられる。しかしながら、還流EGRガス量を減らすと、燃焼室における吸気中のO2濃度が増加し、燃焼が活性化することとなる。 In order to maintain the pressure difference ΔP at the same level as in the normal case (lowland), it is necessary to lower the downstream pressure Pb of the throttle valve. To that end, it is conceivable to reduce the amount of EGR gas. However, if the amount of recirculated EGR gas is reduced, the concentration of O 2 in the intake air in the combustion chamber increases, and combustion is activated.

図7に、高地(低吸気圧状態)時と通常時におけるクランク角度と熱発生率との関係を示すグラフを示す。高地時、つまり吸気圧力が低いためEGRガス量を減らした結果として燃焼室における吸気中のO2濃度が増加した状態においては、燃焼が急激に起こるため、熱発生率が急激に立ち上がる。そのため高地時では、通常時、つまり吸気圧力が高地時よりも高く、EGRガス量が相対的に多い状態と比較して、クランク角度の変化量に対する筒内の圧力の変化量を示す圧力勾配(dP/dθ、以降は単に圧力勾配という)が大きくなる。 FIG. 7 is a graph showing the relationship between the crank angle and the heat generation rate at high altitude (low intake pressure state) and normal time. In high altitude, that is, in a state where the O 2 concentration in the intake air in the combustion chamber increases as a result of reducing the amount of EGR gas because the intake pressure is low, combustion occurs rapidly, so the heat generation rate rises rapidly. Therefore, at high altitude, a pressure gradient (indicating the amount of change in the cylinder pressure relative to the amount of change in the crank angle as compared with the normal time, that is, the state where the intake pressure is higher and the EGR gas amount is relatively large) dP / dθ, hereinafter simply referred to as pressure gradient).

このように圧力勾配が大きくなると、NOxが増加したり燃焼騒音が増大したりするという問題があった。一方、燃焼騒音を低減するために噴射圧を下げた場合には燃料噴射量が減少してしまったりして、スモークが発生したりトルクが維持できなくなったりするという問題があった。   When the pressure gradient becomes large in this way, there is a problem that NOx increases or combustion noise increases. On the other hand, when the injection pressure is lowered in order to reduce combustion noise, there is a problem that the fuel injection amount is reduced, smoke is generated, and torque cannot be maintained.

本発明は、上述した問題に鑑みてなされたものであり、その目的は、吸気圧力が低い場合においてもNOxや騒音の増加を防ぎ、良好なドライバビリティを維持する圧縮着火式内燃機関の制御装置を提供することである。   The present invention has been made in view of the above-described problems, and an object of the present invention is to control a compression ignition internal combustion engine that prevents an increase in NOx and noise even when the intake pressure is low and maintains good drivability. Is to provide.

上述した問題を解決するためになされた請求項1に記載の発明は、排気通路から取り出された排ガスの一部をEGRガスとして吸気通路に還流させるEGR手段と、燃焼室内に燃料を噴射供給する燃料噴射手段と、を備える圧縮着火式内燃機関の制御装置に関する。この制御装置は、吸気通路において吸気圧力を検出するための吸気圧検出手段をも備える。   The invention according to claim 1, which has been made to solve the above-described problem, includes an EGR means for recirculating a part of the exhaust gas taken out from the exhaust passage as EGR gas to the intake passage, and injects and supplies fuel into the combustion chamber. And a control device for a compression ignition type internal combustion engine. The control device also includes an intake pressure detection means for detecting the intake pressure in the intake passage.

そして、検出された吸気圧力に応じて、EGR率を変化させると共に、検出された吸気圧力の低下度合に応じて、燃料噴射時期を遅角する側にずらすように構成されている。
このように構成された制御装置であれば、吸気通路の吸気圧力が低下すると、EGR率を低下させて吸気量を確保すると共に、燃料の噴射時期を遅くする。
The EGR rate is changed according to the detected intake pressure, and the fuel injection timing is shifted to the retarded side according to the detected degree of decrease in the intake pressure.
With the control device configured as described above, when the intake pressure in the intake passage decreases, the EGR rate is reduced to ensure the intake amount and to delay the fuel injection timing.

通常、燃料噴射は、ピストンが上死点近傍となるタイミングにて着火するように行われる。これは、ピストンが上死点近傍となるタイミングにて燃焼室内の温度および圧力が最も高くなり、燃料が最も燃焼しやすい状態となるためである。そのため、燃料噴射を遅角する側にずらすと、上死点よりも燃焼室内の温度および圧力が下がり、燃焼の活性が低下する。   Normally, fuel injection is performed so that the piston is ignited at a timing near the top dead center. This is because the temperature and pressure in the combustion chamber are highest at the timing when the piston is near the top dead center, and the fuel is most easily combusted. For this reason, if the fuel injection is shifted to the retarded side, the temperature and pressure in the combustion chamber are lowered from the top dead center, and the combustion activity is lowered.

したがって、吸気圧力の低下による吸入空気量の低下を防止するためにEGR率を低下させて、吸気中のO2濃度が増加した状態であっても、それによる燃焼の活性化を、燃焼タイミングを遅角する側にずらすことによる燃焼の活性抑制にて打ち消すことができる。その結果、急激な燃焼を防止して筒内の圧力勾配を小さくできるため、燃料噴射量を制限してトルクを低下させることなくNOxおよび騒音の低減を実現できる。 Therefore, even if the EGR rate is decreased to prevent the intake air amount from decreasing due to a decrease in the intake pressure and the O 2 concentration in the intake air is increased, the activation of the combustion is thereby controlled by the combustion timing. It can be canceled by suppressing the combustion activity by shifting to the retarded side. As a result, since rapid combustion can be prevented and the pressure gradient in the cylinder can be reduced, NOx and noise can be reduced without limiting the fuel injection amount and lowering the torque.

このように、上記制御装置であれば、吸気圧力が低い場合においても、NOxおよび騒音の増加を防ぎ、良好なドライバビリティを維持することができる。
請求項2に記載の発明は、請求項1に記載の圧縮着火式内燃機関の制御装置であって、吸気圧力が第1圧力である場合の圧力勾配と、吸気圧力が上記第1圧力よりも低い第2圧力である場合の圧力勾配と、が、燃料噴射時期をずらさない場合と比較して近くなるように燃料噴射時期をずらすことを特徴とする。
Thus, with the above control device, even when the intake pressure is low, increases in NOx and noise can be prevented and good drivability can be maintained.
The invention according to claim 2 is the control apparatus for the compression ignition type internal combustion engine according to claim 1, wherein the pressure gradient when the intake pressure is the first pressure and the intake pressure is higher than the first pressure. The fuel injection timing is shifted so that the pressure gradient in the case of the low second pressure is closer than that in the case where the fuel injection timing is not shifted.

このように構成された制御装置であれば、吸気圧力が低下しても、クランク角度の変化量に対する筒内圧力の変化量である圧力勾配を、吸気圧力が低下する前に近い圧力勾配とすることができるため、吸気圧力が低下する前と同程度に騒音を低減することができる。   With the control device configured as described above, even if the intake pressure decreases, the pressure gradient that is the change amount of the in-cylinder pressure with respect to the change amount of the crank angle is set to a pressure gradient close to that before the intake pressure decreases. Therefore, noise can be reduced to the same extent as before the intake pressure decreases.

請求項3に記載の発明は、請求項1または請求項2に記載の圧縮着火式内燃機関の制御装置であって、吸気圧力と燃料噴射時期との関係を示す制御マップまたは関係式を有しており、検出された吸気圧力と、上記制御マップまたは関係式と、に基づいて燃料噴射時期を設定することを特徴とする。   A third aspect of the present invention is a control apparatus for a compression ignition type internal combustion engine according to the first or second aspect of the present invention, which has a control map or a relational expression showing the relationship between the intake pressure and the fuel injection timing. The fuel injection timing is set based on the detected intake pressure and the control map or the relational expression.

このように構成された制御装置であれば、制御マップまたは関係式に基づいて適切な燃料噴射時期を決定することができる。なお、制御マップおよび関係式は、実験などにより予め適切な値となるように作成されている。   With the control device configured as described above, an appropriate fuel injection timing can be determined based on a control map or a relational expression. Note that the control map and the relational expression are created in advance so as to have appropriate values through experiments or the like.

請求項4に記載の発明は、請求項1から請求項3のいずれかに記載の圧縮着火式内燃機関の制御装置であって、吸気圧力の低下度合に応じた燃料噴射時期の設定を、リッチ燃焼時に実行することを特徴とする。   According to a fourth aspect of the present invention, there is provided the control device for a compression ignition type internal combustion engine according to any one of the first to third aspects, wherein the setting of the fuel injection timing according to the degree of decrease in the intake pressure is made rich. It is performed at the time of combustion.

このように構成された制御装置であれば、十分な吸気を必要とし、酸素濃度の増加による騒音が発生しやすいリッチ燃焼時にのみ上述した燃料噴射時期の制御を行う。よって、吸気圧が低下した際に燃焼が活性化して騒音が発生するリッチ燃焼時の騒音を効果的に抑制することができる。   With the control device configured as described above, the above-described fuel injection timing control is performed only at the time of rich combustion that requires sufficient intake air and easily generates noise due to an increase in oxygen concentration. Therefore, it is possible to effectively suppress noise during rich combustion in which combustion is activated and noise is generated when the intake pressure decreases.

エンジン制御システムを示すブロック図Block diagram showing the engine control system 燃料噴射時期制御ルーチンのフローチャートFlow chart of fuel injection timing control routine 燃料噴射時期を示す制御マップControl map showing fuel injection timing クランク角度と噴射パルスおよび熱発生率の関係を示すグラフGraph showing the relationship between crank angle, injection pulse and heat generation rate クランク角度と筒内圧力の関係を示すグラフGraph showing the relationship between crank angle and in-cylinder pressure 吸気系の構造を示す概念図Conceptual diagram showing the structure of the intake system 従来のクランク角度と熱発生率の関係を示すグラフGraph showing the relationship between conventional crank angle and heat generation rate

以下に本発明の実施形態を図面と共に説明する。
(1)全体構成
以下、本発明を具体化した一実施の形態を図面に従って説明する。エンジン制御システム1は、車両エンジンとして例えば4気筒ディーゼルエンジンを対象としており、電子制御ユニット(以下、ECUという)を中枢として燃料噴射制御等を実施する。まず、図1を用いてエンジン制御システムの全体概略構成図を説明する。なお、図1では、1つの気筒のみを代表して記載している。
Embodiments of the present invention will be described below with reference to the drawings.
(1) Overall Configuration An embodiment embodying the present invention will be described below with reference to the drawings. The engine control system 1 targets a four-cylinder diesel engine as a vehicle engine, for example, and performs fuel injection control and the like with an electronic control unit (hereinafter referred to as ECU) as a center. First, an overall schematic configuration diagram of the engine control system will be described with reference to FIG. In FIG. 1, only one cylinder is shown as a representative.

図1に示すエンジン10において、吸気管11には、DCモータ等のアクチュエータによって開度調節されるスロットルバルブ12と、スロットル開度を検出するためのスロットル開度センサ13とが設けられている。吸気管11は、図示しないが、EGR弁36の下流にて分岐され、エンジン10の各気筒の吸気ポートに接続されている。   In the engine 10 shown in FIG. 1, the intake pipe 11 is provided with a throttle valve 12 whose opening is adjusted by an actuator such as a DC motor, and a throttle opening sensor 13 for detecting the throttle opening. Although not shown, the intake pipe 11 is branched downstream of the EGR valve 36 and connected to the intake port of each cylinder of the engine 10.

また、吸気管11には、吸気圧センサ14が取り付けられており、吸気管11内の吸気圧力を検出してECU60に出力する。
エンジン10には、気筒ごとにインジェクタ15が配設されている。インジェクタ15は各気筒共通のコモンレール16に接続され、コモンレール16には高圧ポンプ17が接続されている。高圧ポンプ17が駆動されると図示しない燃料タンクから燃料が汲み上げられ、高圧の燃料がコモンレール16に連続的に蓄圧される。また、コモンレール16にはコモンレール16内の燃料圧力を検出するコモンレール圧センサ18が設けられている。
An intake pressure sensor 14 is attached to the intake pipe 11 to detect the intake pressure in the intake pipe 11 and output it to the ECU 60.
The engine 10 is provided with an injector 15 for each cylinder. The injector 15 is connected to a common rail 16 common to each cylinder, and a high-pressure pump 17 is connected to the common rail 16. When the high-pressure pump 17 is driven, fuel is pumped up from a fuel tank (not shown), and high-pressure fuel is continuously accumulated in the common rail 16. The common rail 16 is provided with a common rail pressure sensor 18 that detects the fuel pressure in the common rail 16.

エンジン10の吸気ポート及び排気ポートには、それぞれ吸気バルブ21及び排気バルブ22が設けられている。吸気バルブ21の開動作により吸入空気が燃焼室23内に導入され、インジェクタ15より噴射供給された燃料と共に燃焼に供される。燃焼後の排ガスは排気バルブ22の開動作により排気管31に排出される。   An intake valve 21 and an exhaust valve 22 are provided at an intake port and an exhaust port of the engine 10, respectively. The intake air is introduced into the combustion chamber 23 by the opening operation of the intake valve 21 and is combusted together with the fuel injected and supplied from the injector 15. The exhaust gas after combustion is discharged to the exhaust pipe 31 by opening the exhaust valve 22.

排気管31の下流には排ガス中に含まれるPM(粒子状物質)を捕集するディーゼルパティキュレートフィルタ(DPF)32と、リーン・NOx・トラップ(LNT)33が設けられている。LNT33は、リーン燃焼のときには排出されたNOxを吸蔵し、吸蔵したNOxが所定値以上となった場合にリッチ燃焼を実施することで、吸蔵したNOxをパージして排出されたNOxの再吸蔵を可能とする。また、NOxは放出時に排気中のHCやCOと還元反応し、O2およびN2に還元される。 A diesel particulate filter (DPF) 32 that collects PM (particulate matter) contained in the exhaust gas and a lean NOx trap (LNT) 33 are provided downstream of the exhaust pipe 31. The LNT 33 stores the exhausted NOx during lean combustion, and performs rich combustion when the stored NOx exceeds a predetermined value, thereby purging the stored NOx and re-storing the exhausted NOx. Make it possible. Further, NOx undergoes a reduction reaction with HC and CO in the exhaust when released, and is reduced to O 2 and N 2 .

エンジン10には、排ガスの一部をEGRガスとして吸気系に再循環させるための排ガス再循環装置(EGR装置)が設けられている。すなわち、吸気管11のスロットルバルブ12の下流部と排気管31との間にEGR配管34が設けられている。EGR配管34には環流されるEGRガスを冷却するEGRクーラ35が設けられ、EGR配管34と吸気管11の連結部にはEGRガスの環流量を調節するEGR弁36が設けられている。EGRガスを吸気系に環流することにより燃焼温度が低下し、NOxの発生が抑制される。EGR弁36の開度制御は、エンジン負荷やエンジン回転数などのエンジン運転状態に基づいてECU60が実行する。   The engine 10 is provided with an exhaust gas recirculation device (EGR device) for recirculating a part of the exhaust gas as EGR gas to the intake system. That is, an EGR pipe 34 is provided between the downstream portion of the throttle valve 12 of the intake pipe 11 and the exhaust pipe 31. The EGR pipe 34 is provided with an EGR cooler 35 that cools the EGR gas that is circulated, and an EGR valve 36 that adjusts the EGR gas ring flow rate is provided at a connection portion between the EGR pipe 34 and the intake pipe 11. By circulating the EGR gas to the intake system, the combustion temperature is lowered and the generation of NOx is suppressed. The opening degree control of the EGR valve 36 is executed by the ECU 60 based on the engine operating state such as the engine load and the engine speed.

エンジン10の燃焼室23内には、燃焼室23内の圧力を検出する筒内圧センサ51が設置されている。この他、エンジン制御システムには、排ガスの酸素濃度を検出する空燃比センサ52、エンジン10の所定クランク角毎に(例えば30°CA周期で)矩形状のクランク角信号を出力するクランク角度センサ53、運転者によるアクセル操作量(アクセル開度)を検出するアクセル開度センサ54などが備えられている。   An in-cylinder pressure sensor 51 that detects the pressure in the combustion chamber 23 is installed in the combustion chamber 23 of the engine 10. In addition, the engine control system includes an air-fuel ratio sensor 52 that detects the oxygen concentration of exhaust gas, and a crank angle sensor 53 that outputs a rectangular crank angle signal at every predetermined crank angle of the engine 10 (for example, at a cycle of 30 ° CA). Further, an accelerator opening sensor 54 for detecting an accelerator operation amount (accelerator opening) by the driver is provided.

ECU60は、周知の通りCPU、ROM、RAM等よりなるマイクロコンピュータを主体として構成されるものであり、ROMに記憶された各種の制御プログラムを実行することにより都度のエンジン運転状態に応じて燃料噴射制御等のエンジン10の各種制御を実施する。ECU60には、都度のエンジン運転状態を表す情報として前述したスロットル開度センサ13、吸気圧センサ14、コモンレール圧センサ18、筒内圧センサ51、空燃比センサ52、クランク角度センサ53、アクセル開度センサ54などからの各々検出信号が入力される。   As is well known, the ECU 60 is composed mainly of a microcomputer composed of a CPU, ROM, RAM, etc., and executes various control programs stored in the ROM, thereby injecting fuel according to the engine operating state each time. Various controls of the engine 10 such as control are performed. The ECU 60 includes the throttle opening sensor 13, the intake pressure sensor 14, the common rail pressure sensor 18, the in-cylinder pressure sensor 51, the air-fuel ratio sensor 52, the crank angle sensor 53, and the accelerator opening sensor that are described above as information representing the engine operating state. Each detection signal from 54 etc. is inputted.

また、ECU60は、筒内圧センサ51からの検出信号に基づき、燃焼室23における着火時期を取得する。詳しくは、クランク角度センサ53からの検出信号に基づいてピストンの上下動に伴い刻々変化する筒内容積を求め、その筒内容積と筒内圧センサ51より得られる筒内圧力とから熱発生率を算出する。そして、熱発生率が予め定めた基準値を上回ったタイミングを着火時期として取得する。   Further, the ECU 60 acquires the ignition timing in the combustion chamber 23 based on the detection signal from the in-cylinder pressure sensor 51. Specifically, the in-cylinder volume that changes every time the piston moves up and down is obtained based on the detection signal from the crank angle sensor 53, and the heat generation rate is calculated from the in-cylinder volume and the in-cylinder pressure obtained from the in-cylinder pressure sensor 51. calculate. Then, the timing at which the heat generation rate exceeds a predetermined reference value is acquired as the ignition timing.

また、ECU60は、LNT33に吸蔵されたNOxをパージするためにリッチ燃焼を実施する。そして、吸気圧力が低い場合にリッチ燃焼を実施する時でもトルクを維持できるよう、以下の燃焼噴射時期制御を実行する。
(2)低吸気圧力状況下におけるリッチ燃焼時の制御
(2.1)EGR率制御
高地など吸気圧力が低い場合には、図6に示すように上流圧Paが低下してしまい、圧力差ΔPが小さくなり、その結果吸気量が低下してしまう。ECU60は、吸気圧センサ14の出力値から吸気圧力の低下を検出すると、EGR率を低下させ、EGRガス量を減らすことで、スロットルバルブの下流圧を下げ、圧力差ΔPを通常の場合と同等に維持する制御を実行する。
(2.2)燃料噴射時期制御
エンジン10のECU60が実行する燃料噴射時期制御ルーチンのフローチャートを図2に示す。この燃料噴射時期制御ルーチンは、所定周期毎に実行されるが、吸気圧が低い場合においてリッチ燃焼を行う場合にのみ、算出される燃料噴射時期が適用される。リーン燃焼時には、吸気圧力に拘らず、通常時と同様の燃料噴射の制御がなされる。なお、図2において、Sはステップを示す。
Further, the ECU 60 performs rich combustion in order to purge NOx stored in the LNT 33. Then, the following combustion injection timing control is executed so that the torque can be maintained even when rich combustion is performed when the intake pressure is low.
(2) Control during rich combustion under low intake pressure conditions (2.1) EGR rate control When the intake pressure is low, such as at high altitudes, the upstream pressure Pa decreases as shown in FIG. As a result, the intake air amount decreases. When the ECU 60 detects a decrease in the intake pressure from the output value of the intake pressure sensor 14, the EGR rate is decreased and the EGR gas amount is decreased, thereby reducing the downstream pressure of the throttle valve, and the pressure difference ΔP is equal to the normal case. The control to maintain is executed.
(2.2) Fuel Injection Timing Control A flowchart of a fuel injection timing control routine executed by the ECU 60 of the engine 10 is shown in FIG. The fuel injection timing control routine is executed at predetermined intervals, but the calculated fuel injection timing is applied only when rich combustion is performed when the intake pressure is low. During lean combustion, fuel injection is controlled in the same manner as in normal times regardless of the intake pressure. In FIG. 2, S indicates a step.

ECU60は、まず、吸気圧力を検出する(S1)。ここでは、吸気圧センサ14の出力信号から吸気管11内の吸気圧力を取得する。
なお、別ルーチンとして、アクセル開度およびエンジン回転数に基づいて、リッチ燃焼に必要な燃料噴射量を設定する。また、その算出された燃料噴射量および検出された吸気圧力を参照してEGRガス量を設定する。
The ECU 60 first detects the intake pressure (S1). Here, the intake pressure in the intake pipe 11 is acquired from the output signal of the intake pressure sensor 14.
As another routine, the fuel injection amount required for rich combustion is set based on the accelerator opening and the engine speed. Further, the EGR gas amount is set with reference to the calculated fuel injection amount and the detected intake pressure.

続いて、目標着火時期を決定する(S2)。
ROMには、図3に示すように、吸気圧力と目標着火時期とが対応付けられた制御マップが格納されている。本実施形態の制御マップは、吸気圧力が低下するほど目標着火時期が遅くなり、噴射された燃料が、吸気圧力が低下する前と同様の燃焼波形にて燃焼するように設定されている。なおこの制御マップは燃料噴射量に合わせて適宜変更可能なように複数記憶されており、別ルーチンの処理において決定された燃料噴射量に合わせて適切なマップが選択される。
Subsequently, the target ignition timing is determined (S2).
As shown in FIG. 3, the ROM stores a control map in which intake pressure and target ignition timing are associated with each other. The control map of the present embodiment is set so that the target ignition timing is delayed as the intake pressure decreases, and the injected fuel burns with the same combustion waveform as before the intake pressure decreases. A plurality of control maps are stored so that they can be appropriately changed according to the fuel injection amount, and an appropriate map is selected according to the fuel injection amount determined in the processing of another routine.

なお、制御マップで決定される目標着火時期には、対応する燃料噴射時期が予め設定されており、その燃料噴射時期に燃料を噴射するようにECU60はインジェクタ15等を操作する。   Note that the corresponding fuel injection timing is preset for the target ignition timing determined by the control map, and the ECU 60 operates the injector 15 and the like so as to inject fuel at the fuel injection timing.

次に、着火時期の検出を行う(S3)。ここでは、直前に行われた燃焼の着火時期を、筒内圧センサ51が出力した検出信号に基づいて検出する。
次に、S3または後述するS5にて検出した着火時期と目標着火時期を比較し、目標着火時期に合うように燃料噴射時期を変更する(S4)。具体的には、S3にて検出した着火時期と、図3の制御マップから定まる目標着火時期とを比較し、S3にて検出した着火時期が早ければ、噴射パルスの出力タイミングを遅角し、また、着火時期が遅ければ噴射パルスの出力タイミングを進角する。
Next, the ignition timing is detected (S3). Here, the ignition timing of the combustion performed immediately before is detected based on the detection signal output from the in-cylinder pressure sensor 51.
Next, the ignition timing detected in S3 or S5 described later is compared with the target ignition timing, and the fuel injection timing is changed to match the target ignition timing (S4). Specifically, the ignition timing detected in S3 is compared with the target ignition timing determined from the control map of FIG. 3, and if the ignition timing detected in S3 is earlier, the output timing of the injection pulse is retarded, If the ignition timing is late, the output timing of the injection pulse is advanced.

そして、S3にて検出した着火時期が目標着火時期であるか否かを判定する(S5)。着火時期が目標着火時期と同等とみなせる所定の範囲内でなければ(S5:NO)、処理がS3に戻り、再度着火時期を検出する。   Then, it is determined whether or not the ignition timing detected in S3 is the target ignition timing (S5). If the ignition timing is not within a predetermined range that can be regarded as equivalent to the target ignition timing (S5: NO), the process returns to S3, and the ignition timing is detected again.

一方、検出した着火時期が目標着火時期から所定の範囲内であれば(S5:YES)、本処理が終了する。
(3)作用および効果
噴射パルスおよび熱発生率と、クランク角度との関連を示すグラフを図4に示す。吸気圧力が通常値である場合は、クランク角度がTDC(上死点)になるタイミングに合わせて、図中Aのタイミングでインジェクタ15の駆動回路にパルス信号を出力して燃料噴射を行わせる(噴射パルス1)。その結果、吸気圧力が通常値である通常時には図中の熱発生率1のような燃焼波形が形成される。
On the other hand, if the detected ignition timing is within a predetermined range from the target ignition timing (S5: YES), this process ends.
(3) Action and Effect FIG. 4 is a graph showing the relationship between the injection pulse, the heat generation rate, and the crank angle. When the intake pressure is a normal value, a pulse signal is output to the drive circuit of the injector 15 at the timing A in the figure in accordance with the timing when the crank angle becomes TDC (top dead center) to cause fuel injection ( Injection pulse 1). As a result, a combustion waveform having a heat generation rate of 1 in the figure is formed at the normal time when the intake pressure is a normal value.

ところで、高地走行中など吸気圧力が低い条件でリッチ燃焼を実施する場合、トルクを維持するためには、通常時の空気量と同じ量の空気をエンジンに供給する必要があり、そのためには、スロットルバルブ20前後の差圧を通常時と同様の値に維持する必要がある。   By the way, when performing rich combustion under conditions of low intake pressure such as during high altitude traveling, it is necessary to supply the same amount of air to the engine as the normal amount of air in order to maintain the torque. It is necessary to maintain the differential pressure before and after the throttle valve 20 at the same value as in normal times.

本発明のエンジン制御システム1では、スロットルバルブ20の上流の圧力(吸気圧力)が低下すると、その下流側におけるEGRガスの還流量を減らす制御を行うことで、上述した差圧を維持する。なお、VNT(可変ノズルターボ)を備えるエンジンの場合、吸気圧力を通常の値まで上昇させることも可能であるが、エンジン回転数が低い場合のようにターボの機能が充分に発揮できない場合には、上述したようにEGRガス量を減らす必要がある。   In the engine control system 1 of the present invention, when the pressure upstream of the throttle valve 20 (intake pressure) decreases, the above-described differential pressure is maintained by performing control to reduce the recirculation amount of EGR gas on the downstream side. In the case of an engine equipped with a VNT (variable nozzle turbo), it is possible to increase the intake pressure to a normal value. However, if the turbo function cannot be fully exhibited, such as when the engine speed is low. As described above, it is necessary to reduce the amount of EGR gas.

EGRガス量を減らすと燃焼室23に吸入される空気のO2濃度が増加するため、そのままでは燃焼が活発になり、急激に熱発生率が上昇する。しかしながら、本発明のエンジン制御システム1では、噴射パルスの出力タイミングを図4におけるBのように遅らせるため、噴射された燃料は、クランク角度がTDCから遅角して、燃焼室23内の温度、圧力が低下した状態で燃焼を行うこととなり、燃焼の活性が低下する。 If the amount of EGR gas is reduced, the O 2 concentration of the air sucked into the combustion chamber 23 increases, so that combustion becomes active as it is, and the heat generation rate rises rapidly. However, in the engine control system 1 of the present invention, since the output timing of the injection pulse is delayed as indicated by B in FIG. 4, the injected fuel has a crank angle delayed from TDC, and the temperature in the combustion chamber 23, Combustion is performed in a state where the pressure is reduced, and the activity of combustion is reduced.

その結果、EGR率の低下によって吸気中のO2濃度が増加した状態であっても、それによる燃焼の活性化を、燃焼タイミングを遅角する側にずらすことによる活性の低下にて打ち消すこととなり、図4における熱発生率2のように、通常時の熱発生率1よりも遅れたタイミングで、熱発生率1と同様(正確には遅角側に移動するため、騒音を合わせるには通常時よりも若干活発な燃焼とする必要がある)の燃焼波形が形成されることとなる。 As a result, even if the O 2 concentration in the intake air is increased due to the decrease in the EGR rate, the activation of combustion caused by this will be canceled out by the decrease in activity caused by shifting the combustion timing to the retarded side. As in the case of heat generation rate 2 in FIG. 4, the timing is delayed from the normal heat generation rate 1 as in the case of heat generation rate 1 (to be precise, the noise is adjusted in order to move to the retarded side. (It is necessary to make the combustion slightly more active than the time).

クランク角度に対する筒内圧力の変化を示すグラフを図5に示す。通常時、つまり図4における熱発生率1に対応する筒内圧力は、図5における筒内圧1のような波形となる。本発明のエンジン制御システム1では、熱発生率の上昇するタイミングが通常時よりも遅いため、筒内圧力は筒内圧2のような波形となる。このときのクランク角度の変化量に対する筒内圧力の変化量を示す圧力勾配(dP/dθ)は、筒内圧1と筒内圧2とで同等の値となるため、燃焼騒音が増加することを抑制できる。   FIG. 5 is a graph showing changes in the cylinder pressure with respect to the crank angle. The in-cylinder pressure corresponding to the heat generation rate 1 in FIG. 4 in a normal state has a waveform like the in-cylinder pressure 1 in FIG. In the engine control system 1 of the present invention, the in-cylinder pressure has a waveform like the in-cylinder pressure 2 because the timing at which the heat generation rate increases is slower than normal. At this time, the pressure gradient (dP / dθ) indicating the change amount of the in-cylinder pressure with respect to the change amount of the crank angle is the same value for the in-cylinder pressure 1 and the in-cylinder pressure 2, thereby suppressing an increase in combustion noise. it can.

したがって、高地のように吸気圧力が低い場合においても、燃料噴射圧や燃料噴射量を減らす制御を行うことなく、良好なドライバビリティを維持して騒音の増加を防ぐことができる。   Therefore, even when the intake pressure is low, such as at high altitudes, it is possible to maintain good drivability and prevent an increase in noise without performing control to reduce the fuel injection pressure and the fuel injection amount.

また、上記構成のエンジン制御システム1であれば、十分な吸気を必要とし、酸素濃度の増加によるNOxや騒音が発生しやすいリッチ燃焼時にのみ上述した燃料噴射時期制御を行うため、効果的にNOxや騒音の防止ができる。   Further, with the engine control system 1 having the above-described configuration, the fuel injection timing control described above is performed only at the time of rich combustion that requires sufficient intake and is likely to generate NOx and noise due to an increase in oxygen concentration. And noise can be prevented.

一方、本発明のエンジン制御システム1のように燃料噴射時期制御を行わない従来の構成において、高地走行を行い吸気圧力が低くなった場合、EGR率を下げて還流EGRガス量を減らすと、吸入空気のO2濃度が増加するため、燃焼が活発になり、急激に熱発生率が上昇し、結果、図4における熱発生率3のような燃焼波形が形成される。 On the other hand, in the conventional configuration in which the fuel injection timing control is not performed as in the engine control system 1 of the present invention, when the intake pressure is lowered due to high altitude traveling, if the EGR rate is decreased to reduce the amount of reflux EGR gas, Since the O 2 concentration in the air increases, combustion becomes active and the heat generation rate rises abruptly. As a result, a combustion waveform like the heat generation rate 3 in FIG. 4 is formed.

このときの筒内圧力は、図5の筒内圧3に示すように、急激に高くなる熱発生率の影響を受けて急激に上昇するため、通常時と比較して圧力勾配が非常に大きくなる。よって、このように圧力勾配が増大することでNOxや燃焼騒音が増加してしまう。
(4)変形例
以上、本発明の実施形態について説明したが、本発明は、上記実施形態に何ら限定されることはなく、本発明の技術的範囲に属する限り種々の形態をとり得ることはいうまでもない。
The in-cylinder pressure at this time rapidly increases due to the influence of the heat generation rate that suddenly increases, as shown by the in-cylinder pressure 3 in FIG. . Therefore, NOx and combustion noise increase by increasing the pressure gradient in this way.
(4) Modifications The embodiment of the present invention has been described above. However, the present invention is not limited to the above embodiment, and can take various forms as long as it belongs to the technical scope of the present invention. Needless to say.

例えば、上記実施形態においては、燃焼時期を表す指標として着火時期を用いる構成を例示したが、それ以外の指標を用いてもよい。例えば、1燃焼サイクルにおいて気筒内の燃焼質量割合が全体の50%になる燃焼質量割合50時期(MFB50:Mass Fraction Burned 50)を燃焼室23の筒内圧に基づいて検出し、その時期を燃焼時期として用いてもよい。MFB50は、筒内圧に基づいて1燃焼サイクルの燃焼質量を積算していき、燃焼質量の合計の50%になる燃焼時期として検出する。   For example, in the above-described embodiment, the configuration in which the ignition timing is used as an index indicating the combustion timing is exemplified, but other indexes may be used. For example, a combustion mass ratio 50 period (MFB50: Mass Fraction Burned 50) at which the combustion mass ratio in the cylinder becomes 50% of the whole in one combustion cycle is detected based on the in-cylinder pressure of the combustion chamber 23, and that timing is detected. It may be used as The MFB 50 integrates the combustion mass of one combustion cycle based on the in-cylinder pressure, and detects it as a combustion timing that is 50% of the total combustion mass.

また、上記実施形態においては燃料噴射時期制御に用いる図3に示す制御マップを用いて燃料噴射時期を決定する構成を例示したが、制御マップおよび所定の関係式を用いて、検出した吸気圧力に対する燃料噴射時期の遅角量を算出し、その遅角量を、吸気圧力を勘案しない制御マップから導かれる燃料噴射時期に加算して燃料噴射を実行することとしてもよい。   In the above embodiment, the fuel injection timing is determined using the control map shown in FIG. 3 used for the fuel injection timing control. However, the control map and a predetermined relational expression are used to determine the detected intake pressure. The retard amount of the fuel injection timing may be calculated, and the retard amount may be added to the fuel injection timing derived from the control map that does not take the intake pressure into consideration, and the fuel injection may be executed.

1…エンジン制御システム、10…エンジン、11…吸気管、12…スロットルバルブ、13…スロットル開度センサ、14…吸気圧センサ、15…インジェクタ、16…コモンレール、17…高圧ポンプ、18…コモンレール圧センサ、21…吸気バルブ、22…排気バルブ、23…燃焼室、31…排気管、32…DPF、33…LNT、34…EGR配管、35…EGRクーラ、36…EGR弁、51…筒内圧センサ、52…空燃比センサ、53…クランク角度センサ、54…アクセル開度センサ DESCRIPTION OF SYMBOLS 1 ... Engine control system, 10 ... Engine, 11 ... Intake pipe, 12 ... Throttle valve, 13 ... Throttle opening sensor, 14 ... Intake pressure sensor, 15 ... Injector, 16 ... Common rail, 17 ... High pressure pump, 18 ... Common rail pressure Sensor, 21 ... Intake valve, 22 ... Exhaust valve, 23 ... Combustion chamber, 31 ... Exhaust pipe, 32 ... DPF, 33 ... LNT, 34 ... EGR pipe, 35 ... EGR cooler, 36 ... EGR valve, 51 ... In-cylinder pressure sensor 52 ... Air-fuel ratio sensor, 53 ... Crank angle sensor, 54 ... Accelerator opening sensor

Claims (4)

排気通路から取り出された排ガスの一部をEGRガスとして吸気通路に還流させるEGR還流手段と、燃焼室内に燃料を噴射供給する燃料噴射手段と、を備える圧縮着火式内燃機関の制御装置であって、
前記吸気通路において吸気圧力を検出する吸気圧力検出手段と、
前記吸気圧力検出手段により検出された吸気圧力に応じて、EGR還流手段によるEGR率を変化させるEGR制御手段と、
前記吸気圧力検出手段により検出された吸気圧力の低下度合に応じて、燃料噴射時期を遅角する側にずらす燃料噴射時期設定手段と、を備える
ことを特徴とする圧縮着火式内燃機関の制御装置。
A control device for a compression ignition internal combustion engine, comprising: EGR recirculation means for recirculating a part of exhaust gas taken out from an exhaust passage as EGR gas to an intake passage; and fuel injection means for injecting and supplying fuel into a combustion chamber. ,
Intake pressure detecting means for detecting intake pressure in the intake passage;
EGR control means for changing the EGR rate by the EGR recirculation means according to the intake pressure detected by the intake pressure detection means;
A control device for a compression ignition type internal combustion engine, comprising: fuel injection timing setting means for shifting the fuel injection timing to a retarded side in accordance with the degree of decrease in the intake pressure detected by the intake pressure detection means .
前記燃料噴射時期設定手段は、吸気圧力が第1圧力である場合の圧力勾配と、吸気圧力が前記第1圧力よりも低い第2圧力である場合の圧力勾配と、が、燃料噴射時期をずらさない場合と比較して近くなるように燃料噴射時期をずらす
ことを特徴とする請求項1に記載の圧縮着火式内燃機関の制御装置。
The fuel injection timing setting means shifts the fuel injection timing between a pressure gradient when the intake pressure is the first pressure and a pressure gradient when the intake pressure is the second pressure lower than the first pressure. 2. The control device for a compression ignition type internal combustion engine according to claim 1, wherein the fuel injection timing is shifted so as to be close to that in the case where there is not.
前記燃料噴射時期設定手段は、吸気圧力と燃料噴射時期との関係を示す制御マップまたは関係式を有しており、前記吸気圧力検出手段により検出された吸気圧力と、前記制御マップまたは前記関係式と、に基づいて燃料噴射時期を設定する
ことを特徴とする請求項1または請求項2に記載の圧縮着火式内燃機関の制御装置。
The fuel injection timing setting means has a control map or a relational expression showing the relationship between the intake pressure and the fuel injection timing, and the intake pressure detected by the intake pressure detecting means and the control map or the relational expression. The fuel injection timing is set based on the following. The control apparatus for a compression ignition type internal combustion engine according to claim 1 or 2.
前記燃料噴射時期設定手段は、前記吸気圧力の低下度合に応じた燃料噴射時期の設定を、リッチ燃焼時に実行する
ことを特徴とする請求項1から請求項3のいずれかに記載の圧縮着火式内燃機関の制御装置。
The compression ignition type according to any one of claims 1 to 3, wherein the fuel injection timing setting means sets the fuel injection timing according to the degree of decrease in the intake pressure during rich combustion. Control device for internal combustion engine.
JP2009051051A 2009-03-04 2009-03-04 Control device for compression ignition type internal combustion engine Active JP4985680B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2009051051A JP4985680B2 (en) 2009-03-04 2009-03-04 Control device for compression ignition type internal combustion engine
DE102010000624A DE102010000624A1 (en) 2009-03-04 2010-03-03 Control device for a compression ignition type internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009051051A JP4985680B2 (en) 2009-03-04 2009-03-04 Control device for compression ignition type internal combustion engine

Publications (2)

Publication Number Publication Date
JP2010203366A true JP2010203366A (en) 2010-09-16
JP4985680B2 JP4985680B2 (en) 2012-07-25

Family

ID=42664200

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009051051A Active JP4985680B2 (en) 2009-03-04 2009-03-04 Control device for compression ignition type internal combustion engine

Country Status (2)

Country Link
JP (1) JP4985680B2 (en)
DE (1) DE102010000624A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017227154A (en) * 2016-06-21 2017-12-28 本田技研工業株式会社 Control device for internal combustion engine
JP2017227155A (en) * 2016-06-21 2017-12-28 本田技研工業株式会社 Control device for internal combustion engine
CN110030102A (en) * 2018-01-12 2019-07-19 日本碍子株式会社 The method for controlling combustion and mobile engine system of mobile engine
CN110030104A (en) * 2018-01-12 2019-07-19 日本碍子株式会社 The method for controlling combustion and mobile engine system of mobile engine

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001003796A (en) * 1999-06-17 2001-01-09 Nissan Motor Co Ltd Control device for diesel engine
JP2001342877A (en) * 2000-05-30 2001-12-14 Mazda Motor Corp Control device of diesel engine
JP2003065169A (en) * 2001-08-24 2003-03-05 Toyota Motor Corp Combustion control for diesel engine

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5433074A (en) 1992-07-30 1995-07-18 Toyota Jidosha Kabushiki Kaisha Exhaust gas purification device for an engine
DE69929375T2 (en) 1998-06-05 2006-08-24 Toyota Jidosha K.K., Toyota internal combustion engine

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001003796A (en) * 1999-06-17 2001-01-09 Nissan Motor Co Ltd Control device for diesel engine
JP2001342877A (en) * 2000-05-30 2001-12-14 Mazda Motor Corp Control device of diesel engine
JP2003065169A (en) * 2001-08-24 2003-03-05 Toyota Motor Corp Combustion control for diesel engine

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017227154A (en) * 2016-06-21 2017-12-28 本田技研工業株式会社 Control device for internal combustion engine
JP2017227155A (en) * 2016-06-21 2017-12-28 本田技研工業株式会社 Control device for internal combustion engine
US10221805B2 (en) 2016-06-21 2019-03-05 Honda Motor Co., Ltd. Controller for internal combustion engine and control method for internal combustion engine
CN110030102A (en) * 2018-01-12 2019-07-19 日本碍子株式会社 The method for controlling combustion and mobile engine system of mobile engine
CN110030104A (en) * 2018-01-12 2019-07-19 日本碍子株式会社 The method for controlling combustion and mobile engine system of mobile engine
JP2019124140A (en) * 2018-01-12 2019-07-25 日本碍子株式会社 Combustion control method in engine for vehicle and engine system for vehicle
JP2019124141A (en) * 2018-01-12 2019-07-25 日本碍子株式会社 Combustion control method in engine for vehicle and engine system for vehicle
CN110030104B (en) * 2018-01-12 2023-01-10 日本碍子株式会社 Combustion control method for vehicle engine and vehicle engine system
CN110030102B (en) * 2018-01-12 2023-01-10 日本碍子株式会社 Combustion control method for vehicle engine and vehicle engine system

Also Published As

Publication number Publication date
DE102010000624A1 (en) 2010-09-30
JP4985680B2 (en) 2012-07-25

Similar Documents

Publication Publication Date Title
JP6217398B2 (en) Fuel injection control device for diesel engine
KR101787228B1 (en) Control device for internal combustion engine
JP6052190B2 (en) Fuel injection control device for diesel engine
US20130024097A1 (en) Combustion control apparatus for internal combustion engine
JP4802879B2 (en) Control device for internal combustion engine
JP6331231B2 (en) Engine exhaust purification system
JP2013224613A (en) NOx GENERATION AMOUNT ESTIMATION DEVICE FOR INTERNAL COMBUSTION ENGINE AND NOx SENSOR FAILURE DIAGNOSING DEVICE
JP4985680B2 (en) Control device for compression ignition type internal combustion engine
JP5182527B2 (en) Fuel injection control device for internal combustion engine
JP2012092748A (en) Apparatus for estimating generation amount of nox in internal combustion engine, and control apparatus
JP2007303302A (en) Combustion control system for compression ignition type internal combustion engine
JP3835238B2 (en) Diesel engine control device
JP2017115632A (en) Fuel injection control device for internal combustion engine
JP2008121494A (en) Controller of internal combustion engine
JP2010144527A (en) Fuel injection control device and fuel injection control method for internal combustion engine
JP2009030566A (en) Failure diagnostic device of fuel injection device
JP4337205B2 (en) Fuel control system for diesel engine with turbocharger
JP2017227169A (en) Control device of engine
JP2008014207A (en) Fuel injection device for engine
JP4063743B2 (en) Fuel injection timing control device for internal combustion engine
JP2010190119A (en) Combustion control device for diesel engine
JP6300190B2 (en) Engine exhaust purification system
JP6459004B2 (en) Engine exhaust purification system
JP2008088972A (en) Control device for internal combustion engine
JP6300189B2 (en) Engine exhaust purification system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100618

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110829

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110906

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111107

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120403

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120416

R151 Written notification of patent or utility model registration

Ref document number: 4985680

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150511

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250