JP2010202456A - Production method of fine particle - Google Patents

Production method of fine particle Download PDF

Info

Publication number
JP2010202456A
JP2010202456A JP2009049723A JP2009049723A JP2010202456A JP 2010202456 A JP2010202456 A JP 2010202456A JP 2009049723 A JP2009049723 A JP 2009049723A JP 2009049723 A JP2009049723 A JP 2009049723A JP 2010202456 A JP2010202456 A JP 2010202456A
Authority
JP
Japan
Prior art keywords
fine particles
oxide
metal oxide
visible light
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009049723A
Other languages
Japanese (ja)
Other versions
JP5255485B2 (en
Inventor
Shoichi Uchiyama
昌一 内山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Graduate School for the Creation of New Photonics Industries
Original Assignee
Graduate School for the Creation of New Photonics Industries
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Graduate School for the Creation of New Photonics Industries filed Critical Graduate School for the Creation of New Photonics Industries
Priority to JP2009049723A priority Critical patent/JP5255485B2/en
Publication of JP2010202456A publication Critical patent/JP2010202456A/en
Application granted granted Critical
Publication of JP5255485B2 publication Critical patent/JP5255485B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for easily producing metal oxide fine particles having a uniform particle diameter. <P>SOLUTION: The method for producing fine particles comprising a metal oxide includes a step of irradiating a metal alkoxide in a solvent with only visible light. By irradiation with visible light, hydrolysis of the metal alkoxide in a sol-gel method is appropriately promoted to produce sol in a stable state, and thereby, particle diameters of the obtained fine particles are controlled to be uniform. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

この発明は、均一な粒径を有する金属酸化物微粒子を簡便に製造することができる方法に関するものである。   The present invention relates to a method capable of easily producing metal oxide fine particles having a uniform particle diameter.

従来、二酸化チタン(TiO)、二酸化ケイ素(SiO)、酸化タンタル(Ta)、酸化ジルコニウム(ZrO)、酸化亜鉛(ZnO)、酸化タングステン(WO)等の金属酸化物のコロイド結晶がフォトニック結晶として機能することが明らかとなっている(特許文献1)。 Conventionally, metal oxides such as titanium dioxide (TiO 2 ), silicon dioxide (SiO 2 ), tantalum oxide (Ta 2 O 5 ), zirconium oxide (ZrO 2 ), zinc oxide (ZnO), tungsten oxide (WO 3 ), etc. It has been revealed that colloidal crystals function as photonic crystals (Patent Document 1).

上記の金属酸化物からなるコロイド粒子がフォトニック結晶として機能するためには、粒径が良く揃っていることが必要である。しかしながら、これらの金属酸化物について再現性よく粒径の揃ったコロイド粒子を得る方法は知られていない。   In order for the colloidal particles made of the above metal oxide to function as a photonic crystal, it is necessary that the particle diameters are well aligned. However, there is no known method for obtaining colloidal particles having a uniform particle size with good reproducibility for these metal oxides.

特開2004−226891JP 2004-226891 A

そこで本発明は、均一な粒径を有する金属酸化物微粒子を簡便に製造することができる方法を提供すべく図ったものである。   Therefore, the present invention is intended to provide a method by which metal oxide fine particles having a uniform particle diameter can be easily produced.

すなわち本発明に係る微粒子製造方法は、金属酸化物からなる微粒子を製造する方法であって、溶媒中の金属アルコキシドに可視光のみを照射する工程を有することを特徴とする。なお、本発明において「可視光のみを照射する」とは、実質的に可視光のみを照射することを意味し、金属アルコキシドの加水分解に影響が及ばない程度の紫外光や赤外光等が混入している場合も含むものである。   That is, the method for producing fine particles according to the present invention is a method for producing fine particles comprising a metal oxide, and includes a step of irradiating only a visible light to a metal alkoxide in a solvent. In the present invention, “irradiating only visible light” means substantially irradiating only visible light, such as ultraviolet light or infrared light that does not affect the hydrolysis of the metal alkoxide. This includes cases where they are mixed.

このようなものであれば、可視光を照射することにより、ゾルゲル法における金属アルコキシドの加水分解が適度に促進されて、ゾルが安定した状態で生成され、得られる微粒子の粒径を均一に揃えることができる。   In such a case, by irradiating visible light, the hydrolysis of the metal alkoxide in the sol-gel method is moderately accelerated, the sol is generated in a stable state, and the particle diameters of the resulting fine particles are made uniform. be able to.

前記金属酸化物としては、例えば、二酸化チタン、二酸化ケイ素、酸化タンタル、酸化ジルコニウム、酸化亜鉛、酸化タングステン等が挙げられる。   Examples of the metal oxide include titanium dioxide, silicon dioxide, tantalum oxide, zirconium oxide, zinc oxide, and tungsten oxide.

前記可視光としては、例えば、赤色光が用いられる。   As the visible light, for example, red light is used.

本発明に係る微粒子製造方法により得られた金属酸化物からなる微粒子が溶媒中に分散してなるフォトニック結晶もまた、本発明の1つである。   A photonic crystal in which fine particles made of a metal oxide obtained by the fine particle production method according to the present invention are dispersed in a solvent is also one aspect of the present invention.

このように本発明によれば、均一な粒径を有する金属酸化物微粒子を簡便に再現性よく製造することができる。   Thus, according to the present invention, metal oxide fine particles having a uniform particle size can be easily produced with good reproducibility.

実施例及び比較例において製造した二酸化チタン微粒子の粒径の範囲を示すグラフ。The graph which shows the range of the particle size of the titanium dioxide fine particle manufactured in the Example and the comparative example. 実施例及び比較例における上澄み液の透過率の経時変化を示すグラフ。The graph which shows the time-dependent change of the transmittance | permeability of the supernatant liquid in an Example and a comparative example. 実施例1で得られた微粒子の走査型電子顕微鏡写真。2 is a scanning electron micrograph of the fine particles obtained in Example 1. FIG. 比較例1で得られた微粒子の走査型電子顕微鏡写真。2 is a scanning electron micrograph of the fine particles obtained in Comparative Example 1. 比較例2で得られた微粒子の走査型電子顕微鏡写真。4 is a scanning electron micrograph of the fine particles obtained in Comparative Example 2.

以下に本発明を詳述する。   The present invention is described in detail below.

本発明は、金属酸化物からなる微粒子を製造する方法であるが、前記金属酸化物としては特に限定されず、例えば、二酸化チタン、二酸化ケイ素、酸化タンタル、酸化ジルコニウム、酸化亜鉛、酸化タングステン等の半導体が挙げられる。   The present invention is a method for producing fine particles comprising a metal oxide, but the metal oxide is not particularly limited, and examples thereof include titanium dioxide, silicon dioxide, tantalum oxide, zirconium oxide, zinc oxide, and tungsten oxide. A semiconductor is mentioned.

本発明は、金属アルコキシドの加水分解によってゾルを生成するゾルゲル法を用いた方法であり、溶媒中の金属アルコキシドに可視光を照射する工程を有しているものである。   The present invention is a method using a sol-gel method in which a sol is generated by hydrolysis of a metal alkoxide, and includes a step of irradiating a metal alkoxide in a solvent with visible light.

前記金属アルコキシドとしては、例えば、Ti(OCH、Ti(OC、Ti(OC−i)、Ti(OC等のチタンアルコキシド;Ti[OSi(CH、Ti[OSi(C等のテトラキストリアルキルシロキシチタン;Si(OCH、Si(OC、Si(OC−i)、Si(OC−t)等のケイ素アルコキシド;Zr(OCH、Zr(OC、Zr(OC、Zr(OC等のジルコニウムアルコキシド;Ta(OCH、Ta(OC、Ta(OC−i)、Ta(OC等のタンタルアルコキシド;W(OCH、W(OC、W(OC−i)、W(OC等のタングステンアルコキシド;Zn(OC等の亜鉛アルコキシド;等が挙げられる。これらの金属アルコキシドは1種を単独で用いてもよく、2種以上を併用してもよい。 Examples of the metal alkoxide include titanium alkoxides such as Ti (OCH 3 ) 4 , Ti (OC 2 H 5 ) 4 , Ti (OC 3 H 7 -i) 4 , Ti (OC 4 H 9 ) 4 ; Tetrakistrialkylsiloxytitanium such as OSi (CH 3 ) 3 ] 4 , Ti [OSi (C 2 H 5 ) 3 ] 4 ; Si (OCH 3 ) 4 , Si (OC 2 H 5 ) 4 , Si (OC 3 H 7- i) 4 , silicon alkoxide such as Si (OC 4 H 9 -t) 4 ; Zr (OCH 3 ) 4 , Zr (OC 2 H 5 ) 4 , Zr (OC 3 H 7 ) 4 , Zr (OC 4 Zirconium alkoxides such as H 9 ) 4 ; tantalum alkoxides such as Ta (OCH 3 ) 5 , Ta (OC 2 H 5 ) 5 , Ta (OC 3 H 7 -i) 5 , Ta (OC 4 H 9 ) 5 ; W (O CH 3) 6, W (OC 2 H 5) 6, W (OC 3 H 7 -i) 6, W (OC 4 H 9) 6 such as tungsten alkoxide; Zn (OC 2 H 5) 2 and zinc alkoxides And the like. These metal alkoxides may be used alone or in combination of two or more.

前記溶媒としては、有機溶媒と水との混合液が挙げられる。前記有機溶媒としては、例えば、メタノール、エタノール、2−プロパノール、グリセリン等のアルコール系溶媒;塩化メチレン、クロロホルム、クロロベンゼン等のハロゲン化炭化水素系溶媒;ヘキサン、シクロヘキサン、ベンゼン、トルエン、キシレン等の炭化水素系溶媒;テトラヒドロフラン、ジエチルエーテル、ジオキサン等のエーテル系溶媒;アセトン、メチルエチルケトン、メチルイソブチルケトン等のケトン系溶媒;ジメチルホルムアミド、N−メチルピロリドン等のアミド系溶媒;ジメチルスルホキシド等のスルホキシド系溶媒;メチルポリシロキサン、オクタメチルシクロテトラシロキサン、デカメチルシクロペンタンシロキサン、メチルフェニルポリシロキサン等のシリコーン等;が挙げられる。これらの溶媒は1種を単独で用いてもよく、2種以上を併用してもよい。   As said solvent, the liquid mixture of an organic solvent and water is mentioned. Examples of the organic solvent include alcohol solvents such as methanol, ethanol, 2-propanol, and glycerin; halogenated hydrocarbon solvents such as methylene chloride, chloroform, and chlorobenzene; carbonization such as hexane, cyclohexane, benzene, toluene, and xylene. Hydrogen solvents; ether solvents such as tetrahydrofuran, diethyl ether and dioxane; ketone solvents such as acetone, methyl ethyl ketone and methyl isobutyl ketone; amide solvents such as dimethylformamide and N-methylpyrrolidone; sulfoxide solvents such as dimethyl sulfoxide; And silicones such as methylpolysiloxane, octamethylcyclotetrasiloxane, decamethylcyclopentanesiloxane, and methylphenylpolysiloxane. These solvents may be used alone or in combination of two or more.

また、前記溶媒には酸を添加してもよい。当該酸としては、塩酸、硝酸、ホウ酸、ホウフッ化水素酸等の無機酸;酢酸、ギ酸、シュウ酸、炭酸、トリフルオロ酢酸、p−トルエンスルホン酸、メタンスルホン酸等の有機酸等;ジフェニルヨードニウムヘキサフルオロホスフェート、トリフェニルホスホニウムヘキサフルオロホスフェート等の光照射によって酸を発生する光酸発生剤;が挙げられる。   An acid may be added to the solvent. Examples of the acid include inorganic acids such as hydrochloric acid, nitric acid, boric acid, borohydrofluoric acid; organic acids such as acetic acid, formic acid, oxalic acid, carbonic acid, trifluoroacetic acid, p-toluenesulfonic acid, methanesulfonic acid, etc .; diphenyl And photoacid generators that generate an acid upon irradiation with light, such as iodonium hexafluorophosphate and triphenylphosphonium hexafluorophosphate.

これらの酸を前記溶媒に添加すると、当該酸が、前記金属アルコキシドの加水分解物が凝結してできた沈殿を再び分散させる解膠剤として、また、前記金属アルコキシドを加水分解、脱水架橋してコロイド粒子を製造するための触媒及び生成したコロイド粒子の分散剤として機能する。   When these acids are added to the solvent, the acid acts as a deflocculant for redispersing the precipitate formed by condensation of the hydrolyzate of the metal alkoxide, and the metal alkoxide is hydrolyzed and dehydrated and crosslinked. It functions as a catalyst for producing colloidal particles and a dispersant for the produced colloidal particles.

前記可視光としては、380〜810nmの光を意味し、例えば、赤色光(640〜810nm)が好適に用いられる。   As said visible light, the light of 380-810 nm is meant, for example, red light (640-810 nm) is used suitably.

本発明において、溶媒中の金属アルコキシドに可視光を照射する以外の工程は特に限定されず、一般的なゾルゲル法と同じであってよい。   In the present invention, the steps other than irradiating the metal alkoxide in the solvent with visible light are not particularly limited, and may be the same as a general sol-gel method.

本発明に係る微粒子製造方法により得られた金属酸化物からなる微粒子を水や有機溶媒等に分散させることにより、当該微粒子が周期的に配列したコロイド結晶、すなわち、屈折率が周期的に変化するフォトニック結晶が得られる。   By dispersing fine particles made of a metal oxide obtained by the fine particle production method according to the present invention in water, an organic solvent, or the like, a colloidal crystal in which the fine particles are periodically arranged, that is, the refractive index changes periodically. A photonic crystal is obtained.

前記有機溶媒としては、例えば、ジメチルホルムアミド等のホルムアミド類や、エチレングリコール等のアルコール類等が挙げられる。   Examples of the organic solvent include formamides such as dimethylformamide, alcohols such as ethylene glycol, and the like.

以下に実施例を掲げて本発明を更に詳細に説明するが、本発明はこれら実施例のみに限定されるものではない。   The present invention will be described in more detail with reference to the following examples. However, the present invention is not limited to these examples.

<二酸化チタン微粒子の製造>
3Lビーカーにグリセリン900gを量り採り、これに2−プロパノール1500g及び塩酸(6×10−5M)30mLを添加して、攪拌後、超音波を5分間照射した。
<Manufacture of titanium dioxide fine particles>
900 g of glycerin was weighed out into a 3 L beaker, 1500 g of 2-propanol and 30 mL of hydrochloric acid (6 × 10 −5 M) were added thereto, and after stirring, ultrasonic waves were irradiated for 5 minutes.

次いで、得られた混合液をマグネチックスターラで攪拌しながらチタン酸テトライソプロピル(Ti(OC−i))60mLを滴下し、その後、室温で1日間放置した。この際、実施例1においては、赤色LED(ピーク波長630nm)を光源として用いて赤色光を照射しながら放置し、比較例1においては、紫外LED(ピーク波長375nm)(5分経過後は水銀灯)を光源として用いて紫外線を照射しながら放置し、比較例2においては、暗状態下で放置した。 Next, 60 mL of tetraisopropyl titanate (Ti (OC 3 H 7 -i) 4 ) was dropped while stirring the obtained mixed liquid with a magnetic stirrer, and then left at room temperature for 1 day. At this time, in Example 1, a red LED (peak wavelength: 630 nm) was used as a light source and left to irradiate red light. In Comparative Example 1, an ultraviolet LED (peak wavelength: 375 nm) (after 5 minutes, a mercury lamp ) Was used as a light source while being irradiated with ultraviolet rays, and in Comparative Example 2, it was left in a dark state.

次に、生じた沈澱を除去し、上澄み液を更に7日間室温で放置した。   Next, the generated precipitate was removed, and the supernatant was further allowed to stand at room temperature for 7 days.

得られた沈澱を水で洗浄し、500℃で乾燥・焼結して二酸化チタンの微粒子を得た。   The obtained precipitate was washed with water, dried and sintered at 500 ° C. to obtain fine particles of titanium dioxide.

<結果>
結果を表1にまとめた。更に、図1に実施例及び比較例で得られた微粒子の粒径の範囲を示し、図2に波長650nmの赤色レーザを光源としてシリコンフォトダイオード(SPD)の出力電圧に基づく上澄み液の透過率の経時変化を示し、図3に実施例1で得られた微粒子の走査型電子顕微鏡写真を、図4に比較例1で得られた微粒子の走査型電子顕微鏡写真を、図5に比較例2で得られた微粒子の走査型電子顕微鏡写真を示した。
<Result>
The results are summarized in Table 1. Further, FIG. 1 shows the range of the particle size of the fine particles obtained in the examples and comparative examples, and FIG. 2 shows the transmittance of the supernatant liquid based on the output voltage of the silicon photodiode (SPD) using a red laser having a wavelength of 650 nm as a light source. FIG. 3 shows a scanning electron micrograph of the fine particles obtained in Example 1, FIG. 4 shows a scanning electron micrograph of the fine particles obtained in Comparative Example 1, and FIG. Scanning electron micrographs of the fine particles obtained in 1 were shown.

図3に示すように、赤色光を照射しながらチタン酸テトライソプロピルの加水分解を進行させた場合(実施例1)は、粒径が良く揃った二酸化チタン微粒子が得られたが、図4や図5に示すように、紫外光を照射したり(比較例1)、暗状態下に放置したり(比較例2)した場合は、歪な形状の粒子が多く、粒径も不揃いであった。   As shown in FIG. 3, when the hydrolysis of tetraisopropyl titanate was allowed to proceed while irradiating red light (Example 1), fine titanium dioxide particles having a uniform particle size were obtained. As shown in FIG. 5, when ultraviolet light was irradiated (Comparative Example 1) or left in a dark state (Comparative Example 2), there were many distorted particles and the particle sizes were uneven. .

また、図2に示した上澄み液の透過率の経時変化からわかるように、紫外光を照射した場合(比較例1)は、熟成・粒成長が極めて迅速に進み、一方、暗状態下に放置した場合(比較例2)は、熟成・粒成長の進行が極めてゆっくりであった。そして、赤色光を照射した場合(実施例1)はこれらの中間の速度で熟成・粒成長が進行したことがわかった。このため、金属アルコキシドを加水分解して含水酸化物ゾルを調製する際に光を照射すると、得られた含水酸化物ゾルの熟成・粒成長速度が速くなるが、紫外光を照射すると熟成・粒成長速度が速すぎて粒径が不均一になり、紫外光より長波長である可視光を照射すると適度な速度で熟成・粒成長が進行し、均一な粒径を有する二酸化チタン微粒子が得られると推測される。   In addition, as can be seen from the change with time in the transmittance of the supernatant liquid shown in FIG. 2, when ultraviolet light was irradiated (Comparative Example 1), ripening and grain growth proceeded very rapidly, while leaving in a dark state. In the case (Comparative Example 2), the progress of ripening and grain growth was extremely slow. When red light was irradiated (Example 1), it was found that aging and grain growth proceeded at an intermediate speed. Therefore, when light is irradiated when hydrolyzing a metal alkoxide to prepare a hydrous oxide sol, the aging and grain growth rate of the obtained hydrous oxide sol increases. When the growth rate is too high, the particle size becomes non-uniform, and when visible light having a longer wavelength than ultraviolet light is irradiated, ripening and grain growth proceed at an appropriate rate, and titanium dioxide fine particles having a uniform particle size are obtained. It is guessed.

本発明によって得られた金属酸化物微粒子を用いることにより、有機フォトニック結晶を得ることができる。   An organic photonic crystal can be obtained by using the metal oxide fine particles obtained by the present invention.

Claims (4)

金属酸化物からなる微粒子を製造する方法であって、
溶媒中の金属アルコキシドに可視光のみを照射する工程を有することを特徴とする微粒子製造方法。
A method for producing fine particles comprising a metal oxide,
A method for producing fine particles, comprising a step of irradiating only a visible light to a metal alkoxide in a solvent.
前記金属酸化物が、二酸化チタン、二酸化ケイ素、酸化タンタル、酸化ジルコニウム、酸化亜鉛、又は、酸化タングステンである請求項1記載の微粒子製造方法。   The method for producing fine particles according to claim 1, wherein the metal oxide is titanium dioxide, silicon dioxide, tantalum oxide, zirconium oxide, zinc oxide, or tungsten oxide. 前記可視光は、赤色光である請求項1又は2記載の微粒子製造方法。   The method for producing fine particles according to claim 1, wherein the visible light is red light. 請求項1、2又は3記載の微粒子製造方法により得られた金属酸化物からなる微粒子が溶媒中に分散してなるフォトニック結晶。   A photonic crystal in which fine particles comprising a metal oxide obtained by the fine particle production method according to claim 1, 2 or 3 are dispersed in a solvent.
JP2009049723A 2009-03-03 2009-03-03 Fine particle manufacturing method Active JP5255485B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009049723A JP5255485B2 (en) 2009-03-03 2009-03-03 Fine particle manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009049723A JP5255485B2 (en) 2009-03-03 2009-03-03 Fine particle manufacturing method

Publications (2)

Publication Number Publication Date
JP2010202456A true JP2010202456A (en) 2010-09-16
JP5255485B2 JP5255485B2 (en) 2013-08-07

Family

ID=42964333

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009049723A Active JP5255485B2 (en) 2009-03-03 2009-03-03 Fine particle manufacturing method

Country Status (1)

Country Link
JP (1) JP5255485B2 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000157874A (en) * 1998-09-21 2000-06-13 Agency Of Ind Science & Technol Titanium oxide photocatalyst and production thereof
JP2004109178A (en) * 2002-09-13 2004-04-08 Kawamura Inst Of Chem Res Colloidal crystal and its manufacturing method
JP2004226891A (en) * 2003-01-27 2004-08-12 Bando Chem Ind Ltd Colloidal solution, colloidal crystal, and fixed colloidal crystal
JP2005272157A (en) * 2004-03-23 2005-10-06 Japan Science & Technology Agency Method for producing oxide semiconductor thin film by irradiation with laser light

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000157874A (en) * 1998-09-21 2000-06-13 Agency Of Ind Science & Technol Titanium oxide photocatalyst and production thereof
JP2004109178A (en) * 2002-09-13 2004-04-08 Kawamura Inst Of Chem Res Colloidal crystal and its manufacturing method
JP2004226891A (en) * 2003-01-27 2004-08-12 Bando Chem Ind Ltd Colloidal solution, colloidal crystal, and fixed colloidal crystal
JP2005272157A (en) * 2004-03-23 2005-10-06 Japan Science & Technology Agency Method for producing oxide semiconductor thin film by irradiation with laser light

Also Published As

Publication number Publication date
JP5255485B2 (en) 2013-08-07

Similar Documents

Publication Publication Date Title
Yuwono et al. Diblock copolymer templated nanohybrid thin films of highly ordered TiO2 nanoparticle arrays in PMMA matrix
JP4951237B2 (en) Method for producing antifogging antireflection film
JP2008040171A (en) Optical element with antireflection film having self-cleaning effect and method for manufacturing the same
JP2006052128A (en) Inorganic oxide particle
JP2008179514A (en) Surface-coated nanoparticle, its manufacturing method, and surface-coated nanoparticle dispersion liquid
JP2008037700A (en) Aggregate of silica-based compound oxide particle and method for manufacturing the same
CN108398733A (en) A kind of titania/silica 1-D photon crystal and preparation method thereof
Ho et al. Formation of Sol–Gel-Derived TaO x N y Photocatalysts
JP2008056873A (en) Nanocomposite and method for producing the same
JP2001262007A (en) Titania coating liquid and its production method, and titania film and its formation method
JP6075145B2 (en) Method for producing composition for forming PZT-based ferroelectric thin film and method for forming PZT-based ferroelectric thin film using the composition
JP5255485B2 (en) Fine particle manufacturing method
Bashir et al. UV-a treatment of ZrO2 thin films fabricated by environmental friendlier water-based solution processing: Structural and optical studies
JP3299950B2 (en) Composition for forming silica glass using sol-gel process
Ashiri Development and investigation of novel nanoparticle embedded solutions with enhanced optical transparency
JP2016128157A (en) Production method of silica aerogel film
TW201139535A (en) Modified cerium(IV) oxide colloidal particles and production method thereof
JP4559212B2 (en) Organic-inorganic hybrid material, hybrid film formed thereby, and manufacturing method thereof
JP2010031186A (en) Organic and inorganic composite material, its manufacturing method and optical component
JP6804857B2 (en) Titanium compounds and methods for producing them, titanium-based compositions, resin compositions, and titanium-based solids.
JP6507655B2 (en) Coating solution for porous film and method for producing the same
JP2006096636A (en) Crystalline metal oxide minute particle, its dispersion liquid, and their manufacturing method
Amole et al. Sol-Gel Spin Coating Synthesis of TiO2 Nanostructure and Its Optical Characterization
EP2886521A1 (en) Development of nanostructured TiO2 thin films
JP5769932B2 (en) Titanium oxide sol, method for producing the same, and titanium oxide-containing polymer

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120302

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130117

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130122

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130325

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130416

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130419

R150 Certificate of patent or registration of utility model

Ref document number: 5255485

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160426

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250