JP2010196364A - Earthquake resisting wall - Google Patents
Earthquake resisting wall Download PDFInfo
- Publication number
- JP2010196364A JP2010196364A JP2009042483A JP2009042483A JP2010196364A JP 2010196364 A JP2010196364 A JP 2010196364A JP 2009042483 A JP2009042483 A JP 2009042483A JP 2009042483 A JP2009042483 A JP 2009042483A JP 2010196364 A JP2010196364 A JP 2010196364A
- Authority
- JP
- Japan
- Prior art keywords
- wall
- force
- frame
- earthquake
- block
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Landscapes
- Load-Bearing And Curtain Walls (AREA)
Abstract
Description
本発明は柱・梁のフレーム内に配置され、上下に隣接するコンクリートブロック等の壁構成材の相対移動を利用して地震時のせん断力を負担する耐震壁に関するものである。 The present invention relates to a seismic wall that is arranged in a frame of columns and beams and bears a shearing force during an earthquake by using relative movement of wall constituent materials such as concrete blocks adjacent vertically.
例えばコンクリートブロックを組積して構築される耐震壁は柱・梁のフレーム内の空間に、複数のコンクリートブロックを横方向と高さ方向に積み上げ、コンクリートブロックの全体を周囲のフレームから拘束することにより、水平力に対するせん断抵抗力を確保する。 For example, a seismic wall constructed by laying concrete blocks is to stack a plurality of concrete blocks in the horizontal and height directions in the space in the column / beam frame and restrain the entire concrete block from the surrounding frames. As a result, the shear resistance against the horizontal force is secured.
コンクリートブロックの形態には中実断面と中空断面があり、中空断面の場合には、内部にコンクリートを充填することにより耐震壁が完成するため、コンクリートブロックの積み上げと鉄筋の配筋を交互に行う必要があり、作業性が低下する問題がある。特に既存構造物を耐震補強する場合には、既存の梁が配筋の妨げになるため、コンクリートブロックを半割形状にする等の工夫を要する(特許文献1参照)。 The concrete block has a solid cross section and a hollow cross section. In the case of a hollow cross section, the seismic wall is completed by filling the interior with concrete, so the concrete blocks are stacked and the reinforcing bars are placed alternately. There is a problem that workability is reduced. In particular, when an existing structure is seismically reinforced, the existing beam obstructs the bar arrangement, and thus a device such as a halved concrete block is required (see Patent Document 1).
中実断面のコンクリートブロックを使用した場合には、内部に鉄筋を配筋することができないため、コンクリートブロックの外側に鉄筋に代わって上下に隣接するコンクリートブロック同士を拘束する拘束材を配置することが必要になる(特許文献2参照)。この特許文献2では特に耐震壁のせん断抵抗力を上げる目的で、コンクリートブロックの側面形状を鼓形にし、コンクリートブロックに楔効果を発揮させている。
If a concrete block with a solid cross section is used, reinforcing bars cannot be placed inside, so a restraining material that restrains the concrete blocks adjacent to each other in place of the reinforcing bars should be placed outside the concrete block. (Refer to Patent Document 2). In
特許文献2ではいずれかのコンクリートブロックがその上下に隣接するコンクリートブロックに対し、長さ方向(耐震壁の幅方向)に相対移動しようとするときに、上下に隣接するコンクリートブロックに拡幅しようとする力を作用させる。このとき、前記コンクリートブロックは上下のコンクリートブロックから移動を拘束する反力を受けることで、耐震壁に作用するせん断力に対する抵抗力を確保する(公報第4頁上右欄第10行〜同頁下左欄第1行)。
In
但し、多数のコンクリートブロックを組積して構成された耐震壁は周囲の柱・梁のフレームから拘束されていることで、耐震壁が水平力を負担したときに、周囲のフレームからせん断変形を強制的に受ける。この結果、図15に示すように相対的に上側に位置するコンクリートブロックが水平方向に移動しようとすることに伴い、その下に位置するコンクリートブロックが上側のコンクリートブロックに引き摺られて同じ向きに移動しようとする。 However, the seismic wall made up of a large number of concrete blocks is constrained from the frame of the surrounding pillars and beams, so that when the seismic wall bears a horizontal force, it will shear from the surrounding frame. Forced. As a result, as shown in FIG. 15, the concrete block located on the upper side relatively moves upward, and the concrete block located on the lower side is dragged by the upper concrete block and moved in the same direction. try to.
図15のとき、移動する側寄りの端部には上に隣接し、移動しようとするコンクリートブロックの下面から移動側を向く力を受け、反対側寄りの端部には下に隣接するコンクリートブロックの上面から移動側とは逆向きの反力を受ける。各反力は高さ方向の中間に位置するコンクリートブロックの上面と下面のそれぞれに平行な成分と垂直な成分に分けられる。 At the time of FIG. 15, the concrete block which adjoins the upper end near the moving side and receives a force facing the moving side from the lower surface of the concrete block to be moved, and the lower adjacent concrete block. The reaction force in the opposite direction to the moving side is received from the upper surface of the. Each reaction force is divided into a component parallel to and perpendicular to the upper and lower surfaces of the concrete block located in the middle of the height direction.
図15の中段に位置する、符号イで示すコンクリートブロックに着目すれば、イのコンクリートブロックは矢印で示す移動側の上面において上側のコンクリートブロックから移動側を向く力を受け、移動側の下端において下側のコンクリートブロックから逆向きの反力を受ける。イのコンクリートブロックはまた、移動の反対側の上端において上側のコンクリートブロックから移動側を向く力を受け、移動側の下面において下側のコンクリートブロックから逆向きの反力を受ける。 Focusing on the concrete block indicated by the symbol a located in the middle of FIG. 15, the concrete block of A receives a force directed from the upper concrete block toward the moving side on the upper surface of the moving side indicated by an arrow, and at the lower end of the moving side. Receives reverse reaction force from lower concrete block. The concrete block of B is also subjected to a force directed to the moving side from the upper concrete block at the upper end on the opposite side of the movement, and receives a counter reaction force from the lower concrete block on the lower surface of the moving side.
イのコンクリートブロックは移動側においては上側のコンクリートブロックから上面(面)で力を受けるが、下側のコンクリートブロックからは線(側面で見たときには点)で反力を受けるため、下側のコンクリートブロックから反力を受ける部分の応力度は無限大になる。 On the moving side, the concrete block of A receives force on the upper surface (surface) from the upper concrete block, but receives reaction force on the lower concrete block with a line (point when viewed from the side). The degree of stress in the part that receives the reaction force from the concrete block becomes infinite.
このため、反力を受ける部分が損傷を受け、実際には図15に示す状況に至ることができず、イのコンクリートブロックが下側のコンクリートブロックに乗り上げることはできないものと考えられる。同じことは移動の反対側にも言え、イのコンクリートブロックの移動の反対側では下側のコンクリートブロックからは下面(面)で反力を受けることができるが、上側のコンクリートブロックから線で力を受ける。 For this reason, the part which receives the reaction force is damaged, and the situation shown in FIG. 15 cannot actually be reached, and it is considered that the concrete block of A cannot ride on the lower concrete block. The same can be said for the other side of the movement. On the other side of the movement of the concrete block, the lower concrete block can receive a reaction force on the lower surface (surface), but the upper concrete block exerts a force with a line. Receive.
イのコンクリートブロックが移動側の下端と移動の反対側の上端で損傷を受け易いことで、結果的にイのコンクリートブロックは右回り(時計回りに)に回転しようとし、上側のコンクリートブロックからのせん断力を下側のコンクリートブロックに伝達することができない。 As a result, the concrete block of A is likely to be damaged at the lower end of the moving side and the upper end of the opposite side of the movement, and as a result, the concrete block of A tries to rotate clockwise (clockwise) and from the upper concrete block Shear force cannot be transmitted to the lower concrete block.
またイのコンクリートブロックの移動側の上面が受ける力と移動の反対側の下面が受ける反力をそれぞれの面に平行な成分と垂直な成分に分けると、垂直な成分は中心部分を通らずに互いに逆向きであるため、コンクリートブロックに対してせん断力を作用させる。平行な成分は互いに逆向きであり、一点鎖線で示す長さ方向の中心に関して両側に作用するから、イのコンクリートブロックには中心の両側に引張力が作用することになる。コンクリートブロックは長さ方向の中心部分の断面積が小さい鼓形であるから、長さ方向に作用する引張力によって中心部分が弱点になり易い。 In addition, if the force received by the upper surface of the concrete block on the moving side and the reaction force received by the lower surface on the opposite side of the movement are divided into a component parallel to each surface and a component perpendicular to each surface, the vertical component does not pass through the central part. Since the directions are opposite to each other, a shearing force is applied to the concrete block. The parallel components are opposite to each other and act on both sides with respect to the center in the length direction indicated by the alternate long and short dash line, so that a tensile force acts on both sides of the center of the concrete block. Since the concrete block has an hourglass shape with a small cross-sectional area at the center portion in the length direction, the center portion tends to become a weak point due to a tensile force acting in the length direction.
本発明は上記背景より、特許文献2のコンクリートブロックでは実現されないブロック(壁構成材)の乗り上げを可能にする形態の耐震壁を提案するものである。
In view of the above background, the present invention proposes a seismic wall in a form that enables a block (wall constituent material) that cannot be realized by the concrete block of
請求項1に記載の耐震壁は、柱と梁からなるフレーム内に複数の壁構成材を高さ方向に配列させ、前記壁構成材を前記フレームから高さ方向に拘束した状態で構築され、
前記壁構成材が上下で対になる複数の上面と下面の組を有し、前記フレームが層間変形を起こしたときに、いずれかの前記上面が前記フレームを構成する上側の梁からその梁の移動の向きに力を受け、いずれかの前記下面が前記フレームを構成する下側の梁に、前記上側の梁から受ける力と釣り合う力を及ぼす形状をし、前記上面と前記下面の少なくともいずれか一方が凸の面をなしていることを構成要件とする。
The earthquake-resistant wall according to
The wall constituent material has a plurality of pairs of upper and lower surfaces which are paired vertically, and when the frame undergoes interlayer deformation, any one of the upper surfaces is formed from the upper beam constituting the frame. A force is applied to the direction of movement, and one of the lower surfaces is shaped to exert a force that balances the force received from the upper beam on the lower beam constituting the frame, and at least one of the upper surface and the lower surface One of the components is a convex surface.
壁構成材のいずれかの上面は壁構成材の配置位置に応じ、上側の梁からその相対移動の向きに直接、もしくは間接的に力を受け、いずれかの下面は上側の梁と同一の向きに、下側の梁に直接、もしくは間接的に力を及ぼす。例えば上側の梁に接した状態で配置される壁構成材は上側の梁から直接力を受け、それより下に位置する壁構成材は上側の梁から間接的に力を受ける。また下側の梁に接した状態で配置される壁構成材は下側の梁に直接力を及ぼし、それより上に位置する壁構成材は下側の梁に間接的に力を及ぼす。壁構成材の上面は面で上側の梁からの力を受け、下面は面で下側の梁に力を及ぼす。 Either upper surface of the wall component is directly or indirectly subjected to the relative movement direction from the upper beam depending on the position of the wall component, and either lower surface is in the same direction as the upper beam In addition, it exerts a force directly or indirectly on the lower beam. For example, a wall component disposed in contact with the upper beam receives a force directly from the upper beam, and a wall component positioned below the wall component indirectly receives a force from the upper beam. Further, the wall constituent member arranged in contact with the lower beam directly exerts a force on the lower beam, and the wall constituent member positioned above it indirectly exerts a force on the lower beam. The upper surface of the wall component receives a force from the upper beam at the surface, and the lower surface exerts a force on the lower beam at the surface.
フレームの層間変形時には、上側の梁がいずれかの側に移動し、この梁に接している最上部の壁構成材がその上面において梁からの力を受けることで、梁に引き摺られて梁と同一の向きに移動する。この壁構成材の下に隣接する壁構成材は同じくその上面において間接的に梁からの力を受けることで、上の壁構成材の下面に引き摺られて同一の向きに移動する。最終的には最下部の壁構成材の下面から下側の梁に上側の梁からの力が伝達され、この下面は下側の梁からの反力を受ける。 At the time of interlayer deformation of the frame, the upper beam moves to either side, and the uppermost wall component in contact with this beam receives the force from the beam on its upper surface, so it is dragged by the beam and Move in the same direction. Similarly, the wall constituent material adjacent to the lower side of the wall constituent material receives a force from the beam indirectly on the upper surface thereof, and is dragged by the lower surface of the upper wall constituent material to move in the same direction. Eventually, the force from the upper beam is transmitted from the lower surface of the lowermost wall component to the lower beam, and this lower surface receives the reaction force from the lower beam.
壁構成材の上面が上側の梁から(直接、もしくは間接的に)力を受けることは、壁構成材の下面が下側の梁から(直接、もしくは間接的に)力を受けることでもあり、壁構成材の上面と下面は対(作用・反作用)の関係にあるから、「上面が上側の梁から力を受け、下面が下側の梁に力を及ぼす」は便宜的な説明に過ぎず、「下面が下側の梁から力を受け、上面が上側の梁に力を及ぼす」とも言える。 When the upper surface of the wall component receives a force (directly or indirectly) from the upper beam, the lower surface of the wall component also receives a force (directly or indirectly) from the lower beam, Since the upper and lower surfaces of the wall components are in a pair (action / reaction) relationship, “the upper surface receives a force from the upper beam and the lower surface exerts a force on the lower beam” is merely a convenient explanation. , “The lower surface receives a force from the lower beam, and the upper surface exerts a force on the upper beam”.
よって「壁構成材のいずれかの上面に上側の梁から(直接、もしくは間接的に)力を受ける」とは、フレームの層間変形に伴い、上側の梁がいずれかの側へ相対移動したときに、その移動の向きに壁構成材の上面が梁から直接、または上側の梁に接している他の壁構成材を通じて間接的に力を受けることを言う。 Therefore, “It receives a force from the upper beam (directly or indirectly) on any upper surface of the wall component” means that the upper beam moves relative to either side due to the interlayer deformation of the frame. In addition, it means that the upper surface of the wall component receives a force directly from the beam or indirectly through another wall component in contact with the upper beam in the direction of movement.
また「壁構成材が下側の梁に(直接、もしくは間接的に)力を及ぼす」とは、上側の梁から力を受けた壁構成材がその下面を通じて下側の梁に直接、または下側の梁に接している壁構成材から間接的に力を及ぼし(与え)、反力を受けることを言う。 “The wall component exerts a force on the lower beam (directly or indirectly)” means that the wall component that receives the force from the upper beam directly or below the lower beam through its lower surface. It refers to receiving a reaction force by applying (giving) force indirectly from the wall component that is in contact with the side beam.
「壁構成材の下面から下側の梁に、上側の梁から受ける力と釣り合う力を及ぼす」とは、壁構成材が上側の梁から受けた力を下側の梁に伝達し、下側の梁から反力を受けた状態で釣り合いを保つことを言い、耐震壁(壁板)を構成する個々の壁構成材自体が耐震壁の一部として平衡を保つことを言う。 “Because the lower surface of the wall component has a force that balances with the force received from the upper beam on the lower beam,” the wall component transmits the force received from the upper beam to the lower beam. This means that the balance is maintained in a state of receiving the reaction force from the beam, and that the individual wall components constituting the earthquake-resistant wall (wall plate) are kept in equilibrium as a part of the earthquake-resistant wall.
「上面と下面の少なくともいずれか一方が凸の面をなしている」とは、上面であれば上側に凸の面をなし、下面であれば下側に凸の面をなすことを言い、上面のみが上側に凸の面をなす場合(図8)と、下面のみが下側に凸の面をなす場合(図8の上下を反転させた形)の他、上面と下面が共にそれぞれの側に凸の面をなす場合(図2、図10)がある。 “At least one of the upper surface and the lower surface forms a convex surface” means that the upper surface has a convex surface on the upper side, and the lower surface has a convex surface on the lower side. In addition to the case where only the upper surface has a convex surface (FIG. 8) and the case where only the lower surface forms a convex surface on the lower side (inverted shape in FIG. 8), the upper surface and the lower surface are both sides. In some cases, a convex surface is formed (FIGS. 2 and 10).
壁構成材の材料は問われず、耐震壁(壁板)の一部を構成したときにせん断力を負担できる剛体として機能できればよい。壁構成材にはコンクリートブロック、レンガ、石材等、ブロック状の形状をする部材が使用される他、耐震壁(壁板)を複数に分割した形状のコンクリート部材が使用され、耐震壁の内、少なくとも一部の壁構成材が上下で対になる複数の上面と下面の組を有していればよい。 The material of the wall constituent material is not limited as long as it can function as a rigid body that can bear a shearing force when a part of the earthquake-resistant wall (wall plate) is formed. In addition to the use of block-shaped members such as concrete blocks, bricks, and stone, the wall components are made of concrete members that are divided into multiple earthquake-resistant walls (wall plates). It suffices that at least some of the wall constituent materials have a plurality of pairs of upper and lower surfaces that are paired vertically.
「上下で対になる」とは、上側の梁から直接、もしくは間接的に伝達される力を受ける壁構成材のいずれかの上面と、この上面で受けた力を下側の梁に直接、もしくは間接的に及ぼす(与える)下面とが一組になることを言う。すなわち、対になる一組は上面(被圧面)で受けた上側の梁からの力を下面(加圧面)から下側の梁に伝達する上面と下面の組み合わせを言う。壁構成材の下面(加圧面)から下側の梁に及ぼす力は下側の梁から受ける反力でもあり、この壁構成材の下面(加圧面)が受ける反力は上面(被圧面)が受ける力と釣り合う。上側の梁から直接、もしくは間接的に力を受ける壁構成材の上面は図2、図8、図10に示すように基本的に上側に凸の面をなすが、上記のように壁構成材の上面と下面は対の関係にあるから、図2、図8の上下を反転させた形をする場合もある。 “Up-down pairing” means either the upper surface of a wall component that receives force transmitted directly or indirectly from the upper beam, and the force received on this upper surface directly to the lower beam, Alternatively, it means that the lower surface that indirectly exerts (gives) is a pair. That is, a pair of pairs refers to a combination of the upper surface and the lower surface that transmits the force from the upper beam received on the upper surface (pressure surface) from the lower surface (pressure surface) to the lower beam. The force exerted on the lower beam from the lower surface (pressure surface) of the wall component is also the reaction force received from the lower beam, and the reaction force received on the lower surface (pressure surface) of this wall component is the upper surface (pressured surface). It is balanced with the power received. The upper surface of the wall component that receives force directly or indirectly from the upper beam basically forms a convex surface upward as shown in FIGS. 2, 8, and 10, but the wall component as described above. Since the upper surface and the lower surface are in a paired relationship, there are cases in which the top and bottom of FIGS. 2 and 8 are inverted.
フレームの層間変形時には壁構成材の上面は正負の向きに交互に力を受け、下面は正負の向きに交互に力を及ぼすから、上側の梁から交互に力を受ける上面(被圧面)と、下側の梁に交互に力を及ぼす下面(加圧面)はそれぞれ正向きの力を伝達する面と負向きの力を伝達する面の2面で一組になる。 At the time of interlayer deformation of the frame, the upper surface of the wall constituent material alternately receives force in the positive and negative directions, and the lower surface alternately applies force in the positive and negative directions, so that the upper surface (pressured surface) that receives the force alternately from the upper beam, The lower surface (pressure surface) that alternately exerts a force on the lower beam is a set of two surfaces, a surface that transmits a positive force and a surface that transmits a negative force.
正向きの力を伝達する面と負向きの力を伝達する面の2面を有する上面(二つの被圧面)は上側の梁の正負の移動時に梁から交互に力を受け、同じく2面を有する下面(二つの加圧面)は交互に力を及ぼすから、基本的に水平面に対して逆向きに傾斜した傾斜面になる。よって「上側の梁から力を受ける上面が上側に凸の面をなす」とは、2面で一組になる上面(二つの被圧面)が上側に凸の面をなすことを言う。ついでながら、2面で一組になる下面(二つの加圧面)が下側に凸の面をなせば、「下面が下側に凸の面をなす」ことになる。 The upper surface (two pressed surfaces) that has two surfaces, a positive force transmitting surface and a negative force transmitting surface, receives force alternately from the beam when the upper beam moves positively and negatively. Since the lower surface (two pressurization surfaces) which exerts force alternately, it becomes the inclined surface which inclined fundamentally in the reverse direction with respect to the horizontal surface. Therefore, “the upper surface receiving the force from the upper beam forms an upwardly convex surface” means that the upper surface (two pressed surfaces) that form a pair of two surfaces forms an upwardly convex surface. In addition, if the lower surfaces (two pressure surfaces) that form a pair of two surfaces form a convex surface on the lower side, "the lower surface forms a convex surface on the lower side".
結局、上面(被圧面)と下面(加圧面)に関係なく、正負の向きに交互に力を受けるか、交互に力を及ぼす2面から構成される屈曲面が上側に凸になれば、上側に凸の面をなし、上側に凹になれば、上側に凹の面をなすことになる。 After all, regardless of the upper surface (pressured surface) and the lower surface (pressurizing surface), if it receives force alternately in the positive and negative directions, or if the bent surface composed of two surfaces that exert force alternately becomes convex upward, If a convex surface is formed and concave on the upper side, a concave surface is formed on the upper side.
図2に示す壁構成材2の上面21の内、中心寄りの二つの面は見かけ上、中心を通る鉛直面に関して凹の面をなし、下面22の内、中心寄りの二つの面は中心を通る鉛直面に関して凸の面をなしている。しかしながら、上側に隣接する壁構成材から(上側の梁から直接、もしくは間接的に)交互に力を受ける二つの上面21(被圧面)の組、すなわち21aと21bの組から構成される屈曲面と、21cと21dの組から構成される屈曲面は共に上側に凸の面をなし、下側に隣接する壁構成材に(下側の梁に直接、もしくは間接的に)交互に力を及ぼす二つの下面22(加圧面)の組、すなわち22aと22bの組から構成される屈曲面と、22cと22dの組から構成される屈曲面は共に下側に凹の面をなしている。
The two surfaces near the center of the
図8に示す壁構成材2には上面21(被圧面)が2面(21aと21b)あり、下面22(加圧面)も2面(22aと22b)あるが、上面21の2面(21aと21b)から構成される屈曲面は上側に凸の面をなし、下面22の2面(22aと22b)から構成される屈曲面は下側に凹の面をなしている。前記のように図2、図8に示す壁構成材2は上下を反転させた状態で使用されることもある。
The
図10に示す壁構成材2にも上面21(被圧面)が2面(21aと21b)あり、下面22(加圧面)も2面(22aと22b)あるが、上面21の2面(21aと21b)から構成される屈曲面は上側に凸の面をなし、下面22の2面(22aと22b)から構成される屈曲面も下側に凸の面をなしている。因みに図15の例では、面対称で、交互に力を受ける上面の2面が上側に凹の面をなし、下面も下側に凹の面をなしている。
The
「対になる複数の上面と下面の組」とは、上記のように上側の梁から力を受ける上面(被圧面)と、下側の梁に力を及ぼす(与える)下面(加圧面)の組が複数存在することを言う。例えば図2、図8のように水平面に関して対称な位置で対になる上面(被圧面)と下面(加圧面)の組が存在すること(請求項3)、または図10のように鉛直面の中心に関して点対称位置にある上面(被圧面)と下面(加圧面)の組が存在すること(請求項4)を言う。結局、壁構成材は上から力を受ける上面(被圧面)と下に力を伝達する下面(加圧面)の組を少なくとも二組有し、上面(被圧面)と下面(加圧面)を共に2面以上、有することになる。 “A pair of a plurality of upper and lower surfaces to be paired” refers to an upper surface (pressurized surface) that receives a force from the upper beam and a lower surface (pressurized surface) that exerts (gives) a force to the lower beam as described above. Says that there are multiple pairs. For example, there is a pair of an upper surface (pressured surface) and a lower surface (pressurizing surface) that are paired at a symmetrical position with respect to the horizontal plane as shown in FIGS. 2 and 8 (Claim 3), or a vertical surface as shown in FIG. This means that there is a set of an upper surface (pressured surface) and a lower surface (pressurizing surface) in a point-symmetric position with respect to the center (Claim 4). After all, the wall constituent material has at least two sets of an upper surface (pressurized surface) that receives force from above and a lower surface (pressurized surface) that transmits force downward, and both the upper surface (pressurized surface) and the lower surface (pressurized surface) It will have two or more sides.
図15の例では上側の梁から力を受ける面対称の2面(二つの被圧面)で一組になる上面が上側に凹の面をなし、下側の梁に力を及ぼす面対称の2面(二つの加圧面)で一組になる下面も下側に凹の面をなしている。この結果、ブロックはその中心に関して点対称位置の、中心からの距離が大きい位置で上からの力と下からの反力を受けるため、ブロックの長さ方向の端部に反力を負担させ易く、損傷を与え易い。また上からの力と下からの反力がブロックに回転を与える偶力を形成する上、中心の両側に引張力が作用する。
In the example of FIG. 15, two pairs of plane symmetry (two pressure-receiving surfaces) that receive force from the upper beam form a pair of upper surfaces that form a concave surface on the upper side, and
これに対し、水平面に関して対称な位置で対になる上面(被圧面)と下面(加圧面)の組が存在する場合(図2、図8)には、図9に示すように片側の上面で受けた力を長さ方向の同じ位置の下面から伝達することができる。従って図15の例のように壁構成材の端部に反力を負担させるようなことがない上、壁構成材を回転させようとする偶力が発生することもない。 On the other hand, when there is a pair of an upper surface (pressurized surface) and a lower surface (pressurized surface) that are paired at a symmetrical position with respect to the horizontal plane (FIGS. 2 and 8), as shown in FIG. The received force can be transmitted from the lower surface at the same position in the length direction. Therefore, unlike the example of FIG. 15, no reaction force is applied to the end of the wall constituent material, and no couple is generated to rotate the wall constituent material.
鉛直面の中心に関して点対称位置にある上面(被圧面)と下面(加圧面)の組が存在し、上面が上側に凸、下面が下側に凸の形状をする場合(図10)には、図11に示すように壁構成材の中心の片側の上面で受けた力を中心に関して点対称位置の下面から伝達することができる。従ってこの場合には、上からの力の作用線と、下面で受ける反力の作用線を同一線上、もしくはそれに近い線上に位置させることができるため、壁構成材の端部に反力を負担させることがなく、壁構成材を回転させようとする偶力も発生しない。 When there is a set of an upper surface (pressured surface) and a lower surface (pressurizing surface) that are point-symmetric with respect to the center of the vertical surface, and the upper surface is convex upward and the lower surface is convex downward (FIG. 10) As shown in FIG. 11, the force received on the upper surface on one side of the center of the wall constituting material can be transmitted from the lower surface of the point-symmetrical position with respect to the center. Therefore, in this case, the line of action of the force from above and the line of reaction of the reaction force received on the lower surface can be located on the same line or a line close thereto, so that the reaction force is applied to the end of the wall component. There is no generation of a couple that tries to rotate the wall constituent material.
対になる上面(被圧面)と下面(加圧面)の組が鉛直面の片側毎にある場合(請求項3)と、鉛直面の中心に関して点対称位置にある場合(請求項4)のいずれも、フレームの層間変形時に壁構成材が上面(被圧面)から受けた上側の梁からの力を、その上面と対になる下面(加圧面)を通じて下側の梁に伝達する。従って壁構成材は図15に示す形状のコンクリートブロックが移動しようとするときのように、線で力を受けることがないため、過大な応力度の作用による損傷の発生がなく、壁構成材が回転しようとする現象も発生しない。 Either when the pair of upper surface (pressure surface) and lower surface (pressure surface) to be paired is on one side of the vertical surface (Claim 3) or when it is in a point-symmetrical position with respect to the center of the vertical surface (Claim 4) In addition, the force from the upper beam received by the wall constituent material from the upper surface (pressured surface) when the frame is deformed between layers is transmitted to the lower beam through the lower surface (pressure surface) paired with the upper surface. Therefore, the wall constituent material is not subjected to the force of the line as in the case where the concrete block having the shape shown in FIG. 15 is about to move. The phenomenon of trying to rotate does not occur.
水平面に関して対称な位置で、または中心に関して点対称位置で対になる上面(被圧面)と下面(加圧面)は、上面で受けた上側の梁からの力を下面から損失なく下側の梁に伝達する上では基本的に互いに平行になるが(請求項5)、対になる上面と下面の面積が等しくないような場合には必ずしも平行である必要はない。 The upper surface (pressurized surface) and lower surface (pressurized surface) that are paired at a position that is symmetrical with respect to the horizontal plane or point-symmetrical with respect to the center, receive the force from the upper beam received on the upper surface from the lower surface to the lower beam without loss. In terms of transmission, they are basically parallel to each other (Claim 5), but are not necessarily parallel when the areas of the upper and lower surfaces of the pair are not equal.
壁構成材の上下で対になる上面(被圧面)と下面(加圧面)の組はフレームの層間変形による上側の梁の相対移動(水平移動)によって水平力を負担しながら、下側の壁構成材に伝達する働きをするから、上面と下面は共に水平力に抵抗できるよう、基本的には水平面に対して傾斜した面になる。具体的には壁構成材の上面は層間変形による上側の梁の移動に伴い、上側へ向かう傾斜が付き、下面は上面と平行、もしくは平行に近い状態の傾斜が付く。 The pair of the upper surface (pressurized surface) and the lower surface (pressurized surface) that form a pair on the upper and lower sides of the wall components bears the horizontal force due to the relative movement (horizontal movement) of the upper beam due to interlayer deformation of the frame, while lower walls Since it functions to transmit to the components, the upper and lower surfaces are basically inclined with respect to the horizontal plane so that they can resist horizontal force. Specifically, the upper surface of the wall constituent material is inclined upward as the upper beam moves due to interlayer deformation, and the lower surface is inclined in a state parallel to or nearly parallel to the upper surface.
但し、上側の梁が層間変形時に水平面内より下方へ沈み込むように移動するような場合、あるいは上方へ浮き上がるように移動するような場合には、壁構成材の上面と下面が水平面になることもある。いずれにしても、下側の梁は層間変形時にも水平な状態を維持していると仮定できるから、層間変形時の上側の梁の移動方向が壁構成材の上面と交わるように上面が梁の移動方向に対して相対的に傾斜していればよい(請求項2)。 However, if the upper beam moves so as to sink downward from the horizontal plane during interlayer deformation, or if it moves so as to float upward, the upper and lower surfaces of the wall components must be horizontal. There is also. In any case, it can be assumed that the lower beam remains horizontal even during interlayer deformation, so the upper surface of the beam is aligned so that the upper beam movement direction during interlayer deformation intersects the upper surface of the wall component. It is only necessary to incline relative to the moving direction of the second aspect.
下側の梁42が層間変形時にも水平な状態を維持し、上側の梁41が層間変形時に沈み込むか、浮き上がるとすれば、図14に示すように上側の梁寄りに配置される壁構成材6の上面61が水平面で、下面62が水平に対して傾斜した傾斜面であっても上側の梁41から伝達される力を下側の梁42に伝達する機能を発揮することが可能である。上側に配置される壁構成材6の下面62が図示するように水平面に対して傾斜した複数の傾斜面を有していれば、下側に配置され、上側の梁から力を受ける壁構成材6の上面61は上側に凸の面をなしていることになる。
If the
例えば図11、図12に示すように対向する面が互いに平行な図10に示すような6角柱状(ブロック状)の壁構成材2を組積することにより耐震壁が構成される場合、ブロック状の壁構成材2の上面21(被圧面)は上側の梁の相対移動時に上に位置する壁構成材から水平方向の力を受け、下面22(加圧面)は下に位置する壁構成材2から反力を受ける。このようにブロック状の壁構成材2の上面21に作用する力と下面22に作用する反力は共に面で受けることができるため、応力度が過大になることがなく、壁構成材2の一部が損傷を受ける事態と、損傷に起因する回転の現象は発生しない。
For example, when a seismic wall is constructed by stacking hexagonal columnar (block-shaped)
図11の状況下では、ブロック状の壁構成材2の上面21と下面22には互いに向き合う方向の圧縮力が作用する。それぞれの面に作用する力を面に平行な成分と垂直な成分に分けたとき、平行な成分は壁構成材2に引張力を与え、垂直な成分はせん断力を与えるが、6角柱状(ブロック状)の壁構成材2には断面積の低下した部分がないため、引張力によって弱点になる箇所は存在しない。
In the situation of FIG. 11, a compressive force in a direction facing each other acts on the
以上のように壁構成材がフレームの層間変形時に上側の梁からその相対移動の向きに力を受け、その力をその向きと同一向きに下側の梁に対して及ぼすことは、対になる壁構成材の上面と下面が互いに平行であるか、平行に近い状態にあることで可能になるから、壁構成材は結局、互いに平行、もしくは平行に近い上面と下面の組を複数有していればよいことになる(請求項5)。 As described above, when the wall component is deformed between layers of the frame, it receives a force from the upper beam in the direction of relative movement, and the force is applied to the lower beam in the same direction as that direction. This is possible because the upper and lower surfaces of the wall component are parallel or close to each other, so that the wall component eventually has multiple pairs of upper and lower surfaces that are parallel or nearly parallel to each other. (Claim 5).
前記のようにフレームの層間変形は正負の向きに交互に繰り返されるから、互いに平行、もしくは平行に近い上面と下面の複数の組が異なる方向を向いていれば、上側の梁の正負の相対移動時に上側の梁からの力を下側の梁に伝達することが可能になる。 As described above, the inter-layer deformation of the frame is repeated alternately in the positive and negative directions. Therefore, if a plurality of pairs of the upper surface and the lower surface that are parallel to each other or parallel to each other are directed in different directions, the relative movement of the upper beam in the positive and negative directions. Sometimes it becomes possible to transmit the force from the upper beam to the lower beam.
但し、図15の例のように壁構成材の上面と下面が力の伝達をする側に対して凹の面をなしている場合には、上側の梁からの力と下側の梁からの反力のいずれかを線(点)で受けることになるから、上面と下面の少なくとも一方は図8、図11に示すように凸の面をなしていることが適切である。 However, when the upper and lower surfaces of the wall constituting material are concave surfaces with respect to the force transmitting side as in the example of FIG. 15, the force from the upper beam and the force from the lower beam Since either of the reaction forces is received by a line (point), it is appropriate that at least one of the upper surface and the lower surface has a convex surface as shown in FIGS.
前記のようにブロックの上面と下面のいずれもが凹面をなしている図15の場合には、上側の梁からの力を上面で受け、下側の梁からの反力を下面で受けることができるものの、上側の梁からの力を受ける上面と下側の梁からの反力を受ける下面が中心を挟んだ両側に位置するため、断面積の小さい中心の両側に引張力が作用する。 In the case of FIG. 15 where both the upper surface and the lower surface of the block are concave as described above, the force from the upper beam is received on the upper surface, and the reaction force from the lower beam is received on the lower surface. Although it can, the upper surface that receives the force from the upper beam and the lower surface that receives the reaction force from the lower beam are located on both sides of the center, so a tensile force acts on both sides of the center with a small cross-sectional area.
これに対し、壁構成材の上面と下面のいずれか一方が力の授受をする側に凸の面をなしている図8の場合には、図9に示すように上側の梁からの力を受ける上面と下側の梁からの反力を受ける下面が中心を挟んだ片側に位置するため、中心に引張力が作用することがない。只、中心に関してブロック(壁構成材)の移動側の下面は端部において下側に隣接するブロック(壁構成材)に線(点)で接触するため、この下面の端部が下に隣接する壁構成材、もしくは下側の梁に接触することで、反力の一部を負担し、損傷する可能性がある。 On the other hand, in the case of FIG. 8 in which either one of the upper surface and the lower surface of the wall constituting material has a convex surface on the side for transmitting and receiving force, the force from the upper beam is applied as shown in FIG. Since the upper surface to be received and the lower surface to receive the reaction force from the lower beam are located on one side across the center, no tensile force acts on the center. The lower surface of the block (wall component) on the moving side with respect to the center is in contact with the block (wall component) adjacent to the lower side at the end with a line (point), so the end of this lower surface is adjacent to the bottom. Contacting the wall components or the lower beam may bear some of the reaction force and damage it.
そこで、壁構成材の上面と下面が共に、力の授受をする側に凸の面をなしている図10の場合には(請求項4)、図11に示すように上側の梁からの力を受ける上面と下側の梁からの反力を受ける下面が中心を挟んだ点対称位置にあるため、上面と下面に平行な成分は偶力を形成するだけで、引張力になることはない。上面と下面に垂直な成分も偶力を形成するが、平行な成分による偶力と向きが逆であるため、平行な成分による偶力を相殺するように働く。またブロック(壁構成材)自体の形状から、上面も下面も線で接触する部分がないため、損傷することもない。 Therefore, in the case of FIG. 10 in which the upper surface and the lower surface of the wall constituent material are both convex surfaces on the side for transmitting and receiving force (Claim 4), the force from the upper beam as shown in FIG. Since the upper surface receiving the force and the lower surface receiving the reaction force from the lower beam are in a point-symmetrical position with the center in between, the component parallel to the upper surface and the lower surface only forms a couple and does not become a tensile force . The component perpendicular to the upper and lower surfaces also forms a couple, but the direction of the couple caused by the parallel components is opposite to that of the couple, so that it works to cancel the couple caused by the parallel components. In addition, because of the shape of the block (wall constituent material) itself, there is no part where the upper surface and the lower surface are in contact with each other, so that the block is not damaged.
図2に示す形状の壁構成材(ブロック)は上面21(被圧面)と下面22(加圧面)のそれぞれが、長さ方向(耐震壁の幅方向)に隣接し、水平面に対して傾斜した複数の傾斜面を持ち、長さ方向に隣接する傾斜面が互いに異なる方向を向き、且つ上面のいずれかの傾斜面と下面のいずれかの傾斜面が互いに平行であることの形態的特徴を有する(請求項6)。この特徴は図2に示す壁構成材を中心を通る鉛直面で2分割した図8に示す形状の壁構成材(ブロック)、及び図10に示す形状の壁構成材(ブロック)にも当てはまる。 The wall constituent material (block) having the shape shown in FIG. 2 has an upper surface 21 (pressured surface) and a lower surface 22 (pressurized surface) that are adjacent to each other in the length direction (the width direction of the earthquake-resistant wall) and inclined with respect to the horizontal plane. Having a plurality of inclined surfaces, the inclined surfaces adjacent to each other in the length direction are directed in different directions, and any one of the inclined surfaces on the upper surface and one of the inclined surfaces on the lower surface are parallel to each other. (Claim 6). This feature also applies to the wall constituent material (block) having the shape shown in FIG. 8 and the wall constituent material (block) having the shape shown in FIG. 10 obtained by dividing the wall constituent material shown in FIG. 2 into two by a vertical plane passing through the center.
図10に示す壁構成材2はその中心を挟んで対向し、対になる上面21の傾斜面21aと下面22の傾斜面22bが平行な場合であり、図8に示す壁構成材2はその中心の片側毎に、上面21の傾斜面21aと下面22の傾斜面22aが平行な場合である。図2に示す壁構成材2は更に詳しく言えば、長さ方向の中心を通る垂直面に関して同一の形状が連続する形状をし、この垂直面の片側の上面21と下面22につき、互いに異なる方向を向き、長さ方向に隣接する二つの傾斜面21a、21bと傾斜面22a、22bを有している(請求項7)。
10 is a case where the
ブロック状の壁構成材は図1、図7に示すように単独でフレーム内に水平方向(横方向)と鉛直方向(高さ方向)に組積させられることにより耐震壁を構成する場合と、図12に示すように壁板状の壁構成材と組み合わせられる場合がある。前者の場合、壁構成材は破れ目地で積み上げられる。 As shown in FIG. 1 and FIG. 7, the block-shaped wall constituent material is configured as a seismic wall by being stacked in a horizontal direction (lateral direction) and a vertical direction (height direction) alone in the frame, As shown in FIG. 12, it may be combined with a wall-plate-like wall constituent material. In the former case, the wall components are stacked at the tear joint.
後者の場合、ブロック状の壁構成材は図12に示すように耐震壁の中段位置で、耐震壁の全幅に亘って横方向に配列させられる場合と、全幅の内の一部の区間に配列させられる場合がある。壁板状の壁構成材は単独で使用される場合には、図14に示すように複数枚組み合わせられることにより耐震壁を構成する。 In the latter case, the block-shaped wall components are arranged in the middle position of the earthquake-resistant wall as shown in FIG. 12 and arranged in the horizontal direction over the entire width of the earthquake-resistant wall, and arranged in a part of the entire width. There are times when it is made to be. When the wall-plate-like wall constituent material is used alone, a plurality of sheets are combined as shown in FIG.
耐震壁を構成する壁構成材とフレームとの間、並びに耐震壁が複数個(複数枚)の壁構成材から構成される場合の、水平方向と鉛直方向に隣接する壁構成材同士、上側の梁とそれに接触する壁構成材同士、及び下側の梁とそれに接触する壁構成材同士は直接接触する場合と、間に充填材や応力伝達部材等が介在させられる場合がある。 When the earthquake resistant wall is composed of a plurality of (multiple) wall components, the wall components adjacent to each other in the horizontal direction and the vertical direction, There are cases where the beam and the wall constituent material in contact with the beam and the lower beam and the wall constituent material in contact with the beam are in direct contact with each other, and there are cases where a filler, a stress transmission member or the like is interposed therebetween.
充填材が介在させられることは、直接接触することによる壁構成材や梁の摩耗や損傷を回避し、また隣接する壁構成材間等で力の伝達を確実にする目的で行われる。充填材としてはモルタル、接着剤等の充填材が充填され、応力伝達部材としては鋼材、強化プラスチック(繊維強化プラスチックを含む)等が介在させられる。 The interposition of the filler is performed for the purpose of avoiding wear and damage of the wall component and the beam due to direct contact, and ensuring the transmission of force between adjacent wall components. Fillers such as mortar and adhesive are filled as fillers, and steel materials, reinforced plastics (including fiber reinforced plastics) and the like are interposed as stress transmission members.
図3の場合、上面と下面において異なる方向を向く複数の傾斜面が横方向に交互に配列することと、上下に対向する上面と下面が互いに平行で、この互いに平行な上面と下面の組が4組あることで、高さ方向の中間部に位置するブロック(中ブロック)の上面は上側で横方向に隣接する2個のブロック(上ブロック)の下面から上側の梁から伝達された力を受け、下面は下側で隣接する2個のブロック(中ブロック)の上面から下側の梁から伝達された反力を受ける。 In the case of FIG. 3, a plurality of inclined surfaces facing different directions on the upper surface and the lower surface are alternately arranged in the horizontal direction, and the upper and lower surfaces facing each other are parallel to each other. By having four sets, the upper surface of the block (middle block) located in the middle in the height direction is the upper side, and the force transmitted from the upper beam from the lower surface of the two blocks (upper blocks) that are adjacent in the horizontal direction on the upper side. The receiving and lower surfaces receive reaction force transmitted from the lower beam from the upper surfaces of two adjacent blocks (medium blocks) on the lower side.
このように相対的に上側に位置するブロックの下面から中間部のブロックにフレームの層間変形時の上側の梁からの力(せん断力)が伝達され、その中間部のブロックの下面から下側に位置するブロックに伝達されていくことで、最終的にはフレームを構成する上側の梁からの力(せん断力)が下側の梁に伝達されるため、複数のブロックを通じて柱・梁のフレーム内において、水平力(水平せん断力)の伝達が行われることになる。 In this way, the force (shearing force) from the upper beam at the time of interlayer deformation of the frame is transmitted from the lower surface of the relatively located block to the intermediate block, and from the lower surface of the intermediate block to the lower side. Since the force (shearing force) from the upper beam that composes the frame is finally transmitted to the lower beam by being transmitted to the block located in the frame, it is transmitted to the lower beam through multiple blocks. In this case, a horizontal force (horizontal shear force) is transmitted.
中ブロックの上面と下面から受ける反力はそれぞれの面に平行な成分と垂直な成分とに分けられ、平行な成分は互いに向きが異なるため、ブロックに引張力を作用させ、垂直な成分は互いに向き合うため、ブロックに圧縮力を作用させる。上側のブロックからの反力は上面の中心に作用し、下側のブロックからの反力は下面の中心に作用するが、対向する上面と下面が平行であることで、それぞれの作用位置が接近しているため、上記引張力は限られた範囲に作用する。 The reaction force received from the upper and lower surfaces of the middle block is divided into a component parallel to each surface and a component perpendicular to each surface, and the parallel components are different in direction from each other. To face each other, compressive force is applied to the block. The reaction force from the upper block acts on the center of the upper surface, and the reaction force from the lower block acts on the center of the lower surface. Therefore, the tensile force acts on a limited range.
ここで、図2に示すブロック状の壁構成材が図1に示すように高さ方向に配列した場合に、図3に示すように高さ方向の中間部にある壁構成材(中ブロック)の上側にある壁構成材(上ブロック)が中ブロックに対して右側へ相対移動したときの、中ブロックの下面に作用する力の釣り合いを、図4を用いて説明する。上ブロックの相対移動に伴い、中ブロックも同じ向きに相対移動する。 Here, when the block-like wall constituent materials shown in FIG. 2 are arranged in the height direction as shown in FIG. 1, the wall constituent materials (medium blocks) in the middle in the height direction as shown in FIG. The balance of forces acting on the lower surface of the middle block when the wall constituent material (upper block) on the upper side of the plate moves relative to the right side with respect to the middle block will be described with reference to FIG. With the relative movement of the upper block, the middle block also moves in the same direction.
図2に示す形状の壁構成材(ブロック)の場合、対向する上面と下面の組がブロックの中心の片側にあることから、引張力がブロックの中心の両側に作用することはないため、ブロックを分離させようとする力になることはない。圧縮力は接近した線上に作用するから、ブロックへの影響は小さい。 In the case of the wall constituent material (block) having the shape shown in FIG. 2, since the pair of the upper and lower surfaces facing each other is on one side of the center of the block, the tensile force does not act on both sides of the block center. There is no power to try to separate them. Since the compressive force acts on a close line, the influence on the block is small.
上ブロックは図4−(a)に示すように相対的に中ブロックに対して水平方向(耐震壁の幅方向)に滑ることにより相対移動し、その相対移動に伴い、中ブロックの上面の形状に応じて中ブロックに乗り上げ、上方へ移動する挙動を示す。上ブロックが水平移動に伴い、中ブロックに乗り上げて上方へ移動することで、耐震壁全体では高さ方向に伸長(膨張)しようとする。この現象を以下では「膨張」と表現する。 The upper block moves relative to the middle block by sliding in the horizontal direction (width direction of the seismic wall) as shown in FIG. 4- (a), and the shape of the upper surface of the middle block is associated with the relative movement. The behavior of riding on the middle block in response to the above and moving upward is shown. As the upper block moves horizontally, it moves on the middle block and moves upward, so that the entire earthquake-resistant wall tends to expand (expand) in the height direction. This phenomenon is expressed as “expansion” below.
膨張は個々のブロック単位で生じ、各ブロックの膨張は累積して耐震壁全体の上下方向膨張に発展するが、耐震壁全体での膨張は周囲のフレーム、特に上下の梁によって拘束され、耐震壁は水平方向と鉛直方向に高い拘束力を受けるため、フレームの層間変形によって高いせん断耐力とせん断剛性を発揮することになる。 Expansion occurs in individual block units, and the expansion of each block accumulates and develops into the vertical expansion of the entire seismic wall, but the expansion of the entire seismic wall is constrained by surrounding frames, especially the upper and lower beams, and the seismic wall Since it receives a high restraining force in the horizontal and vertical directions, it exerts high shear strength and shear rigidity due to interlayer deformation of the frame.
なお、複数の壁構成材からなる耐震壁(壁板)の少なくとも厚さ方向の片面に、繊維シート等の引張補強材が接着やモルタル等の付着により一体化させることで、フレームによる耐震壁の拘束効果を補うことができるため、耐震壁のせん断耐力とせん断剛性が一層向上する。 In addition, a tensile reinforcement material such as a fiber sheet is integrated by adhesion or adhesion of mortar on at least one side of the thickness direction of the earthquake resistant wall (wall plate) made of a plurality of wall components, thereby Since the restraining effect can be supplemented, the shear strength and shear rigidity of the earthquake resistant wall are further improved.
図4−(a)に示す状態のとき、上ブロックは二つの下面において中ブロックの二つの上面に接触し、上ブロックの下面は中ブロックの上面から反力を受けている。上ブロックの挙動と力の関係は図2に示すブロックの上下を反転させても同じである。 In the state shown in FIG. 4A, the upper block contacts the two upper surfaces of the middle block at the two lower surfaces, and the lower surface of the upper block receives a reaction force from the upper surface of the middle block. The relationship between the behavior and force of the upper block is the same even when the upper and lower sides of the block shown in FIG. 2 are inverted.
図4−(c)は上ブロックの下面と中ブロックの上面との間に生じている力の釣り合い状態を示している。ここでは簡単のため、複数のブロックからなる耐震壁が変形を生じていない状態ではブロックにいずれの方向にも軸力が作用していないものとする。 FIG. 4- (c) shows a balance state of forces generated between the lower surface of the upper block and the upper surface of the middle block. Here, for the sake of simplicity, it is assumed that an axial force does not act on the block in any direction in a state where the earthquake-resistant wall composed of a plurality of blocks is not deformed.
図4−(a)において中ブロックの上面から上ブロックの下面に作用する力の内、上ブロックの下面に垂直な成分は主に耐震壁の膨張を抑える力として作用する。この力の大きさをQOとし、下面に平行な成分をPOとすると、摩擦係数をμとして
PO=μ・QO(μ=PO/QO)が成り立つ。
一方、(b)においてtanγ=PO/QOであるから、
γ=tan−1(PO/QO)=tan−1・μとなる。
In FIG. 4- (a), among the forces acting on the lower surface of the upper block from the upper surface of the middle block, the component perpendicular to the lower surface of the upper block mainly acts as a force for suppressing the expansion of the earthquake resistant wall. When the magnitude of this force is QO and the component parallel to the lower surface is PO, the friction coefficient is μ, and PO = μ · QO (μ = PO / QO) holds.
On the other hand, since tan γ = PO / QO in (b),
γ = tan −1 (PO / QO) = tan −1 · μ.
図4−(c)において上ブロックから中ブロックに働く力の内、水平成分をAO、垂直成分をBOとし、力QOと鉛直方向とのなす角度をθとすると、
AO=BO・tan(θ+γ)。
ここで、ブロックの膨張により耐震壁全体が上下のフレームから受ける上下方向拘束力をV、ブロック1段当たりの接触面の数をmとすると、BO=V/mであるから、
AO=V/m・tan(θ+γ)となる。
また耐震壁全体のせん断力をQとすると、Q=m・AOであるから、以下の式(1)が得られる。
Q=V・tan(θ+tan−1・μ)……(1)
In FIG. 4- (c), of the forces acting from the upper block to the middle block, the horizontal component is AO, the vertical component is BO, and the angle between the force QO and the vertical direction is θ.
AO = BO · tan (θ + γ).
Here, when the vertical restraining force received by the entire earthquake resistant wall from the upper and lower frames due to the expansion of the block is V, and the number of contact surfaces per block step is m, BO = V / m,
AO = V / m · tan (θ + γ).
Further, when the shearing force of the entire earthquake resistant wall is Q, since Q = m · AO, the following formula (1) is obtained.
Q = V · tan (θ + tan −1 · μ) (1)
図4−(d)において上ブロックが中ブロックに対し、水平方向にδだけ滑り、全く変形を生じないとすると、上ブロックは上方へeだけ移動し、膨張する。但し、実際には前記上下方向拘束力によりブロックは上下方向に収縮し、膨張量はeより小さくなるため、ブロック自体の収縮量をe1、結果としての膨張量をe2とすれば、
e=e1+e2である。
In FIG. 4D, if the upper block slides by δ in the horizontal direction with respect to the middle block and no deformation occurs, the upper block moves upward by e and expands. However, since the block contracts in the vertical direction due to the vertical restraining force and the expansion amount is smaller than e, if the contraction amount of the block itself is e 1 and the resulting expansion amount is e 2 ,
e = e 1 + e 2 .
ここで、フレームを構成する上下の梁が剛で、上下方向拘束力は耐震壁の幅方向両側の柱主筋から耐震壁に作用すると仮定すると、ブロックに生じる圧縮力とその膨張を拘束する柱主筋の引張力は等しく、この柱主筋の引張力が上下方向拘束力に他ならない。 Here, assuming that the upper and lower beams that make up the frame are rigid and that the vertical restraining force acts on the seismic wall from the main pillars on both sides of the seismic wall in the width direction, the column main bar that restrains the compressive force generated on the block and its expansion The pulling force is equal, and the pulling force of this column main bar is nothing but the vertical restraint force.
この上下方向拘束力をV、ブロックの段数をn、耐震壁の内法高さをh、ブロックのヤング係数をcE、柱主筋のヤング係数をsEとし、上下方向拘束力Vを受ける耐震壁の有効断面積をwAe、柱主筋の断面積をrAとすると、
ブロックの歪みε1はε1=V/cE・wAe、
柱主筋の歪みε2はε2=V/sE・rAであるから、Vは以下のようになる。
V=cE・wAe・ε1=sE・rA・ε2……(2)。
The vertical direction restraining force V, and number of blocks n, the clear width height Shear Walls h, and Young's modulus of the block c E, the Young's modulus of the pillar main reinforcement and s E, receives the vertical restraining force V Shear If the effective cross-sectional area of the wall is w A e and the cross-sectional area of the column main reinforcement is r A,
The strain ε1 of the block is ε1 = V / c E · w A e ,
Since the column principal muscle distortion ε2 is ε2 = V / s E · r A, V is as follows.
V = c E · w A e ·
なお、耐震壁の有効断面積wAeは図4−(b)に示すように上ブロックが中ブロックに対して相対移動したときに、上ブロックの下面と中ブロックの上面とが接触(重複)している面の水平投影面積の合計(合算)を指す。 The effective cross-sectional area w A e of the earthquake-resistant wall is such that when the upper block moves relative to the middle block as shown in FIG. 4- (b), the lower surface of the upper block and the upper surface of the middle block are in contact (overlapping). ) Indicates the total (total) of the horizontal projection areas of the surface.
ε1、ε2はまた、1ブロックの高さをLとすれば、
ε1=e1/L、ε2=e2/Lと表され、L=h/nであるから、
ε1=e1/(h/n)=(e1・n)/h、
ε2=(e2・n)/hとなる。
このε1、ε2を上記式(2)に入れると、
V=cE・wAe・(e1・n)/h=sE・rA・(e2・n)/h……(3)
となるから、以下の式(4)を得る。
cE・wAe・e1=sE・rA・e2……(4)
ε1 and ε2 are also given that the height of one block is L.
Since ε1 = e 1 / L, ε2 = e 2 / L, and L = h / n,
ε1 = e 1 / (h / n) = (e 1 · n) / h,
ε2 = (e 2 · n) / h.
When these ε1 and ε2 are put into the above equation (2),
V = c E · w A e · (
Therefore, the following formula (4) is obtained.
c E · w A e · e 1 = s E · r A · e 2 (4)
また図4−(c)よりe2=δ・tanθ−e1であるから、これを式(4)の右辺に入れると、
cE・wAe・e1=sE・rA・(δ・tanθ−e1)となり、整理すれば、以下の式(5)が得られる。
e1={(sE・rA)/(cE・wAe)・δ・tanθ}/{(sE・rA)/(cE・wAe)+1}……(5)
Also, from FIG. 4- (c), e 2 = δ · tan θ−e 1 , so when this is put on the right side of the equation (4),
c E · w A e · e 1 = s E · r A · (δ · tan θ−e 1 ), and rearranging, the following equation (5) is obtained.
e 1 = {( s E · r A) / ( c E · w A e ) · δ · tan θ} / {( s E · r A) / ( c E · w A e ) +1} (5)
ここで、耐震壁の内法高さに対する層間変形角をRとすると、式(5)は下式(6)になる。
e1={(sE・rA)/(cE・wAe)・tanθ}/{(sE・rA)/(cE・wAe)+1}・(h・R)/n……(6)
Here, when the interlayer deformation angle with respect to the inner height of the earthquake-resistant wall is R, the equation (5) becomes the following equation (6).
e 1 = {( s E · r A) / ( c E · w A e ) · tan θ} / {( s E · r A) / ( c E · w A e ) +1} · (h · R) / n …… (6)
上記式(3)と式(6)から、以下の式(7)が得られる。
V=cE・wAe・{(sE・rA)/(cE・wAe)・tanθ}/{(sE・rA)/(cE・wAe)+1}・R……(7)
式(7)を式(1)に代入して整理すると、Qは以下のように表される。
Q=(sE・wAe)・{(rA/wAe)・tanθ}/{(sE・rA)/(cE・wAe)+1}・tan(θ+tan−1・μ)・R……(8)
From the above equations (3) and (6), the following equation (7) is obtained.
V = c E · w A e · {(s E · r A) / (c E · w A e) · tanθ} / {(s E · r A) / (c E · w A e) +1} · R ...... (7)
When formula (7) is substituted into formula (1) and rearranged, Q is expressed as follows.
Q = ( s E · w A e ) · {( r A / w A e ) · tan θ} / {( s E · r A) / ( c E · w A e ) +1} · tan (θ + tan −1 · μ) ・ R …… (8)
式(8)により耐震壁に作用するせん断力Qが層間変形角Rを用いて表されることが明らかにされた。すなわち、各ブロックに滑りδが生じ、耐震壁全体として層間変形角Rが生じる場合にも、せん断力Qが0にならないことが明らかになったため、ブロックに滑りが生じる場合にも、耐震壁としてのせん断力が期待できることが証明された。 It was clarified that the shearing force Q acting on the shear wall is expressed using the interlayer deformation angle R by the equation (8). That is, even when slip δ occurs in each block and the interlaminar deformation angle R occurs as a whole earthquake resistant wall, it has become clear that the shear force Q does not become zero. It was proved that the shearing force of can be expected.
また上ブロックの中ブロックに対する滑りδに起因してブロックに収縮e1と膨張e2が生ずることを前提として、せん断力Qと層間変形角Rとの関係が成立したことで、上ブロックの滑りによる膨張が耐震壁全体のせん断力Qに寄与していることも明らかになった。各ブロックの膨張が累積した耐震壁全体の上下方向膨張はフレームを構成する上下の梁によって拘束されようとするため、高いせん断剛性を保有することが証明された。 Further, assuming that the contraction e 1 and the expansion e 2 are generated in the block due to the slip δ with respect to the middle block of the upper block, the relationship between the shear force Q and the interlayer deformation angle R is established, so that the upper block slips. It was also revealed that the expansion caused by the shear wall contributes to the shearing force Q of the entire earthquake resistant wall. It was proved that the vertical expansion of the entire seismic wall with the expansion of each block was constrained by the upper and lower beams that make up the frame, and therefore possessed high shear rigidity.
壁構成材が上面においてフレームを構成する上側の梁から直接、もしくは間接的にフレームの移動の向きに力を受け、この上側の梁から受ける力と釣り合う力を下面を通じてフレームを構成する下側の梁に直接、もしくは間接的に及ぼす形状をしていることで、上側の梁からの力(せん断力)を下側の梁に確実に伝達することができる。また相対的に上側に位置する壁構成材の滑りによって下側に位置する壁構成材への乗り上げが生じ、耐震壁全体の上下方向膨張は上下の梁によって拘束されるため、耐震壁のせん断耐力とせん断剛性が向上する。 The wall component receives a force directly or indirectly from the upper beam constituting the frame on the upper surface, and a force that balances the force received from the upper beam on the lower beam constituting the frame through the lower surface. By having a shape that directly or indirectly affects the beam, the force (shearing force) from the upper beam can be reliably transmitted to the lower beam. In addition, the sliding of the wall component located on the upper side causes the climb to the wall component located on the lower side, and the vertical expansion of the entire earthquake resistant wall is restrained by the upper and lower beams, so the shear strength of the earthquake resistant wall And shear rigidity is improved.
以下、図面を用いて本発明を実施するための最良の形態を説明する。 Hereinafter, the best mode for carrying out the present invention will be described with reference to the drawings.
図1は柱3と梁4(41、42)からなるフレーム5内に複数の壁構成材2を高さ方向に配列させ、壁構成材2をフレーム5から高さ方向に拘束した状態で構築される耐震壁1の構成例を示す。図1は図2に示す立体形状の壁構成材2を水平方向と鉛直方向に破れ目地で組積して構築される耐震壁1を示す。
FIG. 1 shows a structure in which a plurality of
壁構成材2は耐震壁1の内、フレーム5を除いた壁板10を構成する。壁構成材2の形状は図1〜図7に示すようなブロック状の場合と、図12〜図14に示すような壁板状の場合がある。
The
壁構成材2は上下で対になる複数の上面21と下面22の組を有し、フレーム5が層間変形を起こしたときに、フレーム5を構成する上側の梁41から直接、もしくは間接的にいずれかの上面21にフレームの5移動の向きに力を受け、下面22から、フレーム5を構成する下側の梁42に直接、もしくは間接的に、上側の梁41から受ける力と釣り合う力を及ぼす形状をしている。上面21と下面22の少なくともいずれか一方はそれぞれの側に凸の面をなしている。
The
図2に示す壁構成材2は上面21と下面22のそれぞれが、長さ方向に隣接し、水平面に対して傾斜した複数の傾斜面21a〜21d、22a〜22dを有する形態を有する。長さ方向に隣接する傾斜面21a(22a)と傾斜面21b(22b)、傾斜面21b(22b)と傾斜面21c(22c)、傾斜面21c(22c)と傾斜面21d(22d)は互いに異なる方向を向き、且つ上面21のいずれかの傾斜面21a〜21dと下面22のいずれかの傾斜面22a〜22dが互いに平行である。
2 has a form in which each of the
図2に示す壁構成材2は特に破線で示す、長さ方向の中心を通る垂直面(対称面)に関して連続する形状をし、この垂直面の片側につき、上面21(被圧面)と下面22(加圧面)のそれぞれが、互いに異なる方向を向き、長さ方向に隣接する二つの傾斜面21aと傾斜面21b(傾斜面21cと傾斜面21d)、及び傾斜面22a、22b(傾斜面22cと傾斜面22d)を有している。上面21の全傾斜面21a〜21dは被圧面であり、下面22の全傾斜面22a〜22dは加圧面である。
The
図3、図4に示すように図2に示す複数の壁構成材2が水平方向に隣接して配列し、鉛直方向に多段に配置された耐震壁1では、相対的に上段側(上側)に位置する壁構成材2の下面22(加圧面)と下段側(下側)に位置する壁構成材2の上面21(被圧面)が互いに接触した状態にある。上下に隣接する壁構成材2、2は直接接触する場合と、両者間にモルタルや接着剤等の充填材が充填され、間接的に接触する場合がある。
As shown in FIGS. 3 and 4, in the earthquake-
相対的に上側に位置する壁構成材2がフレーム5の層間変形によりいずれかの側、図面では右側に移動するとき、その上側の壁構成材2の下面22から下側の壁構成材2の上面21が力を受ける。図3の場合には特に、上側の壁構成材2の下面22を構成する傾斜面22aと傾斜面22cから、下側の壁構成材2の上面21を構成する傾斜面21aと傾斜面21cに力が伝達される。
When the wall
図2に示すブロック状の壁構成材2は破れ目地で積み上げられる関係で、上側に位置する壁構成材2の相対移動により下側に位置する2個の壁構成材2、2に力を及ぼす。上側の壁構成材2が右側へ移動したとき、上側の壁構成材2の傾斜面22aからはその下で隣接する2個の壁構成材2、2の内、左側に位置する壁構成材2の傾斜面21cに力を伝達し、上側の壁構成材2の傾斜面22cからは右側の壁構成材2の傾斜面21aに力を伝達する。上側の壁構成材2が左側へ移動したとき、上側の壁構成材2の傾斜面22dからは右側に位置する壁構成材2の傾斜面21bに力を伝達し、上側の壁構成材2の傾斜面22bからは左側の壁構成材2の傾斜面21dに力を伝達する。
The block-like wall
このことから、図2に示す形状の壁構成材2の上面21における傾斜面21aと傾斜面21bの組、及び傾斜面21cと傾斜面21dの組がそれぞれ上側の梁41から正負の向きに交互に力を受ける組み合わせになり、下面22における傾斜面22aと傾斜面22bの組、及び傾斜面22cと傾斜面22dの組がそれぞれ下側の梁42に正負の向きに交互に力を及ぼす組み合わせになる。
Therefore, the set of the
また上面21の傾斜面21aと傾斜面21cで受けた力を下面22の傾斜面22aと傾斜面22cから伝達し、上面21の傾斜面21bと傾斜面21dで受けた力を下面22の傾斜面22bと傾斜面22dから伝達するから、傾斜面21aと傾斜面22a、傾斜面21bと傾斜面22b、傾斜面21cと傾斜面22c、傾斜面21dと傾斜面22dの各組が上側の梁41からの力を下側の梁42に伝達するための対になる。この対になる各組の傾斜面21aと傾斜面22a等は互いに平行である。
Further, the forces received by the
図8、図9に示す壁構成材2は図2に示す壁構成材2をその中心を通る鉛直面(対称面)で2分割した形状であるから、上面21と下面22のそれぞれが長さ方向に隣接し、水平面に対して傾斜し、互いに異なる方向を向いた複数の傾斜面21a、21bと傾斜面22a、22bを有する。
The
この場合、上面21において隣接する傾斜面21aと傾斜面21bの組が上側の梁41から正負の向きに交互に力を受ける組み合わせになり、下面22において隣接する傾斜面22aと傾斜面22bの組が下側の梁42に正負の向きに交互に力を及ぼす組み合わせになる。また上面21の傾斜面21aと下面22の傾斜面22a、及び上面21の傾斜面21bと下面22の傾斜面22bは互いに平行で、各組が上側の梁41からの力を受け、下側の梁42に伝達するための対になる。
In this case, the pair of the
図8に示す壁構成材2は図9に示すように壁構成材2が下側の壁構成材2に対して相対移動したときに、前記のように上側の壁構成材2からの力を傾斜面21aで受け、下側の壁構成材2からの反力を傾斜面22aで受けることができる。
As shown in FIG. 9, when the
反面、その壁構成材2は下面22の移動側の端部(下端部)においても下側に隣接する壁構成材2に接触し、この端部は線で接触しているため、この下面22の端部が摩耗、あるいは損傷する可能性を秘めている。この摩耗等の可能性は下側の壁構成材2からの反力を受ける傾斜面22aが下側に凹の面をなしていることに起因するため、図1、図2に示す壁構成材2にも存在する。
On the other hand, the wall
これに対し、図10、図11に示すように壁構成材2の側面形状を凸6角形状にすることで、下側の壁構成材2からの反力を受ける傾斜面22aが下側に凸の面をなすため、下側の壁構成材2に線で接触する端部がなくなり、下面22が摩耗、あるいは損傷する可能性がなくなる。図10、図11に示す壁構成材2は対向する面が互いに平行な6角柱状の形状をする。
On the other hand, as shown in FIG. 10 and FIG. 11, the
図10に示す壁構成材2も上面21と下面22のそれぞれが、長さ方向に隣接し、水平面に対して傾斜した複数の傾斜面21a、21bと傾斜面22a、22bを有し、長さ方向に隣接する傾斜面21a(22a)と傾斜面21b(22b)は互いに異なる方向を向く。図10の場合、図8の場合と異なり、上面21の傾斜面21aと下面22の傾斜面22a、及び上面21の傾斜面21bと下面22の傾斜面22bは互いに平行ではないが、傾斜面21aと傾斜面22b、及び傾斜面21bと傾斜面22aが互いに平行であり、それぞれの組が上側の梁41からの力を受け、下側の梁42に伝達するための対になる。
10 also includes a plurality of
図12は図10に示す壁構成材2を耐震壁1の高さ方向の中段に1列に配置し、その上下に壁板状の壁構成材6を配置した場合の耐震壁1の構成例を示す。この例は柱3と梁4からなるフレーム5内にブロック状の壁構成材2と壁板状の壁構成材6を高さ方向に配列させた場合であり、少なくとも壁構成材2が上側の梁41からの力を受ける上面21と、下側の梁42に力を伝達する下面22を有している。
FIG. 12 shows a structural example of the
図12では上側の梁41に接する壁構成材6の下面62と下側の梁42に接する壁構成材6の上面61の形状が、中段に配置される壁構成材2の上面21と下面22の傾斜に応じて波形になる。このため、上側の壁構成材6はフレーム5の層間変形に伴う水平移動時に下面62の傾斜面を通じて壁構成材2の上面21に力を伝達し、下側の壁構成材6は上面61の傾斜面から壁構成材2に反力を作用させる。
In FIG. 12, the shapes of the
フレーム5の層間変形時に上側の梁41が沈み込むか、浮き上がるように下側の梁42に対して相対移動する場合には、上側の壁構成材6の上面61が平坦面であっても、壁構成材6の上面61が上側の梁41の移動方向に対して相対的に傾斜するため、上側の梁41からその移動の向きに力を受けることができる。
When the
上側の梁41が水平方向に相対移動する場合には、梁41からの力が壁構成材6に伝達され易いよう、図12に鎖線で示すように上側の壁構成材6の上面61を波形に形成することもある。この波形は中段に配列する壁構成材2の群の上面と下面がなす波形の形状に倣い、向きの異なる傾斜面が交互に配列するように形成される。その場合、上側の梁41と壁構成材6の上面との間にはモルタル、コンクリート、接着剤等の充填材7が充填される。下側の壁構成材6の下面62も波形に形成した場合には、下側の壁構成材6の下面62から下側の梁42への力の伝達が確実になる。
When the
図13は図12に示す耐震壁1の中央寄りの一部の領域を切り欠いて開口部8を形成した場合の例を示す。この場合、開口部8の形成によって壁構成材6と壁構成材2の開口部8側の端部の拘束がなくなり、相対的に上側に位置する壁構成材6から壁構成材2への力の伝達効果が低下する可能性があるため、開口部8の縁の位置には枠材9が配置される。
FIG. 13 shows an example in which the opening 8 is formed by cutting out a part of the earthquake
図14はフレーム5内に2枚の壁構成材6、6を配置し、上側の壁構成材6の下面62と下側の壁構成材6の上面61を波形の形状に形成した場合の例を示す。この場合も波形も、鎖線で示すようにブロック状の壁構成材2の群の上面と下面がなす波形の形状に倣って形成される。上下の壁構成材6、6は上側の壁構成材6の下面62と下側の壁構成材6の上面61が直接接触した状態で配置されればよいが、上下の壁構成材6、6の間には、両者間での力の伝達効果を上げるために、鋼材、強化プラスチック等の応力伝達部材11を介在させている。上下の壁構成材6、6の間には前記の充填材7が充填される場合もある。
FIG. 14 shows an example in which two
ここで、図2に示す壁構成材2を組積して図1に示す耐震壁1を構築する場合の作業手順を図5〜図7により説明する。図5は柱3と梁4(41、42)からなるフレーム5内の下側の梁42の上に壁構成材2を水平方向に配列させるための架台12を設置した様子を示している。下側の梁42の天端とスラブの天端は同一のため、図5では下側の梁42をスラブで表している。
Here, the work procedure in the case of building the earthquake-
架台12の上面は複数個の壁構成材2を長さ方向に隣接させながら配置し、壁構成材2の群を形成したときの下面の形状に倣った波形の形状に形成されている。架台12は下側の梁42にアンカー等によって定着される。梁42上には架台12に代わってモルタル等の充填材7を敷設することもある。全壁構成材2の組積が完了したときには、最上段の壁構成材2と上側の梁41の下面との間に充填材7が充填されるため、上側の梁41の下面には予め充填材7と梁41との一体性を確保するための突起13が突設されている。
The upper surface of the
図6は図5に示す架台12の上に壁構成材2を破れ目地で積み重ねている様子を示す。図7は最上段の壁構成材2の積み重ねまで終了した様子を示す。図7の状態からは、前記のように最上段の壁構成材2と上側の梁41との間に充填材7が充填される。フレーム5は壁構成材2の水平方向の移動を拘束する必要があるため、図1に示すように柱3側の壁構成材2と柱3との間にも充填材7が充填され、耐震壁1が完成する。
FIG. 6 shows a state in which the
図1では柱3の全長に亘って壁構成材2との間に充填材7を充填しているが、充填材7は特に柱3の上下端部(頭部と脚部)に重点的に充填されれば、耐震壁1が地震時の水平せん断力を負担し、崩壊前の終局時に至るまで柱3による壁構成材2の拘束効果を発揮させ、耐震壁1のせん断耐力を向上させることができる。
In FIG. 1, the
複数の壁構成材2からなる壁板(耐震壁1)の少なくとも厚さ方向の片面の一部、もしくは全面には、耐震壁1がせん断力を負担するときの斜張力に抵抗させるための繊維シート等の引張補強材が接着剤やモルタル等により一体化させられることもある。
Fiber for resisting the oblique tension when the
1……耐震壁、10……壁板、
2……壁構成材(ブロック状)、21……上面、22……下面、
21a〜21d……傾斜面、
22a〜22d……傾斜面、
3……柱、41……上側の梁、42……下側の梁、5……フレーム、
6……壁構成材(壁板状)、61……上面、62……下面、
7……充填材、8……開口部、9……枠材、
11……応力伝達部材、12……架台、13……突起。
1 ... seismic wall, 10 ... wallboard,
2 ... Wall component (block shape), 21 ... Upper surface, 22 ... Lower surface,
21a to 21d: inclined surface,
22a to 22d: inclined surface,
3 ... Column, 41 ... Upper beam, 42 ... Lower beam, 5 ... Frame,
6 …… Wall component (wall plate shape), 61 …… Upper surface, 62 …… Lower surface,
7 ... filler, 8 ... opening, 9 ... frame material,
11 ... Stress transmission member, 12 ... Mounting stand, 13 ... Projection.
Claims (7)
前記壁構成材は上下で対になる複数の上面と下面の組を有し、前記フレームが層間変形を起こしたときに、いずれかの前記上面が前記フレームを構成する上側の梁からその梁の移動の向きに力を受け、いずれかの前記下面が前記フレームを構成する下側の梁に、前記上側の梁から受ける力と釣り合う力を及ぼす形状をし、
前記上面と前記下面の少なくともいずれか一方は凸の面をなしていることを特徴とする耐震壁。 A plurality of wall components are arranged in the height direction in a frame made of columns and beams, and the wall components are constructed in a state of being restrained in the height direction from the frame,
The wall constituting member has a plurality of pairs of upper and lower surfaces which are paired vertically, and when the frame undergoes interlayer deformation, any one of the upper surfaces is formed from the upper beam constituting the frame. Receiving a force in the direction of movement, any one of the lower surfaces is shaped to exert a force that balances the force received from the upper beam on the lower beam constituting the frame;
An earthquake-resistant wall, wherein at least one of the upper surface and the lower surface forms a convex surface.
The earthquake resistant wall according to claim 3, wherein a plurality of the wall constituent materials are continuous in the length direction.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009042483A JP5519163B2 (en) | 2009-02-25 | 2009-02-25 | Seismic wall |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009042483A JP5519163B2 (en) | 2009-02-25 | 2009-02-25 | Seismic wall |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2010196364A true JP2010196364A (en) | 2010-09-09 |
JP5519163B2 JP5519163B2 (en) | 2014-06-11 |
Family
ID=42821350
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2009042483A Active JP5519163B2 (en) | 2009-02-25 | 2009-02-25 | Seismic wall |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5519163B2 (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
ES2382847A1 (en) * | 2010-11-19 | 2012-06-14 | Universidad Miguel Hernández De Elche | Sismorresistent constructive element for the execution of load walls (Machine-translation by Google Translate, not legally binding) |
JP2015067952A (en) * | 2013-09-26 | 2015-04-13 | 株式会社竹中工務店 | Block for constructing wall body, and wall body |
JP2015227538A (en) * | 2014-05-30 | 2015-12-17 | 株式会社竹中工務店 | Earthquake resistant wall structure |
JP2016008491A (en) * | 2014-06-26 | 2016-01-18 | 太陽セメント工業株式会社 | Block wall body for building |
KR101781180B1 (en) * | 2016-03-31 | 2017-09-25 | 대진대학교 산학협력단 | Double bracing system with bricks |
JP2018035592A (en) * | 2016-08-31 | 2018-03-08 | 株式会社竹中工務店 | Wall structure |
KR101861837B1 (en) * | 2017-12-29 | 2018-05-28 | 박재홍 | Wall Structure with Wedge-Shape Joint Block and Frame and Wall Construction Method Using This Structure |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5452828A (en) * | 1977-10-05 | 1979-04-25 | Takenaka Komuten Co | Earthquakeeproof reinforcing method of existing bullding by concrete block stacking |
JP2007023568A (en) * | 2005-07-14 | 2007-02-01 | Ohbayashi Corp | Earthquake resisting wall and method of constructing earthquake resisting wall |
JP2008308884A (en) * | 2007-06-14 | 2008-12-25 | Takenaka Komuten Co Ltd | Earthquake-resisting wall |
-
2009
- 2009-02-25 JP JP2009042483A patent/JP5519163B2/en active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5452828A (en) * | 1977-10-05 | 1979-04-25 | Takenaka Komuten Co | Earthquakeeproof reinforcing method of existing bullding by concrete block stacking |
JP2007023568A (en) * | 2005-07-14 | 2007-02-01 | Ohbayashi Corp | Earthquake resisting wall and method of constructing earthquake resisting wall |
JP2008308884A (en) * | 2007-06-14 | 2008-12-25 | Takenaka Komuten Co Ltd | Earthquake-resisting wall |
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
ES2382847A1 (en) * | 2010-11-19 | 2012-06-14 | Universidad Miguel Hernández De Elche | Sismorresistent constructive element for the execution of load walls (Machine-translation by Google Translate, not legally binding) |
JP2015067952A (en) * | 2013-09-26 | 2015-04-13 | 株式会社竹中工務店 | Block for constructing wall body, and wall body |
JP2015227538A (en) * | 2014-05-30 | 2015-12-17 | 株式会社竹中工務店 | Earthquake resistant wall structure |
JP2016008491A (en) * | 2014-06-26 | 2016-01-18 | 太陽セメント工業株式会社 | Block wall body for building |
KR101781180B1 (en) * | 2016-03-31 | 2017-09-25 | 대진대학교 산학협력단 | Double bracing system with bricks |
JP2018035592A (en) * | 2016-08-31 | 2018-03-08 | 株式会社竹中工務店 | Wall structure |
KR101861837B1 (en) * | 2017-12-29 | 2018-05-28 | 박재홍 | Wall Structure with Wedge-Shape Joint Block and Frame and Wall Construction Method Using This Structure |
WO2019132264A1 (en) * | 2017-12-29 | 2019-07-04 | 박재홍 | Wall structure using blocks and frames with wedge-type coupling part formed therein and method for constructing wall using same |
CN111315943A (en) * | 2017-12-29 | 2020-06-19 | 朴宰弘 | Wall structure using block and frame formed with wedge-shaped joint and wall construction method using the same |
US10822792B2 (en) | 2017-12-29 | 2020-11-03 | Jea Hong Park | Wall structure using blocks and frames with wedge-type coupling part formed therein and method for constructing wall using same |
JP2021502501A (en) * | 2017-12-29 | 2021-01-28 | セン ブロック カンパニー、リミテッド | A wall structure using a block and a frame on which a wedge-shaped joint is formed, and a method of constructing a wall using this |
CN111315943B (en) * | 2017-12-29 | 2021-07-30 | 朴宰弘 | Wall structure using block and frame formed with wedge-shaped joint and wall construction method using the same |
Also Published As
Publication number | Publication date |
---|---|
JP5519163B2 (en) | 2014-06-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5519163B2 (en) | Seismic wall | |
JP5726590B2 (en) | Connection structure of reinforced concrete beams or columns | |
JP5336145B2 (en) | Damping structure and building with damping structure | |
JP6920049B2 (en) | Seismic isolation building | |
JP5124146B2 (en) | Seismic control building | |
JP5124180B2 (en) | Pile foundation structure that distributes horizontal force to the ground improvement wall | |
JP4563872B2 (en) | Seismic wall | |
JP6130812B2 (en) | Floor structure | |
KR101630931B1 (en) | Road decking panel having concrete crack protection and manufacture convenience | |
JP2006037586A (en) | Earthquake-resisting wall using corrugated steel plate | |
JP2007191988A (en) | Earthquake resisting brace | |
JP2009013579A (en) | Rebuilding method | |
JP2008038559A (en) | Vibration control wall | |
JP5079640B2 (en) | Seismic frame structure and its construction method | |
JP2018076735A (en) | Collapse prevention structure for building | |
JP4881084B2 (en) | Seismic structure | |
JP7087258B2 (en) | Seismic isolation structure | |
JP6342743B2 (en) | Existing building reinforcement structure | |
JP2013023837A (en) | Earthquake strengthening structure of existing building | |
JP2019031855A (en) | Vibration control structure | |
CN102425257B (en) | Self-centering pre-stressed concrete framework floor slab structure | |
JP5332018B2 (en) | Ground-isolated structure and ground-isolated construction method using it | |
JP2012046980A (en) | Building foundation using earth retaining wall | |
JP5877993B2 (en) | Pile head joint structure | |
JP6300516B2 (en) | Damping structure |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20110930 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20130115 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20130312 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20130924 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20140401 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20140403 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5519163 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |