JP2010199856A - Optical facility identification method and device - Google Patents

Optical facility identification method and device Download PDF

Info

Publication number
JP2010199856A
JP2010199856A JP2009041139A JP2009041139A JP2010199856A JP 2010199856 A JP2010199856 A JP 2010199856A JP 2009041139 A JP2009041139 A JP 2009041139A JP 2009041139 A JP2009041139 A JP 2009041139A JP 2010199856 A JP2010199856 A JP 2010199856A
Authority
JP
Japan
Prior art keywords
optical
polarization component
test light
change
intensity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009041139A
Other languages
Japanese (ja)
Other versions
JP5128519B2 (en
Inventor
Masaaki Inoue
雅晶 井上
Nagetsu Honda
奈月 本田
Noriyuki Araki
則幸 荒木
Yuji Azuma
裕司 東
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP2009041139A priority Critical patent/JP5128519B2/en
Publication of JP2010199856A publication Critical patent/JP2010199856A/en
Application granted granted Critical
Publication of JP5128519B2 publication Critical patent/JP5128519B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Light Guides In General And Applications Therefor (AREA)
  • Optical Communication System (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an optical facility identification method for an integrated optical fiber communication network that identifies types and positions of optical facilities in service and in real-time, without using a database. <P>SOLUTION: The optical facility identification method is configured; in a such a way that a test light is made incident from one end of an optical path 17 so as to measure the intensity change of a polarization component, distributed in the longitudinal direction of the optical path 17, from a change over time of a polarization component of back-scattered light by the test light, and optical facility, including the bending diameter of the optical fiber corresponding to the period of the intensity change of the polarization component, is identified. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、光ファイバ通信網の保守・運用にあたり、光ファイバ通信網を構成する光設備の種類および位置を、所内から特定できる光設備識別方法及び装置に関するものである。   The present invention relates to an optical equipment identification method and apparatus that can identify the type and position of optical equipment constituting an optical fiber communication network from the inside in maintenance and operation of the optical fiber communication network.

光ファイバ通信網の保守・運用業務にあたり、通信網を構成する光設備の正確かつ新鮮な情報管理が望まれる。特に光線路が故障した場合には、故障した光設備を特定する光設備識別方法が重要である。従来の光設備識別方法(例えば、特許文献1参照。)を述べる。まず、対象光線路の距離損失測定は光ファイバ通信網の標準的な光学的評価法であるOTDR(Optical Time Domain Reflectometry)法を用いて行っている。   In the maintenance and operation of the optical fiber communication network, accurate and fresh information management of the optical equipment constituting the communication network is desired. In particular, when an optical line breaks down, an optical equipment identification method that identifies the failed optical equipment is important. A conventional optical equipment identification method (for example, see Patent Document 1) will be described. First, the distance loss measurement of the target optical line is performed using an OTDR (Optical Time Domain Reflectometry) method, which is a standard optical evaluation method for optical fiber communication networks.

図6は従来のOTDR法を示す構成説明図である。図6において、1は試験光送出器、2は試験光検出器、4は光カプラ、9はPC制御部、10はOTDR試験装置、11は所内装置(OLT)、12は光カプラ、13は光ケーブル、14は光ファイバ収容部、15は宅内配線、16は終端装置(ONU)、17は光線路、18は所内光配線、19はフィルタである。   FIG. 6 is an explanatory diagram showing the structure of a conventional OTDR method. In FIG. 6, 1 is a test light transmitter, 2 is a test light detector, 4 is an optical coupler, 9 is a PC control unit, 10 is an OTDR test device, 11 is an in-house device (OLT), 12 is an optical coupler, and 13 is an optical coupler. An optical cable, 14 is an optical fiber housing section, 15 is a home wiring, 16 is a terminating device (ONU), 17 is an optical line, 18 is an in-house optical wiring, and 19 is a filter.

図6に示すように、通信用におけるOLT11とONU16は所内光配線18および光線路17と、この光線路17に対して試験光を入出力する光カプラ12によって接続されて通信している。   As shown in FIG. 6, the OLT 11 and the ONU 16 for communication are connected and communicated with the in-house optical wiring 18 and the optical line 17 by the optical coupler 12 that inputs / outputs test light to / from the optical line 17.

OTDR試験装置10は光カプラ12を用いて、所内光配線18および光線路17に接続する。
OTDR試験装置10は試験光送出器1、試験光検出器2、光カプラ4、及びPC制御部9より構成される。
The OTDR test apparatus 10 is connected to the in-house optical wiring 18 and the optical line 17 using the optical coupler 12.
The OTDR test apparatus 10 includes a test light transmitter 1, a test light detector 2, an optical coupler 4, and a PC control unit 9.

試験光送出器1は波長1.65μmレーザを試験光として用いる。保守用波長(U−band)を利用し、ONU16の通信光検出器の前方に試験光を遮断するフィルタ19を設置することで、通信光のみをONU16へ透過する。したがって、通信光1.26μm−1.625μmに対してインサービスでの光試験が可能となる。   The test light transmitter 1 uses a 1.65 μm wavelength laser as test light. By using the maintenance wavelength (U-band) and installing a filter 19 that blocks the test light in front of the communication light detector of the ONU 16, only the communication light is transmitted to the ONU 16. Therefore, an in-service optical test can be performed for communication light of 1.26 μm to 1.625 μm.

試験光送出器1から送出された試験光は光カプラ4および12を介して光線路17を後方散乱しながら伝播する。光線路17の後方散乱光は光カプラ12および4を通り、試験光検出器2で検出されて光電変換される。試験光検出器2で検出され検出信号はPC制御部9で光線路17の長手方向の距離に対する後方散乱光強度としてプロットしてグラフにする。以上がOTDR法である。   The test light transmitted from the test light transmitter 1 propagates through the optical couplers 4 and 12 while being backscattered through the optical line 17. The backscattered light of the optical line 17 passes through the optical couplers 12 and 4, is detected by the test light detector 2, and is photoelectrically converted. The detection signal detected by the test light detector 2 is plotted as a backscattered light intensity with respect to the distance in the longitudinal direction of the optical line 17 by the PC control unit 9 to be a graph. The above is the OTDR method.

図5は従来のOTDR法によってコネクタや融着点を有する光線路の評価結果を示す説明図である。図5に示すように、反射52や損失53はそれぞれ、光線路17内に存在するコネクタや融着点によるものである。また、光設備を管理するためには設備データベース54を予め構築しておく。   FIG. 5 is an explanatory diagram showing evaluation results of optical lines having connectors and fusion points by the conventional OTDR method. As shown in FIG. 5, the reflection 52 and the loss 53 are caused by a connector and a fusion point existing in the optical line 17, respectively. In order to manage the optical equipment, the equipment database 54 is constructed in advance.

例えば、反射52における損失が増加して通信に障害が発生した場合には、修理するために前記設備データベース54を用いて、コネクタや融着点の位置とOTDR法による障害発生位置を比較照合する。ここで、10km地点に反射52を観測した時は、データベース54の同箇所の光設備を確認する。設備データベース54でコネクタと記録されていれば、この反射52はコネクタ接続によるものであり、コネクタが収容されている設備としてマンホール番号等が特定され、光設備識別ができる。   For example, when a loss occurs in the reflection 52 and a failure occurs in communication, the facility database 54 is used for repair, and the position of the connector or fusion point is compared with the failure occurrence position by the OTDR method. . Here, when the reflection 52 is observed at the 10 km point, the optical equipment at the same location in the database 54 is confirmed. If it is recorded as a connector in the equipment database 54, this reflection 52 is due to the connector connection, and a manhole number or the like is specified as equipment in which the connector is accommodated, so that optical equipment can be identified.

損失53に対しても、同様にしてOTDR測定結果から光線路17上の光設備識別を行うことができる。これによって、光線路17が故障した場合に、どの光設備において修理等の作業を行えばよいかが得られる。   Similarly, for the loss 53, the optical equipment on the optical line 17 can be identified from the OTDR measurement result. As a result, when the optical line 17 breaks down, it is possible to determine which optical equipment should be repaired or the like.

特公平7−28266号公報Japanese Patent Publication No. 7-28266

Amnon Yariv著 多田邦雄,神谷武士(監訳)「光エレクトロニクス基礎編」丸善出版 2002年 p.16−31。Amnon Yalib Kunio Tada, Takeshi Kamiya (Director) “Basics of Optoelectronics” Maruzen Publishing 2002 p. 16-31. 松本隆男,長瀬亮,加納晴生著 「光ファイバ型無限回転波長素子の提案と光波技術への応用」電子情報通信学会論文誌 Vol.J70−C No.7 1987年 pp.1021−1030。Takao Matsumoto, Ryo Nagase and Haruo Kano "Proposal of Infinitely Rotating Wavelength Element and its Application to Lightwave Technology" IEICE Transactions Vol. J70-C No. 7 1987 pp. 1021-1030. 中原一郎著 「材料力学(上巻)」 養賢堂出版 昭和40年5月1日発行 p.228〜233。Ichiro Nakahara “Materials Mechanics (Vol.1)” Published by Yokendo May 1, 1965 p. 228-233. 滑川嘉一 他著 「ホーリーファイバを用いた光カールコードの開発」 電子情報通信学会総合大会 B−10−4 2004年 p.375。Yoshikazu Namekawa et al. "Development of optical curl cord using holey fiber" The Institute of Electronics, Information and Communication Engineers B-10-4 2004 p. 375.

しかし、従来のOTDR法で光設備識別を行うには、接続点の情報が重要であるが、光ファイバケーブルの亘長と実長の差により測定結果に誤差が生じ、また、低損失な融着点ではケーブル接続点を検出することが困難な場合がある。また、ヒューマンエラーによるデータベース未更新やデータ入力ミスによりOTDR測定結果とデータベースの照合エラーが起きる問題がある。これにより、故障設備の特定が出来ず、修理時間が長くかかるという問題点がある。   However, in order to identify the optical equipment by the conventional OTDR method, the information on the connection point is important. However, an error occurs in the measurement result due to the difference between the length of the optical fiber cable and the actual length, and the low-loss fusion is required. At the arrival point, it may be difficult to detect the cable connection point. In addition, there is a problem that an OTDR measurement result and a database collation error occur due to database update or data input error due to human error. As a result, there is a problem that failure equipment cannot be specified and repair time is long.

さらに、従来では光設備識別を行うために、データベースを事前に構築しておく必要があり、リアルタイムに光線路状態を把握するのは困難である。加えて、光設備の保守業務で設備位置を変更する際に、データベース更新作業が発生し、業務量が増大する。   Furthermore, conventionally, in order to identify optical equipment, it is necessary to construct a database in advance, and it is difficult to grasp the optical line state in real time. In addition, when the equipment position is changed in the maintenance work of the optical equipment, database update work occurs, and the work volume increases.

本発明は上記の事情に鑑みてなされたもので、データベースを用いず、インサービスでリアルタイムに光設備の種類と位置を識別する総合的な光ファイバ通信網の光設備識別方法及び装置を提供することを目的とする。   The present invention has been made in view of the above circumstances, and provides an optical equipment identification method and apparatus for a comprehensive optical fiber communication network that identifies the type and position of optical equipment in real time without using a database. For the purpose.

上記の課題を解決するために、本発明の光設備識別方法は、光線路の一端からパルス光を入射し、前記パルス光による後方散乱光の偏光成分の時間変化から光線路の長手方向に分布する偏光成分の強度変化を測定し、前記偏光成分の強度変化の周期に対応する光ファイバの曲げ径を備える光設備を識別することを特徴とする。   In order to solve the above-described problems, the optical equipment identification method of the present invention is a method in which pulsed light is incident from one end of an optical line, and is distributed in the longitudinal direction of the optical line from time variation of the polarization component of backscattered light by the pulsed light. And measuring an intensity change of the polarization component to be identified, and identifying an optical equipment having a bending diameter of the optical fiber corresponding to a period of the intensity change of the polarization component.

また本発明の光設備識別方法は、光線路の一端からパルス光を入射し、前記パルス光による後方散乱光の偏光成分の時間変化から光線路の長手方向に分布する偏光成分の強度変化を測定し、前記偏光成分の強度変化を一定区間毎の周波数解析で周波数に対する偏光成分強度変化に変換し、前記偏光成分強度変化の強度がピークとなる周波数に対応する光ファイバの曲げ径を備える光設備を前記光線路の長手方向に識別することを特徴とする。   Also, the optical equipment identification method of the present invention measures the intensity change of the polarization component distributed in the longitudinal direction of the optical line from the time change of the polarization component of the backscattered light by the pulse light incident from one end of the optical line. An optical equipment having an optical fiber bending diameter corresponding to a frequency at which the intensity of the polarization component intensity change becomes a peak by converting the intensity change of the polarization component into a polarization component intensity change with respect to the frequency by frequency analysis for each fixed section. Is identified in the longitudinal direction of the optical line.

また本発明は、前記光設備識別方法において、光ファイバの曲げ径として、コイル状光ファイバの直径を用いることを特徴とする。   In the optical equipment identification method, the present invention is characterized in that the diameter of the coiled optical fiber is used as the bending diameter of the optical fiber.

また本発明の光設備識別方法は、光線路の一端から試験光を入射し、前記試験光による後方散乱光の偏光成分の時間変化から光線路の長手方向に分布する偏光成分の強度変化を測定し、前記偏光成分の強度変化の周期に対応する直径の光ケーブルを識別することを特徴とする。   In the optical equipment identification method of the present invention, the test light is incident from one end of the optical line, and the intensity change of the polarization component distributed in the longitudinal direction of the optical line is measured from the time change of the polarization component of the backscattered light by the test light. The optical cable having a diameter corresponding to the period of the intensity change of the polarization component is identified.

また本発明の光設備識別方法は、光線路の一端から試験光を入射し、前記試験光による後方散乱光の偏光成分の時間変化から光線路の長手方向に分布する偏光成分の強度変化を測定し、前記偏光成分の強度変化の周期から、カールコードに付与されている伸張を判定することを特徴とする。   In the optical equipment identification method of the present invention, the test light is incident from one end of the optical line, and the intensity change of the polarization component distributed in the longitudinal direction of the optical line is measured from the time change of the polarization component of the backscattered light by the test light. Then, the extension given to the curl cord is determined from the period of the intensity change of the polarization component.

また本発明の光設備識別装置は、光線路の一端から試験光を入射する試験光送出器と、前記試験光による後方散乱光の偏光成分を選別する偏光子と、前記偏光子で選別された後方散乱光の偏光成分の時間変化を検出して電気信号に変換する試験光検出器と、前記試験光検出器で変換された電気信号をサンプリングして時間から距離を算出して光線路長手方向に分布する偏光成分強度変化を得るA/D変換部と、前記A/D変換部で得られた偏光成分強度変化の周期に対応する光ファイバの曲げ径を備える光設備を識別する手段とを具備することを特徴とするものである。   Further, the optical equipment identification device of the present invention is selected by the test light transmitter for entering the test light from one end of the optical line, the polarizer for selecting the polarization component of the backscattered light by the test light, and the polarizer. A test light detector that detects a time change in the polarization component of the backscattered light and converts it into an electrical signal, and samples the electrical signal converted by the test light detector to calculate the distance from the time, and the longitudinal direction of the optical line An A / D conversion unit that obtains a change in polarization component intensity distributed in the unit, and means for identifying an optical facility having a bending diameter of an optical fiber corresponding to the period of the polarization component intensity change obtained by the A / D conversion unit It is characterized by comprising.

また本発明の光設備識別装置は、光線路の一端から試験光を入射する試験光送出器と、前記試験光による後方散乱光の偏光成分を選別する偏光子と、前記偏光子で選別された後方散乱光の偏光成分の時間変化を検出して電気信号に変換する試験光検出器と、前記試験光検出器で変換された電気信号をサンプリングして時間から距離を算出して光線路長手方向に分布する偏光成分強度変化を得るA/D変換部と、前記A/D変換部で得られた偏光成分強度変化を一定区間毎の周波数解析で周波数に対する偏光成分強度変化に変換するFFT(Fast Fourier Transformation:高速フーリエ変換)部と、前記FFT部で得られた偏光成分強度変化の強度がピークとなる周波数に対応する光ファイバの曲げ径を備える光設備を前記光線路の長手方向に識別する設備識別部と、前記設備識別部で識別された光設備を光線路の長手方向に表示する評価結果表示部とを具備することを特徴とするものである。   Further, the optical equipment identification device of the present invention is selected by the test light transmitter for entering the test light from one end of the optical line, the polarizer for selecting the polarization component of the backscattered light by the test light, and the polarizer. A test light detector that detects a time change in the polarization component of the backscattered light and converts it into an electrical signal, and samples the electrical signal converted by the test light detector to calculate the distance from the time, and the longitudinal direction of the optical line An A / D conversion unit that obtains a change in polarization component intensity distributed in the FFT, and an FFT (Fast) that converts the polarization component intensity change obtained by the A / D conversion unit into a change in polarization component intensity with respect to frequency by frequency analysis for each fixed interval. A Fourier Transform (Fourier Transformation) unit and an optical fiber having a bending diameter of the optical fiber corresponding to the frequency at which the intensity of the polarization component intensity change obtained by the FFT unit peaks. An equipment identification unit for identifying the equipment in the longitudinal direction of the optical line; and an evaluation result display unit for displaying the optical equipment identified by the equipment identification unit in the longitudinal direction of the optical line. is there.

また本発明は、前記光設備識別装置において、光ファイバの曲げ径として、コイル状光ファイバの直径を用いることを特徴とするものである。   According to the present invention, in the optical equipment identifying apparatus, the diameter of the coiled optical fiber is used as the bending diameter of the optical fiber.

また本発明の光設備識別装置は、光線路の一端から試験光を入射する試験光送出器と、前記試験光による後方散乱光の偏光成分を選別する偏光子と、前記偏光子で選別された後方散乱光の偏光成分の時間変化を検出して電気信号に変換する試験光検出器と、前記試験光検出器で変換された電気信号をサンプリングして時間から距離を算出して光線路長手方向に分布する偏光成分強度変化を得るA/D変換部と、前記A/D変換部で得られた偏光成分強度変化の周期に対応する直径の光ケーブルを識別する手段とを具備することを特徴とするものである。   Further, the optical equipment identification device of the present invention is selected by the test light transmitter for entering the test light from one end of the optical line, the polarizer for selecting the polarization component of the backscattered light by the test light, and the polarizer. A test light detector that detects a time change in the polarization component of the backscattered light and converts it into an electrical signal, and samples the electrical signal converted by the test light detector to calculate the distance from the time, and the longitudinal direction of the optical line And an A / D converter that obtains a change in the polarization component intensity distributed to the optical fiber, and means for identifying an optical cable having a diameter corresponding to the period of the change in the polarization component intensity obtained by the A / D converter. To do.

本発明の光設備識別方法及び装置は、OTDR波形の偏光成分から偏光強度変化の周期を観測し、光設備を識別するインサービス試験を行うことにより、データベースレスでリアルタイムに光設備を識別可能となり、光クロージャや光ケーブル、宅内配線など総合的な光ファイバ通信網の光設備が識別可能となる。   The optical equipment identification method and apparatus of the present invention makes it possible to identify optical equipment in real time without a database by observing the period of polarization intensity change from the polarization component of the OTDR waveform and performing an in-service test to identify the optical equipment. It is possible to identify optical equipment of a comprehensive optical fiber communication network such as an optical closure, an optical cable, and a home wiring.

本発明の実施形態に係る光設備識別方法を示すフローチャートである。It is a flowchart which shows the optical equipment identification method which concerns on embodiment of this invention. 本発明の実施形態に係る光設備識別装置の一例を示す構成説明図である。It is composition explanatory drawing which shows an example of the optical equipment identification device which concerns on embodiment of this invention. 本発明の実施形態に係る光設備識別の評価方法を示す説明図である。It is explanatory drawing which shows the evaluation method of the optical equipment identification which concerns on embodiment of this invention. 本発明の実施形態に係る連続ケーブルのケーブル種別識別方法を示す説明図である。It is explanatory drawing which shows the cable classification identification method of the continuous cable which concerns on embodiment of this invention. 従来の光設備識別方法を示す説明図である。It is explanatory drawing which shows the conventional optical equipment identification method. 従来のOTDR法を説明するための構成説明図である。It is structure explanatory drawing for demonstrating the conventional OTDR method. 本発明の実施形態で使用する光ファイバ断面を示す斜視図である。It is a perspective view which shows the optical fiber cross section used by embodiment of this invention. 本発明の実施形態で使用する光設備の直径を示す説明図である。It is explanatory drawing which shows the diameter of the optical equipment used by embodiment of this invention. 本発明の実施形態に係る光設備識別装置の他の例を示す構成説明図である。It is structure explanatory drawing which shows the other example of the optical equipment identification device which concerns on embodiment of this invention. 本発明の実施形態に係るカールコードの伸長を示す構成説明図である。It is composition explanatory drawing which shows expansion | extension of the curl cord which concerns on embodiment of this invention. 本発明の実施形態で使用するカールコードの伸張と偏光強度周期変化分の関係を示す特性図である。It is a characteristic view showing the relationship between the extension of the curl cord used in the embodiment of the present invention and the change in the polarization intensity period.

以下、本発明の実施の形態について、詳細に説明する。
[実施形態1]
図2は本発明の光設備識別装置の一例を示し、図2中、図6と同一部分は同一符号を付してその説明を省略する。図2において、3は偏光子、5はA/D変換部、6はFFT(Fast Fourier Transformation:高速フーリエ変換)部、7は設備識別部、8は評価結果表示部、100は光設備識別装置であり、試験光検出器2と光カプラ4の間に偏光子3が設けられ、PC制御部9内にA/D変換部5、FFT部6、設備識別部7、評価結果表示部8が設けられる。
Hereinafter, embodiments of the present invention will be described in detail.
[Embodiment 1]
FIG. 2 shows an example of the optical equipment identification device of the present invention. In FIG. 2, the same parts as those in FIG. In FIG. 2, 3 is a polarizer, 5 is an A / D conversion unit, 6 is an FFT (Fast Fourier Transform) unit, 7 is an equipment identification unit, 8 is an evaluation result display unit, and 100 is an optical equipment identification device. The polarizer 3 is provided between the test light detector 2 and the optical coupler 4, and the A / D conversion unit 5, the FFT unit 6, the equipment identification unit 7, and the evaluation result display unit 8 are included in the PC control unit 9. Provided.

図2に示すように、試験光送出器1から試験光(パルス光)を光カプラ4,12を介して光線路17の一端に入射する。光線路17から戻ってくる試験光による後方散乱光は光カプラ12,4を介して偏光子3でs波もしくはp波に偏光成分選別される。試験光検出器2は前記偏光子3で選別された後方散乱光の偏光成分であるs波もしくはp波の時間変化を検出して電気信号に変換する。その後、A/D変換部5によりサンプリングして測定時間から距離を算出し、光線路17の長手方向に分布する後方散乱光の偏光成分であるs波もしくはp波の強度変化である後方散乱光強度グラフを得る。   As shown in FIG. 2, the test light (pulse light) is incident on one end of the optical line 17 from the test light transmitter 1 via the optical couplers 4 and 12. The backscattered light from the test light returning from the optical line 17 is subjected to polarization component selection into s wave or p wave by the polarizer 3 through the optical couplers 12 and 4. The test light detector 2 detects the time change of the s wave or p wave, which is the polarization component of the backscattered light selected by the polarizer 3, and converts it into an electrical signal. Thereafter, sampling is performed by the A / D conversion unit 5 to calculate the distance from the measurement time, and the back scattered light is a change in the intensity of the s wave or p wave that is the polarization component of the back scattered light distributed in the longitudinal direction of the optical line 17. Get the intensity graph.

図3(a)〜(c)は本発明の光設備識別の評価方法を示す。後方散乱光強度グラフを後方散乱光の偏光成分であるs波もしくはp波にしたことで光設備において光ファイバがコイル状の曲げ収容状態(曲げ径)であると、複屈折率差が生じ、OTDR波形に偏光成分強度変化周期が図3(a)の様に生じる。この偏光成分強度変化周期と光設備における光ファイバの曲げ径とを対照することによって、所定の偏光成分強度変化周期に対応した光ファイバの曲げ径を備えた光設備が識別できる。   FIGS. 3A to 3C show the optical equipment identification evaluation method of the present invention. When the backscattered light intensity graph is changed to an s wave or p wave that is a polarization component of the backscattered light, and the optical fiber is in a coiled bent accommodation state (bending diameter) in the optical equipment, a birefringence difference occurs, A polarization component intensity change period occurs in the OTDR waveform as shown in FIG. By comparing this polarization component intensity change period and the bending diameter of the optical fiber in the optical equipment, an optical equipment having an optical fiber bending diameter corresponding to a predetermined polarization component intensity change period can be identified.

ここで、偏光強度変化周期から光ファイバの曲げ径を求める方法の原理を述べる。前述の後方散乱光は図7に示す光ファイバ断面から見て、垂直方向成分(s波)と水平方向成分(p波)を含み、これらのs波とp波の偏光強度Is,Ipは、Jones行列(例えば、非特許文献1参照。)等に示される様に表すことができる。   Here, the principle of a method for obtaining the bending diameter of the optical fiber from the polarization intensity change period will be described. The aforementioned backscattered light includes a vertical component (s wave) and a horizontal component (p wave) as seen from the cross section of the optical fiber shown in FIG. 7, and the polarization intensities Is and Ip of these s wave and p wave are: It can be expressed as shown in the Jones matrix (for example, see Non-Patent Document 1).

Figure 2010199856
(但し、I:後方散乱光強度[mW]、θ:入力角、ε:位相進みである。)
Figure 2010199856
(However, I 0 : Backscattered light intensity [mW], θ: input angle, ε: phase advance.)

ここで、位相進みεは
ε=2β・l…(2)
(但し、β:複屈折率差、l:光ファイバ長[m])
と表す。ここでβについては、
β=C(d/D)………(3)
D:コイル状光ファイバの直径[m]、d:光ファイバのクラッド径[m]、C光ファイバ特性定数(材料,屈折率,波長等で決まる定数)なる関係が知られている(例えば、非特許文献2参照。)。
Here, the phase advance ε is ε = 2β · l (2)
(Where, β: birefringence difference, l: optical fiber length [m])
It expresses. Where β is
β = C f (d / D) 2 (3)
D: Diameter of coiled optical fiber [m], d: Clad diameter of optical fiber [m], Cf optical fiber characteristic constant (constant determined by material, refractive index, wavelength, etc.) are known (for example, Non-patent document 2).

また、光ファイバの捻れ要素を考えた場合、偏光は入力角θに対して正(もしくは負)方向に回転し、コイル状光ファイバの円周を1周する毎に2πの捻れが加わる。したがって、Δl進むごとにΔθの入力角が変化する。式に示すと、
(Δθ/Δl)=(2π/Dπ)=2/D…(4.1)
となり、距離に対する入力角θ′は次式となる。
θ′=θ±(2l/D)………(4.2)
When the twisting element of the optical fiber is considered, the polarized light rotates in the positive (or negative) direction with respect to the input angle θ, and a twist of 2π is added every time the circumference of the coiled optical fiber is made. Therefore, every time Δl advances, the input angle of Δθ changes. In the formula:
(Δθ / Δl) = (2π / Dπ) = 2 / D (4.1)
The input angle θ ′ with respect to the distance is given by the following equation.
θ ′ = θ ± (2 l / D) (4.2)

以上を考慮した、偏光強度Is,Ipは次式となる。

Figure 2010199856
In consideration of the above, the polarization intensities Is and Ip are as follows.
Figure 2010199856

上記式は、(θ±(2l/D))部分が振幅、(C(d/D)・l)部分が周期に関与している。周期がπの時のlを求めれば、コイル状光ファイバの直径に対する1周期分のlをLとすると周期Lを計算できる。
L=(π/C)・(D/d)………(10)
(但し、L:周期[m])
In the above formula, the (θ ± (2l / D)) portion is related to the amplitude, and the (C f (d / D) 2 · l) portion is related to the period. If l is obtained when the period is π, the period L can be calculated by assuming that l for one period with respect to the diameter of the coiled optical fiber is L.
L = (π / C f ) · (D / d) 2 (10)
(However, L: Period [m])

ここで、Cは前述の非特許文献2より439[rad/mm]を用いる。そして、図3(a)に示すように、OTDR波形上に40cm、160cm、10cmの偏光強度変化周期が見られた場合、それぞれD=3cm、6cm、1.5cmなる直径の光ファイバ状態であることが分かる。光線路設備において、光ファイバは図8に示す径を有することから、これらの周期がOTDR波形に表れれば、それぞれSZケーブル、光クロージャ、カールコードと光設備が識別できる。 Here, 439 [rad / mm] is used as C f from Non-Patent Document 2 described above. As shown in FIG. 3A, when polarization intensity change periods of 40 cm, 160 cm, and 10 cm are seen on the OTDR waveform, the optical fiber states are D = 3 cm, 6 cm, and 1.5 cm, respectively. I understand that. In the optical line equipment, since the optical fiber has the diameter shown in FIG. 8, if these periods appear in the OTDR waveform, the SZ cable, the optical closure, the curl cord, and the optical equipment can be distinguished from each other.

図1は本発明の光設備識別方法を示すフローチャートである。
[1] 試験光を被測定光線路17の一端に入射し、前記試験光による戻り光である後方散乱光を偏光子3にてs波(p波)へと偏光成分選別し、前記後方散乱光の偏光成分の時間変化から光線路の長手方向に分布する偏光成分の強度変化を測定して散乱光強度グラフを作成する。
FIG. 1 is a flowchart showing an optical equipment identification method according to the present invention.
[1] Test light is incident on one end of the optical line 17 to be measured, and the backscattered light, which is return light from the test light, is selected by the polarizer 3 into s waves (p waves), and the backscattered light is selected. The scattered light intensity graph is created by measuring the intensity change of the polarization component distributed in the longitudinal direction of the optical line from the time change of the polarization component of the light.

[2] 次に、ステップS1において、Δx区間ごとに前記散乱光強度グラフに生じた偏光成分の強度変化の周期を検出する。   [2] Next, in step S1, the period of the intensity change of the polarization component generated in the scattered light intensity graph is detected for each Δx section.

[3] 次に、ステップS2において、光設備に存在する光ファイバの収容曲げ状態(曲げ径)と曲げ径による強度変化周期計算値の対照により、[2]で検出した強度変化周期に対応した曲げ径を有する光ファイバを備えた光設備を特定する。   [3] Next, in step S2, the intensity change period detected in [2] was determined by comparing the accommodation bending state (bend diameter) of the optical fiber existing in the optical equipment with the calculated intensity change period by the bend diameter. An optical equipment including an optical fiber having a bending diameter is specified.

[4] 次に、ステップS3において、測定点が残っている場合は[2]へ戻り、測定点が残っていない場合はステップS4において、長手方向に光設備の分布を解析して終了する。   [4] Next, if the measurement point remains in step S3, the process returns to [2]. If the measurement point does not remain, the distribution of the optical equipment is analyzed in the longitudinal direction in step S4, and the process ends.

以上の光設備識別方法を用いることで、光設備に変更が生じても、リアルタイムに設備位置情報を得ることができる。また、既にデータベースがある場合においては、当該設備位置情報とデータベース情報を突合し、データベースの誤りを補正することができる。さらに、試験光が通る光線路を光設備から把握し、地図情報と突合させることでルート図を作成することができる。   By using the above optical equipment identification method, equipment location information can be obtained in real time even if the optical equipment is changed. Further, when there is already a database, the facility position information and the database information can be matched to correct an error in the database. Furthermore, a route map can be created by grasping the optical path through which the test light passes from the optical equipment and matching it with the map information.

[実施形態2]
実施形態1において、OTDR波形から周期を読み取る際に、明確に検出するためには、前記OTDR波形を長手方向へΔxごとに区切り、FFT解析を行う。
[Embodiment 2]
In the first embodiment, when the period is read from the OTDR waveform, in order to detect clearly, the OTDR waveform is divided in the longitudinal direction for each Δx, and FFT analysis is performed.

Δxは光設備の識別に関する長手方向の距離分解能に相当し、偏光強度変化周期の1/4周期以上がわかればFFT解析を行える。したがって、最小距離分解能Δxmaxは、光線路17に有る光設備の中で最大の光ファイバの径をDmaxとすると、
Δxmax=(1/4)・(π/C)・(Dmax/d)………(11)
となる。
Δx corresponds to the distance resolution in the longitudinal direction regarding the identification of the optical equipment, and FFT analysis can be performed if a quarter period or more of the polarization intensity change period is known. Therefore, the minimum distance resolution Δx max is defined as D max being the diameter of the largest optical fiber in the optical equipment in the optical line 17.
Δx max = (1/4) · (π / C f ) · (D max / d) 2 (11)
It becomes.

OTDR波形として、試験光検出器2から出力される時間的に変化する信号をA/D変換部5でアナログ−デジタル変換したデジタル信号をFFT部6でFFT解析し、周波数に対する偏光強度グラフに変換する。   As an OTDR waveform, a digital signal obtained by analog-digital conversion of the time-varying signal output from the test light detector 2 by the A / D converter 5 is FFT-analyzed by the FFT unit 6 and converted into a polarization intensity graph with respect to frequency. To do.

ここで、偏光強度がピークとなる周波数を求め、予め規定しておいた周波数と比較し一致する光設備を設備識別部7で特定する。判定結果を評価結果表示部8に表示する。   Here, the frequency at which the polarization intensity reaches a peak is obtained, and the equipment identifying unit 7 identifies the optical equipment that matches the frequency defined in advance. The determination result is displayed on the evaluation result display unit 8.

図3(b)のように示される各解析点における、偏光強度変化のFFT周期に応じた周波数は実施形態1に示したように、SZケーブル,光クロージャ,カールコードの周期は40cm,160cm,10cmであるから、その周波数は、各々500MHz,130MHz,2000MHzとなる。周波数が130MHzである周波数結果の揚合、130MHzの周波数が生じている区間では、光クロージャ(D=6cm)であると光設備を識別することができる。同様にして、500MHzはSZケーブル(D=3cm)、2000MHzはカールコード(D=1.5cm)と識別できる。Δxに2つ以上の設備を含む場合、各々のピークが検出される。例えば、光クロージャとSZケーブルがΔx区間に含まれる場合は130MHzと500MHzのピークが検出される。このように、FFTを用いて長手方向へΔxごと光設備を判別することで実施形態1に述べた周期変化の揺らぎを抑制して数値化することが可能となり、より明確に図3(c)のように光線路17はSZケーブルや光クロージャ、カールコードの設備状態を識別できる。   As shown in the first embodiment, the frequency corresponding to the FFT period of the change in polarization intensity at each analysis point shown in FIG. 3B is 40 cm, 160 cm, and the frequency of the SZ cable, optical closure, and curl cord is 40 cm, 160 cm, Since it is 10 cm, the frequencies are 500 MHz, 130 MHz, and 2000 MHz, respectively. In the interval where the frequency is 130 MHz and the frequency is 130 MHz, the optical equipment can be identified as having the optical closure (D = 6 cm). Similarly, 500 MHz can be identified as an SZ cable (D = 3 cm), and 2000 MHz can be identified as a curled cord (D = 1.5 cm). When Δx includes two or more facilities, each peak is detected. For example, when the optical closure and the SZ cable are included in the Δx section, peaks at 130 MHz and 500 MHz are detected. In this way, by determining the optical equipment for each Δx in the longitudinal direction using FFT, it becomes possible to quantify the fluctuation of the periodic change described in the first embodiment, and more clearly, FIG. As described above, the optical line 17 can identify the equipment state of the SZ cable, the optical closure, and the curl cord.

以上のように実施形態2の光設備識別装置によれば、試験光送出器1は光線路17の一端から試験光を入射し、偏光子3は前記試験光による後方散乱光の偏光成分を選別する。試験光検出器2は前記偏光子3で選別された後方散乱光の偏光成分の時間変化を検出して電気信号に変換し、A/D変換部5は前記試験光検出器2で変換された電気信号をサンプリングして時間から距離を算出して光線路17の長手方向に分布する偏光成分強度変化を得る。FFT部6は前記A/D変換部5で得られた偏光成分強度変化を一定区間毎の周波数解析で周波数に対する偏光成分強度変化に変換し、設備識別部7は前記FFT部6で得られた偏光成分強度変化の強度がピークとなる周波数に対応する光ファイバの曲げ径を備える光設備を前記光線路17の長手方向に識別し、評価結果表示部8は前記設備識別部7で識別された光設備を光線路17の長手方向に表示する。   As described above, according to the optical equipment identification device of the second embodiment, the test light transmitter 1 enters the test light from one end of the optical line 17, and the polarizer 3 selects the polarization component of the backscattered light by the test light. To do. The test light detector 2 detects the time change of the polarization component of the backscattered light selected by the polarizer 3 and converts it into an electric signal. The A / D converter 5 is converted by the test light detector 2. The electric signal is sampled, the distance is calculated from the time, and the change in the polarization component intensity distributed in the longitudinal direction of the optical line 17 is obtained. The FFT unit 6 converts the polarization component intensity change obtained by the A / D conversion unit 5 into a polarization component intensity change with respect to the frequency by frequency analysis for each fixed section, and the equipment identification unit 7 is obtained by the FFT unit 6. The optical equipment having the bending diameter of the optical fiber corresponding to the frequency at which the intensity of the polarization component intensity change reaches the peak is identified in the longitudinal direction of the optical line 17, and the evaluation result display unit 8 is identified by the equipment identification unit 7. The optical equipment is displayed in the longitudinal direction of the optical line 17.

[実施形態3]
図4は連続ケーブルのケーブル種別識別方法を示す。
図4(a)に示すように、光線路では通常、所内成端で多心の光ケーブルが用いられ、ユーザ宅へ配線が伸びるに従って、少心の光ケーブルを接続して用いられている。光ケーブルは多心であればケーブル径が大きく、例えば、1000心ケーブル,100心ケーブルで構成される光線路はそれぞれ直径D=4cm,1.5cmのように径がそれぞれ異なる。径が小さくなると式(3)で示す複屈折率差βが大きくなり偏光強度変化周期は短くなる。単心ケーブルの場合は径がほとんど無く、偏光強度変化周期は見られない。
[Embodiment 3]
FIG. 4 shows a cable type identification method for continuous cables.
As shown in FIG. 4A, in an optical line, a multi-core optical cable is usually used at the in-house termination, and a small-core optical cable is connected and used as the wiring extends to the user's house. If the optical cable is multi-core, the cable diameter is large. For example, the optical lines composed of 1000-core cable and 100-core cable have different diameters, such as D = 4 cm and 1.5 cm, respectively. When the diameter is reduced, the birefringence difference β shown in the equation (3) is increased and the polarization intensity change period is shortened. In the case of a single core cable, there is almost no diameter, and the polarization intensity change period is not seen.

すなわち、図4(a)に示すように、実施形態1を用いて光線路17として、径の異なる光ケーブルを接続した場合には、長手方向への偏光強度を測定した結果は図4(b)に示すように、各々のケーブル径に対応した偏光強度変化周期を示し、周期が75cm,10cm,0cmであるならば、それぞれ、1000心ケーブル,100心ケーブル,単心ケーブルとなる。   That is, as shown in FIG. 4A, when optical cables having different diameters are connected as the optical line 17 using the first embodiment, the result of measuring the polarization intensity in the longitudinal direction is as shown in FIG. As shown in FIG. 4, when the polarization intensity change period corresponding to each cable diameter is shown and the period is 75 cm, 10 cm, and 0 cm, respectively, a 1000-core cable, a 100-core cable, and a single-core cable are obtained.

以上より、光ケーブルごとで偏光強度変化の周期を検出することでケーブル種別を特定することも可能となる。また、偏光強度変化周期の境界点を特定することで、これまで特定が困難であった、ケーブルの分岐点を所内から光学的に判定できる。   As described above, the type of cable can be specified by detecting the period of polarization intensity change for each optical cable. Further, by specifying the boundary point of the polarization intensity change period, it is possible to optically determine the branch point of the cable, which has been difficult to specify so far, from the inside.

[実施形態4]
次に、カールコードの伸長識別方法を述べる。図10に示すように、カールコードに長手方向へ張力をかけるとコイル状光ファイバの内側へせん断応力がかかる。当該せん断応力はカールコードを引っ張る方向と垂直に位置する光ファイバ断面を圧迫し、図7に示した歪みによるx、y方向の複屈折率差を拡大させ、偏光強度変化周期は短くなる。この時の張力P及びせん断応力τは、
[Embodiment 4]
Next, a method for identifying the extension of the curl code will be described. As shown in FIG. 10, when a tension is applied to the curl cord in the longitudinal direction, a shear stress is applied to the inside of the coiled optical fiber. The shear stress compresses the cross section of the optical fiber positioned perpendicular to the direction in which the curl cord is pulled, enlarges the birefringence difference in the x and y directions due to the strain shown in FIG. 7, and shortens the polarization intensity change period. The tension P and shear stress τ at this time are

P=kδ …(12)
τ=(8・PD/πd)×(1+d/2D) …(13)
(但し、k:ばね定数[N/m]、δ:伸長[m])
となる(例えば、非特許文献3参照。)。ばね定数kは巻き数90の場合、3.47×10−3)[N/mm])となる(例えば、非特許文献4参照。)。
P = kδ (12)
τ = (8 · PD / πd 3 ) × (1 + d / 2D) (13)
(Where k: spring constant [N / m], δ: elongation [m])
(For example, see Non-Patent Document 3). When the winding number is 90, the spring constant k is 3.47 × 10 −3 ) [N / mm]) (for example, see Non-Patent Document 4).

補正の複屈折率差の増加は擬似的に径Dの縮小変化を表すことが出来る。縮小したコイル状光ファイバの径D′(D>D′)は、せん断応力τの付加による値を用いて、   An increase in correction birefringence difference can represent a change in diameter D in a pseudo manner. The diameter D ′ (D> D ′) of the reduced coiled optical fiber is a value obtained by adding the shear stress τ,

D′=D−Cτ …(14)
と定義する。例えば、定数Cは、図11に示すように、横軸を伸長δ、縦軸を偏光強度変化周期としたグラフに実験値をプロットして、波形の傾きから求めた値として、1.04×10−4[mm/N]が得られる。
D ′ = D−C t τ (14)
It is defined as For example, as shown in FIG. 11, the constant C t is 1.04 as a value obtained by plotting experimental values on a graph in which the horizontal axis is expansion δ and the vertical axis is the polarization intensity change period, and is obtained from the slope of the waveform. × 10 -4 [mm 3 / N ] is obtained.

式(10)と(12)〜(14)を用いることで、偏光強度変化周期からカールコードの伸長を計算することができる。
例えば、実施形態1を用いて、あらかじめ周期の定められたカール状光ファイバコードを宅内配線に用いて偏光強度変化を測定した場合、偏光強度変化周期が3.8cmであるならば、カールコードの伸張は80cmであるとわかる。
By using the equations (10) and (12) to (14), the extension of the curl cord can be calculated from the polarization intensity change period.
For example, when the polarization intensity change is measured using the curled optical fiber cord having a predetermined period for the home wiring using the first embodiment, and the polarization intensity change period is 3.8 cm, the curl cord It can be seen that the extension is 80 cm.

以上より、宅内配線の偏光強度変化の周期を検出することで、人が入ることが難しい壁内のカールコードの伸長状況を知ることや長手方向にかかっているカールコードへの負荷の大きさが判定できる。   From the above, by detecting the period of change in the polarization intensity of the home wiring, it is possible to know the extension status of the curl cord in the wall, which is difficult for humans to enter, and the magnitude of the load on the curl cord in the longitudinal direction. Can be judged.

[実施形態5]
図9は本発明の光設備識別装置の他の例を示し、実施形態1の光設備識別方法を用いて、所内のみの稼動で光線路17にある光設備をリアルタイムに測定する方法を説明する。
[Embodiment 5]
FIG. 9 shows another example of the optical equipment identification device of the present invention, and a method for measuring the optical equipment in the optical line 17 in real time using only the optical equipment identification method of Embodiment 1 will be described. .

光ファイバを収容する設備所内に予め光設備識別装置100と、設備識別する光線路17へ試験光を導く光カップラ12を設置する。測定者82は操作端末81を用いて光設備識別装置100を操作し、光線路17をリアルタイムに距離−偏光強度測定して、距離−光設備測定を行う。測定結果より、信頼性の高い光設備の敷設状況を把握することが可能となる。   An optical equipment identification device 100 and an optical coupler 12 that guides the test light to the optical line 17 for identifying the equipment are installed in advance in the facility that accommodates the optical fiber. The measurer 82 operates the optical equipment identification device 100 using the operation terminal 81, measures the distance-polarization intensity of the optical line 17 in real time, and performs distance-optical equipment measurement. From the measurement result, it is possible to grasp the installation status of the reliable optical equipment.

なお、本発明は、上記実施形態そのままに限定されるものではなく、実施段階ではその要旨を逸脱しない範囲で構成要素を変形して具体化できる。また、上記実施形態に開示されている複数の構成要素の適宜な組み合せにより種々の発明を形成できる。例えば、実施形態に示される全構成要素から幾つかの構成要素を削除してもよい。更に、異なる実施形態に亘る構成要素を適宜組み合せてもよい。   Note that the present invention is not limited to the above-described embodiment as it is, and can be embodied by modifying the constituent elements without departing from the scope of the invention in the implementation stage. Further, various inventions can be formed by appropriately combining a plurality of constituent elements disclosed in the embodiment. For example, some components may be deleted from all the components shown in the embodiment. Furthermore, you may combine suitably the component covering different embodiment.

1…試験光送出器、2…試験光検出器、3…偏光子、4…光カプラ、5…A/D変換部、6…FFT部、7…設備識別部、8…評価結果表示部、9…PC制御部、10…OTDR試験装置、11…所内装置(OLT)、12…光カプラ、13…光ケーブル、14…光ファイバ収容部、15…宅内配線、16…終端装置(ONU)、17…光線路、18…所内光配線、19…フィルタ、100…光設備識別装置。   DESCRIPTION OF SYMBOLS 1 ... Test light transmitter, 2 ... Test light detector, 3 ... Polarizer, 4 ... Optical coupler, 5 ... A / D conversion part, 6 ... FFT part, 7 ... Equipment identification part, 8 ... Evaluation result display part, DESCRIPTION OF SYMBOLS 9 ... PC control part, 10 ... OTDR test apparatus, 11 ... In-house apparatus (OLT), 12 ... Optical coupler, 13 ... Optical cable, 14 ... Optical fiber accommodating part, 15 ... In-home wiring, 16 ... Termination apparatus (ONU), 17 DESCRIPTION OF SYMBOLS ... Optical line, 18 ... In-house optical wiring, 19 ... Filter, 100 ... Optical equipment identification device.

Claims (9)

光線路の一端から試験光を入射し、前記試験光による後方散乱光の偏光成分の時間変化から光線路の長手方向に分布する偏光成分の強度変化を測定し、前記偏光成分の強度変化の周期に対応する光ファイバの曲げ径を備える光設備を識別することを特徴とする光設備識別方法。   The test light is incident from one end of the optical line, the intensity change of the polarization component distributed in the longitudinal direction of the optical line is measured from the time change of the polarization component of the backscattered light by the test light, and the intensity change period of the polarization component An optical equipment identification method characterized by identifying an optical equipment having a bending diameter of an optical fiber corresponding to. 光線路の一端から試験光を入射し、前記試験光による後方散乱光の偏光成分の時間変化から光線路の長手方向に分布する偏光成分の強度変化を測定し、前記偏光成分の強度変化を一定区間毎の周波数解析で周波数に対する偏光成分強度変化に変換し、前記偏光成分強度変化の強度がピークとなる周波数に対応する光ファイバの曲げ径を備える光設備を前記光線路の長手方向に識別することを特徴とする光設備識別方法。   The test light is incident from one end of the optical line, the intensity change of the polarization component distributed in the longitudinal direction of the optical line is measured from the time change of the polarization component of the backscattered light by the test light, and the intensity change of the polarization component is constant. An optical equipment having a bending diameter of the optical fiber corresponding to the frequency at which the intensity of the change in polarization component intensity reaches a peak is identified in the longitudinal direction of the optical line by converting the change in polarization component intensity with respect to the frequency by frequency analysis for each section. The optical equipment identification method characterized by the above-mentioned. 光ファイバの曲げ径として、コイル状光ファイバの直径を用いることを特徴とする請求項1又は2に記載の光設備識別方法。   The optical equipment identification method according to claim 1 or 2, wherein the diameter of the coiled optical fiber is used as the bending diameter of the optical fiber. 光線路の一端から試験光を入射し、前記試験光による後方散乱光の偏光成分の時間変化から光線路の長手方向に分布する偏光成分の強度変化を測定し、前記偏光成分の強度変化の周期に対応する直径の光ケーブルを識別することを特徴とする光設備識別方法。   The test light is incident from one end of the optical line, the intensity change of the polarization component distributed in the longitudinal direction of the optical line is measured from the time change of the polarization component of the backscattered light by the test light, and the intensity change period of the polarization component An optical equipment identifying method characterized by identifying an optical cable having a diameter corresponding to 光線路の一端から試験光を入射し、前記試験光による後方散乱光の偏光成分の時間変化から光線路の長手方向に分布する偏光成分の強度変化を測定し、前記偏光成分の強度変化の周期から、コイル状光ファイバに付与されている伸張を判定することを特徴とする光設備識別方法。   The test light is incident from one end of the optical line, the intensity change of the polarization component distributed in the longitudinal direction of the optical line is measured from the time change of the polarization component of the backscattered light by the test light, and the intensity change period of the polarization component And determining an extension given to the coiled optical fiber. 光線路の一端から試験光を入射する試験光送出器と、
前記試験光による後方散乱光の偏光成分を選別する偏光子と、
前記偏光子で選別された後方散乱光の偏光成分の時間変化を検出して電気信号に変換する試験光検出器と、
前記試験光検出器で変換された電気信号をサンプリングして時間から距離を算出して光線路長手方向に分布する偏光成分強度変化を得るA/D変換部と、
前記A/D変換部で得られた偏光成分強度変化の周期に対応する光ファイバの曲げ径を備える光設備を識別する手段と
を具備することを特徴とする光設備識別装置。
A test light transmitter for injecting test light from one end of the optical line;
A polarizer for selecting a polarization component of backscattered light by the test light;
A test light detector for detecting a time change of a polarization component of backscattered light selected by the polarizer and converting it into an electrical signal;
An A / D converter that samples the electrical signal converted by the test photodetector and calculates a distance from the time to obtain a polarization component intensity change distributed in the longitudinal direction of the optical line;
An optical equipment identification device comprising: an optical equipment having an optical fiber bending diameter corresponding to a period of change in polarization component intensity obtained by the A / D converter.
光線路の一端から試験光を入射する試験光送出器と、
前記試験光による後方散乱光の偏光成分を選別する偏光子と、
前記偏光子で選別された後方散乱光の偏光成分の時間変化を検出して電気信号に変換する試験光検出器と、
前記試験光検出器で変換された電気信号をサンプリングして時間から距離を算出して光線路長手方向に分布する偏光成分強度変化を得るA/D変換部と、
前記A/D変換部で得られた偏光成分強度変化を一定区間毎の周波数解析で周波数に対する偏光成分強度変化に変換するFFT部と、
前記FFT部で得られた偏光成分強度変化の強度がピークとなる周波数に対応する光ファイバの曲げ径を備える光設備を前記光線路の長手方向に識別する設備識別部と、
前記設備識別部で識別された光設備を光線路の長手方向に表示する評価結果表示部と
を具備することを特徴とする光設備識別装置。
A test light transmitter for injecting test light from one end of the optical line;
A polarizer for selecting a polarization component of backscattered light by the test light;
A test light detector for detecting a time change of a polarization component of backscattered light selected by the polarizer and converting it into an electrical signal;
An A / D converter that samples the electrical signal converted by the test photodetector and calculates a distance from the time to obtain a polarization component intensity change distributed in the longitudinal direction of the optical line;
An FFT unit that converts the polarization component intensity change obtained by the A / D conversion unit into a polarization component intensity change with respect to frequency by frequency analysis for each fixed section;
An equipment identification unit for identifying an optical equipment having a bending diameter of an optical fiber corresponding to a frequency at which the intensity of the polarization component intensity change obtained in the FFT unit becomes a peak, in the longitudinal direction of the optical line;
An optical equipment identification apparatus, comprising: an evaluation result display section that displays the optical equipment identified by the equipment identification section in the longitudinal direction of the optical line.
光ファイバの曲げ径として、コイル状光ファイバの直径を用いることを特徴とする請求項6又は7に記載の光設備識別装置。   The optical equipment identification device according to claim 6 or 7, wherein the diameter of the coiled optical fiber is used as the bending diameter of the optical fiber. 光線路の一端から試験光を入射する試験光送出器と、
前記試験光による後方散乱光の偏光成分を選別する偏光子と、
前記偏光子で選別された後方散乱光の偏光成分の時間変化を検出して電気信号に変換する試験光検出器と、
前記試験光検出器で変換された電気信号をサンプリングして時間から距離を算出して光線路長手方向に分布する偏光成分強度変化を得るA/D変換部と、
前記A/D変換部で得られた偏光成分強度変化の周期に対応する直径の光ケーブルを識別する手段と
を具備することを特徴とする光設備識別装置。
A test light transmitter for injecting test light from one end of the optical line;
A polarizer for selecting a polarization component of backscattered light by the test light;
A test light detector for detecting a time change of a polarization component of backscattered light selected by the polarizer and converting it into an electrical signal;
An A / D converter that samples the electrical signal converted by the test photodetector and calculates a distance from the time to obtain a polarization component intensity change distributed in the longitudinal direction of the optical line;
An optical equipment identification device comprising: means for identifying an optical cable having a diameter corresponding to a period of a change in polarization component intensity obtained by the A / D conversion unit.
JP2009041139A 2009-02-24 2009-02-24 Optical equipment identification method and apparatus Expired - Fee Related JP5128519B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009041139A JP5128519B2 (en) 2009-02-24 2009-02-24 Optical equipment identification method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009041139A JP5128519B2 (en) 2009-02-24 2009-02-24 Optical equipment identification method and apparatus

Publications (2)

Publication Number Publication Date
JP2010199856A true JP2010199856A (en) 2010-09-09
JP5128519B2 JP5128519B2 (en) 2013-01-23

Family

ID=42824133

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009041139A Expired - Fee Related JP5128519B2 (en) 2009-02-24 2009-02-24 Optical equipment identification method and apparatus

Country Status (1)

Country Link
JP (1) JP5128519B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014100939A1 (en) * 2012-12-24 2014-07-03 华为技术有限公司 Optical fiber characteristic measurement method and optical module

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004212325A (en) * 2003-01-08 2004-07-29 Fujikura Ltd Otdr measuring device and otdr measuring method
JP2006133176A (en) * 2004-11-09 2006-05-25 Nippon Telegr & Teleph Corp <Ntt> Core wire contrast system and the core wire contrast method

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004212325A (en) * 2003-01-08 2004-07-29 Fujikura Ltd Otdr measuring device and otdr measuring method
JP2006133176A (en) * 2004-11-09 2006-05-25 Nippon Telegr & Teleph Corp <Ntt> Core wire contrast system and the core wire contrast method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014100939A1 (en) * 2012-12-24 2014-07-03 华为技术有限公司 Optical fiber characteristic measurement method and optical module

Also Published As

Publication number Publication date
JP5128519B2 (en) 2013-01-23

Similar Documents

Publication Publication Date Title
CN101949745B (en) Monitoring system of internal temperature and stress of power transformer winding and monitoring method thereof
KR20080053506A (en) Sensor and external turbulence measuring method using the same
US20140139824A1 (en) System and Method for Measuring Fiber Temperature Using OTDR Measurements
JP5512462B2 (en) Method for measuring longitudinal distribution of bending loss of optical fiber and optical fiber line, optical line test method, and optical fiber manufacturing method
WO2014101754A1 (en) Multi-core optical fibre, sensing device adopting multi-core optical fibre and running method therefor
US8576387B2 (en) Fiber identification using optical frequency-domain reflectometer
JP6346852B2 (en) Optical fiber bending shape measuring apparatus and bending shape measuring method thereof
Feng et al. Distributed transverse-force sensing along a single-mode fiber using polarization-analyzing OFDR
Kafarova et al. Quasi-interferometric scheme improved by fiber Bragg grating for detection of outer mechanical stress influence on distributed sensor being silica multimode optical fiber operating in a few-mode regime
JP2016102689A (en) Optical fiber bent shape measurement device and bent shape measurement method therefor
JP5303406B2 (en) Optical equipment identification method and system
WO2022044174A1 (en) Vibration distribution measuring device and method of same
JP5128519B2 (en) Optical equipment identification method and apparatus
JP6283602B2 (en) Optical fiber bending shape measuring apparatus and bending shape measuring method thereof
WO2020158438A1 (en) Optical fiber route search method, optical fiber route search device and program
CN210536634U (en) Optical cable identification device
JP5514503B2 (en) Polarization intensity measuring apparatus and polarization intensity measuring method
Alekhin et al. Application of the polarization reflectometry for estimating the distribution of mechanical stress in optical fiber
JP6751371B2 (en) Spatial mode dispersion measuring method and spatial mode dispersion measuring apparatus
JP2017026474A (en) Optical fiber characteristic analyzer and optical fiber characteristic analysis method
JP5613371B2 (en) Test method, apparatus and system for optical fiber cord control
RU2562141C2 (en) Method of measurement of excessive length of fibre optic in optic module of optic cable during climatic tests
JPH06213770A (en) Method and system for evaluating characteristics of single mode optical fiber
CN217469960U (en) Optical time domain reflectometer and distributed optical fiber sensor optical cable fault acquisition device
WO2021260913A1 (en) Termination determining device, and termination determining method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101215

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120528

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120605

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20120627

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120806

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121023

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121031

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5128519

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151109

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees