JP2010201474A - Method and system for optimization of welding, and welding method - Google Patents

Method and system for optimization of welding, and welding method Download PDF

Info

Publication number
JP2010201474A
JP2010201474A JP2009050863A JP2009050863A JP2010201474A JP 2010201474 A JP2010201474 A JP 2010201474A JP 2009050863 A JP2009050863 A JP 2009050863A JP 2009050863 A JP2009050863 A JP 2009050863A JP 2010201474 A JP2010201474 A JP 2010201474A
Authority
JP
Japan
Prior art keywords
welding
analysis
joint
passes
deformation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009050863A
Other languages
Japanese (ja)
Inventor
Mitsuo Komuro
三男 小室
Shunji Okuma
俊司 大熊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2009050863A priority Critical patent/JP2010201474A/en
Publication of JP2010201474A publication Critical patent/JP2010201474A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Investigating Or Analyzing Materials Using Thermal Means (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To highly accurately analyze the values of residual deformation and residual stress after welding at the stage of weld designing, and determine optimal welding conditions according to the analyzed result. <P>SOLUTION: Welding conditions of a welding pass in an arbitrary order are determined in a proper range, where welding defects are not generated, taking into consideration the welding deformation of the analyzed shape of a joint caused in the previous welding pass (S15). A cross-sectional shape of the weld bead in the welding pass in the order is calculated based on the welding conditions (S16). The cross-sectional shape of the weld bead is modeled and added to basic analysis models (S17). Welding deformation of the groove shape of the joint in the welding pass in the order is calculated with a thermal elastoplasticity analysis, using the analyzed model (S18). Welding passes in other orders are also subjected to the same steps as the above to complete the welding analysis of the weld joint, and the number of welding passes is determined (S19). When the decision index value of the weld joint is within an allowable range, the kind of the joint, the groove shape of the joint, the number of the welding passes, and the welding conditions of each pass are recorded and stored (S23). <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、溶接構造物の溶接継手部に形成された継手開先に対して複数の溶接パスを行って複数層の溶接を施行するための溶接設計を最適に行う溶接最適化方法、溶接最適化システム、及びこの溶接最適化方法を用いた溶接方法に関する。   The present invention relates to a welding optimization method and an optimum welding method for optimally performing a welding design for performing multiple layers of welding by performing a plurality of welding passes on a joint groove formed in a welded joint portion of a welded structure. The present invention relates to a welding system and a welding method using this welding optimization method.

一般に、溶接構造物では、溶接によって残留変形及び残留応力が発生することがあり、このような残留変形及び残留応力が所定の値を越えると、溶接構造物の品質に悪影響を及ぼすことがある。従って、残留変形及び残留応力は極力低減する必要がある。   Generally, in a welded structure, residual deformation and residual stress may be generated by welding, and if such residual deformation and residual stress exceed a predetermined value, the quality of the welded structure may be adversely affected. Therefore, it is necessary to reduce residual deformation and residual stress as much as possible.

従来、溶接プロセスにおいて残留変形または残留応力を低減させる手段としては、現場作業者の経験と勘に頼って行われるか、あるいは自動溶接装置に現場作業者のノウハウを数値データとして入力するか、またはシミュレーションによる解析評価方法などが実施されている。   Conventionally, as means for reducing residual deformation or residual stress in the welding process, it is performed depending on the experience and intuition of the field worker, or the field worker's know-how is input to the automatic welding apparatus as numerical data, or Analysis and evaluation methods by simulation are being implemented.

例えば、継手開先の形状を検出し、オフライン時に、検出された継手開先の形状に応じて、溶接電流及び溶接速度等の溶接条件を最適な溶接パス断面積との関係を考慮して段階的に調整し、調整された溶接条件によって自動溶接装置を制御して溶接を行うものが特許文献1に開示されている。   For example, the shape of the joint groove is detected, and when offline, the welding conditions such as the welding current and welding speed are considered in consideration of the relationship with the optimal welding path cross-sectional area according to the detected joint groove shape. Japanese Patent Application Laid-Open No. H10-228707 discloses a method for performing welding by controlling an automatic welding apparatus according to the adjusted welding conditions.

また、溶接構造物の継手開先の形状に応じて溶接条件を設定するに当り、特定の溶接条件における溶接パスの積層の順序を決めるものとし、前記特定の溶接条件下で溶接による残留応力解析を行ない、残留応力評価点として予め定めた注目点における残留応力値が最も小さくなる溶接パスの積層順序を、複数ある溶接パスの積層順序を逐次比較して選択し、選択した順番で溶接するものが特許文献2に開示されている。   Also, when setting the welding conditions according to the shape of the joint groove of the welded structure, the order of lamination of the welding paths under the specific welding conditions shall be determined, and the residual stress analysis by welding under the specific welding conditions To select the welding pass stacking order that minimizes the residual stress value at the point of interest set in advance as the residual stress evaluation point by sequentially comparing the stacking order of multiple welding passes and welding in the selected order. Is disclosed in Patent Document 2.

更に、多層溶接を行う際、予め設定された溶接条件に応じた解析モデルを生成し、溶接を行う過程で部材の温度を計測して計測温度を得、各溶接パスについて溶接が終了した後に、解析モデルについて熱弾塑性解析を行い、計測温度に応じて残留応力を評価して推定残留応力を得、この推定残留応力に応じて、残された溶接パスの溶接条件を変更して溶接を行うものが特許文献3に開示されている。   Furthermore, when performing multi-layer welding, an analytical model corresponding to preset welding conditions is generated, the temperature of the member is measured in the process of welding to obtain a measured temperature, and after welding is completed for each welding pass, Perform thermal elasto-plastic analysis on the analysis model, evaluate the residual stress according to the measured temperature, obtain the estimated residual stress, and perform welding by changing the welding conditions of the remaining welding path according to this estimated residual stress This is disclosed in Patent Document 3.

特開平9−9936号公報Japanese Patent Laid-Open No. 9-9936 特開平9−1376号公報JP-A-9-1376 特開2004−181462号公報JP 2004-181462 A 特開2005−83810号公報JP 2005-83810 A

野田裕久他、温度依存型界面要素法を用いたT継手完全溶込み溶接時における高温割れの発生予測、溶接学会全国大会講演概要(平成19年度春季全国大会)、社団法人溶接学会、No.80,2007年3月Noda Hirohisa et al., Prediction of Hot Cracking during T-joint Full Penetration Welding Using Temperature-Dependent Interface Element Method, Outline of Lecture at the National Welding Society (2007 Spring National Convention), Japan Welding Society, No. 80, March 2007 山根敏他、狭開先溶接における溶融池の数値シミュレーション、溶接学会全国大会講演概要(平成18年度秋季全国大会)、社団法人溶接学会、No.79,2006年9月Satoshi Yamane et al., Numerical Simulation of Weld Pool in Narrow Gap Welding, Outline of National Welding Society Conference (FY2006 National Convention), Japan Welding Society, No. 79, September 2006

一般に溶接構造物を多層溶接する場合、溶接継手部全体の溶接パス計画、並びに各溶接パスの溶接電圧、溶接電流及び溶接速度などの溶接条件は、現場作業者の経験から事前に計画または推定可能であるが、実際には溶接による継手開先形状の変形が起こるために、特に最終層に近づくに従い溶接パス計画からずれてくる。特許文献1に記載の自動溶接装置では、この継手開先形状の溶接変形を随時検出し、溶接条件を適時変更して溶接を行っている。従って、溶接終了後の溶接パス数は、溶接施工を実際に実施してみないと確定できないという課題がある。   In general, when performing multi-layer welding of welded structures, the welding pass plan for the entire welded joint, and welding conditions such as the welding voltage, welding current, and welding speed of each welding pass can be planned or estimated in advance from the experience of field workers. However, since the joint groove shape is deformed by welding in practice, the welding path plan deviates particularly as the final layer is approached. In the automatic welding apparatus described in Patent Document 1, the welding deformation of the joint groove shape is detected at any time, and welding is performed by changing the welding conditions as appropriate. Therefore, there is a problem that the number of welding passes after the end of welding cannot be determined unless the welding operation is actually performed.

また、解析によって残留応力を評価する場合、この残留応力の評価は、溶接変形を考慮していない溶接パス計画に基づいた推定評価(特許文献2)、または実際の溶接時に測定された温度を用いた事後解析評価(特許文献3)となる。従って、これらの特許文献2及び3では、溶接パス計画の段階で溶接パス数を正確に把握できず、溶接設計段階で溶接構造物の残留変形や残留応力を解析によって高精度に評価できるものとはなっていない。   Also, when evaluating residual stress by analysis, this residual stress is evaluated by using an estimated evaluation based on a welding path plan that does not consider welding deformation (Patent Document 2) or a temperature measured during actual welding. It becomes the post-mortem analysis evaluation (Patent Document 3). Therefore, in these Patent Documents 2 and 3, the number of welding passes cannot be accurately grasped at the stage of welding pass planning, and the residual deformation and residual stress of the welded structure can be evaluated with high accuracy by analysis at the stage of welding design. It is not.

本発明の目的は、上述の事情を考慮してなされたものであり、溶接設計の段階で溶接後の判定指標値となる残留変形や残留応力の値を高精度に解析でき、この解析結果に応じて最適な溶接条件を決定できる溶接最適化方法及びシステム並びに溶接方法を提供することにある。   The object of the present invention has been made in consideration of the above-mentioned circumstances, and it is possible to analyze the value of residual deformation and residual stress, which are judgment index values after welding at the stage of welding design, with high accuracy. Accordingly, it is an object of the present invention to provide a welding optimization method and system and a welding method capable of determining optimum welding conditions accordingly.

本発明に係る溶接最適化方法は、溶接構造物の溶接継手部に形成された継手開先に対して複数の溶接パスを行って複数層の溶接を施工するための溶接設計を最適に行う溶接最適化方法であって、前記溶接構造物について、前記溶接継手部の継手の種類、前記継手開先の形状に応じた基本解析モデルを生成する基本解析モデル生成ステップと、任意の順番の溶接パスの溶接条件を、その前になされた溶接パスによる前記継手開先形状の溶接変形を考慮して、溶接不良を起こさない適正範囲内で決定し、この溶接条件に基づいて、この任意の順番の溶接パスの溶接ビード断面形状を求める溶接条件等決定ステップと、前記任意の順番の溶接パスの前記溶接ビード断面形状を解析モデル化して前記基本解析モデルに追加し、この追加して得られた解析モデルを用いて、この任意の順番の溶接パスによって生ずる前記継手開先形状の溶接変形を、熱弾塑性解析によって求める溶接変形解析ステップと、前記溶接条件等決定ステップ及び前記溶接変形解析ステップを他の順番の溶接パスについて実行して、前記溶接継手部の溶接解析を完了し溶接パス数を決定した後に、前記溶接継手部について判定指標値を求め、この判定指標値が許容範囲内にあるか否かを判定し、許容範囲内にない場合には、前記継手の種類、前記継手開先の形状を含む溶接条件を変更して前記基本解析モデル生成ステップ、前記溶接条件等決定ステップ及び前記溶接変形解析ステップを再度実行させる指標判定ステップと、この指標判定ステップにおける判定指標値が許容範囲内にある場合に、前記継手の種類、前記継手開先の形状、溶接パス数、各溶接パスの溶接条件を解析結果データベースに記録して保存するデータ記録ステップと、を有することを特徴とするものである。   The welding optimization method according to the present invention is a welding that optimizes a welding design for performing a plurality of welding passes by performing a plurality of welding passes on a joint groove formed in a welded joint portion of a welded structure. A method for optimizing a basic analysis model generating step for generating a basic analysis model in accordance with the type of joint of the weld joint and the shape of the joint groove for the welded structure, and a welding path in an arbitrary order The welding conditions are determined within an appropriate range that does not cause welding failure in consideration of the welding deformation of the joint groove shape caused by the welding path made before the welding conditions. A welding condition determination step for obtaining a weld bead cross-sectional shape of a weld pass, an analysis model of the weld bead cross-sectional shape of the arbitrary order of the weld passes, and adding the analysis model to the basic analysis model. Using a model, a welding deformation analysis step for obtaining a welding deformation of the joint groove shape caused by this arbitrary order of welding passes by a thermoelastic-plastic analysis, a determination step of the welding conditions, etc., and a welding deformation analysis step, etc. After completing the weld analysis of the weld joint and determining the number of weld passes, a determination index value is obtained for the weld joint, and whether the determination index value is within an allowable range. If it is not within the allowable range, the welding condition including the type of joint and the shape of the joint groove is changed to determine the basic analysis model generation step, the welding condition determination step, and the welding. When the index determination step for executing the deformation analysis step again and the determination index value in the index determination step are within an allowable range, the type of joint and the joint Shape of the groove, the welding pass number, is characterized in that it has a, a data recording step of storing records in the analysis result database welding conditions for each welding pass.

また、本発明に係る溶接最適化システムは、溶接構造物の溶接継手部に形成された継手開先に対して複数の溶接パスを行って複数層の溶接を施工するための溶接設計を最適に行う溶接最適化システムであって、前記溶接構造物について、前記溶接継手部の継手の種類、前記継手開先の形状に応じた基本解析モデルを生成する基本解析モデル生成ステップを実行する基本解析モデル生成手段と、任意の順番の溶接パスの溶接条件を、その前になされた溶接パスによる前記継手開先形状の溶接変形を考慮して、溶接不良を起こさない適正範囲内で決定し、この溶接条件に基づいてこの順番の溶接パスの溶接ビード断面形状を求める溶接条件等決定ステップを実行する溶接条件等決定手段と、前記任意の順番の溶接パスの前記溶接ビード断面形状を解析モデル化して前記基本解析モデルに追加し、この追加して得られた解析モデルを用いて、この任意の順番の溶接パスによって生ずる前記継手開先形状の溶接変形を、熱弾塑性解析によって求める溶接変形解析ステップを実行する溶接変形解析手段と、前記溶接条件等決定ステップ及び前記溶接変形解析ステップを他の順番の溶接パスについて実行して、前記溶接継手部の溶接解析を完了し溶接パス数を決定した後に、前記溶接継手部について判定指標値を求め、この判定指標値が許容範囲内にあるか否かを判定し、許容範囲内にない場合には、前記継手の種類、前記継手開先の形状を含む溶接条件を変更して前記基本解析モデル生成ステップ、前記溶接条件等決定ステップ及び前記溶接変形解析ステップを再度実行させる指標判定ステップを実行する指標判定手段と、この指標判定ステップにおける判定指標値が許容範囲内にある場合に、前記継手の種類、前記継手開先の形状、溶接パス数、各溶接パスの溶接条件を解析結果データベースに記録して保存するデータ記録ステップを実行するデータ記録手段と、を有することを特徴とするものである。   In addition, the welding optimization system according to the present invention optimizes a welding design for performing multiple layers of welding by performing a plurality of welding passes on a joint groove formed in a welded joint portion of a welded structure. A welding optimization system for performing a basic analysis model generation step for generating a basic analysis model for generating a basic analysis model according to the type of joint of the weld joint and the shape of the joint groove for the welded structure The welding conditions of the generating means and the welding pass in an arbitrary order are determined within an appropriate range that does not cause welding failure in consideration of the welding deformation of the joint groove shape by the welding pass made before that, and this welding Welding condition etc. determining means for executing a welding condition etc. determining step for obtaining the weld bead cross-sectional shape of the welding pass in this order based on the conditions, and the weld bead cross-sectional shape of the arbitrary order welding pass. An analysis model is added to the basic analysis model, and the weld deformation of the joint groove shape caused by the welding pass in this arbitrary order is obtained by thermoelastic-plastic analysis using the analysis model obtained by the addition. Welding deformation analysis means for executing a welding deformation analysis step, the welding condition determination step and the welding deformation analysis step are performed with respect to another order of welding paths, and the welding analysis of the welded joint portion is completed, and the number of welding paths After the determination, a determination index value is obtained for the welded joint, and it is determined whether or not the determination index value is within the allowable range. If the determination index value is not within the allowable range, the type of the joint and the joint opening are determined. An index determination step in which the welding condition including the previous shape is changed and the basic analysis model generation step, the welding condition determination step, and the welding deformation analysis step are executed again. When the index determination means for executing the index and the determination index value in the index determination step are within an allowable range, the analysis results of the joint type, the shape of the joint groove, the number of welding passes, and the welding conditions of each welding pass And a data recording means for executing a data recording step of recording and storing the data in a database.

更に、本発明に係る溶接方法は、本発明に係る溶接最適化方法によって求めた継手の種類、継手開先の形状、溶接パス数、各溶接パスの溶接条件に従って、実際の溶接施工を実施することを特徴するものである。   Furthermore, the welding method according to the present invention performs actual welding according to the type of joint, the shape of the joint groove, the number of welding passes, and the welding conditions of each welding pass determined by the welding optimization method according to the present invention. It is characterized by that.

本発明に係る溶接最適化方法、溶接最適化システム及び溶接方法によれば、継手開先形状の溶接変形を考慮して溶接継手部の溶接解析を実行することにより、溶接施工前に、実際の溶接施工に即した溶接パス数を含む正確な溶接パス計画を作成できる。このため、溶接パス数が実際の溶接施工の溶接パス数と略一致して、入熱量を実際の入熱量と略同一にできるので、実際の溶接施工時の判定指標値となる残留変形値や残留応力値に対して、これらの残留変形値や残留応力値を精度良く解析して評価できる。従って、残留変形値や残留応力値などの判定指標値を許容範囲内に抑制できる最適な溶接条件を決定できる。   According to the welding optimization method, the welding optimization system and the welding method according to the present invention, the welding analysis of the welded joint portion is performed in consideration of the welding deformation of the joint groove shape, so It is possible to create an accurate welding pass plan including the number of welding passes according to the welding construction. For this reason, the number of welding passes substantially coincides with the number of welding passes in actual welding work, and the amount of heat input can be made substantially the same as the actual heat input amount. These residual deformation values and residual stress values can be analyzed and evaluated accurately with respect to the residual stress values. Accordingly, it is possible to determine an optimum welding condition that can suppress determination index values such as a residual deformation value and a residual stress value within an allowable range.

本発明に係る溶接最適化方法の第1の実施の形態を実施する溶接最適化システムを備えた自動溶接機による溶接方法を示す説明図。Explanatory drawing which shows the welding method by the automatic welding machine provided with the welding optimization system which implements 1st Embodiment of the welding optimization method which concerns on this invention. 図1の溶接最適化システムの構成を示すブロック図。The block diagram which shows the structure of the welding optimization system of FIG. 図2の溶接最適化システムが実施する溶接最適化方法を示すフローチャート。The flowchart which shows the welding optimization method which the welding optimization system of FIG. 2 implements. (A)は図1の溶接構造物を示す斜視図、(B)は図4(A)のIV部を拡大した溶接前の溶接継手部を示す斜視図。(A) is a perspective view which shows the welding structure of FIG. 1, (B) is a perspective view which shows the welded joint part before welding which expanded the IV section of FIG. 4 (A). 図4の溶接構造物をモデル化した基本解析モデルを示す解析モデル図。The analysis model figure which shows the basic analysis model which modeled the welding structure of FIG. 溶接電流と溶接速度と溶接ビート断面積との関係を示すグラフ。The graph which shows the relationship between welding current, welding speed, and welding beat cross-sectional area. 図5の基本解析モデルに第1番目の溶接パスの溶接ビート断面形状をモデル化して追加した解析モデルを示す解析モデル図。The analysis model figure which shows the analysis model which modeled and added the welding beat cross-sectional shape of the 1st welding pass to the basic analysis model of FIG. 図5の基本解析モデルに第1番目の溶接パスの溶接ビート断面形状をモデル化して追加した解析モデルの他の例を示す解析モデル図。The analysis model figure which shows the other example of the analysis model which modeled and added the welding beat cross-sectional shape of the 1st welding pass to the basic analysis model of FIG. 溶接継手部において溶接変形を考慮しない溶接パス計画を説明する溶接ビード断面図。A weld bead sectional view explaining a welding pass plan which does not consider welding deformation in a weld joint part. 溶接継手部において溶接変形を考慮した溶接パス計画を説明する溶接ビード断面図。A weld bead sectional view explaining a welding pass plan which considered welding deformation in a weld joint part. 図4(B)に示す溶接継手部で、開先角度を異ならせたときを示す正面図。The front view which shows when the groove angle is varied in the weld joint shown in FIG. 本発明に係る溶接最適化方法の第2の実施の形態を示すフローチャート。The flowchart which shows 2nd Embodiment of the welding optimization method which concerns on this invention. 本発明に係る溶接最適化方法の第3の実施の形態を示すフローチャート。The flowchart which shows 3rd Embodiment of the welding optimization method which concerns on this invention. 入熱量/溶接速度と溶接ビートの縦横比との関係を示すグラフ。The graph which shows the relationship between heat input / welding speed and the aspect ratio of a welding beat. 本発明に係る溶接最適化方法の第4の実施の形態を説明するための溶接継手部を示す説明図。Explanatory drawing which shows the weld joint part for demonstrating 4th Embodiment of the welding optimization method which concerns on this invention.

以下、本発明を実施するための最良の形態を、図面に基づき説明する。   The best mode for carrying out the present invention will be described below with reference to the drawings.

[A]第1の実施の形態(図1〜図11)
図1は、本発明に係る溶接最適化方法の第1の実施の形態を実施する溶接最適化システムを備えた自動溶接機による溶接方法を示す説明図である。図2は、図1の溶接最適化システムの構成を示すブロック図である。図3は、図2の溶接最適化システムが実施する溶接最適化方法を示すフローチャートである。
[A] First embodiment (FIGS. 1 to 11)
FIG. 1 is an explanatory view showing a welding method by an automatic welder equipped with a welding optimization system for carrying out the first embodiment of the welding optimization method according to the present invention. FIG. 2 is a block diagram showing a configuration of the welding optimization system of FIG. FIG. 3 is a flowchart showing a welding optimization method performed by the welding optimization system of FIG.

図1に示す自動溶接装置としての自動溶接機10は、溶接構造物としての厚板1A、1Bの溶接継手部2に形成された継手開先3(図4(B))に対して複数の溶接パスを行って複数層の溶接(いわゆる多層盛り溶接)を実際に施行するものである。この自動溶接機10は、溶接トーチ11、自動溶接機制御装置12、自動溶接機電源装置13、及び解析結果データベースとしての溶接条件データベース14を有して構成される。   An automatic welding machine 10 as an automatic welding apparatus shown in FIG. 1 has a plurality of joint grooves 3 (FIG. 4 (B)) formed on welded joint portions 2 of thick plates 1A and 1B as welded structures. A plurality of layers of welding (so-called multi-layer welding) are actually performed by performing a welding pass. The automatic welder 10 includes a welding torch 11, an automatic welder control device 12, an automatic welder power supply device 13, and a welding condition database 14 as an analysis result database.

溶接トーチ11に自動溶接機電源装置13から電源が供給される。自動溶接機制御装置12は、溶接条件データベース14に保存された溶接条件に基づいて各溶接パス毎に溶接トーチ11を制御し、厚板1A及び1Bの溶接継手部2に溶接、例えばアーク溶接を施行させる。前記溶接条件データベース14には、溶接最適化システム15にて解析された解析結果である前記溶接条件、即ち継手の種類、継手開先形状、溶接パス数、及び各溶接パスの溶接条件が記録され保存される(図3参照)。各溶接パスの溶接条件としては、溶接方法、溶接姿勢、溶接電圧、溶接電流、溶接速度、溶接金属供給量、溶接棒(溶接金属)径、溶接パス形状、溶接パス位置等である。   Power is supplied to the welding torch 11 from the automatic welder power supply device 13. The automatic welder control device 12 controls the welding torch 11 for each welding pass based on the welding conditions stored in the welding condition database 14, and performs welding, for example, arc welding, to the welded joint portions 2 of the thick plates 1A and 1B. Enforce. The welding condition database 14 records the welding conditions, which are analysis results analyzed by the welding optimization system 15, that is, the type of joint, the shape of the joint groove, the number of welding passes, and the welding conditions of each welding pass. Saved (see FIG. 3). The welding conditions of each welding pass include a welding method, a welding posture, a welding voltage, a welding current, a welding speed, a weld metal supply amount, a welding rod (weld metal) diameter, a welding pass shape, a welding pass position, and the like.

前記溶接最適化システム15は、複数層の溶接を施行するための溶接設計を最適に行う溶接最適化方法を実行するものである。この溶接最適化システム15による解析結果である溶接条件は、溶接条件データベース14を介して自動溶接機制御装置12へ入力されることで、自動溶接機10を用いた実際の溶接施行の入力データとして用いられる。   The welding optimization system 15 executes a welding optimization method for optimally designing a weld for performing a plurality of layers of welding. The welding conditions, which are the results of analysis by the welding optimization system 15, are input to the automatic welding machine control device 12 via the welding condition database 14, and as input data for actual welding execution using the automatic welding machine 10. Used.

自動溶接機10を用いた実際の溶接を施行する際には、変位センサ(例えばレーザー変位計など)16と、温度センサ(例えば熱電対など)17と、溶接記録データベース18が用いられる。変位センサ16は、各溶接パスの位置、及び継手開先3形状の溶接変形を測定する。また、温度センサ17は、溶接継手部2近傍に設置されて、各溶接パスの溶接施工時における温度履歴を測定する。   When actual welding using the automatic welder 10 is performed, a displacement sensor (for example, a laser displacement meter) 16, a temperature sensor (for example, a thermocouple) 17, and a welding record database 18 are used. The displacement sensor 16 measures the position of each welding pass and the welding deformation of the joint groove 3 shape. Moreover, the temperature sensor 17 is installed in the welding joint part 2 vicinity, and measures the temperature history at the time of the welding construction of each welding pass.

溶接記録データベース18には、図3に示すように、実際の溶接施行中における、継手の種類、継手開先形状、溶接パス数、及び各溶接パスの溶接条件などの溶接条件と共に、温度センサ17にて測定された温度履歴情報と、変位センサ16にて測定された継手開先3形状の溶接変形情報とが溶接条件に対応づけて、溶接施行情報として記録され保存される。   As shown in FIG. 3, the welding record database 18 includes a temperature sensor 17 together with welding conditions such as a joint type, a joint groove shape, the number of welding passes, and welding conditions of each welding pass during actual welding. The temperature history information measured in step 1 and the welding deformation information of the joint groove 3 shape measured by the displacement sensor 16 are recorded and stored as welding execution information in association with the welding conditions.

ここで、本実施形態の多層盛り溶接で取り扱われる名称について説明する。「ビード」とは、1回の溶接で継手に積まれる溶接金属が溶融した後に凝固した塊をさし、「層」とは、継手に積まれるビードの層をいい、「多層盛り」とは、ビードを複数層積み上げて溶接することをいう。また「パス」とは、溶接進行方向に沿って行う一回の溶接操作のことをいう。   Here, the name handled by the multilayer pile welding of this embodiment is demonstrated. “Bead” refers to a solidified mass after the weld metal that is stacked on the joint in a single weld is melted. “Layer” refers to a layer of beads that is stacked on the joint. This refers to the welding of multiple layers of beads. The “pass” refers to a single welding operation performed along the welding direction.

さて、溶接最適化方法を実行する溶接最適化システム15は、図2に示すように、基本解析モデル生成ステップを実行する基本解析モデル生成手段19と、溶接条件等決定ステップを実行する溶接条件等決定手段20と、溶接変形解析ステップを実行する溶接変形解析手段21と、指標判定ステップを実行する指標判定手段22と、データ記録ステップを実行するデータ記録手段23とを有して構成される。   As shown in FIG. 2, the welding optimization system 15 that executes the welding optimization method includes basic analysis model generation means 19 that executes a basic analysis model generation step, welding conditions that execute a welding condition determination step, and the like. The determining unit 20 includes a welding deformation analyzing unit 21 that executes a welding deformation analyzing step, an index determining unit 22 that executes an index determining step, and a data recording unit 23 that executes a data recording step.

基本解析モデル生成手段19が実行する基本解析モデル生成ステップは、溶接構造物としての例えば厚板1A及び1Bについて、溶接継手部2の継手の種類、継手開先3の形状に応じた基本解析モデル24(図5;後に詳説)を生成する。この基本解析モデル生成ステップは、図3のステップS11〜S13に相当する。   The basic analysis model generation step executed by the basic analysis model generation means 19 is a basic analysis model corresponding to the type of joint of the welded joint portion 2 and the shape of the joint groove 3 for, for example, the thick plates 1A and 1B as the welded structures. 24 (FIG. 5; detailed later) is generated. This basic analysis model generation step corresponds to steps S11 to S13 in FIG.

溶接条件等決定手段20が実行する溶接条件等決定ステップは、まず、任意の順番(例えば第k(kは1以上の整数)番目)の溶接パスの溶接条件を、その前になされた溶接パスによる継手開先3形状の溶接変形を考慮して、溶接不良を起こさない適正範囲で決定する。この溶接条件は、本実施の形態では、実際の溶接施行情報が予め保存された溶接記録データベース18から、例えば溶接電圧、溶接電流、溶接速度、溶接金属供給量及び溶接棒径等が選択され決定される。次に、溶接条件等決定ステップは、この決定した溶接条件に基づいて、この第k番目の溶接パスの溶接ビート断面形状を求める。この溶接条件等決定ステップは、図3のステップS15及びS16に相当する。   The welding condition etc. determining step executed by the welding condition etc. determining means 20 is performed by first setting the welding conditions of the welding pass in an arbitrary order (for example, k-th (k is an integer of 1 or more)) before the welding pass. In consideration of the welding deformation of the joint groove 3 shape due to the above, it is determined within an appropriate range that does not cause welding failure. In this embodiment, the welding conditions are determined by selecting, for example, a welding voltage, a welding current, a welding speed, a welding metal supply amount, a welding rod diameter, and the like from the welding record database 18 in which actual welding execution information is stored in advance. Is done. Next, a welding condition etc. determination step calculates | requires the welding beat cross-sectional shape of this kth welding pass based on this determined welding condition. This step for determining welding conditions and the like corresponds to steps S15 and S16 in FIG.

溶接変形解析手段21が実行する溶接変形解析ステップは、まず第k番目の溶接パスの溶接ビート断面形状を解析モデル化し、このビード解析モデル25を基本解析モデル24に追加して解析モデル26(共に図7;後に詳説)を生成する。次に、溶接変形解析ステップは、第k番目の溶接パスによって生じた継手開先形状の溶接変形を、解析モデル26を用いた熱弾塑性解析によって求める。この溶接変形解析ステップは、図3のステップS17及びS18に相当する。   In the welding deformation analysis step executed by the welding deformation analysis means 21, first, the weld beat cross-sectional shape of the k-th welding path is converted into an analysis model, and this bead analysis model 25 is added to the basic analysis model 24 to add an analysis model 26 (both together). FIG. 7; details will be generated later. Next, in the welding deformation analysis step, the weld deformation of the joint groove shape generated by the k-th welding pass is obtained by thermoelastic-plastic analysis using the analysis model 26. This welding deformation analysis step corresponds to steps S17 and S18 in FIG.

上述の溶接条件等決定ステップと溶接変形解析ステップは、他の順番の溶接パス、つまり第k番目の溶接パス以降の溶接パスについても実行し、溶接継手部2の溶接解析を完了して溶接パス数n(nは2以上の整数)を決定する。   The above-described welding condition determination step and welding deformation analysis step are also executed for the other welding passes, that is, the welding passes after the k-th welding pass, and the welding analysis of the welded joint portion 2 is completed and the welding pass is completed. The number n (n is an integer of 2 or more) is determined.

指標判定手段22が実行する指標判定ステップは、まず、溶接継手部2における溶接パス数nの決定後に、この溶接継手部2に全ての溶接パスを実行したときの判定指標値を求める。この判定指標値は、溶接解析完了後における溶接継手部2の残留変形値であり、熱弾塑性解析により求めたものである。指標判定ステップは、次に、求めた残留変形値が許容範囲内にあるか否か、例えば予め設定した許容残留変形値以下であるか否かを判定する。   In the index determination step executed by the index determination means 22, first, after determining the number of welding passes n in the welded joint portion 2, a determination index value when all the weld passes are executed in the welded joint portion 2 is obtained. This determination index value is a residual deformation value of the welded joint portion 2 after completion of the welding analysis, and is obtained by thermoelastic-plastic analysis. In the index determination step, it is next determined whether or not the obtained residual deformation value is within an allowable range, for example, whether or not it is equal to or less than a preset allowable residual deformation value.

指標判定ステップは、求めた残留変形値が許容残留変形値を超えている場合には、継手の種類、継手開先形状、各溶接パスの溶接条件を変更して、基本解析モデル生成ステップ、溶接条件等決定ステップ及び溶接変形解析ステップを再度実行させる。この指標判定ステップは、図3のステップS21及びS22に相当する。   In the index determination step, if the obtained residual deformation value exceeds the allowable residual deformation value, the joint type, joint groove shape, and welding conditions of each welding pass are changed, and the basic analysis model generation step, welding The condition determination step and the welding deformation analysis step are executed again. This index determination step corresponds to steps S21 and S22 in FIG.

データ記録手段23が実行するデータ記録ステップは、指標判定ステップにおける残留変形値が許容残留変形値以下である場合に、継手の種類、継手開先の形状、溶接パス数、各溶接パスの溶接条件を溶接条件データベース14に記録して保存する。このデータ記録ステップは、図3のステップS23に相当する。   The data recording step executed by the data recording means 23 includes the joint type, joint groove shape, number of welding passes, and welding conditions for each welding pass when the residual deformation value in the index determination step is equal to or less than the allowable residual deformation value. Is recorded and stored in the welding condition database 14. This data recording step corresponds to step S23 in FIG.

次に、上述の基本解析モデル生成ステップ、溶接条件等決定ステップ、溶接変形解析ステップ、指標判定ステップ及びデータ記録ステップを有してなる溶接最適化方法を、図3〜図11を用いて具体的に説明する。   Next, a welding optimization method including the above-described basic analysis model generation step, welding condition determination step, welding deformation analysis step, index determination step, and data recording step will be described with reference to FIGS. Explained.

図3に示すように、溶接構造物の溶接プロセスを最適化するには、まず対象となる溶接構造物の形状及び材質を決定する(S11)。次に、継手の種類や継手開先3形状の選定を行い(S12)、解析評価を実施するための基本解析モデル24を生成する(S13)。   As shown in FIG. 3, in order to optimize the welding process of the welded structure, first, the shape and material of the target welded structure are determined (S11). Next, the type of joint and the shape of the joint groove 3 are selected (S12), and a basic analysis model 24 for performing analysis evaluation is generated (S13).

本実施の形態では、例えば図4に示すような突合せ継手で、継手開先3がV型開先形状を有する2枚の厚板1A、1Bを、アーク溶接により多層盛り溶接する場合について考える。ここでは、継手開先3の開先角度がθ1であるものとして、溶接パス部を除く基本解析モデル24の生成を行う。すなわち母材に関して、図5に示すように、有限要素法を用いた要素を作成して基本解析モデル24を生成する。いま説明のために、簡易な2次元モデルを用いているが、継手開先3形状の溶接変形を精度良く求めるためには、2次元モデルよりも3次元モデルを用いる方が好ましい。   In the present embodiment, for example, consider a case in which two thick plates 1A and 1B having a joint groove 3 having a V-shaped groove shape are multilayered by arc welding in a butt joint as shown in FIG. Here, assuming that the groove angle of the joint groove 3 is θ1, the basic analysis model 24 excluding the weld pass portion is generated. That is, with respect to the base material, as shown in FIG. 5, an element using a finite element method is created and a basic analysis model 24 is generated. For the sake of explanation, a simple two-dimensional model is used. However, in order to accurately obtain the welding deformation of the joint groove 3 shape, it is preferable to use the three-dimensional model rather than the two-dimensional model.

次に、溶接パスを数えるためのパラメータkを1に設定する(S14)。そして、予め各種溶接条件を保存してある溶接記録データベース18を参照し、第k番目(第1番目)の溶接パスの溶接条件として最適な条件(溶接電圧、溶接電流、溶接速度、溶接金属供給量及び溶接棒径など)を決定する(S15)。この溶接条件のうち、特に溶接不良に密接に関係する溶接電流、溶接電圧及び溶接速度については、高温割れ、融合不良、アンダーカット及びオーバーラップ等の溶接欠陥を生じさせない適切な範囲で選択する。   Next, the parameter k for counting the welding passes is set to 1 (S14). Then, referring to the welding record database 18 in which various welding conditions are stored in advance, the optimum conditions (welding voltage, welding current, welding speed, weld metal supply) as the welding conditions of the kth (first) welding pass are referred to. Amount, welding rod diameter, etc.) are determined (S15). Among these welding conditions, the welding current, the welding voltage, and the welding speed that are particularly closely related to the welding failure are selected within an appropriate range that does not cause welding defects such as hot cracking, fusion failure, undercut, and overlap.

この第k番目の溶接パスにおける溶接条件を選定するに際しては、それ以前になされた第(k−1)番目の溶接パスにおける溶接開先3形状の溶接変形を考慮して行う。ここで、第(k−1)番目の溶接パスにおける溶接開先3形状の溶接変形は、溶接変形解析手段21における溶接変形解析ステップによる熱弾塑性解析(図3のS18)によって解析されたものを用いる。   When selecting the welding conditions in the k-th welding pass, the welding deformation of the three weld groove shapes in the (k-1) -th welding pass made before that is considered. Here, the welding deformation of the weld groove 3 shape in the (k-1) th welding pass was analyzed by the thermoelastic-plastic analysis (S18 in FIG. 3) in the welding deformation analysis step in the welding deformation analysis means 21. Is used.

次に、ステップS15にて選定した溶接条件から溶接ビード断面形状を求める(S16)。この溶接ビード断面形状は、溶接記録データベース18中の溶接金属供給量、溶接棒径及び溶接速度から推測可能である。例えば、溶接継手部2の長さがL=240mmとし、溶接速度Vw=60mm/min、溶接金属供給量Vp=120mm/min、溶接棒径D=2mmとすれば、溶接ビード断面積Sは、以下の式より求められる。   Next, a weld bead cross-sectional shape is obtained from the welding conditions selected in step S15 (S16). The weld bead cross-sectional shape can be estimated from the weld metal supply amount, the welding rod diameter, and the welding speed in the weld record database 18. For example, if the length of the weld joint 2 is L = 240 mm, the welding speed Vw = 60 mm / min, the weld metal supply amount Vp = 120 mm / min, and the welding rod diameter D = 2 mm, the weld bead cross-sectional area S is It is obtained from the following formula.

[数1]
S=(D/2)×π×(Vp×L/Vw)/L=(D/2)×π×Vp/Vw
=(2/2)×π×120/60=6.23mm
[Equation 1]
S = (D / 2) 2 × π × (Vp × L / Vw) / L = (D / 2) 2 × π × Vp / Vw
= (2/2) 2 × π × 120/60 = 6.23 mm 2

溶接ビード断面積Sに対して、溶接ビードが埋めるべき継手開先3の寸法から溶接ビード断面形状(溶接パス形状)を求め、更に、1層を1つの溶接パスで構成するのか、あるいは1層を複数の溶接パスで構成するのかをこの段階で決定する。   With respect to the weld bead cross-sectional area S, the weld bead cross-sectional shape (weld path shape) is obtained from the dimensions of the joint groove 3 to be filled with the weld bead, and one layer is constituted by one weld pass, or one layer It is determined at this stage whether or not to consist of a plurality of welding passes.

また、溶接ビード断面積Sを求める方法として、前述の特許文献1に記載され図6に示すように、溶接電流と溶接速度と溶接ビード断面積との関係を溶接記録データベース18から取り出してグラフ化し、このグラフから求めても良い。つまり、図6に示したグラフから判るように、溶接ビード断面積は溶接電流に対してほぼ直線的な比例関係であり、溶接速度に対しては反比例の関係にある。このようなグラフを、溶接方法、溶接姿勢ごとに直線近似できる代表点(例えば図6の点A、B)について事前に要素試験などで把握し、溶接記録データベース18に追加しておけば、選定した溶接電流及び溶接速度から溶接ビード断面積を求めることが可能となる。更に、例え溶接記録データベース18中に存在しない任意の溶接条件に対しても、溶接電流及び溶接速度から直線内挿することで、溶接ビード断面積を求めることが可能となる。   Further, as a method for obtaining the weld bead cross-sectional area S, the relationship among the welding current, the welding speed, and the weld bead cross-sectional area is extracted from the welding record database 18 and graphed as shown in FIG. It may be obtained from this graph. That is, as can be seen from the graph shown in FIG. 6, the weld bead cross-sectional area has a substantially linear proportional relationship with the welding current, and has an inverse proportional relationship with the welding speed. Such a graph can be selected if the representative points (for example, points A and B in FIG. 6) that can be linearly approximated for each welding method and welding posture are grasped by an element test in advance and added to the welding record database 18. The weld bead cross-sectional area can be obtained from the welding current and the welding speed. Furthermore, for any welding condition that does not exist in the welding record database 18, the weld bead cross-sectional area can be obtained by linearly interpolating from the welding current and the welding speed.

この第k番目の溶接パスの溶接ビード断面形状を解析モデル化したビード解析モデル25を、図7に示すように基本解析モデル24に追加して、解析モデル26を生成する(S17)。その際、第k番目のビード解析モデル25Aと基礎解析モデル24の節点が一致しない場合には、図8に示すように、基礎解析モデル24の節点を第k番目のビード解析モデル25Aの節点に合うように修正して、解析モデル26Aを生成する。   The bead analysis model 25 obtained by analyzing the weld bead cross-sectional shape of the k-th welding pass is added to the basic analysis model 24 as shown in FIG. 7 to generate an analysis model 26 (S17). At this time, if the k-th bead analysis model 25A and the node of the basic analysis model 24 do not match, the node of the basic analysis model 24 becomes the node of the k-th bead analysis model 25A as shown in FIG. The analysis model 26A is generated by making modifications so as to match.

次に、解析モデル26、26Aを用いて、第k番目の溶接パスによる熱弾塑性解析から継手開先3形状の溶接変形を解析して予測する(S18)。一般的な公知技術として熱弾塑性解析を行う場合、溶接継手部2とその近傍の温度分布データを得るために、熱伝導解析を行う必要がある。本実施の形態では、溶接記録データベース18中に、第k番目の溶接パスの溶接条件に対応する温度履歴データが存在する場合について説明する。   Next, using the analysis models 26 and 26A, the welding deformation of the joint groove 3 shape is analyzed and predicted from the thermoelastic-plastic analysis by the k-th welding pass (S18). When performing thermoelastic-plastic analysis as a general known technique, it is necessary to perform heat conduction analysis in order to obtain temperature distribution data of the welded joint portion 2 and its vicinity. In the present embodiment, a case where temperature history data corresponding to the welding condition of the kth welding pass exists in the welding record database 18 will be described.

解析モデル26、26Aでは、第k番目の溶接パスの溶接条件に基づいて熱伝導解析を行い、解析モデル26、26Aの全体の温度分布、温度履歴を求めて解析温度Taを得る。溶接記録データベース18中の温度履歴データを測定温度Teで表し、この測定温度Teが測定された実際の熱源(溶接トーチ11)と温度センサ17の位置関係に相当する解析モデル26、26A上の位置(例えば図7の温度センサ対応点C)で、上述のように熱伝導解析により求められた解析温度をTaで表す。   In the analysis models 26 and 26A, the heat conduction analysis is performed based on the welding conditions of the kth welding pass, and the temperature distribution and temperature history of the entire analysis models 26 and 26A are obtained to obtain the analysis temperature Ta. The temperature history data in the welding record database 18 is represented by the measured temperature Te, and the positions on the analysis models 26 and 26A corresponding to the positional relationship between the actual heat source (welding torch 11) at which the measured temperature Te is measured and the temperature sensor 17. (For example, the temperature sensor corresponding point C in FIG. 7), Ta represents the analysis temperature obtained by the heat conduction analysis as described above.

この解析温度Taは、望ましくはTa=Teであるが、本発明者らの経験では、それぞれのピーク温度の比(Te−Ta)/Teの値が±5%以内であれば、熱弾塑性解析で得られる解析値が適切な値になることを確認している。以下の説明では、Ta=Teであるとして説明するが、上述の解析温度Taと測定温度Teとの温度比較作業を温度校正と呼ぶ。   The analysis temperature Ta is desirably Ta = Te. However, according to the experience of the present inventors, if the value of the ratio of each peak temperature (Te−Ta) / Te is within ± 5%, the thermoelastic-plasticity It is confirmed that the analysis value obtained by the analysis is an appropriate value. In the following description, it is assumed that Ta = Te. However, the temperature comparison operation between the analysis temperature Ta and the measurement temperature Te is referred to as temperature calibration.

温度校正の結果、Ta≠Te(つまり(Te−Ta)/Teの値が±5%を超えている場合)であれば、解析モデル26、26Aの入熱条件、即ち、溶接電圧Ekと溶接電流Ikの積(入熱量Q)に対して、例えば入熱効率を変更するなどの補正を行い、Ta=Teとなるまで熱伝導解析を繰り返す。Ta=Teとなった段階で、温度校正で得られた解析温度Taを用いて熱弾塑性解析を行い、継手開先3形状の溶接変形を求める。   As a result of temperature calibration, if Ta ≠ Te (that is, if the value of (Te−Ta) / Te exceeds ± 5%), the heat input conditions of the analysis models 26 and 26A, that is, the welding voltage Ek and the welding The product of the current Ik (heat input amount Q) is corrected, for example, by changing the heat input efficiency, and the heat conduction analysis is repeated until Ta = Te. At the stage when Ta = Te, the thermoelastic-plastic analysis is performed using the analysis temperature Ta obtained by the temperature calibration, and the weld deformation of the joint groove 3 shape is obtained.

次に、解析モデル26、26A上で溶接継手部2の全てを上述のようにして溶接解析したか否かを判定し(S19)、溶接継手部2の全てにおいて溶接解析を実行していない場合にパラメータkに1を加え(S20)、第1番目から第n番目までの溶接パスについて、溶接条件の選定(S15)、溶接ビード断面形状の決定(S16)、熱弾塑性解析(S17、S18)を順次実施する。溶接継手部2の全てにおいて溶接解析を実行した段階で、この溶接継手部2における継手開先3形状の溶接変形を累積して残留変形を求める(S21)。尚、パラメータkは、溶接が完了した段階でnとなり、従って溶接継手部2の全体の溶接パス数はn個である。   Next, it is determined whether or not all of the welded joint portions 2 have been subjected to the weld analysis as described above on the analysis models 26 and 26A (S19), and the weld analysis is not performed on all of the welded joint portions 2 1 is added to the parameter k (S20), the welding conditions are selected (S15), the weld bead cross-sectional shape is determined (S16), and the thermoelastic-plastic analysis (S17, S18) is performed for the first to nth welding passes. ) In sequence. At the stage where the welding analysis is executed in all of the welded joint portions 2, the welding deformation of the joint groove 3 shape in the welded joint portion 2 is accumulated to obtain a residual deformation (S21). Note that the parameter k is n when welding is completed, and therefore the total number of welding passes of the weld joint 2 is n.

ここで、ステップS15の溶接条件の選定に際し、溶接中に発生する継手開先3形状の溶接変形を考慮して解析を行った場合と、特許文献2のように継手開先形状の溶接変形を考慮しないで解析を行った場合について、溶接パス数の違いを比較する。図9は、継手開先形状の溶接変形を考慮しないで計画した溶接ビード断面図、図10は、ステップS15により溶接中に発生する継手開先3形状の溶接変形を考慮して計画した溶接ビード断面図である。尚、図10では、破線が溶接変形を考慮しない場合の継手開先形状であり、実線が溶接変形を考慮した継手開先3の最終的な形状である。また、図9と図10中の○数字は、溶接パス番号を表している。   Here, when selecting the welding conditions in step S15, the analysis is performed in consideration of the welding deformation of the joint groove 3 shape generated during welding, and the welding deformation of the joint groove shape as in Patent Document 2 is performed. Compare the differences in the number of welding passes when the analysis is performed without consideration. FIG. 9 is a cross-sectional view of a weld bead planned without considering the weld deformation of the joint groove shape, and FIG. 10 is a weld bead planned in consideration of the weld deformation of the joint groove 3 shape generated during welding in step S15. It is sectional drawing. In FIG. 10, the broken line is the joint groove shape when welding deformation is not considered, and the solid line is the final shape of the joint groove 3 considering welding deformation. Moreover, the ◯ numerals in FIGS. 9 and 10 represent welding pass numbers.

図10に示すように、溶接パスを順次施工する溶接解析を行うに従い、継手開先3の開先角度は次第に小さくなっていく。これにより、例えば4層目の溶接パス数を比較すると3パスから2パス、最終層の6層目で4パスから3パスにそれぞれ、溶接パス数が減少することになる。   As shown in FIG. 10, the groove angle of the joint groove 3 gradually decreases as the welding analysis for sequentially constructing the welding paths is performed. Thereby, for example, when the number of welding passes of the fourth layer is compared, the number of welding passes decreases from 3 passes to 2 passes, and from the 4th pass to 3 passes in the sixth layer of the final layer.

その後、溶接継手部2の溶接解析完了後の熱弾塑性解析結果から、全溶接パスでの残留変形値Σεを求める(S21)。次に、この解析で得られた残留変形値Σεと予め定めておいた許容残留変形値と比較する(S22)。残留変形値Σε>許容残留変形値であれば、ステップS12に戻り、例えば図11に示すように継手開先3の開先角度θ1を小さくして開先角度θ2(θ2<θ1)に変更し、またはステップS15にて溶接条件を変更し、その後、新ためて解析モデル26、26Aを生成して(S17)溶接変形を解析し(S18)、これらを全ての溶接パスについて実行して(S19、S20)残留変形値を評価する(S21)。ここで、継手開先3の開先角度を小さくするのは、溶接パス数を減少させて入熱量を低減することで、残留変形、残留応力を抑制できるからである。   Thereafter, the residual deformation value Σε in all the welding passes is obtained from the thermoelastic-plastic analysis result after completion of the welding analysis of the welded joint portion 2 (S21). Next, the residual deformation value Σε obtained by this analysis is compared with a predetermined allowable residual deformation value (S22). If the residual deformation value Σε> the allowable residual deformation value, the process returns to step S12, and, for example, as shown in FIG. 11, the groove angle θ1 of the joint groove 3 is reduced and changed to the groove angle θ2 (θ2 <θ1). Alternatively, the welding conditions are changed in step S15, and thereafter, new analysis models 26 and 26A are generated (S17), the welding deformation is analyzed (S18), and these are executed for all the welding passes (S19). , S20) The residual deformation value is evaluated (S21). Here, the reason why the groove angle of the joint groove 3 is reduced is that residual deformation and residual stress can be suppressed by reducing the number of welding passes to reduce the heat input.

一方、残留変形値Σε≦許容残留変形値であれば、全ての溶接条件(継手の種類、継手開先形状、各溶接パスの溶接条件、溶接パス数など)と、解析結果(各溶接パスの溶接ビード断面形状、溶接継手部2における全溶接パスの残留変形値など)とを、溶接条件データベース14に記録して保存し(S23)、解析ルーチンを終了する。この溶接条件データベース14に保存された溶接条件は、前述のごとく、例えば図1に示す自動溶接機10の入力データとして用いられる。   On the other hand, if the residual deformation value Σε ≦ allowable residual deformation value, all welding conditions (joint type, joint groove shape, welding conditions for each welding pass, number of welding passes, etc.) and analysis results (for each welding pass) The weld bead cross-sectional shape, the residual deformation value of all the weld passes in the weld joint 2 and the like are recorded and stored in the welding condition database 14 (S23), and the analysis routine is terminated. As described above, the welding conditions stored in the welding condition database 14 are used, for example, as input data of the automatic welding machine 10 shown in FIG.

従って、本実施の形態によれば、次の効果(1)を奏する。   Therefore, according to the present embodiment, the following effect (1) is obtained.

(1)溶接最適化システム15が実行する溶接最適化方法では、溶接条件等決定ステップ(S15、S16)及び溶接変形解析ステップ(S17、S18)において、継手開先3形状の溶接変形を考慮して溶接継手部2の溶接解析を実行することにより、溶接施行前に、実際の溶接施行に即した溶接パス数を含む正確な溶接パス計画を作成できる。このため、溶接パス数が実際の溶接施行の溶接パス数と略一致して、入熱量を実際の入熱量と略同一にできるので、実際の溶接施行の判定指標値となる残留変形値に対して、指標判定ステップ(S21、S22)において、この残留変形値を精度良く解析して評価できる。従って、残留変形値を許容範囲内に抑制できる最適な溶接条件を決定できる。   (1) In the welding optimization method executed by the welding optimization system 15, the welding deformation of the joint groove 3 shape is considered in the welding condition determination step (S15, S16) and the welding deformation analysis step (S17, S18). By executing the welding analysis of the welded joint portion 2, it is possible to create an accurate welding pass plan including the number of welding passes in accordance with the actual welding execution before the welding is executed. For this reason, the number of welding passes is approximately the same as the number of welding passes for actual welding execution, and the amount of heat input can be made substantially the same as the actual amount of heat input. Thus, in the index determination step (S21, S22), the residual deformation value can be analyzed and evaluated with high accuracy. Therefore, it is possible to determine an optimum welding condition that can suppress the residual deformation value within an allowable range.

[B]第2の実施の形態(図12)
図12は、本発明に係る溶接最適化方法の第2の実施の形態を示すフローチャートである。この第2の実施の形態において、前記第1の実施の形態と同様な部分については、同一の符号を付すことにより説明を簡略化し、または省略する。
[B] Second embodiment (FIG. 12)
FIG. 12 is a flowchart showing a second embodiment of the welding optimization method according to the present invention. In the second embodiment, the same parts as those in the first embodiment are denoted by the same reference numerals, and the description is simplified or omitted.

本実施の形態の溶接最適化システムが実行する溶接最適化方法が前記第1の実施の形態と異なる点は、指標判定ステップ(S41、S42)において用いられる判定指標値が、溶接解析完了後における溶接継手部2の残留応力値である点である。この残留応力値は、熱弾塑性解析から求めた溶接解析完了後における溶接継手部2の残留変形値から求められ、または熱弾塑性解析から直接求められる。   The welding optimization method executed by the welding optimization system of the present embodiment is different from that of the first embodiment in that the determination index value used in the index determination step (S41, S42) is after the welding analysis is completed. This is a point that is a residual stress value of the welded joint portion 2. The residual stress value is obtained from the residual deformation value of the welded joint portion 2 after completion of the welding analysis obtained from the thermoelastic-plastic analysis or directly obtained from the thermoelastic-plastic analysis.

つまり、ステップS31〜S39、S43は、前記第1の実施の形態のステップS11〜S19、S23とそれぞれ同一である。ステップS41において、ステップS38、S39の溶接解析完了後の熱弾塑性解析結果(溶接継手部2の残留変形値)から、全溶接パスでの残留応力値σRを求める(S41)。次に、この得られた残留応力値σRを、予め定めておいた許容残留応力値と比較する(S42)。「残留応力値σR>許容残留応力値」であれば、ステップS32に戻り、図11に示すように継手開先3の開先角度θ1を小さくして開先角度θ2とし、またはステップS35にて溶接条件を変更し、その後、新ためて解析モデル26、26Aを生成して(S37)溶接変形を解析し(S38)、これらを全ての溶接パスについて実行して(S39、S40)残留応力値を評価する(S41)。   That is, steps S31 to S39 and S43 are the same as steps S11 to S19 and S23 of the first embodiment, respectively. In step S41, a residual stress value σR in all welding passes is obtained from the thermoelastic-plastic analysis result (residual deformation value of the welded joint portion 2) after completion of the welding analysis in steps S38 and S39 (S41). Next, the obtained residual stress value σR is compared with a predetermined allowable residual stress value (S42). If “residual stress value σR> allowable residual stress value”, the process returns to step S32, and the groove angle θ1 of the joint groove 3 is reduced to a groove angle θ2 as shown in FIG. 11, or in step S35. The welding conditions are changed, and then new analysis models 26 and 26A are generated (S37), the welding deformation is analyzed (S38), and these are executed for all the welding passes (S39, S40). Is evaluated (S41).

一方、「残留応力値σR≦許容残留応力値」であれば、全ての溶接条件(継手の種類、継手開先形状、各溶接パスの溶接条件、溶接パス数など)と、解析結果(各溶接パスの溶接ビード断面形状、溶接継手部2における全溶接パスの残留応力値など)とを、溶接条件データベース14に記録して保存し(S43)、解析ルーチンを終了する。   On the other hand, if “residual stress value σR ≦ allowable residual stress value”, all welding conditions (joint type, joint groove shape, welding conditions of each welding pass, number of welding passes, etc.) and analysis results (each welding) The weld bead cross-sectional shape of the pass, the residual stress value of all the weld passes in the welded joint portion 2 and the like) are recorded and stored in the welding condition database 14 (S43), and the analysis routine is terminated.

従って、本実施の形態によれば、次の効果(2)を奏する。   Therefore, according to the present embodiment, the following effect (2) is obtained.

(2)溶接最適化システムが実行する溶接最適化方法では、溶接条件等決定ステップ(S35、S36)及び溶接変形解析ステップ(S37、S38)において、継手開先3形状の溶接変形を考慮して溶接継手部2の溶接解析を実行することにより、溶接施行前に、実際の溶接施行に即した溶接パス数を含む正確な溶接パス計画を作成できる。このため、溶接パス数が実際の溶接施行の溶接パス数と略一致して、入熱量を実際の入熱量と略同一にできるので、実際の溶接施行時の判定指標値となる残留応力値に対して、指標判定ステップ(S41、S42)において、この残留応力値を精度良く解析して評価できる。従って、残留応力値を許容範囲内に抑制できる最適な溶接条件を決定できる。   (2) In the welding optimization method executed by the welding optimization system, the welding deformation of the joint groove 3 shape is taken into consideration in the welding condition determination step (S35, S36) and the welding deformation analysis step (S37, S38). By executing the welding analysis of the welded joint portion 2, an accurate welding path plan including the number of welding paths in accordance with the actual welding can be created before the welding is performed. For this reason, the number of welding passes is approximately the same as the number of welding passes for actual welding execution, and the heat input can be made substantially the same as the actual heat input amount. On the other hand, in the index determination step (S41, S42), the residual stress value can be analyzed and evaluated with high accuracy. Therefore, it is possible to determine an optimum welding condition that can suppress the residual stress value within an allowable range.

[C]第3の実施の形態(図13、図14)
図13は、本発明に係る溶接最適化方法の第3の実施の形態を示すフローチャートである。この第3の実施の形態において、前記第1の実施の形態と同様な部分については、同一の符号を付すことにより説明を簡略化し、または省略する。
[C] Third embodiment (FIGS. 13 and 14)
FIG. 13 is a flowchart showing a third embodiment of the welding optimization method according to the present invention. In the third embodiment, the same parts as those in the first embodiment are denoted by the same reference numerals, and the description is simplified or omitted.

本実施の形態の溶接最適化システムが実行する溶接最適化方法が前記第1の実施の形態と異なる点は、溶接条件等決定ステップが行う第k番目の溶接条件の決定に関して、適合する溶接条件が溶接記録データベース18中に存在するか否かを判断するステップ(図13のS55)と、適合する溶接条件が溶接記録データベース18中に存在しない場合に、溶接条件を解析により決定するステップ(図13のS58)が追加された点である。   The welding optimization method executed by the welding optimization system of the present embodiment is different from that of the first embodiment in that the welding conditions that are suitable for the determination of the kth welding condition performed by the welding condition etc. determining step. Is determined in the welding record database 18 (S55 in FIG. 13), and when no suitable welding condition exists in the welding record database 18, the welding condition is determined by analysis (FIG. 13 S58) is added.

つまり、ステップS51〜S54は、第1の実施の形態のステップS11〜S14とそれぞれ同一であり、ステップS56及びS57は、第1の実施の形態のステップS15、S16とそれぞれ同一であり、ステップS59〜S65は、第1の実施の形態のステップS17〜S23とそれぞれ同一である。   In other words, steps S51 to S54 are the same as steps S11 to S14 of the first embodiment, steps S56 and S57 are the same as steps S15 and S16 of the first embodiment, respectively, and step S59. To S65 are the same as steps S17 to S23 of the first embodiment, respectively.

ステップS55において、第k番目の溶接パスにおける溶接条件の選定にあたり、まず、溶接記録データベース18中に適合する溶接条件が存在するか否かを判断する。この判断で、第k番目の溶接パスの溶接条件が存在する場合には、第1の実施の形態と同一のステップS56及びS57に進む。   In step S55, when selecting the welding condition in the k-th welding pass, it is first determined whether or not there is a suitable welding condition in the welding record database 18. If it is determined that the welding condition of the k-th welding pass exists, the process proceeds to steps S56 and S57 that are the same as those in the first embodiment.

ステップS55で、第k番目の溶接パスの溶接条件が存在しないと判断された場合には、溶接条件を解析により決定するステップS58に進む。この溶接条件解析ステップS58では、入熱量(アーク溶接では、溶接電圧と溶接電流)、溶接速度、溶接金属供給量、溶接棒径などの溶接条件、及び溶接ビード断面形状を解析によって決定する。   If it is determined in step S55 that the welding condition of the k-th welding pass does not exist, the process proceeds to step S58 in which the welding condition is determined by analysis. In this welding condition analysis step S58, the amount of heat input (in the case of arc welding, welding voltage and welding current), welding speed, welding metal supply amount, welding rod diameter and other welding conditions, and the weld bead cross-sectional shape are determined by analysis.

溶接欠陥に関する解析事例としては、例えば上記非特許文献1等が知られている。つまり、第k番目の溶接パスにおける溶接条件を、力学モデルを用いた溶接欠陥解析から決定する。具体的には、溶接欠陥解析で得られる(入熱量/溶接速度)と溶接ビードの縦横比との関係(図14)を用いて、溶接欠陥が発生しない正常な溶接を行いうる範囲に評価点Dを求め、この評価点Dにおいて溶接速度、入熱量(溶接電流及び溶接電圧)、溶接ビートの断面形状などを決定する。   As an analysis example regarding a welding defect, for example, Non-Patent Document 1 and the like are known. That is, the welding condition in the kth welding pass is determined from the weld defect analysis using the dynamic model. Specifically, using the relationship between the welding heat analysis (heat input / welding speed) and the welding bead aspect ratio (Fig. 14), the evaluation points are within the range where normal welding without welding defects can be performed. D is determined, and at this evaluation point D, the welding speed, heat input (welding current and welding voltage), the cross-sectional shape of the welding beat, and the like are determined.

また、溶接ビード断面形状を決定する解析事例としては、例えば上記非特許文献2等が知られている。つまり、第k番目の溶接パスの溶接ビート断面形状を、溶接電流、溶接電圧及び溶接速度を用いた熱伝導方程式を用いた伝熱解析から決定する。具体的には、溶接速度及び入熱量(溶接電流、溶接速度)が、例えば上述のような溶接欠陥解析から決定されれば、これらを条件とした熱伝導方程式(ゴルダックの2楕円発熱モデル方程式、熱拡散モデル方程式)を用いた伝熱解析から、溶接ビート断面形状を決定する。   Further, as an analysis example for determining the weld bead cross-sectional shape, for example, Non-Patent Document 2 is known. That is, the welding beat cross-sectional shape of the k-th welding path is determined from the heat transfer analysis using the heat conduction equation using the welding current, the welding voltage, and the welding speed. Specifically, if the welding speed and the amount of heat input (welding current, welding speed) are determined, for example, from the above-described welding defect analysis, the heat conduction equation (Goldac's two-elliptic heat model equation, From the heat transfer analysis using the thermal diffusion model equation), the welding beat cross-sectional shape is determined.

また、任意の溶接条件に対応する温度データが溶接記録データベース18中に存在しない場合には、例えば上記特許文献4等に開示されている伝熱解析手法、すなわち、熱伝導方程式(ゴルダックの2楕円発熱モデル方程式、熱拡散モデル方程式)を用いた伝熱解析により温度履歴データを求めることが可能である。つまり、溶接トーチにより溶接構造物内に引き起こされる温度変化を、微分方程式または積分方程式により記述された熱伝導方程式を空間及び時間を離散化して数値的に解くことにより求めて、溶接時の温度履歴データを求める。この温度履歴データは、計測温度Teとみなされて解析温度Taと比較される。   Further, when temperature data corresponding to an arbitrary welding condition does not exist in the welding record database 18, for example, the heat transfer analysis method disclosed in the above-mentioned Patent Document 4 or the like, that is, the heat conduction equation (Goldac's two ellipses) It is possible to obtain temperature history data by heat transfer analysis using an exothermic model equation and a thermal diffusion model equation). That is, the temperature change caused by the welding torch in the welded structure is obtained by numerically solving the heat conduction equation described by the differential equation or integral equation by discretizing the space and time, and the temperature history during welding Ask for data. This temperature history data is regarded as the measured temperature Te and compared with the analysis temperature Ta.

ステップS57で第k番目の溶接パスの溶接ビード断面形状を決定した後、またはステップS58で第k番目の溶接パスの溶接条件を解析により決定し、第k番目の溶接パスの溶接ビード断面形状を決定した後に、ステップS59〜S62による熱弾塑性解析によって継手開先3形状の溶接変形を解析し、以後ステップS63〜S65を実行する。尚、このステップS63及びS64においては、残留変形値に代えて、第2の実施の形態と同様な残留応力値を用いてもよい。   After determining the weld bead cross-sectional shape of the k-th weld pass in step S57, or in step S58, the welding conditions of the k-th weld pass are determined by analysis, and the weld bead cross-sectional shape of the k-th weld pass is determined. After the determination, the welding deformation of the joint groove 3 shape is analyzed by thermal elastic-plastic analysis in steps S59 to S62, and thereafter steps S63 to S65 are executed. In steps S63 and S64, a residual stress value similar to that of the second embodiment may be used instead of the residual deformation value.

従って、本実施の形態によれば、次の効果(3)を奏する。   Therefore, according to the present embodiment, the following effect (3) is achieved.

(3)溶接最適化システムが実行する溶接最適化方法では、溶接条件等決定ステップ(S55〜S58)及び溶接変形解析ステップ(S59、S60)において、継手開先3形状の溶接変形を考慮して溶接継手部2の溶接解析を実行することにより、溶接施行前に、実際の溶接施行に即した溶接パス数を含む正確な溶接パス計画を作成できる。このため、溶接パス数が実際の溶接施行の溶接パス数と略一致して、入熱量を実際の入熱量と略同一にできるので、実際の溶接施行の判定指標値となる残留変形値や残留応力値に対して、指標判定ステップ(S63、S64)において、これらの残留変形値や残留応力値を精度良く解析して評価できる。従って、残留変形値や残留応力値を許容範囲内に抑制できる最適な溶接条件を決定できる。   (3) In the welding optimization method executed by the welding optimization system, the welding deformation of the joint groove 3 shape is taken into consideration in the welding condition determination step (S55 to S58) and the welding deformation analysis step (S59, S60). By executing the welding analysis of the welded joint portion 2, an accurate welding path plan including the number of welding paths in accordance with the actual welding can be created before the welding is performed. For this reason, the number of welding passes substantially coincides with the number of welding passes for actual welding execution, and the heat input can be made substantially the same as the actual heat input amount. In the index determination step (S63, S64), the residual deformation value and the residual stress value can be analyzed and evaluated with high accuracy for the stress value. Therefore, it is possible to determine an optimum welding condition that can suppress the residual deformation value and the residual stress value within an allowable range.

[D]第4の実施の形態(図15)
図15は、本発明に係る溶接最適化方法の第4の実施の形態を説明するための溶接継手部を示す説明図である。この第4の実施の形態において、前記第1の実施の形態と同様な部分については、同一の符号を付すことにより説明を簡略化し、または省略する。
[D] Fourth embodiment (FIG. 15)
FIG. 15 is an explanatory view showing a welded joint portion for explaining a fourth embodiment of the welding optimization method according to the present invention. In the fourth embodiment, the same parts as those in the first embodiment are denoted by the same reference numerals, and the description is simplified or omitted.

本実施の形態の溶接最適化システムが実行する溶接最適化方法が前記第1の実施の形態と異なる点は、溶接条件等決定ステップにおいて、任意の順番(第k番目)の溶接条件を、溶接不良を起こさない適正範囲内において、この順番の溶接パスの断面積が最大となるように決定した点である。   The welding optimization method executed by the welding optimization system of the present embodiment is different from that of the first embodiment in that, in the welding condition determination step, welding conditions in an arbitrary order (k-th) are welded. This is a point determined so that the cross-sectional area of the welding pass in this order is maximized within an appropriate range in which no defect occurs.

一般に溶接を行う際、初層や第2層では溶接電流は低めに設定される。これは、溶接開先3の底部が溶接による入熱によって溶けてしまい、この溶接開先3の底部が溶け落ちてしまうことを避けるためである。また最終層では、溶接の仕上げ面をきれいな面に保つために同様に溶接電流が低めに設定されて溶接される。従って、本実施形態に示す溶接ビード断面形状が最大となる溶接条件の選定は、第3層目以降から最終層の一つ前までの層に対して行われる。   In general, when welding is performed, the welding current is set lower in the first layer and the second layer. This is to prevent the bottom of the welding groove 3 from being melted by heat input by welding and the bottom of the welding groove 3 from being melted down. Further, in the final layer, the welding current is similarly set to be low in order to keep the finished surface of the welding clean. Therefore, the selection of the welding condition that maximizes the weld bead cross-sectional shape shown in the present embodiment is performed for the layers from the third layer onward to the last layer.

図15は例として、第5番目の溶接パスの溶接条件と溶接ビード断面形状を決定する場合である。いま溶接不良を起こさない適正な範囲内で、溶接電流Ik及び溶接速度Vkの値を平均的な溶接条件とした場合の溶接ビード断面形状を、図15中に○英数字5Aの領域で表す。これに対し、溶接電流Ik及び溶接速度Vkの値を、同様に溶接不良を起こさない適正範囲内で、溶接ビード断面形状が最大となるように決定したときの溶接ビード断面形状を、図15中に○英数字5A及び5Bの領域で表す。このように溶接ビード断面形状が最大となる溶接電流Ik及び溶接速度Vkを、本実施形態では溶接条件等決定ステップにおいて選択する。   FIG. 15 shows an example in which the welding conditions and the weld bead cross-sectional shape of the fifth welding pass are determined. The weld bead cross-sectional shape when the welding current Ik and the welding speed Vk are set to average welding conditions within an appropriate range that does not cause poor welding now is represented by a region of ○ alphanumeric characters in FIG. On the other hand, the welding bead cross-sectional shape when the values of the welding current Ik and the welding speed Vk are determined so that the welding bead cross-sectional shape becomes the maximum within the appropriate range that does not cause poor welding similarly is shown in FIG. Are represented by areas of alphanumeric characters 5A and 5B. In this embodiment, the welding current Ik and the welding speed Vk that maximize the weld bead cross-sectional shape are selected in the welding condition determination step in this embodiment.

従って、本実施の形態では、前記第1の実施の形態の効果(1)と同様の効果を奏するほか、次の効果(4)を奏する。   Therefore, in this embodiment, in addition to the same effect as the effect (1) of the first embodiment, the following effect (4) is obtained.

(4)第3層目以降から最終層の一つ前までの層における任意の順番の溶接パスにおいて溶接ビード断面積が最大となるので、溶接継手部2全体の溶接パス数は、溶接不良を起こさない溶接条件の適正な範囲内において最小数で済むことになる。残留変形値や残留応力値は、溶接する際の入熱による塑性変形が原因であるため、入熱回数を低減することは、即ち残留変形値や残留応力値を低減することに繋がる。このことから溶接施工前に、残留変形値や残留応力値の低減を目的とした溶接パス数の最適化が可能となり、最適な溶接条件を選択できる。   (4) Since the weld bead cross-sectional area is maximized in the welding pass in any order in the layers from the third layer to the last layer, the number of weld passes of the weld joint 2 as a whole is poor. The minimum number is sufficient within an appropriate range of welding conditions that do not occur. Since the residual deformation value and the residual stress value are caused by plastic deformation due to heat input during welding, reducing the number of heat inputs leads to a reduction in the residual deformation value and the residual stress value. From this, it becomes possible to optimize the number of welding passes for the purpose of reducing the residual deformation value and the residual stress value before welding, and the optimum welding conditions can be selected.

以上、本発明を上述の各実施の形態に基づいて説明したが、本発明はこれに限定されるものではない。例えば、各実施の形態では、突合せ継手のV型継手開先におけるアーク溶接を用いた溶接構造物の溶接最適化方法及び溶接方法を説明したが、これに限定するものではなく、他の継手の種類や継手開先形状に対しても本発明を適用できる。   As mentioned above, although this invention was demonstrated based on each above-mentioned embodiment, this invention is not limited to this. For example, in each embodiment, the welding optimization method and the welding method of the welded structure using arc welding in the V-shaped joint groove of the butt joint have been described. However, the present invention is not limited to this. The present invention can also be applied to types and joint groove shapes.

1A、1B…厚板(溶接構造物)、2…溶接継手部、3…継手開先、10…自動溶接機(自動溶接装置)、14…溶接条件データベース、15…溶接最適化システム、16…変位センサ、17…温度センサ、18…溶接記録データベース、19…基本解析モデル生成手段、20…溶接条件等決定手段、21…溶接変形解析手段、22…指標判定手段、23…データ記録手段、24…基本解析モデル、25…ビード解析モデル、26…解析モデル。   DESCRIPTION OF SYMBOLS 1A, 1B ... Thick plate (welded structure), 2 ... Welded joint part, 3 ... Joint groove, 10 ... Automatic welding machine (automatic welding apparatus), 14 ... Welding condition database, 15 ... Weld optimization system, 16 ... Displacement sensor, 17 ... temperature sensor, 18 ... weld record database, 19 ... basic analysis model generation means, 20 ... welding condition determination means, 21 ... welding deformation analysis means, 22 ... index determination means, 23 ... data recording means, 24 ... basic analysis model, 25 ... bead analysis model, 26 ... analysis model.

Claims (12)

溶接構造物の溶接継手部に形成された継手開先に対して複数の溶接パスを行って複数層の溶接を施工するための溶接設計を最適に行う溶接最適化方法であって、
前記溶接構造物について、前記溶接継手部の継手の種類、前記継手開先の形状に応じた基本解析モデルを生成する基本解析モデル生成ステップと、
任意の順番の溶接パスの溶接条件を、その前になされた溶接パスによる前記継手開先形状の溶接変形を考慮して、溶接不良を起こさない適正範囲内で決定し、この溶接条件に基づいて、この任意の順番の溶接パスの溶接ビード断面形状を求める溶接条件等決定ステップと、
前記任意の順番の溶接パスの前記溶接ビード断面形状を解析モデル化して前記基本解析モデルに追加し、この追加して得られた解析モデルを用いて、この任意の順番の溶接パスによって生ずる前記継手開先形状の溶接変形を、熱弾塑性解析によって求める溶接変形解析ステップと、
前記溶接条件等決定ステップ及び前記溶接変形解析ステップを他の順番の溶接パスについて実行して、前記溶接継手部の溶接解析を完了し溶接パス数を決定した後に、前記溶接継手部について判定指標値を求め、この判定指標値が許容範囲内にあるか否かを判定し、許容範囲内にない場合には、前記継手の種類、前記継手開先の形状を含む溶接条件を変更して前記基本解析モデル生成ステップ、前記溶接条件等決定ステップ及び前記溶接変形解析ステップを再度実行させる指標判定ステップと、
この指標判定ステップにおける判定指標値が許容範囲内にある場合に、前記継手の種類、前記継手開先の形状、溶接パス数、各溶接パスの溶接条件を解析結果データベースに記録して保存するデータ記録ステップと、を有することを特徴とする溶接最適化方法。
A welding optimization method for optimizing a welding design for performing a plurality of welding passes on a joint groove formed in a welded joint portion of a welded structure,
For the welded structure, a basic analysis model generation step for generating a basic analysis model according to the type of joint of the welded joint portion and the shape of the joint groove;
Welding conditions of the welding pass in any order are determined within an appropriate range that does not cause welding failure in consideration of welding deformation of the joint groove shape caused by the welding path made before that, and based on this welding condition , A welding condition determination step for obtaining the weld bead cross-sectional shape of the welding pass in any order,
The weld bead cross-sectional shape of the arbitrary order of welding passes is converted into an analytical model and added to the basic analysis model, and the joint generated by the arbitrary order of welding passes is added using the added analytical model. A welding deformation analysis step for obtaining a weld deformation of a groove shape by thermal elastic-plastic analysis;
After the welding condition etc. determining step and the welding deformation analyzing step are executed for another order of welding passes, the welding analysis of the welded joint portion is completed and the number of weld passes is determined, and then the determination index value for the welded joint portion And determining whether or not the determination index value is within the allowable range. If the determination index value is not within the allowable range, the welding condition including the type of the joint and the shape of the joint groove is changed and the basic An index determination step for executing the analysis model generation step, the welding condition determination step and the welding deformation analysis step again;
Data for recording and storing the type of joint, the shape of the joint groove, the number of welding passes, and the welding conditions of each welding pass in the analysis result database when the judgment index value in this index judgment step is within an allowable range. A welding optimization method comprising: a recording step.
前記溶接条件等決定ステップは、任意の順番の溶接パスにおける溶接条件を、実際の溶接施工情報が予め保存された溶接記録データベースから選択して決定することを特徴とする請求項1記載の溶接最適化方法。 2. The optimum welding according to claim 1, wherein the step of determining the welding conditions and the like selects and determines the welding conditions in an arbitrary order of welding paths from a welding record database in which actual welding execution information is stored in advance. Method. 前記指標判定ステップが用いる判定指標値は、熱弾塑性解析によって求めた、溶接解析完了後における溶接継手部の残留変形値であることを特徴とする請求項1記載の溶接最適化方法。 The welding optimization method according to claim 1, wherein the determination index value used in the index determination step is a residual deformation value of the weld joint after completion of welding analysis, which is obtained by thermoelastic-plastic analysis. 前記指標判定ステップが用いる判定指標値は、熱弾塑性解析によって求めた、溶接解析完了後における溶接継手部の残留応力値であることを特徴とする請求項1記載の溶接最適化方法。 The welding optimization method according to claim 1, wherein the determination index value used in the index determination step is a residual stress value of a welded joint after completion of welding analysis, which is obtained by thermoelastic-plastic analysis. 前記溶接条件等決定ステップでは、任意の順番の溶接パスにおける溶接条件を、力学的モデルに基づいた溶接欠陥解析から決定することを特徴とする請求項1記載の溶接最適化方法。 The welding optimization method according to claim 1, wherein in the determination step of welding conditions and the like, welding conditions in an arbitrary order of welding passes are determined from a weld defect analysis based on a mechanical model. 前記溶接条件等決定ステップでは、任意の順番の溶接パスにおける溶接ビード断面形状を、溶接電流、溶接電圧及び溶接速度を条件とした熱伝導方程式を用いた伝熱解析から決定することを特徴とする請求項1記載の溶接最適化方法。 In the step of determining welding conditions and the like, the welding bead cross-sectional shape in a welding pass in an arbitrary order is determined from heat transfer analysis using a heat conduction equation under conditions of welding current, welding voltage, and welding speed. The welding optimization method according to claim 1. 前記溶接条件等決定ステップでは、任意の順番の溶接パスにおける溶接条件に対応した温度履歴データを、熱伝導方程式を用いた伝熱解析により求めることを特徴とする請求項1記載の溶接最適化方法。 2. The welding optimization method according to claim 1, wherein in the determination step of welding conditions and the like, temperature history data corresponding to welding conditions in an arbitrary order of welding passes is obtained by heat transfer analysis using a heat conduction equation. . 前記溶接条件等決定ステップでは、任意の順番の溶接パスにおける溶接条件を、この順番の溶接パスの断面積が最大となるように決定することを特徴とする請求項1記載の溶接最適化方法。 2. The welding optimization method according to claim 1, wherein in the determination step of welding conditions and the like, the welding conditions in an arbitrary order of welding passes are determined so that a cross-sectional area of the welding passes in the order becomes a maximum. 請求項1乃至8のいずれか1項に記載の溶接最適化方法によって求めた継手の種類、継手開先の形状、溶接パス数、各溶接パスの溶接条件に従って、実際の溶接施工を実施することを特徴する溶接方法。 The actual welding work is carried out according to the type of joint obtained by the welding optimization method according to any one of claims 1 to 8, the shape of the joint groove, the number of welding passes, and the welding conditions of each welding pass. Features a welding method. 前記溶接を自動溶接装置を用いて実際に施工する場合、溶接最適化方法によって求めた継手の種類、継手開先の形状、溶接パス数、及び各溶接パスの溶接条件を、前記自動溶接装置の入力データとして用いることを特徴する請求項9に記載の溶接方法。 When the welding is actually performed using an automatic welding device, the type of joint obtained by the welding optimization method, the shape of the joint groove, the number of welding passes, and the welding conditions of each welding pass are determined by the automatic welding device. The welding method according to claim 9, wherein the welding method is used as input data. 前記溶接を実際に施工する際に、溶接パスの位置及び継手開先形状の溶接変形を測定する手段と、各溶接パス実行時における温度履歴を測定する手段とを用いて、実際に溶接された全溶接パスについて、溶接条件と共に、溶接パス位置情報、継手開先形状の溶接変形情報及び温度履歴情報を溶接記録データベースに保存することを特徴する請求項9記載の溶接方法。 When actually carrying out the welding, the welding pass position and the joint groove shape welding deformation measurement means, and the temperature history at the time of execution of each welding pass, using the means to measure the temperature history during the welding was actually welded The welding method according to claim 9, wherein the welding path position information, the welding deformation information of the joint groove shape, and the temperature history information are stored in the welding record database together with the welding conditions for all the welding paths. 溶接構造物の溶接継手部に形成された継手開先に対して複数の溶接パスを行って複数層の溶接を施工するための溶接設計を最適に行う溶接最適化システムであって、
前記溶接構造物について、前記溶接継手部の継手の種類、前記継手開先の形状に応じた基本解析モデルを生成する基本解析モデル生成ステップを実行する基本解析モデル生成手段と、
任意の順番の溶接パスの溶接条件を、その前になされた溶接パスによる前記継手開先形状の溶接変形を考慮して、溶接不良を起こさない適正範囲内で決定し、この溶接条件に基づいてこの順番の溶接パスの溶接ビード断面形状を求める溶接条件等決定ステップを実行する溶接条件等決定手段と、
前記任意の順番の溶接パスの前記溶接ビード断面形状を解析モデル化して前記基本解析モデルに追加し、この追加して得られた解析モデルを用いて、この任意の順番の溶接パスによって生ずる前記継手開先形状の溶接変形を、熱弾塑性解析によって求める溶接変形解析ステップを実行する溶接変形解析手段と、
前記溶接条件等決定ステップ及び前記溶接変形解析ステップを他の順番の溶接パスについて実行して、前記溶接継手部の溶接解析を完了し溶接パス数を決定した後に、前記溶接継手部について判定指標値を求め、この判定指標値が許容範囲内にあるか否かを判定し、許容範囲内にない場合には、前記継手の種類、前記継手開先の形状を含む溶接条件を変更して前記基本解析モデル生成ステップ、前記溶接条件等決定ステップ及び前記溶接変形解析ステップを再度実行させる指標判定ステップを実行する指標判定手段と、
この指標判定ステップにおける判定指標値が許容範囲内にある場合に、前記継手の種類、前記継手開先の形状、溶接パス数、各溶接パスの溶接条件を解析結果データベースに記録して保存するデータ記録ステップを実行するデータ記録手段と、を有することを特徴とする溶接最適化システム。
A welding optimization system for optimizing a welding design for performing a plurality of welding passes on a joint groove formed in a welded joint portion of a welded structure,
For the welded structure, basic analysis model generation means for executing a basic analysis model generation step for generating a basic analysis model according to the type of joint of the welded joint portion and the shape of the joint groove;
Welding conditions of the welding pass in any order are determined within an appropriate range that does not cause welding failure in consideration of welding deformation of the joint groove shape caused by the welding path made before that, and based on this welding condition Welding condition etc. determining means for executing a welding condition etc. determining step for obtaining the weld bead cross-sectional shape of the welding pass in this order;
The weld bead cross-sectional shape of the arbitrary order of welding passes is converted into an analytical model and added to the basic analysis model, and the joint generated by the arbitrary order of welding passes is added using the analysis model obtained by the addition. Welding deformation analysis means for executing a welding deformation analysis step for obtaining a weld deformation of a groove shape by thermoelastic-plastic analysis;
After the welding condition etc. determining step and the welding deformation analyzing step are executed for another order of welding passes, the welding analysis of the welded joint portion is completed and the number of weld passes is determined, and then the determination index value for the welded joint portion And determining whether or not the determination index value is within the allowable range. If the determination index value is not within the allowable range, the welding condition including the type of the joint and the shape of the joint groove is changed and the basic An index determination means for executing an index determination step for executing the analysis model generation step, the welding condition determination step, and the welding deformation analysis step again;
Data for recording and storing the type of joint, the shape of the joint groove, the number of welding passes, and the welding conditions of each welding pass in the analysis result database when the judgment index value in this index judgment step is within an allowable range. And a data recording means for executing a recording step.
JP2009050863A 2009-03-04 2009-03-04 Method and system for optimization of welding, and welding method Pending JP2010201474A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009050863A JP2010201474A (en) 2009-03-04 2009-03-04 Method and system for optimization of welding, and welding method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009050863A JP2010201474A (en) 2009-03-04 2009-03-04 Method and system for optimization of welding, and welding method

Publications (1)

Publication Number Publication Date
JP2010201474A true JP2010201474A (en) 2010-09-16

Family

ID=42963495

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009050863A Pending JP2010201474A (en) 2009-03-04 2009-03-04 Method and system for optimization of welding, and welding method

Country Status (1)

Country Link
JP (1) JP2010201474A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014181458A1 (en) * 2013-05-10 2014-11-13 株式会社日立製作所 Welding method, welding system, and system for monitoring weld solidification cracking
JP2015013298A (en) * 2013-07-04 2015-01-22 株式会社アマダ Laser welding machine and modification method of processing program used for the same
CN110461509A (en) * 2017-03-27 2019-11-15 株式会社神户制钢所 The manufacturing method and manufacture system of moulder is laminated
WO2020262291A1 (en) 2019-06-26 2020-12-30 株式会社神戸製鋼所 Additive manufacturing method, additive manufacturing device, and controller
CN113704892A (en) * 2021-09-01 2021-11-26 江南造船(集团)有限责任公司 Process model generation method and system with added compensation amount and groove and terminal
WO2022091762A1 (en) 2020-10-28 2022-05-05 株式会社神戸製鋼所 Stacking plan creating method
WO2022124006A1 (en) * 2020-12-11 2022-06-16 株式会社神戸製鋼所 Additive manufacturing method, additive manufacturing device, and model display device
WO2022176578A1 (en) 2021-02-19 2022-08-25 株式会社神戸製鋼所 Method for preparing lamination plan
CN115781077A (en) * 2022-12-28 2023-03-14 日照鸿本机械制造有限公司 Deformation prevention control method and system for long-shaft multi-point welding
CN114952052B (en) * 2022-04-07 2023-08-04 中冶建筑研究总院有限公司 Multi-bracket complex steel member welding thermal deformation control method
JP7407095B2 (en) 2020-10-08 2023-12-28 日立造船株式会社 Element division preprocessing system

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014181458A1 (en) * 2013-05-10 2014-11-13 株式会社日立製作所 Welding method, welding system, and system for monitoring weld solidification cracking
JP6012855B2 (en) * 2013-05-10 2016-10-25 株式会社日立製作所 Welding method, welding system, and weld solidification cracking monitoring system
EP2995416A4 (en) * 2013-05-10 2017-01-18 Hitachi, Ltd. Welding method, welding system, and system for monitoring weld solidification cracking
JP2015013298A (en) * 2013-07-04 2015-01-22 株式会社アマダ Laser welding machine and modification method of processing program used for the same
CN110461509A (en) * 2017-03-27 2019-11-15 株式会社神户制钢所 The manufacturing method and manufacture system of moulder is laminated
CN110461509B (en) * 2017-03-27 2022-05-03 株式会社神户制钢所 Method and system for manufacturing layered structure
CN114007794A (en) * 2019-06-26 2022-02-01 株式会社神户制钢所 Laminate molding method, laminate molding apparatus, and controller
JP2021003724A (en) * 2019-06-26 2021-01-14 株式会社神戸製鋼所 Laminate molding method
WO2020262291A1 (en) 2019-06-26 2020-12-30 株式会社神戸製鋼所 Additive manufacturing method, additive manufacturing device, and controller
JP7407095B2 (en) 2020-10-08 2023-12-28 日立造船株式会社 Element division preprocessing system
WO2022091762A1 (en) 2020-10-28 2022-05-05 株式会社神戸製鋼所 Stacking plan creating method
WO2022124006A1 (en) * 2020-12-11 2022-06-16 株式会社神戸製鋼所 Additive manufacturing method, additive manufacturing device, and model display device
JP2022093023A (en) * 2020-12-11 2022-06-23 株式会社神戸製鋼所 Lamination molding method and lamination molding device, and model display device
JP7311481B2 (en) 2020-12-11 2023-07-19 株式会社神戸製鋼所 Layered manufacturing method, layered manufacturing apparatus, and model display device
WO2022176578A1 (en) 2021-02-19 2022-08-25 株式会社神戸製鋼所 Method for preparing lamination plan
CN113704892A (en) * 2021-09-01 2021-11-26 江南造船(集团)有限责任公司 Process model generation method and system with added compensation amount and groove and terminal
CN113704892B (en) * 2021-09-01 2024-01-12 江南造船(集团)有限责任公司 Process model generation method, system and terminal added with compensation quantity and groove
CN114952052B (en) * 2022-04-07 2023-08-04 中冶建筑研究总院有限公司 Multi-bracket complex steel member welding thermal deformation control method
CN115781077A (en) * 2022-12-28 2023-03-14 日照鸿本机械制造有限公司 Deformation prevention control method and system for long-shaft multi-point welding

Similar Documents

Publication Publication Date Title
JP2010201474A (en) Method and system for optimization of welding, and welding method
WO2022019120A1 (en) Defect occurrence prediction method, and defect occurrence prediction device
CN110362926A (en) A kind of copper alloy butt plates welding fire check prediction technique based on ansys
US7127438B2 (en) Method of regulating and controlling a technical process such as spot-welding of metal sheets
Feng et al. Energy metrics for product assembly equipment and processes
Nycz et al. Challenges in making complex metal large-scale parts for additive manufacturing: A case study based on the additive manufacturing excavator
CA3145721A1 (en) Systems and methods to select weld parameters based on thermal, electrical, and/or chemical properties
Simunovic et al. Metal big area additive manufacturing: Process modeling and validation
Azadi Moghaddam et al. Simultaneous optimization of joint edge geometry and process parameters in gas metal arc welding using integrated ANN-PSO approach
JP5756623B2 (en) Eigendeformation data calculation system and calculation program, welding deformation prediction system and welding deformation prediction program
Banaee et al. Generalised overlapping model for multi-material wire arc additive manufacturing (WAAM)
JP2005066646A (en) Method for estimating deformation and residual stress in welded structure and apparatus therefor
JP2016198805A (en) Welding quality determination method and welding equipment comprising welding quality determination mechanism
JP5947565B2 (en) Inherent deformation data calculation system, calculation program and calculation method
Hartmann et al. Digital Twin of the laser-DED process based on a multiscale approach
Mahapatra et al. Three-dimensional finite element analysis to predict the effects of shielded metal arc welding process parameters on temperature distributions and weldment zones in butt and one-sided fillet welds
JP7391718B2 (en) A method for predicting the material quality of an additively manufactured product, a method for constructing a material database, a layer planning method for an additively manufactured product, and a method for manufacturing an additively manufactured product
Fox Transient melt pool response in additive manufacturing of Ti-6Al-4V
Janosch International Institute of Welding work on residual stress and its application to industry
Robertson et al. Piping and pressure vessel welding automation through adaptive planning and control
JP7288391B2 (en) MODEL PRODUCT MANUFACTURING METHOD, MODEL PRODUCT MANUFACTURING DEVICE AND PROGRAM
Jimenez et al. Strategy for the simulation of the ITER toroidal field coil case welding distortion with finite-element method
WO2023195455A1 (en) Prediction method and program for predicting plastic strain distribution, residual stress distribution, or deformation
JP7407095B2 (en) Element division preprocessing system
Johansson Adaptive Welding Trials–Into Robotic Systems: A pre-welding study to see the possibilities and challenges for adaptive welding implementation

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20111218