JP2010196346A - Support structure and construction method of concrete floor - Google Patents

Support structure and construction method of concrete floor Download PDF

Info

Publication number
JP2010196346A
JP2010196346A JP2009042023A JP2009042023A JP2010196346A JP 2010196346 A JP2010196346 A JP 2010196346A JP 2009042023 A JP2009042023 A JP 2009042023A JP 2009042023 A JP2009042023 A JP 2009042023A JP 2010196346 A JP2010196346 A JP 2010196346A
Authority
JP
Japan
Prior art keywords
pile
ground
concrete
support
settlement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009042023A
Other languages
Japanese (ja)
Other versions
JP5210202B2 (en
Inventor
Taro Nakagawa
太郎 中川
Takahiro Maru
隆宏 丸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujita Corp
Original Assignee
Fujita Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujita Corp filed Critical Fujita Corp
Priority to JP2009042023A priority Critical patent/JP5210202B2/en
Publication of JP2010196346A publication Critical patent/JP2010196346A/en
Application granted granted Critical
Publication of JP5210202B2 publication Critical patent/JP5210202B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Foundations (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a support structure and a construction method of a concrete floor of high quality suppressing the occurrence of settlement and unevenness of the concrete floor 11 and improving construction efficiency in constructing the concrete floor 11 to reduce construction cost. <P>SOLUTION: The existing soft ground G1 is provided with a floating support body 22 including a settlement restraining pile 221 driven into the soft ground G1 and not reaching the lower layer support ground G2, and the concrete floor 11 is supported on the soft ground G1 and the floating support body 22 through a load transmission layer 21. A vertical load W from the concrete floor 11 is thereby transmitted to the floating support body 22 including the settlement restraining pile 221 through the load transmission layer 21 and transmitted to the soft ground G1 through the load transmission layer 21 and the floating support body 22. The occurrence of unevenness of the concrete floor 11 due to excessive bearing power is thereby absorbed effectively. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、軟弱な地盤上に建設され1階床がコンクリート土間からなる建物におけるコンクリート土間の支持構造及び施工方法に関する。   The present invention relates to a support structure between concrete soils and a construction method in a building constructed on soft ground and having a first floor made of concrete soil.

例えば物流施設、倉庫、工場、店舗など、1階床がコンクリート土間からなる建物の建築において、地盤中に存在する軟弱層によって、コンクリート土間(1階床)に使用上の不都合が生じるほどの圧密沈下が予想される場合、その沈下を抑制するために、コンクリート土間の下に、コンクリート土間の荷重あるいはコンクリート土間とその上に積載される物体の荷重のみを負担する土間受け杭を打設することが知られている。   For example, in the construction of buildings such as logistics facilities, warehouses, factories, stores, etc., where the ground floor is made of concrete soil, the compaction that causes inconvenience in use in the concrete soil (first floor) due to the soft layer existing in the ground If subsidence is expected, in order to suppress the subsidence, an interstitial pile that only bears the load between the concrete soils or between the concrete soils and the object loaded on the concrete soils is placed under the concrete soils. It has been known.

図11は、土間受け杭による従来のコンクリート土間の支持構造を示す断面図で、すなわち参照符号Gは軟弱地盤G1及びその下層の堅固な支持地盤G2からなる既存地盤、21は既存地盤G(軟弱地盤G1)上に盛土され固結材の混合により形成された改良地盤、101は改良地盤21から軟弱地盤G1中を支持地盤G2に達する土間受け杭、102は改良地盤21上に打設され土間受け杭101の杭頭に結合されたコンクリート土間である。なお、同様の技術が下記の特許文献1に開示されている。   FIG. 11 is a cross-sectional view showing a conventional support structure between concrete soils by a soil receiving pile, that is, reference numeral G is an existing ground composed of a soft ground G1 and a solid supporting ground G2 below it, and 21 is an existing ground G (soft Improved ground formed on the ground G1) by mixing with a solidified material, 101 is a ground receiving pile that reaches the supporting ground G2 in the soft ground G1 from the improved ground 21, and 102 is cast on the improved ground 21 A concrete soil bonded to a pile head of the receiving pile 101. A similar technique is disclosed in Patent Document 1 below.

特開2006−207118号公報JP 2006-207118 A

ところが、従来の技術によれば、支持地盤G2に達する土間受け杭101の許容支持力が大きすぎるため、軟弱地盤G1中の軟弱粘性土層などが上方からの荷重により圧密されて圧密沈下層G1aを生じると、これによって、土間受け杭101の杭頭101aから離れた位置でコンクリート土間102が沈下するのに対して、土間受け杭101で支持された位置ではコンクリート土間102は沈下しない。このため、相対的な「突上げ」によりコンクリート土間102に不陸を生じて使用上支障を生じるおそれがあった。   However, according to the prior art, since the allowable bearing force of the interstitial pile 101 reaching the supporting ground G2 is too large, the soft viscous soil layer in the soft ground G1 is consolidated by the load from above, and the consolidated subsidence G1a As a result, the concrete soil 102 sinks at a position away from the pile head 101a of the soil receiving pile 101, whereas the concrete soil 102 does not sink at the position supported by the soil receiving pile 101. For this reason, there has been a risk that the relative “push-up” may cause unevenness in the concrete soil 102 and hinder use.

したがって、土間受け杭101に支持されたコンクリート土間102を採用するには、コンクリート土間102の荷重やコンクリート土間102上に積載される載荷物の荷重あるいは改良地盤21の荷重による圧密沈下層G1aの圧密量(沈下量)を精度よく予測するか、沈下による相対的な「突上げ」が生じても問題がないように、コンクリート土間102を厚いスラブにする必要がある。しかし、スラブを厚くすると、沈下量を増すことになるばかりか、施工コストも嵩み、しかも剛性が大きくなるために僅かな沈下でもひび割れを生じやすくなるといった問題が指摘される。   Therefore, in order to employ the concrete soil 102 supported by the soil receiving pile 101, the consolidation of the consolidated subsidence G1a caused by the load of the concrete soil 102, the load of the load loaded on the concrete soil 102 or the load of the improved ground 21 is achieved. It is necessary to predict the amount (subsidence amount) with high accuracy or to make the concrete soil 102 a thick slab so that there is no problem even if a relative “push-up” occurs due to subsidence. However, when the slab is thickened, not only the amount of settlement is increased, but also the construction cost is increased, and the rigidity is increased, so that there is a problem that even a slight settlement tends to cause cracks.

また、既存地盤G上に改良地盤21を施工する前は、図12に示されるように、土間受け杭101の頭部101aが既存地盤Gの表面GLから突出した状態にあるため、改良地盤21の構築のための盛土作業や固結材の混合攪拌、転圧・締固めなどの作業には、大型重機が使用できず、あるいは使用しても効率が著しく低下したり、改良地盤21の品質が低下したりするおそれがある。このため、改良地盤21の施工には、比較的小型の重機や、転圧・締固め機械を使用することを余儀なくされ、施工効率が上がらないといった問題が指摘される。   Moreover, before constructing the improved ground 21 on the existing ground G, as shown in FIG. 12, the head 101 a of the soil receiving pile 101 is in a state of protruding from the surface GL of the existing ground G. Large-scale heavy machinery cannot be used for embankment work for building construction, mixing and stirring of consolidated materials, rolling compaction, compaction, etc., or even when used, the efficiency is remarkably reduced or the quality of the improved ground 21 May decrease. For this reason, the construction of the improved ground 21 is forced to use a relatively small heavy machine or a rolling / compacting machine, and there is a problem that construction efficiency does not increase.

本発明は、以上のような点に鑑みてなされたものであって、その技術的課題とするところは、コンクリート土間の沈下や不陸の発生を抑制すると共に、コンクリート土間11を構築する際の施工効率を向上させて施工コストを低減し、品質の高いコンクリート土間の支持構造及び施工方法を提供することにある。   The present invention has been made in view of the above points, and its technical problem is to suppress the occurrence of subsidence and unevenness between concrete soils and to construct the concrete soil space 11. It is to provide a support structure and a construction method for high quality concrete soil by improving construction efficiency and reducing construction cost.

上述した技術的課題を有効に解決するための手段として、請求項1の発明に係るコンクリート土間の支持構造は、既存の軟弱地盤に、この軟弱地盤に打設されると共にその下層の支持地盤に達しない沈下抑制杭を含む浮上支持体が設けられ、前記軟弱地盤及び浮上支持体の上に荷重伝達層を介してコンクリート土間が支持されたものである。このため、コンクリート土間からの鉛直荷重は、荷重伝達層を介して沈下抑制杭を含む浮上支持体に伝達され、前記荷重伝達層及び浮上支持体を介して軟弱地盤に伝達されるので、その圧密沈下が有効に抑制される。また、前記荷重伝達層はコンクリート土間からの鉛直荷重を平面方向へ拡散させながら伝達し、沈下を均一化させる作用を有する。   As a means for effectively solving the technical problem described above, the support structure between concrete soils according to the invention of claim 1 is placed on the existing soft ground, and on the lower support ground. A floating support including a settlement suppression pile that does not reach is provided, and the concrete soil is supported on the soft ground and the floating support via a load transmission layer. For this reason, the vertical load from the concrete soil is transmitted to the floating support including the settlement restraint pile through the load transmission layer, and is transmitted to the soft ground through the load transmission layer and the floating support. Settling is effectively suppressed. The load transmission layer transmits a vertical load from between the concrete soil while diffusing in the plane direction, and has an action of making the settlement uniform.

請求項2の発明に係るコンクリート土間の支持構造は、請求項1に記載された浮上支持体が、軟弱地盤上に設けられると共に沈下抑制杭の杭頭に支持された荷重受け板を備え、この荷重受け板の平面投影面積が沈下抑制杭の杭径より大きいものである。   According to a second aspect of the present invention, there is provided a support structure between concrete soils according to the first aspect of the present invention. The plane projected area of the load receiving plate is larger than the pile diameter of the settlement restraint pile.

請求項3の発明に係るコンクリート土間の支持構造は、請求項1に記載された浮上支持体が、沈下抑制杭の杭頭に形成された拡張部を備え、この拡張部が、平面投影面積が上側ほど大きくかつ前記沈下抑制杭の本体部分の杭径より大きい円錐又は多角錐状をなすものである。   In the support structure between concrete soils according to the invention of claim 3, the levitation support body described in claim 1 includes an extension portion formed on a pile head of the settlement suppression pile, and the extension portion has a plane projection area. A cone or polygonal pyramid that is larger toward the upper side and larger than the pile diameter of the main body portion of the settlement suppression pile is formed.

請求項4の発明に係るコンクリート土間の支持構造は、請求項1に記載された荷重伝達層が、改良地盤による盛土又は砕石層からなるものである。   In the support structure between concrete soils according to the invention of claim 4, the load transmission layer described in claim 1 is composed of embankment or crushed stone layer by improved ground.

請求項5の発明に係るコンクリート土間の支持構造は、請求項1に記載された荷重伝達層が、弾性変形可能な緩衝材からなるものである。   In the support structure between concrete soils according to the invention of claim 5, the load transmission layer described in claim 1 is made of an elastically deformable cushioning material.

請求項6の発明に係るコンクリート土間の施工方法は、請求項1の発明に係るコンクリート土間の支持構造を構築するため、既存の軟弱地盤にその下層の支持地盤に達しない沈下抑制杭を打設してこの沈下抑制杭を含む浮上支持体を施工する工程と、前記軟弱地盤及び浮上支持体の上に荷重伝達層を形成する工程と、この荷重伝達層の上にコンクリート土間を施工する工程と、を備えるものである。   In the construction method between concrete soils according to the invention of claim 6, in order to construct the support structure between concrete soils according to the invention of claim 1, a settlement suppression pile that does not reach the underlying support ground is placed on the existing soft ground. And a step of constructing the floating support including the settlement restraining pile, a step of forming a load transmission layer on the soft ground and the floating support, and a step of constructing the concrete soil on the load transmission layer, , Are provided.

請求項1の発明に係るコンクリート土間の支持構造によれば、従来ではコンクリート土間に使用上問題となる沈下を生じるような鉛直荷重が作用しても、この荷重は荷重伝達層及び浮上支持体を介して軟弱地盤に伝達されるので、その沈下が有効に抑制されると共に、相対的な「突上げ」による不陸の発生も抑制される。しかもこのため、コンクリート土間を厚いスラブとする必要がなく、施工コストを低減することができる。   According to the support structure between the concrete soils according to the invention of claim 1, even if a vertical load that would cause a subsidence that has conventionally been a problem in use between the concrete soils is applied, this load is applied to the load transmission layer and the floating support. Therefore, the subsidence is effectively suppressed and the occurrence of unevenness due to relative “push-up” is also suppressed. And it is not necessary to make a concrete slab into a thick slab for this, and construction cost can be reduced.

請求項2又は3の発明に係るコンクリート土間の支持構造によれば、鉛直荷重に対する浮上支持体の支持力が向上するため、沈下やそれによる不陸の発生を一層有効に抑制することができる。   According to the support structure between concrete soils according to the invention of claim 2 or 3, since the support force of the levitating support body against a vertical load is improved, the occurrence of subsidence and resulting unevenness can be more effectively suppressed.

請求項4の発明に係るコンクリート土間の支持構造によれば、改良地盤、盛土、又は砕石層からなる荷重伝達層の適度な変形性によって、不陸の発生を有効に吸収することができる。   According to the support structure between the concrete soils according to the fourth aspect of the present invention, the occurrence of unevenness can be effectively absorbed by the appropriate deformability of the load transmission layer composed of the improved ground, embankment, or crushed stone layer.

請求項5の発明に係るコンクリート土間の支持構造によれば、緩衝材からなる荷重伝達層の適度な変形性によって、不陸の発生を有効に吸収することができる。   According to the support structure between the concrete soils according to the fifth aspect of the present invention, the occurrence of unevenness can be effectively absorbed by the moderate deformability of the load transmission layer made of the cushioning material.

請求項6の発明に係るコンクリート土間の施工方法によれば、既存の軟弱地盤に打設した沈下抑制杭が、荷重伝達層を改良地盤あるいは盛土により施工する際の障害とならないため、大型の重機や大型の転圧・締固め機械を用いて効率良く施工することができ、その結果、施工の低コスト化が可能であると共に、品質の高いコンクリート土間の支持構造を構築することができる。   According to the construction method between concrete soils according to the invention of claim 6, since the subsidence suppression pile placed on the existing soft ground does not become an obstacle when constructing the load transmission layer with improved ground or embankment, large heavy machinery In addition, it is possible to efficiently perform construction using a large-sized rolling compaction and compaction machine. As a result, it is possible to reduce the cost of construction and to build a high-quality support structure between concrete soils.

本発明に係るコンクリート土間の支持構造の、第一の形態を示す断面図である。It is sectional drawing which shows the 1st form of the support structure between the concrete soils concerning this invention. 第一の形態の支持構造の施工過程を示す断面図である。It is sectional drawing which shows the construction process of the support structure of a 1st form. 第一の形態において、既存地盤の表層部に改良地盤を形成した例を示す断面図である。In 1st form, it is sectional drawing which shows the example which formed the improved ground in the surface layer part of the existing ground. 本発明の実施例の支持構造による効果を、従来の支持構造(比較例1,比較例2)と比較して示す線図である。It is a diagram which shows the effect by the support structure of the Example of this invention compared with the conventional support structure (Comparative Example 1, Comparative Example 2). 実施例,比較例1,比較例2の支持構造を示す断面図である。It is sectional drawing which shows the support structure of an Example, the comparative example 1, and the comparative example 2. FIG. 本発明に係るコンクリート土間の支持構造の、第二の形態を示す断面図である。It is sectional drawing which shows the 2nd form of the support structure between the concrete soils concerning this invention. 本発明に係るコンクリート土間の支持構造の、第三の形態を示す断面図である。It is sectional drawing which shows the 3rd form of the support structure between the concrete soils concerning this invention. 本発明に係るコンクリート土間の支持構造の、第四の形態を示す断面図である。It is sectional drawing which shows the 4th form of the support structure between the concrete soils concerning this invention. 本発明に係るコンクリート土間の支持構造を、コンクリート土間を有する建物の施工に適用した施工例を示す断面図である。It is sectional drawing which shows the construction example which applied the support structure between the concrete soils concerning this invention to the construction of the building which has a concrete soil space. 図9における荷重受け板を示す平面図である。FIG. 10 is a plan view showing a load receiving plate in FIG. 9. 土間受け杭による従来のコンクリート土間の支持構造を示す断面図である。It is sectional drawing which shows the support structure between the conventional concrete soil by a soil receiving pile. 従来のコンクリート土間の支持構造を施工する過程を示す断面図である。It is sectional drawing which shows the process of constructing the support structure between the conventional concrete soil.

以下、本発明を実施するための形態について、図面を参照しながら説明する。まず図1は、本発明に係るコンクリート土間の支持構造の、第一の形態を示す断面図である。   Hereinafter, embodiments for carrying out the present invention will be described with reference to the drawings. First, FIG. 1 is a sectional view showing a first embodiment of a support structure between concrete soils according to the present invention.

図1において、参照符号Gは軟弱地盤G1及びその下層の堅固な支持地盤G2からなる既存地盤である。軟弱地盤G1には、軟弱地盤G1へ鉛直に打設された沈下抑制杭221からなる浮上支持体22が設けられ、軟弱地盤G1及び浮上支持体22の上には適当な層厚の改良地盤21が形成され、この改良地盤21の上にコンクリート土間11が構築されている。   In FIG. 1, reference numeral G is an existing ground composed of a soft ground G <b> 1 and a solid supporting ground G <b> 2 below it. The soft ground G1 is provided with a levitation support body 22 composed of a subsidence suppression pile 221 placed vertically on the soft ground G1, and an improved ground 21 having an appropriate layer thickness is provided on the soft ground G1 and the levitation support body 22. The concrete soil space 11 is constructed on the improved ground 21.

改良地盤21は請求項1に記載の荷重伝達層であって、土材にセメントなどの固化材を添加して混合・撹拌し、転圧することによって、コンクリート土間11やその上に積載される保管物などの重量による鉛直荷重に対する支持力を発現したものである。したがってこの改良地盤21は、コンクリート土間11からの鉛直荷重Wを平面方向へ拡散させながら、その底面21aから軟弱地盤G1へ伝達し、軟弱地盤G1の圧密沈下を均一化させる作用を有する。   The improved ground 21 is a load transmission layer according to claim 1, and is mixed with a solidified material such as cement to a soil material, mixed and stirred, and rolled to compress the concrete soil 11 and stored on it. It expresses a supporting force against a vertical load due to the weight of an object or the like. Therefore, this improved ground 21 has the effect | action which transmits the vertical load W from the concrete soil 11 to the soft ground G1 from the bottom face 21a, diffusing in the plane direction, and equalizes the consolidation settlement of the soft ground G1.

また、沈下抑制杭221としては、既製杭の打設によるものや、場所打ち杭、あるいはソイルセメントコラムなどを好適に採用することができる。この沈下抑制杭221の杭頭は改良地盤21の底面21a又はその付近に位置しており、下端が支持地盤G2に達しない長さとなっている。   In addition, as the settlement suppression pile 221, it is possible to suitably use a ready-made pile, a cast-in-place pile, or a soil cement column. The pile head of the settlement restraining pile 221 is located at or near the bottom surface 21a of the improved ground 21, and has a length at which the lower end does not reach the support ground G2.

上記構成を備えるコンクリート土間11の施工においては、図2に示されるように、まず既存地盤Gにおける軟弱地盤G1へ沈下抑制杭221を打設することにより浮上支持体22の施工を行う。このとき、沈下抑制杭221は、その杭頭が既存地盤Gの表面GLから突出しないように打設する。   In the construction of the concrete soil 11 having the above-described configuration, as shown in FIG. 2, the floating support 22 is first constructed by placing a settlement suppression pile 221 on the soft ground G1 in the existing ground G. At this time, the settlement suppression pile 221 is placed so that the pile head does not protrude from the surface GL of the existing ground G.

次に、沈下抑制杭221の打設や基礎工事の施工に伴って発生した土材などを既存地盤G(軟弱地盤G1)上に盛り立て、固化材を添加し、混合攪拌し、転圧することにより改良地盤21を構築する。このとき、浮上支持体22としての沈下抑制杭221の杭頭が既存地盤G(軟弱地盤G1)の表面GLから突出していないので、改良地盤21を施工するために重機によって土材などを盛り立てたり固化材を混合攪拌し転圧したりする際の障害とならず、大型の重機や大型の転圧・締固め機械が縦横に自在に走行することができる。このため、改良地盤21を効率よく施工することができ、その結果、施工の低コスト化が可能であると共に品質の高い改良地盤21を構築することができる。   Next, the earth material generated by the placement of subsidence suppression piles 221 and the construction of foundation work is piled up on the existing ground G (soft ground G1), the solidified material is added, mixed and stirred, and rolled. Thus, the improved ground 21 is constructed. At this time, since the pile head of the settlement suppression pile 221 as the levitation support body 22 does not protrude from the surface GL of the existing ground G (soft ground G1), a heavy machine is used to raise soil materials and the like to construct the improved ground 21 It is not an obstacle to mixing and stirring the solidified material and rolling it, and large heavy machinery and large rolling and compacting machines can run freely vertically and horizontally. For this reason, the improved ground 21 can be constructed efficiently, and as a result, the construction cost can be reduced and the improved ground 21 with high quality can be constructed.

改良地盤21の施工が終わったら、この改良地盤21上に、通常の方法によってコンクリート土間11を施工する。   When the construction of the improved ground 21 is finished, the concrete soil 11 is constructed on the improved ground 21 by a normal method.

なお、改良地盤21は、砕石や再生砕石などを混合した盛土地盤あるいは砕石層などからなるものに代えてもよい。また、この改良地盤21は、図3に示されるように既存地盤Gの表層部に形成しても良いが、この場合の施工においては、沈下抑制杭221の打設に際して、その頭部が改良地盤の底面となる深さに位置するように打ち込む。   In addition, you may replace the improved ground 21 with what consists of the embankment ground which mixed crushed stone, regenerated crushed stone, or a crushed stone layer. Further, the improved ground 21 may be formed on the surface layer portion of the existing ground G as shown in FIG. 3, but in the construction in this case, the head is improved when the subsidence suppression pile 221 is placed. Drive in so that it is located at the depth that will be the bottom of the ground.

上述の形態によれば、コンクリート土間11の荷重と、このコンクリート土間11上に積載される載荷物の荷重の和による鉛直荷重Wは、荷重伝達層である改良地盤21を介して沈下抑制杭221(浮上支持体22)及び軟弱地盤G1に伝達される。そして、沈下抑制杭221と軟弱地盤G1との間に、沈下抑制杭221の下端側ほど大きくなる抵抗力Fを生じるため、鉛直荷重Wが、従来ではコンクリート土間11に使用上問題となる沈下を生じるような大きなものであっても、沈下抑制杭221の抵抗力Fによって沈下が有効に抑制され、言い換えれば、軟弱地盤G1中の軟弱粘性土層などが圧密されることにより生じる圧密沈下層G1aの圧密(沈下)が低減される。   According to the above-described embodiment, the vertical load W resulting from the sum of the load between the concrete soil 11 and the load of the load loaded on the concrete soil 11 is set via the improved ground 21 serving as a load transmission layer. It is transmitted to (floating support 22) and soft ground G1. And since the resistance force F which becomes large toward the lower end side of the settlement subsidence pile 221 is generated between the settlement subsidence pile 221 and the soft ground G1, the vertical load W has conventionally caused subsidence that is a problem in use in the concrete soil 11. Even if it is large, subsidence is effectively suppressed by the resistance force F of the subsidence suppression pile 221, in other words, the consolidated subsidence G1a generated by the consolidation of the soft viscous soil layer in the soft ground G1. Consolidation (settlement) is reduced.

また、沈下抑制杭221は軟弱地盤G1の下層の堅固な支持地盤G2に達するものではないため、ある程度の沈下は許容するものであり、したがって過大な支持力によるコンクリート土間11の相対的な「突上げ」が抑制される。また、改良地盤21(あるいは砕石層など)からなる荷重伝達層は、沈下抑制杭221とコンクリート土間11との間である程度の変形を許容する緩衝性を有し、しかもコンクリート土間11からの鉛直荷重Wを平面方向へ拡散させながら伝達して軟弱地盤G1の圧密沈下を均一化させる作用を有するため、コンクリート土間11の不陸の発生が有効に吸収される。したがって、コンクリート土間11を厚いスラブとする必要がなく、施工コストを低減することができる。   In addition, since the settlement suppression pile 221 does not reach the solid support ground G2 below the soft ground G1, a certain amount of settlement is allowed, and therefore, the relative “protrusion” of the concrete soil 11 due to excessive support force is allowed. “Up” is suppressed. Further, the load transmission layer made of the improved ground 21 (or a crushed stone layer or the like) has a buffering property that allows a certain degree of deformation between the settlement suppression pile 221 and the concrete soil 11, and the vertical load from the concrete soil 11. Since it has the action of transmitting W while diffusing in the plane direction to make the consolidation settlement of the soft ground G1 uniform, the occurrence of unevenness in the concrete soil 11 is effectively absorbed. Therefore, it is not necessary to make the concrete soil 11 into a thick slab, and the construction cost can be reduced.

更に、沈下抑制杭221は軟弱地盤G1の水平剪断力を向上させるため、地震が発生したときの液状化現象なども有効に抑制することができる。   Furthermore, since the settlement suppression pile 221 improves the horizontal shearing force of the soft ground G1, the liquefaction phenomenon when an earthquake occurs can be effectively suppressed.

なお、沈下抑制杭221の摩擦による抵抗力Fは、沈下抑制杭221の長さが長いほど大きなものとなるので、予測される圧密沈下量を考慮して適切に設定される。   In addition, since the resistance force F by the friction of the settlement suppression pile 221 becomes larger as the length of the settlement suppression pile 221 is longer, it is appropriately set in consideration of the predicted consolidation settlement amount.

図4は、本発明の支持構造による効果を、従来の支持構造と比較して示す線図である。この線図における実施例は、図5(A)に示されるように、軟弱地盤G1及び沈下抑制杭221の上に改良地盤21を介してコンクリート土間11を支持し、すなわち上述した形態と同様に構成したものであり、図4の線図における比較例1は、図5(B)に示されるように、コンクリート土間11の一部を沈下抑制杭221の杭頭によって当接支持し、すなわち先に説明した図11と同様に構成したものであり、図4の線図における比較例2は、図5(C)に示されるように、沈下抑制杭221によるコンクリート土間11の支持のない構造としたものである。   FIG. 4 is a diagram showing the effect of the support structure of the present invention in comparison with a conventional support structure. In the embodiment in this diagram, as shown in FIG. 5A, the concrete soil 11 is supported on the soft ground G1 and the subsidence suppression pile 221 via the improved ground 21, that is, similarly to the above-described form. As shown in FIG. 5 (B), the comparative example 1 in the diagram of FIG. 4 is configured such that a part of the concrete soil 11 is in contact with and supported by the pile heads of the settlement suppression piles 221. 11 described in FIG. 11, and Comparative Example 2 in the diagram of FIG. 4 has a structure in which the concrete soil 11 is not supported by the settlement suppression pile 221 as shown in FIG. 5C. It is a thing.

図4の線図から、コンクリート土間11を沈下抑制杭221で直接支持した比較例1では、沈下抑制杭221による支持力が大きすぎて、その周囲の沈下に伴い、コンクリート土間11に相対的な突上げによる大きな不陸が生じ、沈下抑制杭221による支持のない比較例2では、コンクリート土間11に大きな沈下を生じるのに対し、実施例によれば、比較例2に比較して沈下が低減されると共に、相対的な突上げによる不陸も防止されることがわかる。   From the diagram of FIG. 4, in Comparative Example 1 in which the concrete soil 11 is directly supported by the settlement suppression pile 221, the support force by the settlement suppression pile 221 is too large, and relative to the concrete soil 11 as the surrounding settlement occurs. In the comparative example 2 where the large unevenness occurs due to the thrust and is not supported by the settlement suppression pile 221, a large settlement occurs between the concrete soils 11, whereas according to the example, the settlement is reduced as compared with the comparative example 2. In addition, it can be seen that uneven landing due to relative thrust is also prevented.

図6は、本発明に係るコンクリート土間の支持構造の、第二の形態を示す断面図である。この第二の形態において、先に説明した図1に示される第一の形態と異なるところは、浮上支持体22が、軟弱地盤G1上(軟弱地盤G1と改良地盤21との間)に設置された荷重受け板222を含むことにある。荷重受け板222は、平面投影面積が沈下抑制杭221の杭径よりも十分に大きいものであって、プレキャストコンクリート版からなるものや、場所打ちコンクリートの打設によるものや、防錆加工した鉄板からなるものなどが好適に採用可能であり、好ましくは沈下抑制杭221の杭頭に結合される。その他の部分は、基本的に図1と同様に構成することができる。   FIG. 6 is a sectional view showing a second embodiment of the support structure between concrete soils according to the present invention. In the second embodiment, the difference from the first embodiment shown in FIG. 1 described above is that the floating support 22 is installed on the soft ground G1 (between the soft ground G1 and the improved ground 21). The load receiving plate 222 is included. The load receiving plate 222 has a plane projection area sufficiently larger than the pile diameter of the settlement restraining pile 221, and is made of a precast concrete plate, cast-in-place concrete, or a rust-proof iron plate. And the like can be suitably employed, and are preferably coupled to the pile head of the settlement restraining pile 221. Other parts can be basically configured in the same manner as in FIG.

したがって第二の形態によれば、コンクリート土間11の荷重と、このコンクリート土間11上に積載される載荷物の荷重の和による鉛直荷重Wは、荷重伝達層である改良地盤21から荷重受け板222を介して沈下抑制杭221へ伝達されるので、より大きな面積で鉛直荷重Wを支持することができる。   Therefore, according to the second embodiment, the vertical load W resulting from the sum of the load between the concrete soil 11 and the load of the load loaded on the concrete soil 11 is transferred from the improved ground 21 which is a load transmission layer to the load receiving plate 222. Therefore, the vertical load W can be supported with a larger area.

図7は、本発明に係るコンクリート土間の支持構造の、第三の形態を示す断面図である。この第三の形態において、先に説明した図1に示される第一の形態と異なるところは、浮上支持体22が、沈下抑制杭221の杭頭に形成された拡張部223を備えることにある。拡張部223は、平面投影面積が上側ほど大きくかつ沈下抑制杭221の杭径より大きい円錐又は多角錐状をなす。その他の部分は、基本的に図1と同様に構成することができる。   FIG. 7 is a cross-sectional view showing a third form of the support structure between concrete soils according to the present invention. In the third embodiment, the difference from the first embodiment shown in FIG. 1 described above is that the levitation support 22 includes an extended portion 223 formed on the pile head of the settlement restraining pile 221. . The extended portion 223 has a conical shape or a polygonal pyramid shape having a larger planar projection area toward the upper side and larger than a pile diameter of the settlement suppression pile 221. Other parts can be basically configured in the same manner as in FIG.

したがって第三の形態によれば、コンクリート土間11の荷重と、このコンクリート土間11上に積載される載荷物の荷重の和による鉛直荷重Wは、荷重伝達層である改良地盤21から拡張部223を介して沈下抑制杭221へ伝達されるので、沈下抑制杭221の杭頭より大きな面積で鉛直荷重Wを支持することができる。しかも拡張部223に伝達される鉛直荷重によって、拡張部223のテーパ状の側面223aが周囲の地盤を押し広げるように作用するため、沈下に対する抵抗力が向上する。   Therefore, according to the third embodiment, the vertical load W resulting from the sum of the load between the concrete soil 11 and the load of the load loaded on the concrete soil 11 is caused by the extension portion 223 from the improved ground 21 which is a load transmission layer. Therefore, the vertical load W can be supported by a larger area than the pile head of the settlement suppression pile 221. Moreover, since the tapered side surface 223a of the extended portion 223 acts to expand the surrounding ground due to the vertical load transmitted to the extended portion 223, the resistance to subsidence is improved.

図8は、本発明に係るコンクリート土間の支持構造の、第四の形態を示す断面図である。この第四の形態において、先に説明した図1に示される第一の形態と異なるところは、コンクリート土間11と既存地盤G(軟弱地盤G1)との間に介在する荷重伝達層が、改良地盤21と、緩衝材23からなることにある。緩衝材23は浮上支持体22(沈下抑制杭221)の設置位置の真上に設けられており、ゴム材料やゴム状弾性を有する合成樹脂材料、あるいはアスファルトなど、弾性変形可能な材料からなるものである。その他の部分は、基本的に図1と同様に構成することができる。   FIG. 8: is sectional drawing which shows the 4th form of the support structure between the concrete soils concerning this invention. In the fourth embodiment, a difference from the first embodiment shown in FIG. 1 described above is that the load transmission layer interposed between the concrete soil 11 and the existing ground G (soft ground G1) is an improved ground. 21 and the buffer material 23. The cushioning material 23 is provided directly above the installation position of the levitation support 22 (subsidence suppression pile 221), and is made of an elastically deformable material such as a rubber material, a synthetic resin material having rubber-like elasticity, or asphalt. It is. Other parts can be basically configured in the same manner as in FIG.

したがって第四の形態によれば、コンクリート土間11の荷重と、このコンクリート土間11上に積載される載荷物の荷重の和による鉛直荷重Wは、沈下抑制杭221の設置位置の周囲では改良地盤21を介して軟弱地盤G1へ伝達されるのに対し、沈下抑制杭221の設置位置では、緩衝材23を介して沈下抑制杭221に伝達されることになる。このため、鉛直荷重Wに対する支持力が緩衝材23の変形特性によって緩和されるので、沈下抑制杭221の設置位置の周囲の沈下に伴う沈下抑制杭221の相対的な突上げによる不陸の発生を、有効に吸収することができる。   Therefore, according to the fourth embodiment, the vertical load W resulting from the sum of the load of the concrete soil 11 and the load of the load loaded on the concrete soil 11 is the improved ground 21 around the installation position of the settlement suppression pile 221. Is transmitted to the soft ground G <b> 1, while being transmitted to the settlement suppression pile 221 via the cushioning material 23 at the installation position of the settlement suppression pile 221. For this reason, since the supporting force with respect to the vertical load W is relieved by the deformation characteristics of the buffer material 23, the occurrence of unevenness due to the relative push-up of the settlement suppression pile 221 accompanying the settlement around the installation position of the settlement suppression pile 221. Can be absorbed effectively.

なお、図8に示される浮上支持体22も、沈下抑制杭221の上に、先に説明した図6のような荷重受け板222や、図7のような拡張部223を設けた構成とすることができる。   In addition, the levitation support body 22 shown in FIG. 8 also has a configuration in which the load receiving plate 222 as shown in FIG. 6 and the extended portion 223 as shown in FIG. be able to.

次に図9は、本発明に係るコンクリート土間の支持構造を、コンクリート土間を有する建物の施工に適用した施工例を示す断面図、図10は、図9における荷重受け板を示す平面図である。   Next, FIG. 9 is a sectional view showing a construction example in which the support structure between concrete soils according to the present invention is applied to construction of a building having a concrete soil space, and FIG. 10 is a plan view showing a load receiving plate in FIG. .

図9において、参照符号10は例えば物流施設、倉庫、工場、店舗などとして使用される建物で、軟弱地盤G1の上に建てられ、1階床がコンクリート土間11からなる。   In FIG. 9, reference numeral 10 is a building used as, for example, a distribution facility, a warehouse, a factory, a store, etc., and is built on the soft ground G <b> 1 and the first floor is made of concrete soil 11.

建物10の柱12は、軟弱地盤G1の下層の堅固な支持地盤G2へ達するように既存地盤Gに打設された支持杭13に、鉄筋コンクリートによる基礎梁14を介して支持されており、コンクリート土間11は、軟弱地盤G1の上に改良地盤21又は砕石層を介して施工されている。   The pillar 12 of the building 10 is supported by a support pile 13 placed on the existing ground G through a foundation beam 14 made of reinforced concrete so as to reach a solid support ground G2 below the soft ground G1. 11 is constructed on the soft ground G1 through the improved ground 21 or the crushed stone layer.

既存地盤Gにおける軟弱地盤G1には、支持杭13及び基礎梁14による建物10の支持位置の間に位置して浮上支持体22が設けられている。この浮上支持体22は、軟弱地盤G1へ鉛直に打設されると共に下端が支持地盤G2に達しない沈下抑制杭221と、軟弱地盤G1上に設置されると共に前記沈下抑制杭221の杭頭に結合された荷重受け板222とからなり、図10に示されるように、4本の沈下抑制杭221の杭頭が、それぞれ正方形状の荷重受け板222における4つの角部近傍に結合されている。   The soft ground G1 in the existing ground G is provided with a levitating support 22 located between the support positions of the building 10 by the support pile 13 and the foundation beam 14. The levitating support 22 is vertically placed on the soft ground G1 and the lower end of the subsidence suppression pile 221, the lower end of which does not reach the support ground G2, and the top of the subsidence suppression pile 221 is installed on the soft ground G1. As shown in FIG. 10, the pile heads of the four settlement restraining piles 221 are coupled to the vicinity of the four corners of each of the square load receiving plates 222. .

上述の建物10の施工においては、まず既存地盤Gへの支持杭13の打設や鉄筋コンクリートによる基礎梁14の施工といった基礎工事と並行して、軟弱地盤G1へ沈下抑制杭221を打設し、軟弱地盤G1上へ荷重受け板222を設置して沈下抑制杭221の杭頭と結合するといった浮上支持体22の施工を行う。   In the construction of the building 10 described above, first, in parallel with the foundation work such as the placement of the support pile 13 on the existing ground G and the construction of the foundation beam 14 using reinforced concrete, the settlement suppression pile 221 is placed on the soft ground G1. The floating support body 22 is installed such that the load receiving plate 222 is installed on the soft ground G1 and coupled to the pile head of the settlement restraining pile 221.

次に、支持杭13及び沈下抑制杭221の打設や基礎梁14の施工に伴って発生した土材などを既存地盤G(軟弱地盤G1)上に盛り立てて固化材を添加し、混合攪拌して転圧することにより、荷重伝達層としての改良地盤21を構築する。このとき、基礎梁14で区画された領域では、浮上支持体22が既存地盤Gの表面GLから突出していないので、重機によって土材などを盛り立てたり固化材を混合・攪拌して転圧したりする際の障害とならず、大型の重機や大型の転圧・締固め機械が縦横に自在に走行することができる。このため、効率よく混合攪拌や転圧を行うことができ、その結果、施工の低コスト化が可能であると共に、品質の高い改良地盤21を施工することができる。   Next, the earth material generated by the placement of the support pile 13 and the subsidence suppression pile 221 and the construction of the foundation beam 14 is piled up on the existing ground G (soft ground G1), and the solidified material is added and mixed and stirred. Then, the improved ground 21 as a load transmission layer is constructed by rolling. At this time, since the floating support 22 does not protrude from the surface GL of the existing ground G in the area partitioned by the foundation beam 14, the earthen material or the like is piled up by heavy machinery, or the solidified material is mixed and stirred to perform rolling. Large heavy machinery and large compaction and compaction machines can run freely vertically and horizontally. For this reason, mixing agitation and rolling can be performed efficiently. As a result, the construction cost can be reduced and the improved ground 21 with high quality can be constructed.

改良地盤21の施工が終わったら、この改良地盤21上に、通常の方法によって1階床のコンクリート土間11を施工する。そしてその後の建物10の施工も、通常と同様に行われる。   When the construction of the improved ground 21 is finished, the concrete soil 11 on the first floor is constructed on the improved ground 21 by a normal method. Subsequent construction of the building 10 is performed in the same manner as usual.

上述の建物10によれば、コンクリート土間11の荷重と、このコンクリート土間11上に積載される載荷物の荷重の和による鉛直荷重W1は、図9に示される支持杭13及び基礎梁14による支持位置付近では、コンクリート土間11の剛性によって、基礎梁14及び支持杭13に伝達される。 According to the building 10 described above, the vertical load W 1 resulting from the sum of the load of the concrete soil 11 and the load of the load loaded on the concrete soil 11 is due to the support pile 13 and the foundation beam 14 shown in FIG. In the vicinity of the support position, it is transmitted to the foundation beam 14 and the support pile 13 by the rigidity of the concrete soil 11.

一方、支持杭13及び基礎梁14による支持位置から離れた位置では、コンクリート土間11の荷重と、このコンクリート土間11上に積載される載荷物の荷重の和による鉛直荷重W2は、荷重伝達層である改良地盤21を介して浮上支持体22の荷重受け板222に伝達され、更にこの浮上支持体22の沈下抑制杭221から既存地盤G(軟弱地盤G1)に伝達される。このため、鉛直荷重W2が、従来ではコンクリート土間11に使用上問題となる沈下を生じるような大きなものであっても、浮上支持体22と軟弱地盤G1間に生じる抵抗力によって沈下が有効に抑制され、しかも相対的な「突上げ」によるコンクリート土間11の不陸の発生が有効に吸収される。 On the other hand, in the position away from the support position by the support piles 13 and footing beams 14, and the load of the concrete earth floor 11, vertical load W 2 by the sum of the load of the loading material to be stacked on the concrete dirt floor 11, load transfer layer It is transmitted to the load receiving plate 222 of the levitation support 22 through the improved ground 21, and further transmitted from the settlement suppression pile 221 of the levitation support 22 to the existing ground G (soft ground G1). For this reason, even if the vertical load W 2 is large in the past, which causes a settlement that causes a problem in use in the concrete soil 11, the settlement is effectively caused by the resistance force generated between the floating support 22 and the soft ground G 1. In addition, the occurrence of unevenness in the concrete soil 11 due to relative “push-up” is effectively absorbed.

10 建物
11 コンクリート土間
12 柱
13 支持杭
14 基礎梁
21 改良地盤(荷重伝達層)
21a 底面
22 浮上支持体
23 緩衝材
221 沈下抑制杭
222 荷重受け板
223 拡張部
G 既存地盤
G1 軟弱地盤
G1a 圧密沈下層
G2 支持地盤
10 Building 11 Concrete soil 12 Column 13 Support pile 14 Foundation beam 21 Improved ground (load transmission layer)
21a Bottom surface 22 Levitation support body 23 Buffer material 221 Settling suppression pile 222 Load receiving plate 223 Expansion part G Existing ground G1 Soft ground G1a Consolidation subsidence G2 Support ground

Claims (6)

既存の軟弱地盤に、この軟弱地盤に打設されると共にその下層の支持地盤に達しない沈下抑制杭を含む浮上支持体が設けられ、前記軟弱地盤及び浮上支持体の上に荷重伝達層を介してコンクリート土間が支持されたことを特徴とするコンクリート土間の支持構造。   The existing soft ground is provided with a levitation support including a settlement restraining pile that is placed on the soft ground and does not reach the underlying support ground, and a load transmission layer is provided on the soft ground and the levitation support. Support structure between concrete soils, characterized by being supported between concrete soils. 浮上支持体が、軟弱地盤上に設けられると共に沈下抑制杭の杭頭に支持された荷重受け板を備え、この荷重受け板の平面投影面積が沈下抑制杭の杭径より大きいことを特徴とする請求項1に記載のコンクリート土間の支持構造。   The levitation support body is provided on a soft ground and includes a load receiving plate supported by a pile head of a settlement subsidence pile, and a plane projection area of the load support plate is larger than a pile diameter of the settlement subsidence pile. The support structure between concrete soils of Claim 1. 浮上支持体が、沈下抑制杭の杭頭に形成された拡張部を備え、この拡張部が、平面投影面積が上側ほど大きくかつ前記沈下抑制杭の本体部分の杭径より大きい円錐又は多角錐状をなすことを特徴とする請求項1に記載のコンクリート土間の支持構造。   The levitation support has an extension formed on the pile head of the settlement restraining pile, and this extension has a cone or polygonal pyramid shape having a larger plane projection area on the upper side and larger than the pile diameter of the body portion of the settlement restraining pile. The supporting structure between concrete soils according to claim 1, wherein: 荷重伝達層が、改良地盤による盛土、又は砕石層からなることを特徴とする請求項1に記載のコンクリート土間の支持構造。   The support structure between concrete soils according to claim 1, wherein the load transmission layer is composed of an embankment made of improved ground or a crushed stone layer. 荷重伝達層が、弾性変形可能な緩衝材からなることを特徴とする請求項1に記載のコンクリート土間の支持構造。   The support structure between concrete soils according to claim 1, wherein the load transmission layer is made of an elastically deformable cushioning material. 請求項1の発明に係るコンクリート土間の支持構造を構築するため、既存の軟弱地盤にその下層の支持地盤に達しない沈下抑制杭を打設してこの沈下抑制杭を含む浮上支持体を施工する工程と、前記軟弱地盤及び浮上支持体の上に荷重伝達層を形成する工程と、この荷重伝達層の上にコンクリート土間を施工する工程と、を備えることを特徴とするコンクリート土間の施工方法。   In order to construct a support structure between concrete soils according to the invention of claim 1, a subsidence suppression pile that does not reach the underlying support ground is placed on an existing soft ground, and a floating support including this subsidence suppression pile is constructed. A construction method between concrete soils, comprising: a step; a step of forming a load transmission layer on the soft ground and the floating support; and a step of constructing a concrete soil between the load transmission layers.
JP2009042023A 2009-02-25 2009-02-25 Support structure between concrete soil Active JP5210202B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009042023A JP5210202B2 (en) 2009-02-25 2009-02-25 Support structure between concrete soil

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009042023A JP5210202B2 (en) 2009-02-25 2009-02-25 Support structure between concrete soil

Publications (2)

Publication Number Publication Date
JP2010196346A true JP2010196346A (en) 2010-09-09
JP5210202B2 JP5210202B2 (en) 2013-06-12

Family

ID=42821333

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009042023A Active JP5210202B2 (en) 2009-02-25 2009-02-25 Support structure between concrete soil

Country Status (1)

Country Link
JP (1) JP5210202B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011032727A (en) * 2009-07-31 2011-02-17 Shimizu Corp Foundation structure
JP2011047196A (en) * 2009-08-27 2011-03-10 Shimizu Corp Structure for suppressing sinking of slab floor
JP2015168944A (en) * 2014-03-05 2015-09-28 株式会社竹中工務店 Foundation structure of building
JP2019023394A (en) * 2017-07-24 2019-02-14 株式会社竹中工務店 Foundation structure and foundation construction method
CN111455968A (en) * 2020-03-12 2020-07-28 浙江大学城市学院 Anti-settlement construction method for soft soil foundation

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5885653U (en) * 1981-12-04 1983-06-10 石川島播磨重工業株式会社 Brake cast concrete pile cap for steel pipe piles
JPH09177094A (en) * 1995-12-25 1997-07-08 Geotop Corp Base isolating foundation structure
JPH10140582A (en) * 1996-11-11 1998-05-26 Mitani Sekisan Co Ltd Aseismatic foundation and construction method thereof
JPH10280433A (en) * 1997-04-08 1998-10-20 Tenox Corp Foundation structure
JP2003119798A (en) * 2001-10-19 2003-04-23 Tenox Corp Earthen floor concrete and its construction method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5885653U (en) * 1981-12-04 1983-06-10 石川島播磨重工業株式会社 Brake cast concrete pile cap for steel pipe piles
JPH09177094A (en) * 1995-12-25 1997-07-08 Geotop Corp Base isolating foundation structure
JPH10140582A (en) * 1996-11-11 1998-05-26 Mitani Sekisan Co Ltd Aseismatic foundation and construction method thereof
JPH10280433A (en) * 1997-04-08 1998-10-20 Tenox Corp Foundation structure
JP2003119798A (en) * 2001-10-19 2003-04-23 Tenox Corp Earthen floor concrete and its construction method

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011032727A (en) * 2009-07-31 2011-02-17 Shimizu Corp Foundation structure
JP2011047196A (en) * 2009-08-27 2011-03-10 Shimizu Corp Structure for suppressing sinking of slab floor
JP2015168944A (en) * 2014-03-05 2015-09-28 株式会社竹中工務店 Foundation structure of building
JP2019023394A (en) * 2017-07-24 2019-02-14 株式会社竹中工務店 Foundation structure and foundation construction method
CN111455968A (en) * 2020-03-12 2020-07-28 浙江大学城市学院 Anti-settlement construction method for soft soil foundation

Also Published As

Publication number Publication date
JP5210202B2 (en) 2013-06-12

Similar Documents

Publication Publication Date Title
US9366002B2 (en) Connection structure for blocking settlement of ground
JP5210202B2 (en) Support structure between concrete soil
JP4793643B2 (en) Stress reduction structure and stress reduction method for foundation pile
JP2007070858A (en) Base isolation structure and base isolation construction method for building
JP2005248523A (en) Structure of pile head joint section
KR20110038050A (en) Elastic construction foundation method
JP6238088B2 (en) Improved ground and ground improvement method
KR20100006805U (en) Holding plate for engineering and construction
JP2018091047A (en) Artificial ground and method for constructing the same
JP5962348B2 (en) Steel tower foundation structure and method for reinforcing steel tower foundation
CN215759136U (en) Concrete silo box type foundation
JP6522222B1 (en) Foundation structure of the building
JP5171902B2 (en) Structure construction method and structure under construction
JP7401958B2 (en) Platform door installation structure
JP5071852B2 (en) Structure subsidence suppression structure
JP6436256B1 (en) Building basic structure and construction method
JP2011047196A (en) Structure for suppressing sinking of slab floor
JPH04111809A (en) Post-tension concrete-based bottom slab
KR102296811B1 (en) Foundation construction method for inducing Pseudo-layered soils
JP5877993B2 (en) Pile head joint structure
JP2019157508A (en) Under-ground piled column and seismic base-isolated buildings
JP2010261249A (en) Base isolation structure for building
JP7129290B2 (en) Building floor structure for rebuilding
JP7198623B2 (en) foundation structure
JP5069089B2 (en) Foundation structure using wall foundation

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120113

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121004

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121017

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121214

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130123

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130222

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160301

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5210202

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250