JP2010202713A - Method for manufacturing highly reactive molded ferrocoke - Google Patents

Method for manufacturing highly reactive molded ferrocoke Download PDF

Info

Publication number
JP2010202713A
JP2010202713A JP2009047182A JP2009047182A JP2010202713A JP 2010202713 A JP2010202713 A JP 2010202713A JP 2009047182 A JP2009047182 A JP 2009047182A JP 2009047182 A JP2009047182 A JP 2009047182A JP 2010202713 A JP2010202713 A JP 2010202713A
Authority
JP
Japan
Prior art keywords
coke
temperature
highly reactive
gasification reaction
reaction start
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2009047182A
Other languages
Japanese (ja)
Inventor
Seiji Nomura
誠治 野村
Kenichi Higuchi
謙一 樋口
Kazuya Kunitomo
和也 国友
Masaaki Naito
誠章 内藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2009047182A priority Critical patent/JP2010202713A/en
Publication of JP2010202713A publication Critical patent/JP2010202713A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Coke Industry (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for manufacturing highly reactive coke to be introduced to lower the heat preservation zone temperature in a blast furnace up to a target temperature. <P>SOLUTION: The method for manufacturing highly reactive coke to be introduced to lower the heat preservation zone temperature in a blast furnace up to a target temperature comprises (a) measuring a gasification reaction initiation temperature of the coke whose reactivity is modified by changing the Fe content of the coke and the heat preservation zone temperature under a predetermined heat-up condition to obtain the relationship (a1) between the Fe content of the coke and the gasification reaction initiation temperature and the correlation (a2) between the gasification reaction initiation temperature of the coke and the heat preservation zone temperature, (b) obtaining the gasification reaction initiation temperature that the coke to be introduced into the blast furnace should possess on the basis of the target temperature and the correlation (a2), (c) obtaining the Fe content of the coke to be introduced into the blast furnace on the basis of the gasification reaction initiation temperature and the relationship (a1), and (d) compounding Fe with raw material coal on the basis of the Fe content to manufacture coke. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、反応性に優れた成形フェロコークスの製造方法に関するものである。   The present invention relates to a method for producing molded ferrocoke having excellent reactivity.

高炉製銑法においては、高炉内の反応効率を高めて、還元材比を低減することが、省エネルギーを推進するうえで重要なことであり、そのための方法として、(i)コークスのCO2ガス化反応性を高めるか、又は、(ii)反応開始温度を下げる、かして、熱保存帯温度を下げ、ガス還元を有利に進めることが知られている(特許文献1〜4、参照)。 In the blast furnace ironmaking method, increasing the reaction efficiency in the blast furnace and reducing the reducing material ratio are important in promoting energy saving. As a method for that purpose, (i) CO 2 gas of coke It is known to increase the gasification reactivity, or (ii) lower the reaction start temperature, thereby lowering the temperature of the heat preservation zone and proceeding gas reduction advantageously (see Patent Documents 1 to 4). .

雰囲気条件(CO濃度、CO2濃度)がある程度制限されている炉内で、コークスのCO2ガス化反応性を高める方法としては、コークスを細粒化する方法の他、原料炭に触媒物質(アルカリ金属、アルカリ土類金属化合物、遷移金属、遷移金属化合物等)を混合して乾留する方法が知られている(特許文献5〜9、参照)。しかし、従来方法においては、充分なコークス強度を得ることが困難である。 In a furnace in which atmospheric conditions (CO concentration, CO 2 concentration) are limited to some extent, as a method for increasing the CO 2 gasification reactivity of coke, in addition to a method of making coke fine, a catalyst material ( There is known a method in which an alkali metal, an alkaline earth metal compound, a transition metal, a transition metal compound, etc.) are mixed and subjected to dry distillation (see Patent Documents 5 to 9). However, in the conventional method, it is difficult to obtain a sufficient coke strength.

そして、雰囲気条件(CO濃度、CO2濃度)がある程度制限されている炉内で、保存帯温度を下げて、ガス還元を有利に進めるためには、どの程度の反応性を有する高反応性コークスを、どの程度の配合量で使用すればよいかは、これまで定量的に解析されていない。 And in a furnace where the atmospheric conditions (CO concentration, CO 2 concentration) are limited to some extent, in order to lower the storage zone temperature and proceed with gas reduction advantageously, the reactivity of the highly reactive coke Until now, it has not been quantitatively analyzed how much blending amount should be used.

即ち、還元材比の低下度は、熱保存帯温度の低下度にほぼ比例するので、還元材比を目標分低下させるには、熱保存帯温度を、該目標分に見合う分低下させる必要があるところ、どの程度の反応性を有する高反応性コークスを、その程度の配合量で使用すれば、熱保存帯温度が、どの程度低下するかについては、これまで、定量的に解析されていない。   That is, since the degree of reduction of the reducing material ratio is substantially proportional to the degree of reduction of the heat storage zone temperature, in order to reduce the reducing material ratio by the target, it is necessary to reduce the temperature of the heat preservation zone by an amount corresponding to the target. Somehow, it has not been quantitatively analyzed so far how much the high-reactivity coke having a high degree of reactivity will reduce the temperature of the thermal preservation zone. .

熱保存帯温度の低下の程度については、例えば、BIS炉(断熱型高炉反応シミュレーター、非特許文献1、参照)によって評価する方法があるが、BIS炉による試験は、実験準備、実験、及び、実験解析に時間(3日ほど)を要するので、解析結果は、迅速に、操業制御に反映され難い。このため、(i)高反応性コークスの反応性を変更したときの熱保存帯温度の変動を、定量的に評価する評価方法、及び、(ii)高炉内の熱保存帯温度を目標温度まで下げるために装入する高反応性コークを製造する方法の開発が求められている。   Regarding the degree of decrease in the temperature of the heat preservation zone, for example, there is a method of evaluating with a BIS furnace (adiabatic blast furnace reaction simulator, see Non-Patent Document 1), but the test with the BIS furnace is an experiment preparation, an experiment, and Since time (about 3 days) is required for the experimental analysis, the analysis result is not easily reflected in the operation control promptly. Therefore, (i) an evaluation method for quantitatively evaluating fluctuations in the temperature of the heat preservation zone when the reactivity of the highly reactive coke is changed, and (ii) the temperature of the heat preservation zone in the blast furnace is reduced to the target temperature. There is a need for the development of a process for producing highly reactive coke that is charged to lower.

特開平06−145728号公報Japanese Patent Laid-Open No. 06-145728 特開平06−145729号公報Japanese Patent Laid-Open No. 06-145729 特開平06−145730号公報Japanese Patent Laid-Open No. 06-145730 特開平06−145734号公報Japanese Patent Laid-Open No. 06-145734 特開昭63−137989号公報Japanese Unexamined Patent Publication No. 63-137989 特開2001−348576号公報JP 2001-348576 A 特開2004−300170号公報JP 2004-300170 A 特開2008−56791号公報JP 2008-56791 A 特開2007−126505号公報JP 2007-126505 A

内藤ら、鉄と鋼、87(2001)、357頁Naito et al., Iron and Steel, 87 (2001), page 357

本発明者らは、上記要望(i)を踏まえ、鋭意検討した結果、「小型反応ガス化試験装置で測定する反応開始温度と、BIS炉で測定する熱保存帯温度の間に、明瞭な相関関係が存在する」との知見を得て、Fe、Ca等の反応性向上触媒を含有する高反応性コークスを、通常コークスへ配合して使用する場合において、高反応性コークスの反応性を変更(即ち、反応性向上触媒の添加量を変更)したときの、熱保存帯温度の変動を、簡便な手法で評価する評価方法を、特願2009−046060号で提案した。   As a result of intensive studies based on the above request (i), the present inventors have found that “a clear correlation between the reaction start temperature measured by the small reaction gasification test apparatus and the thermal preservation zone temperature measured by the BIS furnace”. With the knowledge that there is a relationship ”, the reactivity of highly reactive coke is changed when using highly reactive coke containing a catalyst for improving reactivity such as Fe and Ca in normal coke. Japanese Patent Application No. 2009-046060 proposed an evaluation method for evaluating fluctuations in the temperature of the heat preservation zone when the reactivity improving catalyst was added (ie, by changing the addition amount of the reactivity improving catalyst).

本発明は、さらに、上記要望(ii)を踏まえ、上記知見を展開し、高炉内の熱保存帯温度を目標温度まで下げるために装入する高反応性コークを製造する方法を提供することを課題とする。   The present invention further provides a method for producing a highly reactive coke to be charged in order to lower the heat preservation zone temperature in the blast furnace to the target temperature based on the above request (ii). Let it be an issue.

本発明者らは、上記課題を解決する方法について鋭意検討した。その結果、上記知見に基づいて触媒配合量を設定して製造した高反応性コークスを装入すれば、高炉内で、目標とする熱保存帯温度を達成できることを見いだした。   The present inventors diligently studied a method for solving the above-described problems. As a result, it was found that the target heat storage zone temperature can be achieved in the blast furnace by charging the highly reactive coke produced by setting the catalyst blending amount based on the above knowledge.

本発明は、上記知見に基づいてなされたもので、その要旨は以下のとおりである。   This invention was made | formed based on the said knowledge, and the summary is as follows.

(1)高炉内の熱保存帯温度を目標温度まで下げるために装入する高反応性コークを製造する方法であって、(a)Fe含有率を変えて反応性を変更したコークスのガス化反応開始温度と熱保存帯温度を、一定の昇温条件で測定し、(a1)コークスのFe含有率とガス化反応開始温度の関係、及び、(a2)コークスのガス化反応開始温度と熱保存帯温度の相関関係を求め、(b)上記目標温度と上記(a2)の相関関係に基づいて、高炉内に装入するコークスが備えるべきガス化反応開始温度を求め、(c)上記ガス化反応開始温度と、上記(a1)の関係に基づいて、高炉内に装入するコークスのFe含有率を求め、(d)上記Fe含有率に基づいて、Feを、原料炭に配合してコークスを製造することを特徴とする高反応性コークの製造方法。   (1) A method for producing highly reactive coke charged to lower the temperature of the heat preservation zone in the blast furnace to the target temperature, and (a) gasification of coke whose reactivity is changed by changing the Fe content The reaction start temperature and the thermal storage zone temperature were measured under a constant temperature rise condition, (a1) the relationship between the Fe content of coke and the gasification reaction start temperature, and (a2) the gasification reaction start temperature and heat of the coke. Obtain the correlation between the storage zone temperatures, (b) obtain the gasification reaction start temperature that the coke charged into the blast furnace should have based on the correlation between the target temperature and (a2), and (c) the gas The Fe content of coke charged into the blast furnace is obtained based on the relationship between the chemical reaction start temperature and the above (a1), and (d) Fe is blended into the raw coal based on the Fe content. A method for producing highly reactive coke, characterized in that coke is produced.

(2)前記高反応性コークスが成形コークスであることを特徴とする前記(1)に記載の高反応性コークの製造方法。   (2) The method for producing highly reactive coke according to (1), wherein the highly reactive coke is formed coke.

(3)前記コークスのガス化反応開始温度を、小型反応ガス化試験装置で求めることを特徴とする前記(1)又は(2)に記載の高反応性コークの製造方法。   (3) The method for producing highly reactive coke according to (1) or (2), wherein the gasification reaction start temperature of the coke is obtained with a small reaction gasification test apparatus.

(4)前記(a2)の相関関係が、小型反応ガス化試験装置で測定したコークスのガス化反応開始温度と、BIS炉で測定した熱保存帯温度に基づいて求めたものであることを特徴とする前記(1)〜(3)のいずれかに記載の高反応性コークの製造方法。   (4) The correlation of the above (a2) is obtained based on the coke gasification reaction start temperature measured with a small reaction gasification test apparatus and the heat preservation zone temperature measured with a BIS furnace. The method for producing highly reactive coke according to any one of (1) to (3).

(5)前記(a1)の相関関係において、コークスのガス化反応開始温度とBIS炉で測定した熱保存帯温度がほぼ等しいことを特徴とする前記(4)に記載の高反応性コークの製造方法。   (5) Production of highly reactive coke according to (4) above, wherein in the correlation of (a1), the gasification reaction start temperature of coke is substantially equal to the heat storage zone temperature measured in a BIS furnace Method.

本発明によれば、高炉内で、目標とする熱保存帯温度を達成し得る高反応性コークスを製造することができる。   ADVANTAGE OF THE INVENTION According to this invention, the highly reactive coke which can achieve the target heat preservation zone temperature can be manufactured within a blast furnace.

小型反応ガス化試験装置の一態様を示す図である。It is a figure which shows the one aspect | mode of a small reaction gasification test apparatus. BIS炉の態様を示す図である。It is a figure which shows the aspect of a BIS furnace. コークスのFe含有率(%)とガス化反応開始温度(℃)の関係を示す図である。It is a figure which shows the relationship between Fe content rate (%) of coke, and gasification reaction start temperature (degreeC). ガス化反応開始温度と熱保存帯温度の相関関係を示す図である。It is a figure which shows the correlation of gasification reaction start temperature and thermal preservation zone temperature. 実施例で確認したコークスのFe含有率とガス化反応開始温度の関係を示す図である。It is a figure which shows the relationship between the Fe content rate of the coke confirmed in the Example, and gasification reaction start temperature. 実施例で確認したコークスのガス化反応開始温度とBIS炉で測定した熱保存帯温度の相関関係を示す図である。It is a figure which shows the correlation of the gasification reaction start temperature of the coke confirmed in the Example, and the thermal preservation zone temperature measured with the BIS furnace.

本発明について詳細に説明する。   The present invention will be described in detail.

本発明は、高炉内の熱保存帯温度を目標温度まで下げるために装入する高反応性コークを製造することを基本思想とし、Fe含有率を変えて反応性を変更したコークスのガス化反応開始温度と熱保存帯温度を、一定の昇温条件で測定して求めた、(a1)コークスのFe含有率とガス化反応開始温度の関係、及び、(a2)コークスのガス化反応開始温度と熱保存帯温度の相関関係、を基本特徴とするものである。   The basic idea of the present invention is to produce a highly reactive coke to be charged in order to lower the temperature of the heat preservation zone in the blast furnace to the target temperature, and the coke gasification reaction in which the reactivity is changed by changing the Fe content. (A1) Relationship between coke coke Fe content and gasification reaction start temperature, and (a2) coke gasification reaction start temperature, obtained by measuring the start temperature and thermal storage zone temperature under a constant temperature rise condition And the correlation between the temperature of the heat preservation zone and the temperature.

まず、コークスのFe含有率とガス化反応開始温度の関係(以下「関係(a1)」ということがある。)について説明する。   First, the relationship between the Fe content of coke and the gasification reaction start temperature (hereinafter sometimes referred to as “relation (a1)”) will be described.

高反応性コークスは、通常(成形しない)コークス(室炉コークスに相当)及び成形コークスのいずれでもよい。高反応性コークスの反応性は、原料炭のFe含有率を変えて調整する。コークス中のFeは、触媒として作用し、コークスのガス化反応性を高め、高炉内の熱保存帯温度を下げる。乾留条件は、通常の乾留条件でよい。   The highly reactive coke may be either normal (non-molded) coke (corresponding to chamber furnace coke) or molded coke. The reactivity of the highly reactive coke is adjusted by changing the Fe content of the raw coal. Fe in the coke acts as a catalyst, increases the gasification reactivity of the coke, and lowers the heat storage zone temperature in the blast furnace. The dry distillation conditions may be normal dry distillation conditions.

図1に、高反応性コークスのガス化反応開始温度を測定する小型反応ガス化試験装置の一態様を示す。なお、この装置は、特開2007−309672号に開示のコークスの熱間反応後粉率測定装置と基本的に同じものである。   FIG. 1 shows an embodiment of a small reactive gasification test apparatus that measures the gasification reaction start temperature of highly reactive coke. Note that this apparatus is basically the same as the apparatus for measuring the post-hot-reaction powder rate of coke disclosed in JP-A-2007-309672.

図1に示す小型反応ガス化試験装置においては、反応外管1の内部に、上部にガス供給口7と周囲に加熱手段2を備える反応内管3が配置されている。反応内管3の底部には、アルミナ球4が充填されていて、その上に、コークス5が装入されている。   In the small reaction gasification test apparatus shown in FIG. 1, a reaction inner tube 3 having a gas supply port 7 in the upper portion and a heating means 2 in the periphery is disposed inside the reaction outer tube 1. The bottom of the reaction inner tube 3 is filled with alumina spheres 4 on which coke 5 is charged.

ガス排出口8と温度計9を備える管蓋6で、反応内管3を閉じた後、ガス供給口7から、反応ガス(CO+CO2)を、流量:15〜25Nl/min(好ましくは20Nl/min)で供給し、ガス排出口8から反応後のガスを排出する。反応ガスは、上部の供給口7から反応管底部に入りアルミナ球を通過する間に予熱される。 After closing the reaction inner tube 3 with a tube lid 6 having a gas discharge port 8 and a thermometer 9, a reaction gas (CO + CO 2 ) is supplied from the gas supply port 7 at a flow rate of 15 to 25 Nl / min (preferably 20 Nl / min). min), and the gas after reaction is discharged from the gas discharge port 8. The reaction gas is preheated while entering the bottom of the reaction tube from the upper supply port 7 and passing through the alumina sphere.

ここで、COとCO2の比率は、CO:CO2=50%:50%が好ましいが、高炉上部のシャフト部の組成に近いガス組成であればよく、CO:70%〜30%、CO2:30%〜70%であればよい。 Here, the ratio of CO to CO 2 is preferably CO: CO 2 = 50%: 50%, but it may be a gas composition close to the composition of the shaft portion at the top of the blast furnace, CO: 70% to 30%, CO 2 : It may be 30% to 70%.

小型反応ガス化試験装置には、重量測定器(図示なし)が備えつけられていて、ガス化反応の進行中、温度計9でコークスの温度を測定するとともに、コークスの重量を測定する。   The small reaction gasification test apparatus is equipped with a weight measuring device (not shown). While the gasification reaction is in progress, the thermometer 9 measures the coke temperature and the coke weight.

実験は、常温から、所定の昇温速度(例えば、10℃/min)で昇温し、コークスの重量減少を測定する。   In the experiment, the temperature is increased from room temperature at a predetermined temperature increase rate (for example, 10 ° C./min), and the weight loss of coke is measured.

コークスのガス化反応で、コークスが消耗し、コークスの重量が減少するので、単位時間当たりのコークスの重量減少率:(1/w0)×(dw/dt)(ここで、tは、時間[min]、wは、時間tにおけるコークスの重量[g]、w0は、コークスの初期重量[g])が0.002(min-1)を超えた温度を、コークスの反応開始温度として測定する。 The coke gasification reaction consumes coke and the weight of the coke decreases, so the weight reduction rate of coke per unit time: (1 / w 0 ) × (dw / dt) (where t is the time [Min], w is the coke weight [g] at time t, w 0 is the temperature at which the initial coke weight [g]) exceeds 0.002 (min −1 ), and the coke reaction start temperature. taking measurement.

また、この測定では、昇温速度は一定とするので、温度T(℃)におけるコークス重量をwとする時に、単位温度上昇当りのコークスの重量減少率:(1/w0)×(dw/dT)が0.0002(℃-1)を超えた温度を、コークスの反応開始温度として測定してもよい。 In this measurement, since the rate of temperature increase is constant, when the coke weight at the temperature T (° C.) is w, the weight reduction rate of the coke per unit temperature rise: (1 / w 0 ) × (dw / The temperature at which dT) exceeds 0.0002 (° C. −1 ) may be measured as the reaction start temperature of coke.

このように、コークスの反応開始温度を定義すると、昇温速度を変えて、該昇温速度一定の下で、コークスの反応開始温度を測定してもよく、常温からの昇温が、所定の昇温速度(5〜20℃/min)の範囲であれば、この方法により、コークスの反応開始温度を測定することが可能である。   Thus, when the reaction start temperature of coke is defined, the temperature increase rate may be changed and the reaction start temperature of coke may be measured at a constant temperature increase rate. If it is the range of a temperature increase rate (5-20 degreeC / min), it is possible to measure the reaction start temperature of coke by this method.

図3に、触媒としてFeを配合したコークスについて測定した、コークス中のFe含有率(%)とコークスのガス化反応開始温度の関係を示す。図3において、○は、成形コークスに係る測定値であり、□は、通常(成形しない)コークスに係る測定値である。   FIG. 3 shows the relationship between the Fe content (%) in coke and the gasification reaction start temperature of coke measured for coke containing Fe as a catalyst. In FIG. 3, ◯ is a measured value related to molded coke, and □ is a measured value related to normal (not molded) coke.

図3から、例えば、コークスのガス化反応開始温度(℃)(○、参照)は、コークス中のFe含有率の増加に伴い、直線的に低下することが解る。コークス中のFe含有率:10%のとき、コークスのガス化反応開始温度(℃)は1050℃であるが、コークス中のFe含有率:45%で、コークスのガス化反応開始温度(℃)は950℃まで低下している。   From FIG. 3, it can be seen that, for example, the gasification reaction start temperature (° C.) of coke (see ◯) decreases linearly as the Fe content in the coke increases. When the Fe content in the coke is 10%, the coke gasification reaction start temperature (° C.) is 1050 ° C., but the coke in the coke gasification reaction start temperature (° C.) is 45%. Decreases to 950 ° C.

このように、コークスのガス化反応開始温度は、Fe含有率の増加とともに、直線的に低下する。本発明においては、このように、コークスのFe含有率とガス化反応開始温度の関係(a1)を求めることが重要であり、この関係(a1)が、本発明の基本特徴の一つである。   Thus, the gasification reaction start temperature of coke decreases linearly as the Fe content increases. In the present invention, as described above, it is important to determine the relationship (a1) between the Fe content of coke and the gasification reaction start temperature, and this relationship (a1) is one of the basic features of the present invention. .

次に、熱保存帯温度と、小型反応ガス化試験装置で測定したコークスのガス化反応開始温度の相関関係(以下「相関関係(a2)」ということがある。)について説明する。この相関関係(a2)は、本発明者らが見いだした、本発明の根幹をなす知見であり、本発明の基本特徴の一つである。   Next, the correlation between the thermal storage zone temperature and the coke gasification reaction start temperature measured with a small reaction gasification test apparatus (hereinafter, also referred to as “correlation (a2)”) will be described. This correlation (a2) is the knowledge that the present inventors have found and forms the basis of the present invention, and is one of the basic features of the present invention.

熱保存帯温度は、図2に示すBIS炉で測定する。BIS炉は、反応管10内に、鉄鉱石(焼結鉱)11とコークス12を、交互に、層状に充填し、反応管10の外周に配置した電気炉13(加熱炉15と断熱炉16からなる)を、反応管10の長手方向の上部から下部に移動させつつ、反応ガスを、反応管10の上部のガス導入口14から導入し、複数の鉄鉱石(焼結)11層、及び、コークス12層を通過させて、反応管10の下部のガス排出口17から排出する向流移動層タイプの反応試験装置である。   The heat preservation zone temperature is measured with a BIS furnace shown in FIG. In the BIS furnace, an iron furnace (sintered ore) 11 and coke 12 are alternately packed in layers in a reaction tube 10 and placed on the outer periphery of the reaction tube 10 (a heating furnace 15 and a heat insulation furnace 16). The reaction gas is introduced from the gas inlet 14 at the top of the reaction tube 10, and a plurality of iron ore (sintered) 11 layers, and This is a counter-current moving bed type reaction test device that passes through the coke 12 layer and discharges it from the gas discharge port 17 at the bottom of the reaction tube 10.

反応管10は、内径:103mm、長さ:5.4mのステンレス管である。電気炉13は、反応ガスを高炉融着帯上部温度(1200℃)まで予熱して鉱石還元を終了させるための加熱炉15と、この温度以下の反応を断熱系で進行させるための断熱炉16で構成されている。なお、加熱炉15及び断熱炉16は、それぞれ、長さが、950mm及び1090mmである。   The reaction tube 10 is a stainless steel tube having an inner diameter of 103 mm and a length of 5.4 m. The electric furnace 13 includes a heating furnace 15 for preheating the reaction gas to the upper temperature of the blast furnace fusion zone (1200 ° C.) and terminating the ore reduction, and an adiabatic furnace 16 for causing the reaction below this temperature to proceed in an adiabatic system. It consists of The heating furnace 15 and the heat insulation furnace 16 have lengths of 950 mm and 1090 mm, respectively.

BIS炉による熱保存帯温度の測定には、長時間(3日ほど)を要するので、実際の高炉における熱保存帯温度の変動を、迅速に、操業制御に反映することは難しいが、本発明者らは、小型反応ガス化試験装置により簡便に測定できるコークスのガス化反応開始温度及びその変動が、BIS炉で測定される熱保存帯温度及びその変動に極めてよく一致することを見いだした。   Since it takes a long time (about 3 days) to measure the temperature of the heat preservation zone by the BIS furnace, it is difficult to quickly reflect the fluctuation of the temperature of the heat preservation zone in the actual blast furnace in the operation control. The inventors have found that the gasification reaction start temperature of coke, which can be easily measured with a small reaction gasification test apparatus, and the fluctuation thereof are in good agreement with the temperature of the thermal preservation zone measured in a BIS furnace and the fluctuation thereof.

図4に、コークス中のFe含有率で整理したコークスのガス化反応開始温度とBIS炉で測定される熱保存帯温度の相関関係を示す。図中、○は、通常(成形しない)コークスの場合を示し、□は、成形コークスの場合を示す。図4から、コークスの形態にかかわらず、コークスのガス化反応開始温度とBIS炉で測定される熱保存帯温度が、ほぼ1対1の対応関係にあることが解る。   FIG. 4 shows the correlation between the coke gasification reaction start temperature arranged by the Fe content in the coke and the thermal storage zone temperature measured in the BIS furnace. In the figure, ○ indicates the case of normal (not formed) coke, and □ indicates the case of formed coke. It can be seen from FIG. 4 that the coke gasification reaction start temperature and the thermal preservation zone temperature measured in the BIS furnace have a substantially one-to-one correspondence regardless of the coke form.

即ち、相関関係(a2)によれば、熱保存帯温度を測定しなくても、小型反応ガス化試験装置によりコークスのガス化反応開始温度を測定することにより、BIS炉で測定される熱保存帯温度とその変動を知ることができるのである。その結果、高炉内の熱保存帯温度を目標温度まで下げようとする場合、高炉内に装入する高反応性コークが備えるべきガス化反応開始温度を求めることができる。   That is, according to the correlation (a2), the heat preservation measured in the BIS furnace can be obtained by measuring the gasification reaction start temperature of coke with a small reaction gasification test device without measuring the heat preservation zone temperature. It is possible to know the belt temperature and its fluctuation. As a result, when the temperature of the heat preservation zone in the blast furnace is to be lowered to the target temperature, the gasification reaction start temperature that the highly reactive coke charged into the blast furnace should have can be obtained.

高炉内に装入する高反応性コークスが備えるべきガス化反応開始温度が求まれば、関係(a1)に基づいて、高炉内に装入するコークスのFe含有率を求めることができる。高炉内に装入するコークスのFe含有率が求まれば、該含有率に基づいて、Feを、原料炭に配合して高反応性コークスを製造することができる。   If the gasification reaction start temperature to be provided for the highly reactive coke charged into the blast furnace is obtained, the Fe content of the coke charged into the blast furnace can be obtained based on the relationship (a1). If the Fe content of coke charged into the blast furnace is obtained, highly reactive coke can be produced by blending Fe with raw coal based on the content.

次に、本発明の実施例について説明するが、実施例の条件は、本発明の実施可能性及び効果を確認するために採用した一条件例であり、本発明は、この一条件例に限定されるものではない。本発明は、本発明の要旨を逸脱せず、本発明の目的を達成する限りにおいて、種々の条件を採用し得るものである。   Next, examples of the present invention will be described. The conditions of the examples are one example of conditions adopted for confirming the feasibility and effects of the present invention, and the present invention is limited to this one example of conditions. Is not to be done. The present invention can adopt various conditions as long as the object of the present invention is achieved without departing from the gist of the present invention.

(実施例1)
表1に示す性状のA炭とB炭を50%ずつ配合した配合炭を乾留してコークスを製造し、コークスのガス化反応開始温度を、図1に示す小型反応ガス化試験装置で測定した。その結果を、表2に示す。また、幾つかのコークスについて、図2に示すBIS炉で熱保存帯温度を測定した。その結果を、表2に、併せて示す。
Example 1
Coke was produced by dry distillation of blended coal containing 50% each of A and B coals having the properties shown in Table 1, and the gasification reaction start temperature of the coke was measured with a small reaction gasification test apparatus shown in FIG. . The results are shown in Table 2. Moreover, about some cokes, the heat preservation zone temperature was measured with the BIS furnace shown in FIG. The results are also shown in Table 2.

図5に、コークスのFe含有率とコークスのガス化反応開始温度の関係を示す。コークスのガス化反応開始温度は、Fe含有率の増加に伴い、直線的に低下する。   FIG. 5 shows the relationship between the Fe content of coke and the gasification reaction start temperature of coke. The coke gasification reaction start temperature decreases linearly as the Fe content increases.

図6に、コークスのガス化反応開始温度とBIS炉で測定した熱保存帯温度の相関関係を示す。コークスのガス化反応開始温度とBIS炉で測定した熱保存帯温度は、極めてよい対応関係にある。   FIG. 6 shows a correlation between the coke gasification reaction start temperature and the thermal preservation zone temperature measured in a BIS furnace. There is a very good correspondence between the gasification reaction start temperature of coke and the heat preservation zone temperature measured by the BIS furnace.

Figure 2010202713
Figure 2010202713

Figure 2010202713
Figure 2010202713

(実施例2)
高炉内の熱保存帯温度の目標を980℃とし、図6に示す相関関係(a2)に基づいて、コークスのガス化反応開始温度:980℃を求めた。次に、図5に示す関係(a1)に基づいて、コークスのガス化反応開始温度:980℃から、高反応性フェロコークス中のFe含有率:30%を求めた。
(Example 2)
The target of the heat preservation zone temperature in the blast furnace was set to 980 ° C., and the gasification reaction start temperature of coke: 980 ° C. was determined based on the correlation (a2) shown in FIG. Next, from the coke gasification reaction start temperature: 980 ° C., the Fe content in the highly reactive ferro-coke: 30% was determined based on the relationship (a1) shown in FIG.

このFe含有率に従って、原料炭にFeを添加し、高反応性コークスを製造して、高炉に装入した。高炉内の熱保存帯温度を測定したところ、目標温度:980℃とほぼ同じ982℃であった。   According to this Fe content, Fe was added to the raw coal to produce highly reactive coke and charged into the blast furnace. When the temperature of the heat preservation zone in the blast furnace was measured, it was 982 ° C., which was almost the same as the target temperature: 980 ° C.

前述したように、本発明によれば、高炉内で、目標とする熱保存帯温度を達成し得る高反応性コークスを製造することができる。よって、本発明は、鉄鋼産業において利用可能性が高いものである。   As described above, according to the present invention, a highly reactive coke capable of achieving a target heat preservation zone temperature can be produced in a blast furnace. Therefore, the present invention has high applicability in the steel industry.

1 反応外管
2 加熱手段
3 反応内管
4 アルミナ球
5 コークス
6 管蓋
7 ガス供給口
8 ガス排出口
9 温度計
10 反応管
11 鉄鉱石(焼結鉱)
12 コークス
13 電気炉
14 ガス導入口
15 加熱炉
16 断熱炉
17 ガス排出口
1 reaction outer tube 2 heating means 3 reaction inner tube 4 alumina bulb 5 coke 6 tube lid 7 gas supply port 8 gas discharge port 9 thermometer 10 reaction tube 11 iron ore (sintered ore)
12 Coke 13 Electric furnace 14 Gas inlet 15 Heating furnace 16 Heat insulation furnace 17 Gas outlet

Claims (5)

高炉内の熱保存帯温度を目標温度まで下げるために装入する高反応性コークを製造する方法であって、
(a)Fe含有率を変えて反応性を変更したコークスのガス化反応開始温度と熱保存帯温度を、一定の昇温条件で測定し、
(a1)コークスのFe含有率とガス化反応開始温度の関係、及び、
(a2)コークスのガス化反応開始温度と熱保存帯温度の相関関係を求め、
(b)上記目標温度と上記(a2)の相関関係に基づいて、高炉内に装入するコークスが備えるべきガス化反応開始温度を求め、
(c)上記ガス化反応開始温度と、上記(a1)の関係に基づいて、高炉内に装入するコークスのFe含有率を求め、
(d)上記Fe含有率に基づいて、Feを、原料炭に配合してコークスを製造する
ことを特徴とする高反応性コークの製造方法。
A method for producing a highly reactive coke charged to lower the temperature of the heat preservation zone in the blast furnace to a target temperature,
(A) The gasification reaction start temperature and heat storage zone temperature of coke whose reactivity was changed by changing the Fe content were measured under a constant temperature rise condition,
(a1) relationship between coke Fe content and gasification reaction start temperature, and
(a2) Obtain the correlation between the gasification reaction start temperature of coke and the temperature of the thermal preservation zone,
(B) Based on the correlation between the target temperature and the above (a2), obtain the gasification reaction start temperature that the coke charged into the blast furnace should have,
(C) Based on the gasification reaction start temperature and the relationship of (a1), the Fe content of coke charged into the blast furnace is obtained,
(D) A method for producing highly reactive coke, wherein coke is produced by blending Fe into raw coal based on the Fe content.
前記高反応性コークスが成形コークスであることを特徴とする請求項1に記載の高反応性コークの製造方法。   The method for producing highly reactive coke according to claim 1, wherein the highly reactive coke is formed coke. 前記コークスのガス化反応開始温度を、小型反応ガス化試験装置で求めることを特徴とする請求項1又は2に記載の高反応性コークの製造方法。   The method for producing a highly reactive coke according to claim 1 or 2, wherein a gasification reaction start temperature of the coke is obtained with a small reactive gasification test apparatus. 前記(a2)の相関関係が、小型反応ガス化試験装置で測定したコークスのガス化反応開始温度と、BIS炉で測定した熱保存帯温度に基づいて求めたものであることを特徴とする請求項1〜3のいずれか1項に記載の高反応性コークの製造方法。   The correlation of (a2) is obtained on the basis of the gasification reaction start temperature of coke measured with a small reaction gasification test apparatus and the heat storage zone temperature measured with a BIS furnace. Item 4. The method for producing a highly reactive coke according to any one of Items 1 to 3. 前記(a1)の相関関係において、コークスのガス化反応開始温度とBIS炉で測定した熱保存帯温度がほぼ等しいことを特徴とする請求項4に記載の高反応性コークの製造方法。   5. The method for producing highly reactive coke according to claim 4, wherein, in the correlation (a1), the gasification reaction start temperature of coke is substantially equal to the heat storage zone temperature measured in a BIS furnace.
JP2009047182A 2009-02-27 2009-02-27 Method for manufacturing highly reactive molded ferrocoke Withdrawn JP2010202713A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009047182A JP2010202713A (en) 2009-02-27 2009-02-27 Method for manufacturing highly reactive molded ferrocoke

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009047182A JP2010202713A (en) 2009-02-27 2009-02-27 Method for manufacturing highly reactive molded ferrocoke

Publications (1)

Publication Number Publication Date
JP2010202713A true JP2010202713A (en) 2010-09-16

Family

ID=42964529

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009047182A Withdrawn JP2010202713A (en) 2009-02-27 2009-02-27 Method for manufacturing highly reactive molded ferrocoke

Country Status (1)

Country Link
JP (1) JP2010202713A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106118702A (en) * 2016-08-16 2016-11-16 武汉钢铁股份有限公司 Reduce the blending method of coke initial reaction temperature

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106118702A (en) * 2016-08-16 2016-11-16 武汉钢铁股份有限公司 Reduce the blending method of coke initial reaction temperature

Similar Documents

Publication Publication Date Title
Babich et al. Effect of coke reactivity and nut coke on blast furnace operation
EP3190194B1 (en) Method for detecting air flow distribution in blast furnace
Kasai et al. Reduction of reducing agent rate in blast furnace operation by carbon composite iron ore hot briquette
JP5006088B2 (en) Method for selecting granulated blast furnace slag for cement and method for producing cement composition
JP2009149942A (en) Self-fluxing pellet for blast furnace, and its manufacturing method
TWI758977B (en) How the blast furnace works
JP2020041222A (en) Magnetite-based sintered ore and method for producing the same
JP2008111172A (en) Method for operating blast furnace
JP2010202713A (en) Method for manufacturing highly reactive molded ferrocoke
CN104446459B (en) Preparation method for the Bubble zirconia insulating product of tungsten sintering intermediate frequency furnace
JP5521353B2 (en) Blast furnace thermal preservation zone temperature estimation method
CN102471822A (en) Unfired carbon-containing agglomerate and production method therefor
JP5803839B2 (en) Blast furnace operation method
JP5742495B2 (en) Sintering experiment equipment
JP4971662B2 (en) Blast furnace operation method
JP2022019640A (en) Estimation method for powdering amount of coke, estimation method for powdering amount and particle diameter of coke, estimation method for permeability in blast furnace, and operation method for blast furnace
KR101337162B1 (en) Method for operating blast furnace
JP2017106064A (en) Method for reducing iron oxide raw material using shaft furnace
Lavrinenko et al. Innovative heating system in the MOK-1-592 roasting machine
RU2804434C1 (en) Blast furnace operation method
JP6070131B2 (en) Method for producing reduced iron
JP5453993B2 (en) Ferro-coke manufacturing method
Kumar et al. Investigating the Oxidation Phenomena of Magnetite Pellet
Nisioka et al. Development of Mathematical Models for Blast Furnaces
JP2023131283A (en) Reduced pellet production method

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20120501