JP2010196010A - Sulfonated hollow particle and method for producing the same, solid acid and proton conductive membrane comprising sulfonated hollow microparticle - Google Patents

Sulfonated hollow particle and method for producing the same, solid acid and proton conductive membrane comprising sulfonated hollow microparticle Download PDF

Info

Publication number
JP2010196010A
JP2010196010A JP2009045659A JP2009045659A JP2010196010A JP 2010196010 A JP2010196010 A JP 2010196010A JP 2009045659 A JP2009045659 A JP 2009045659A JP 2009045659 A JP2009045659 A JP 2009045659A JP 2010196010 A JP2010196010 A JP 2010196010A
Authority
JP
Japan
Prior art keywords
sulfonated
hollow
group
average value
hollow particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009045659A
Other languages
Japanese (ja)
Inventor
Ippei Noda
一平 野田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2009045659A priority Critical patent/JP2010196010A/en
Publication of JP2010196010A publication Critical patent/JP2010196010A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Silicon Polymers (AREA)
  • Conductive Materials (AREA)
  • Fuel Cell (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an industrially advantageous solid acid catalyst with which a process such as neutralization or salt removal is not necessary for separation-recovery, and a target product is produced without producing unnecessary by-products while energy is conserved; to provide a solid acid having high proton conductivity and excellent heat resistance; and to provide a method of producing at low cost and with ease. <P>SOLUTION: The sulfonated hollow particles insoluble in a polar solvent, which is obtained by sulfonating an aromatic ring in an organic group of the hollow particles comprising crosslinked polysiloxane structure in which a carbon atom of the organic group is directly bonded to a silicon atom, provides a solid acid having high acid value and high sulfur content, and desired acidity is accurately and easily obtained by virtue of structural characteristics of the crosslinked organic siloxane structure. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、ポリシロキサン架橋構造体から成る中空粒子を濃硫酸あるいは発煙硫酸中で加熱処理し、ケイ素原子に直結した炭素原子を有する有機基中の芳香族基をスルホン化することによって得られる極性溶媒に不溶な固体酸およびその製造方法に関するものである。さらに詳しくは、固体酸触媒、プロトン伝導膜、イオン交換膜、燃料電池に使用できる触媒性能、プロトン伝導性が高く耐熱性に優れた固体酸及びその製造方法に関するものである。 The present invention relates to a polarity obtained by heat-treating hollow particles comprising a polysiloxane crosslinked structure in concentrated sulfuric acid or fuming sulfuric acid, and sulfonating an aromatic group in an organic group having a carbon atom directly bonded to a silicon atom. The present invention relates to a solid acid insoluble in a solvent and a method for producing the same. More specifically, the present invention relates to a solid acid catalyst, a proton conductive membrane, an ion exchange membrane, a catalyst performance that can be used in a fuel cell, a solid acid having high proton conductivity and excellent heat resistance, and a method for producing the same.

エネルギー事情、環境問題が危機的状況にある現在、少ないエネルギーで不必要な副産物を作らずに目的物のみを効率的に生産することが求められている。酸触媒は現代の化学産業に必要不可欠なものであり、薬品、石油化学工業製品、高分子製品といった様々な製品の生産に使われているが、その多くは塩酸、硫酸のような液体の酸触媒である。製造プロセスの中で液体の酸触媒は塩基による中和、そして中和によって生成した塩の除去によって生産物から分離・回収されるが、中和と塩の除去のプロセスに費やされるエネルギーは全体で使われるエネルギーのかなりの部分を占める。また回収される塩は供給過剰であり、その多くが利用性の小さい副産物としてその処理が困難であることがしばしばである。 At present, when energy and environmental issues are in a critical situation, it is required to efficiently produce only the desired product without producing unnecessary by-products with less energy. Acid catalysts are indispensable for the modern chemical industry, and are used in the production of various products such as chemicals, petrochemical products, and polymer products. Many of them are liquid acids such as hydrochloric acid and sulfuric acid. It is a catalyst. In the manufacturing process, the liquid acid catalyst is separated and recovered from the product by neutralization with a base and removal of the salt produced by the neutralization, but the energy consumed in the neutralization and salt removal process as a whole. It accounts for a significant portion of the energy used. Also, the recovered salt is over-supplied, and many of them are often difficult to treat as by-products that are less useful.

このような中で、固体酸触媒は分離・回収に中和や塩の除去といったプロセスが不要であり、不必要な副産物を生産することなく省エネルギーで目的物を作ることができるために早くからその研究が行われてきた。その結果、ゼオライト、シリカ−アルミナ、含水ニオブ等の固体酸触媒が化学工業で大きな成果を挙げ、社会に大きな恩恵をもたらしている。また、強酸ポリマーとしては、ポリスチレンをスルホン化した材料は固体酸と考えることができ、古くから酸性を有する陽イオン交換樹脂として使われている。また、ポリテトラフルオロエチレン骨格にスルホン基があるナフィオン(デュポン社の登録商標)も親水性を有する非常に強い固体酸(固体超強酸)であることも知られており、これらは液体酸を上回る酸強度をもつ超強酸として働くことが既に知られている。しかし、ポリマーは熱に弱く、また、工業的に利用するには高価すぎるという問題点がある。このように、性能およびコストなど面から固体酸触媒が液体の酸触媒より有利な工業的プロセスの設計は難しく、現在のところほとんどの化学産業は液体の酸触媒に依存しているといえる。このような現状において性能、コスト面で液体の酸を凌ぐ固体酸触媒の出現が望まれている。 Under these circumstances, solid acid catalysts do not require processes such as neutralization and salt removal for separation and recovery, and can be used for energy saving without producing unnecessary by-products, so research has been conducted from an early stage. Has been done. As a result, solid acid catalysts such as zeolite, silica-alumina, and hydrous niobium have achieved great results in the chemical industry and have brought great benefits to society. As a strong acid polymer, a material obtained by sulfonating polystyrene can be considered as a solid acid, and has been used as a cation exchange resin having acidity for a long time. In addition, Nafion (registered trademark of DuPont) having a sulfone group in the polytetrafluoroethylene skeleton is also known to be a very strong solid acid (solid superacid) having hydrophilicity, which exceeds the liquid acid. It is already known to work as a super strong acid with acid strength. However, there are problems that the polymer is weak against heat and too expensive for industrial use. Thus, it is difficult to design an industrial process in which a solid acid catalyst is more advantageous than a liquid acid catalyst in terms of performance and cost, and it can be said that most chemical industries currently depend on a liquid acid catalyst. Under such circumstances, the appearance of a solid acid catalyst that surpasses a liquid acid in terms of performance and cost is desired.

この様な中で、無機化合物では酸化ジルコニウム(ZrO)を硫酸処理して得られる硫酸痕ジルコニアが最も強い酸性を有する固体酸触媒である(非特許文献1)。しかしながら、表面の硫酸痕の量が多くなく、単位重量あたりの酸点の数は液体酸よりかなり少なく、前記希望を満たすには程遠い。 Among these, as inorganic compounds, sulfuric acid trace zirconia obtained by treating sulfuric acid with zirconium oxide (ZrO 2 ) is a solid acid catalyst having the strongest acid (Non-patent Document 1). However, the amount of sulfuric acid marks on the surface is not large, and the number of acid points per unit weight is considerably less than that of liquid acid, which is far from satisfying the above-mentioned desire.

一方、固体高分子型燃料電池に用いるプロトン伝導膜には、燃料電池の電極反応に関与するプロトンについて、高いプロトン伝導性が要求される。このようなプロトン伝導性材料としては、例えば、商品名ナフィオン(デュポン社製)などのスルホン酸基含有フッ素樹脂が電解質膜に多く用いられてきた。しかしながら、このパーフルオロスルホン酸系樹脂はその主鎖骨格のガス透過性が比較的高く、燃料極に供給された燃料ガスが空気極側にリークしてしまうことがあり、発電効率が低下しやすいといった問題を抱えていた。 On the other hand, the proton conducting membrane used in the polymer electrolyte fuel cell is required to have high proton conductivity with respect to protons involved in the electrode reaction of the fuel cell. As such a proton conductive material, for example, a sulfonic acid group-containing fluororesin such as a trade name Nafion (manufactured by DuPont) has been often used for an electrolyte membrane. However, this perfluorosulfonic acid resin has a relatively high gas permeability of its main chain skeleton, and the fuel gas supplied to the fuel electrode may leak to the air electrode side, and the power generation efficiency is likely to decrease. There was a problem such as.

さらに、これらの高分子電解質材料は環境負荷の高いフッ素系の樹脂である上、合成経路が複雑であり、非常に高価であるという問題を抱えている。また、スルホン酸基含有フッ素樹脂は、ガラス転移温度が低く、耐熱性が低いため、作動温度が約80℃〜100℃と低くなってしまい効率が悪くなるという問題点も抱えている。現在、前述したNafionに代わる新たなプロトン伝導性材料の開発が進められているが未だ実用化には至っていない。 Furthermore, these polymer electrolyte materials have a problem that they are fluorine resins having a high environmental load, and the synthesis route is complicated and very expensive. In addition, since the sulfonic acid group-containing fluororesin has a low glass transition temperature and low heat resistance, the operating temperature is lowered to about 80 ° C. to 100 ° C., resulting in poor efficiency. Currently, development of a new proton conductive material replacing Nafion described above is underway, but has not yet been put into practical use.

特許3701016号Japanese Patent No. 3701016 特許3701017号Japanese Patent No. 3701017

表面、19巻、2号、75頁(1981年)Surface, Vol. 19, No. 2, p. 75 (1981) 野田 他1名 “Patterning Thin−Layer Material of Oriented Meso− and Macroscopic Hollow Hemispheres and Its Facile Lithography” Chem. Mater., Americian Chemical Society,2002,Vol14,pp.2348−2353.Noda et al. "Patterning Thin-Layer Material of Oriented Meso- and Macroscopic Hollow Hemispheres and It's Facial Lithography" Chem. Mater. , American Chemical Society, 2002, Vol 14, pp. 2348-2353.

したがって、本発明の課題は、分離・回収に中和や塩の除去といったプロセスが不要であり、不必要な副産物を生産することなく省エネルギーで目的物を製造できる工業的に有利な固体酸触媒を提供することである。且つ、プロトン伝導性が高く、耐熱性に優れた固体酸を提供することであり、さらに低コストで容易に製造できる方法を提供することである。 Therefore, an object of the present invention is to provide an industrially advantageous solid acid catalyst that does not require a process such as neutralization or salt removal for separation and recovery, and can produce an object with energy saving without producing unnecessary by-products. Is to provide. In addition, it is to provide a solid acid having high proton conductivity and excellent heat resistance, and to provide a method that can be easily produced at low cost.

本発明者らは、鋭意研究を進めた結果、ケイ素原子に直結した炭素原子を有する有機基中に芳香族基を持ったポリシロキサン架橋構造体から成る中空微粒子を濃硫酸あるいは発煙硫酸中で50〜200℃の比較的低温で加熱処理し、スルホン化することによって得られる極性溶媒に不溶な固体酸が、上記課題を解決できることを見出し、本発明を完成するに至った。 As a result of diligent research, the present inventors have determined that hollow fine particles comprising a polysiloxane cross-linked structure having an aromatic group in an organic group having a carbon atom directly connected to a silicon atom in concentrated sulfuric acid or fuming sulfuric acid. The present inventors have found that a solid acid insoluble in a polar solvent obtained by heat treatment at a relatively low temperature of ˜200 ° C. and sulfonation can solve the above problems, and have completed the present invention.

すなわち本発明は、縦断面で見て内側小劣弧(11)とこれを覆う外側大劣弧(21)と双方の端部間に渡る稜線(31)とで形成された、全体としては中空半球状体様を呈する特許文献1記載のポリシロキサン架橋構造体から成る中空微粒子を濃硫酸あるいは発煙硫酸中で50〜200℃の比較的低温で加熱処理し、ケイ素原子に直結した炭素原子を有する有機基中の芳香族基にスルホン化することによって得られる極性溶媒に不溶なスルホン酸化中空粒子を係る。 That is, the present invention is formed by an inner small inferior arc (11), an outer large inferior arc (21) covering this, and a ridge line (31) between both ends as viewed in a longitudinal section, and is generally hollow. Hollow fine particles comprising a polysiloxane crosslinked structure described in Patent Document 1 having a hemispherical shape are heat-treated in concentrated sulfuric acid or fuming sulfuric acid at a relatively low temperature of 50 to 200 ° C., and have carbon atoms directly bonded to silicon atoms. The present invention relates to sulfonated hollow particles insoluble in a polar solvent obtained by sulfonation into an aromatic group in an organic group.

または、周面に長手方向へ沿う一本の割れ目を有する全体としてはラグビーボール様を呈し、長径(L1)の平均値/短径(L2)の平均値=1.1〜3.3の範囲内にあることを特徴とする特許文献2記載のポリシロキサン架橋構造体から成る中空微粒子を濃硫酸あるいは発煙硫酸中で50〜200℃の比較的低温で加熱処理し、ケイ素原子に直結した炭素原子を有する有機基中の芳香族基にスルホン化することによって得られる極性溶媒に不溶なスルホン酸化中空粒子に係る。 Alternatively, as a whole having a single crack along the longitudinal direction on the peripheral surface, it has a rugby ball shape, and the average value of the major axis (L1) / average value of the minor axis (L2) = range of 1.1 to 3.3. A carbon atom directly bonded to a silicon atom by heat-treating hollow fine particles comprising a crosslinked polysiloxane structure described in Patent Document 2 in concentrated sulfuric acid or fuming sulfuric acid at a relatively low temperature of 50 to 200 ° C. The present invention relates to sulfonated hollow particles that are insoluble in a polar solvent obtained by sulfonation into an aromatic group in an organic group having benzene.

これらのスルホン酸化中空粒子は、単独で用いられてもよく、2種以上が併用されてもよい。 These sulfonated hollow particles may be used alone or in combination of two or more.

先ず、本発明に係る中空粒子について説明する。本発明に係る中空粒子は、ポリシロキサン架橋構造体が、シロキサン単位が3次元の網目構造を形成した構造体であり、ポリシロキサン架橋構造体を構成するシロキサン単位としては下記の式1で示されるシロキサン単位と、式2で示されるシロキサン単位および/または式3で示されるシロキサン単位から成るシロキサン単位の1種以上とから構成される有機シリコーンである。 First, the hollow particles according to the present invention will be described. In the hollow particles according to the present invention, the polysiloxane crosslinked structure is a structure in which the siloxane unit forms a three-dimensional network structure, and the siloxane unit constituting the polysiloxane crosslinked structure is represented by the following formula 1. An organosilicone composed of a siloxane unit and at least one siloxane unit comprising a siloxane unit represented by Formula 2 and / or a siloxane unit represented by Formula 3.

式1 SiO
式2 R1SiO1.5
式3 R2R3SiO
Formula 1 SiO 2
Formula 2 R1SiO 1.5
Formula 3 R2R3SiO

式2,式3において、R1,R2,R3:ケイ素原子に直結した炭素原子を有する有機基。 In Formulas 2 and 3, R1, R2, and R3: an organic group having a carbon atom directly connected to a silicon atom.

式2で示されるシロキサン単位において、式2中のR1は、ケイ素原子に直結した炭素原子を有する有機基であって、反応性基でない有機基又は反応性基を有しない有機基である場合と反応性基である有機基又は反応性基を有する有機基である場合および、式2中のR1が炭素骨格にスルホ基で置換された芳香族基を有する有機基である場合のものである。 In the siloxane unit represented by Formula 2, R1 in Formula 2 is an organic group having a carbon atom directly connected to a silicon atom, and is an organic group that is not a reactive group or an organic group that does not have a reactive group. This is the case where the organic group is a reactive group or an organic group having a reactive group, and the case where R1 in Formula 2 is an organic group having an aromatic group substituted with a sulfo group on the carbon skeleton.

式3で示されるシロキサン単位が、式3中のR2、R3は、いずれもケイ素原子に直結した炭素原子を有する有機基であって、反応性基でない有機基又は反応性基を有しない有機基である場合と反応性基である有機基又は反応性基を有する有機基である場合、および式3中のR2、R3が炭素骨格にスルホ基で置換された芳香族を有する有機基である場合のものである。 In the siloxane unit represented by Formula 3, R2 and R3 in Formula 3 are both organic groups having a carbon atom directly connected to a silicon atom, and are not reactive groups or organic groups having no reactive groups. And a reactive group or an organic group having a reactive group, and R2 and R3 in Formula 3 are aromatic organic groups substituted with a sulfo group on the carbon skeleton belongs to.

式2中のR1および式3中のR2、R3において、反応性基でない有機基又は反応性基を有しない有機基としては、アルキル基、シクロアルキル基、アリール基、アルキルアリール基、アラルキル基等が挙げられるが、これらのうちではメチル基、エチル基、プロピル基、ブチル基等の炭素数1〜4のアルキル基又はフェニル基が好ましく、メチル基がより好ましい。式2中のR1がかかる有機基である場合、式2で示されるシロキサン単位のうちで好ましいシロキサン単位としては、メチルシロキサン単位、エチルシロキサン単位、プロピルシロキサン単位、ブチルシロキサン単位、フェニルシロキサン単位等が挙げられる。式3中のR2、R3がかかる有機基である場合、式3で示されるシロキサン単位のうちで好ましいシロキサン単位としては、ジメチルシロキサン単位、メチルエチルシロキサン単位、メチルプロピルシロキサン単位、メチルブチルシロキサン単位、メチルフェニルシロキサン単位、ジエチルシロキサン単位、エチルプロピルシロキサン単位、エチルブチルシロキサン単位、エチルフェニルシロキサン単位、ジプロピルシロキサン単位、プロピルブチルシロキサン単位、ジブチルシロキサン単位、ブチルフェニルシロキサン単位、ジフェニルシロキサン単位である。 In R1 in Formula 2 and R2 and R3 in Formula 3, organic groups that are not reactive groups or have no reactive groups include alkyl groups, cycloalkyl groups, aryl groups, alkylaryl groups, aralkyl groups, etc. Among these, an alkyl group having 1 to 4 carbon atoms such as a methyl group, an ethyl group, a propyl group, and a butyl group or a phenyl group is preferable, and a methyl group is more preferable. When R1 in Formula 2 is such an organic group, preferred siloxane units among the siloxane units represented by Formula 2 are methylsiloxane units, ethylsiloxane units, propylsiloxane units, butylsiloxane units, phenylsiloxane units, and the like. Can be mentioned. In the case where R2 and R3 in Formula 3 are such organic groups, preferred siloxane units among the siloxane units represented by Formula 3 are dimethylsiloxane units, methylethylsiloxane units, methylpropylsiloxane units, methylbutylsiloxane units, A methylphenylsiloxane unit, a diethylsiloxane unit, an ethylpropylsiloxane unit, an ethylbutylsiloxane unit, an ethylphenylsiloxane unit, a dipropylsiloxane unit, a propylbutylsiloxane unit, a dibutylsiloxane unit, a butylphenylsiloxane unit, and a diphenylsiloxane unit.

式2中のR1および式3中のR2、R3において、反応性基である有機基又は反応性基を有する有機基としては、エポキシ基、(メタ)アクリロキシ基、アルケニル基、メルカプトアルキル基、アミノアルキル基、ハロアルキル基、グリセロキシ基、ウレイド基、シアノ基等が挙げられるが、なかでも2−グリシドキシエチル基、3−グリシドキシプロピル基、2−(3,4−エポキシシクロヘキシル)プロピル基等のエポキシ基を有するアルキル基、3−メタクロキシプロピル基、3−アクリロキシプロピル基等の(メタ)アクリロキシ基、ビニル基、アリル基、イソプロペニル基等のアルケニル基、メルカプトプロピル基、メルカプトエチル基等のメルカプトアルキル基、3−(2−アミノエチル)アミノプロピル基、3−アミノプロピル基、N,N−ジメチルアミノプロピル基等のアミノアルキル基が好ましい。式2中のRがかかる有機基である場合、式2で示されるシロキサン単位としては、1)3−グリシドキシプロピルシロキサン単位、3−グリシドキシプロピルシロキサン単位、2−(3,4−エポキシシクロヘキシル)エチルシロキサン単位、2−グリシドキシエチルシロキサン単位等のエポキシ基を有するシロキサン単位、2)3−メタクロキシプロピルシロキサン単位、3−アクリロキシプロピルシロキサン単位等の(メタ)アクリロキシ基を有するシロキサン単位、3)ビニルシロキサン単位、アリルシロキサン単位、イソプロペニルシロキサン単位等のアルケニル基を有するシロキサン単位、4)メルカプトプロピルシロキサン単位、メルカプトエチルシロキサン単位等のメルカプトアルキル基を有するシロキサン単位、5)3−アミノプロピルシロキサン単位、3−(2−アミノエチル)アミノプロピルシロキサン単位、N,N−ジメチルアミノプロピルシロキサン単位、N,N−ジエチルアミノプロピルシロキサン単位、N,N−ジメチルアミノエチルシロキサン単位等のアミノアルキル基を有するシロキサン単位、6)3−クロロプロピルシロキサン単位、トリフルオロプロピルシロキサン単位等のハロアルキル基を有するシロキサン単位、7)3−グリセロキシプロピルシロキサン単位、2−グリセロキシエチルシロキサン単位等のグリセロキシ基を有するシロキサン単位、8)3−ウレイドプロピルシロキサン単位、2−ウレイドエチルシロキサン単位等のウレイド基を有するシロキサン単位、9)シアノプロピルシロキサン単位、シアノエチルシロキサン単位等のシアノ基を有するシロキサン単位等が挙げられるが、なかでもエポキシ基を有するシロキサン単位、(メタ)アクリロキシ基を有するシロキサン単位、アルケニル基を有するシロキサン単位、メルカプトアルキル基を有するシロキサン単位、アミノアルキル基を有するシロキサン単位が好ましい。 In R1 in Formula 2 and R2 and R3 in Formula 3, an organic group that is a reactive group or an organic group having a reactive group includes an epoxy group, a (meth) acryloxy group, an alkenyl group, a mercaptoalkyl group, amino An alkyl group, a haloalkyl group, a glyceroxy group, a ureido group, a cyano group and the like can be mentioned. Among them, a 2-glycidoxyethyl group, a 3-glycidoxypropyl group, and a 2- (3,4-epoxycyclohexyl) propyl group Alkyl groups having an epoxy group such as, (meth) acryloxy groups such as 3-methacryloxypropyl group and 3-acryloxypropyl group, alkenyl groups such as vinyl group, allyl group and isopropenyl group, mercaptopropyl group, mercaptoethyl Groups such as mercaptoalkyl group, 3- (2-aminoethyl) aminopropyl group, 3-aminopropylene Group, N, aminoalkyl groups such as N- dimethylaminopropyl group. When R 1 in Formula 2 is such an organic group, the siloxane unit represented by Formula 2 is 1) 3-glycidoxypropylsiloxane unit, 3-glycidoxypropylsiloxane unit, 2- (3,4) -Epoxycyclohexyl) siloxane units having an epoxy group such as ethylsiloxane units and 2-glycidoxyethylsiloxane units; 2) (meth) acryloxy groups such as 3-methacryloxypropylsiloxane units and 3-acryloxypropylsiloxane units. Siloxane units having 3) siloxane units having alkenyl groups such as vinyl siloxane units, allyl siloxane units, isopropenyl siloxane units, etc. 4) siloxane units having mercaptoalkyl groups such as mercaptopropyl siloxane units, mercaptoethyl siloxane units 5) 3- Aminoalkyl such as aminopropylsiloxane unit, 3- (2-aminoethyl) aminopropylsiloxane unit, N, N-dimethylaminopropylsiloxane unit, N, N-diethylaminopropylsiloxane unit, N, N-dimethylaminoethylsiloxane unit 6) Siloxane units having a haloalkyl group such as 3-chloropropylsiloxane units and trifluoropropylsiloxane units, 7) Glyceroxy groups such as 3-glyceroxypropylsiloxane units and 2-glyceroxyethylsiloxane units 8) Siloxane units having a ureido group such as 3-ureidopropylsiloxane units and 2-ureidoethylsiloxane units, 9) Cyanopropylsiloxane units, cyanoethylsiloxane units Siloxane units having a cyano group such as siloxane units having an epoxy group, siloxane units having a (meth) acryloxy group, siloxane units having an alkenyl group, siloxane units having a mercaptoalkyl group, aminoalkyl, etc. A siloxane unit having a group is preferred.

式2中のR1および式3中のR2、R3において、炭素骨格に芳香族を有する有機基としては、アリール基、アルキルアリール基、アラルキル基、ナフチル基、アルキルナフチル基等が挙げられるが、これらのうちでは、炭素数6〜18のアリール基、炭素数1〜6のアルキル基(直鎖又は分岐した)で置換されたアルキルアリール基、又は炭素数7〜9のアラルキル基が好ましい。特に好ましくは、アリール基又はアラルキル基である。これらの有機基をスルホン化して得られる炭素骨格にスルホ基で置換された芳香族を有する有機基である。 In R1 in Formula 2 and R2 and R3 in Formula 3, examples of the organic group having an aromatic carbon skeleton include an aryl group, an alkylaryl group, an aralkyl group, a naphthyl group, and an alkylnaphthyl group. Among them, an aryl group having 6 to 18 carbon atoms, an alkylaryl group substituted with an alkyl group having 1 to 6 carbon atoms (straight or branched), or an aralkyl group having 7 to 9 carbon atoms is preferable. Particularly preferred is an aryl group or an aralkyl group. This is an organic group having an aromatic group substituted with a sulfo group on a carbon skeleton obtained by sulfonating these organic groups.

本発明に係るスルホン酸化中空粒子の中空粒子は、以上説明したようにポリシロキサン架橋構造体から成るものであって、縦断面で見て内側小劣弧(11)とこれを覆う外側大劣弧(21)と双方の端部間に渡る稜線(31)とで形成された、全体として中空半球状体様を呈するものである。言い替えれば、中空球状体を不均等に2分割したときの小分割部側の形状を呈するものである。そして内側小劣弧(11)の端部間の幅(W1)の平均値が0.01〜8μm、外側大劣弧(21)の端部間の幅(W2)の平均値が0.05〜10μm、且つ外側大劣弧(21)の高さ(H)の平均値が0.015〜8μmの範囲内にあるものであるが、内側小劣弧(11)の端部間の幅(W1)の平均値が0.02〜6μm、外側大劣弧(21)の端部間の幅(W2)の平均値が0.06〜8μm、且つ外側大劣弧(21)の高さ(H)の平均値が0.03〜6μmの範囲内にあるものが好ましい。本発明において、内側小劣弧(11)の端部間の幅(W1)の平均値、外側大劣弧(21)の端部間の幅(W2)の平均値、及び外側大劣弧(21)の高さ(H)の平均値はいずれも、本発明に係るスルホン酸化中空粒子の中空粒子サイズは走査電子顕微鏡像から抽出した任意の100個についてそれぞれを測定し、その平均を求めた値である。 As described above, the hollow particles of the sulfonated hollow particles according to the present invention are composed of a polysiloxane cross-linked structure, and when viewed in a longitudinal section, the inner small inferior arc (11) and the outer large inferior arc covering this A hollow hemispherical body as a whole is formed by (21) and the ridge line (31) extending between both ends. In other words, it presents the shape of the small divided portion when the hollow sphere is divided into two unevenly. And the average value of the width (W1) between the ends of the inner small inferior arc (11) is 0.01-8 μm, and the average value of the width (W2) between the ends of the outer large inferior arc (21) is 0.05. 10 μm and the average value of the height (H) of the outer large subarc (21) is in the range of 0.015 to 8 μm, but the width between the ends of the inner small subarc (11) ( The average value of W1) is 0.02 to 6 μm, the average value of the width (W2) between the end portions of the outer large subarc (21) is 0.06 to 8 μm, and the height of the outer large subarc (21) ( What has the average value of H) in the range of 0.03-6 micrometers is preferable. In the present invention, the average value of the width (W1) between the ends of the inner small inferior arc (11), the average value of the width (W2) between the ends of the outer large inferior arc (21), and the outer large inferior arc ( As for the average value of the height (H) of 21), the hollow particle size of the sulfonated hollow particles according to the present invention was measured for any 100 particles extracted from the scanning electron microscope image, and the average was obtained. Value.

または、本発明に係るスルホン酸化中空粒子の中空粒子は、以上説明したようなポリシロキサン架橋構造体から成るものであって、周面に長手方向へ沿う一本の割れ目を有する全体としてはラグビーボール様を呈するものである。言い替えれば、全体としては外観が長円形の中空ボールであるラグビーボールに略々近似する形状を呈し、その周面に、平面から見て長手方向の一端部から他端部へと直線的に渡り、内側中空部と連続する割れ目が形成されたものである。そして0.02〜20μm、短径(L)の平均値が0.01〜15μm、且つ長径(L)の平均値/短径(L)の平均値=1.2〜2.5且つ長径(L)の平均値/短径(L)の平均値=1.1〜3.3の範囲内にあるものが好ましい。本発明において、長径(L)は本発明に係る中空微粒子の長手方向における最大外径を意味しており、また短径(L)は本発明に係る該中空微粒子の短手方向における最大外径を意味していて、更に長径(L)の平均値及び短径(L)の平均値は共に、本発明に係るスルホン酸化中空粒子の中空粒子サイズは走査電子顕微鏡像から抽出した任意の100個についてそれぞれを測定し、その平均を求めた値である。 Alternatively, the hollow particles of the sulfonated hollow particles according to the present invention are composed of the polysiloxane cross-linked structure as described above, and the rugby ball as a whole has a single crack along the longitudinal direction on the peripheral surface. It is like that. In other words, as a whole, it has a shape approximately similar to a rugby ball, which is a hollow ball with an oval appearance, and linearly crosses the peripheral surface from one end to the other end in the longitudinal direction when viewed from the plane. A crack that is continuous with the inner hollow portion is formed. Then 0.02~20Myuemu, the average value of the average value 0.01~15μm minor axis (L 2), and an average value / minor axis diameter (L 1) (L 2) = 1.2~2.5 In addition, the average value of the major axis (L 1 ) / the average value of the minor axis (L 2 ) = 1.1 to 3.3 is preferable. In the present invention, the long diameter (L 1 ) means the maximum outer diameter in the longitudinal direction of the hollow fine particles according to the present invention, and the short diameter (L 2 ) is the maximum in the short direction of the hollow fine particles according to the present invention. It means the outer diameter, and the average value of the major axis (L 1 ) and the average value of the minor axis (L 2 ) are both extracted from the scanning electron microscope image of the hollow particle size of the sulfonated hollow particles according to the present invention. It is the value which measured each about arbitrary 100 pieces and calculated | required the average.

このような中空微粒子は、特許文献1、2および非特許文献2に記載された方法により製造することができる。 Such hollow fine particles can be produced by the methods described in Patent Documents 1 and 2 and Non-Patent Document 2.

前記中空粒子のケイ素原子に直結した炭素原子を有する有機基中の芳香族基を濃硫酸あるいは発煙硫酸中で加熱処理し、スルホン化を行った。該スルホン酸化中空粒子が得られた。 The aromatic group in the organic group having a carbon atom directly bonded to the silicon atom of the hollow particle was heat-treated in concentrated sulfuric acid or fuming sulfuric acid to perform sulfonation. The sulfonated hollow particles were obtained.

前記中空粒子のスルホン化において、濃硫酸、あるいは発煙硫酸中での処理温度が50℃未満の場合、スルホン化が十分進行せず、すべての芳香環がスルホ基で置換されていないため設計された酸強度を有する固体酸が得られない。一方、処理温度が200℃を越えると、スルホン基の熱分解が起こるために、十分なスルホン基が存在する固体酸が得られない。より好ましい処理温度は60℃〜150℃である。本発明のスルホン酸化中空粒子触媒は、所望の酸強度を有する固体酸触媒として利用できる。 In the sulfonation of the hollow particles, when the treatment temperature in concentrated sulfuric acid or fuming sulfuric acid is less than 50 ° C., the sulfonation does not proceed sufficiently and all aromatic rings are not substituted with sulfo groups. A solid acid having acid strength cannot be obtained. On the other hand, when the treatment temperature exceeds 200 ° C., thermal decomposition of the sulfone group occurs, so that a solid acid having a sufficient sulfone group cannot be obtained. A more preferable treatment temperature is 60 ° C to 150 ° C. The sulfonated hollow particle catalyst of the present invention can be used as a solid acid catalyst having a desired acid strength.

本発明のスルホン酸化中空粒子は、プロトン伝導膜、固体酸触媒、イオン交換膜、膜電極接合体、燃料電池に使用できる。 The sulfonated hollow particles of the present invention can be used for proton conductive membranes, solid acid catalysts, ion exchange membranes, membrane electrode assemblies, and fuel cells.

本発明で言うプロトン伝導膜とは、プロトンを伝導する能力を持つ膜のことを言う。本発明のスルホン酸化中空粒子を単独で膜化させたり、バインダー樹脂などを使用したりすることで膜化して使用される。 The proton conducting membrane referred to in the present invention means a membrane having the ability to conduct protons. The sulfonated hollow particles of the present invention are used as a film by forming a film alone or by using a binder resin or the like.

本発明のスルホン酸化中空粒子は強酸基が多く、高い酸触媒機能をもつことができるため、固体酸触媒としても良好に使用できる。単独で使用しても良いが、バインダー樹脂やアルミナなどに担時することでも使用できる。 Since the sulfonated hollow particles of the present invention have many strong acid groups and can have a high acid catalyst function, they can be used well as a solid acid catalyst. Although it may be used alone, it can also be used by carrying it on a binder resin or alumina.

本発明で言うイオン交換膜とは、イオンを選択的に透過する膜のことを言う。本発明のスルホン酸化中空粒子を単独で使用したり、バインダー樹脂やアルミナなどに担時することにより使用される。 The ion exchange membrane referred to in the present invention refers to a membrane that selectively transmits ions. The sulfonated hollow particles of the present invention are used alone or by being supported on a binder resin or alumina.

本発明のスルホン酸化中空粒子を用いて、膜電極接合体を製造する方法の一例としては、以下の方法を示すことができる。まず、本発明のスルホン酸化中空粒子を単独、またはバインダー樹脂などと混合させる。次に支持体に積層し乾燥などを行いプロトン伝導膜を形成させる。さらに必要に応じてその上に保護フィルムを積層して保存する。そして使用時、この支持体、保護フィルムを剥離させた後、プロトン伝導膜の両側にガス拡散層、触媒層を含有する電極層を形成する。これにより膜電極接合体が得られる。 As an example of a method for producing a membrane electrode assembly using the sulfonated hollow particles of the present invention, the following method can be shown. First, the sulfonated hollow particles of the present invention are mixed alone or with a binder resin or the like. Next, it is laminated on a support and dried to form a proton conducting membrane. Further, if necessary, a protective film is laminated thereon and stored. In use, after peeling the support and the protective film, an electrode layer containing a gas diffusion layer and a catalyst layer is formed on both sides of the proton conducting membrane. Thereby, a membrane electrode assembly is obtained.

ここにセパレータや補助的な装置(ガス供給装置、冷却装置)を組み立て、単一あるいは積層することにより、燃料電池を作製することができる。 A fuel cell can be manufactured by assembling a separator or an auxiliary device (a gas supply device or a cooling device) in a single or stacked manner.

上述べたように、本発明の極性溶媒に不溶のスルホン酸化中空粒子は、安価な原料を用いて、比較的容易な方法により製造することができる点で、工業的に有利であるという優れた効果をもたらす。 As described above, the sulfonated hollow particles insoluble in the polar solvent of the present invention are excellent in that they are industrially advantageous in that they can be produced by a relatively easy method using inexpensive raw materials. Bring effect.

本発明に係る特許請求項1、2および3記載のスルホン酸化中空粒子を略示する拡大正面図An enlarged front view schematically showing the sulfonated hollow particles according to claims 1, 2 and 3 of the present invention. 本発明に係る特許請求項1、4および5記載のスルホン酸化中空粒子を略示する拡大正面図An enlarged front view schematically showing the sulfonated hollow particles according to claims 1, 4 and 5 of the present invention.

以下、実施例によって、本発明をさらに詳しく説明するが、本発明は、これらの実施例に限定されるものではない。なお、実施例において、部は全て重量部を表す。 EXAMPLES Hereinafter, although an Example demonstrates this invention further in detail, this invention is not limited to these Examples. In the examples, all parts represent parts by weight.

合成例1{中空粒子(S−1)の合成}
反応容器にイオン交換水700gを仕込み、48%水酸化ナトリウム水溶液0.3gを添加して水溶液とした。この水溶液にフェニルトリエトキシラン144.2g(0.6モル)及びテトラエトキシラン83.3g(0.4モル)を添加し、温度を13〜15℃に保ちながら1時間加水分解反応を行い、更に10%ドデシルベンゼンスルホン酸ナトリウム水溶液3gを添加し、同温度で3時間加水分解反応を行なった。約4時間でシラノール化合物を含有する透明な反応物を得た。次いで得られた反応物の温度を30〜80℃に保ちながら5時間縮合反応を行って、中空粒子を含有する水性懸濁液を得た。この水性懸濁液を孔径5μmのアドバンテック社製のメンブランフィルターに通した後、通過液状部を遠心分離機に供して白色粒子を分離した。分離した白色粒子を水洗し、ウエットケーキ状を乾燥後、白色粉末を得た。その白色粉末をジェットミルで解砕し、単一粒子の中空粒子60.1gを得た。
Synthesis Example 1 {Synthesis of Hollow Particle (S-1)}
A reaction vessel was charged with 700 g of ion-exchanged water, and 0.3 g of a 48% sodium hydroxide aqueous solution was added to form an aqueous solution. To this aqueous solution, 144.2 g (0.6 mol) of phenyltriethoxylane and 83.3 g (0.4 mol) of tetraethoxylane were added, and a hydrolysis reaction was performed for 1 hour while maintaining the temperature at 13 to 15 ° C. Further, 3 g of a 10% aqueous solution of sodium dodecylbenzenesulfonate was added, and a hydrolysis reaction was performed at the same temperature for 3 hours. A transparent reaction product containing a silanol compound was obtained in about 4 hours. Next, a condensation reaction was carried out for 5 hours while maintaining the temperature of the obtained reaction product at 30 to 80 ° C. to obtain an aqueous suspension containing hollow particles. The aqueous suspension was passed through a membrane filter manufactured by Advantech with a pore size of 5 μm, and the passing liquid part was subjected to a centrifuge to separate white particles. The separated white particles were washed with water, and the wet cake was dried to obtain a white powder. The white powder was pulverized with a jet mill to obtain 60.1 g of single-particle hollow particles.

中空粒子(S−1)について、以下の走査型電子顕微鏡による観察、元素分析、ICP発光分光分析、FT−IRスペクトル分析を行ったところ、この中空粒子(S−1)は、縦断面で見て内側小劣弧(11)とこれを覆う外側大劣弧(21)と双方の端部間に渡る稜線(31)とで形成された、全体として中空半球状体様を呈し、内側小劣弧(11)の端部間の幅(W1)の平均値が2.64μm、外側大劣弧(21)の端部間の幅(W2)の平均値が3.02μm、且つ外側大劣弧(21)の高さ(H)の平均値が1.43μmの中空有機シリコーン微粒子であった。 When the hollow particle (S-1) was observed by the following scanning electron microscope, elemental analysis, ICP emission spectroscopic analysis, and FT-IR spectrum analysis, the hollow particle (S-1) was observed in a longitudinal section. The inner small inferior arc (11), the outer large inferior arc (21) covering this, and the ridge line (31) extending between both ends exhibit a hollow hemispherical shape as a whole. The average value of the width (W1) between the ends of the arc (11) is 2.64 μm, the average value of the width (W2) between the ends of the outer major arc (21) is 3.02 μm, and the outer major arc The hollow organic silicone fine particles having an average height (H) of (21) of 1.43 μm.

実施例1{スルホン酸化中空粒子(PI−1)の合成}
この中空粒子(S−1)の白色粉末100gを仕込み80℃に加熱した。この中空粒子に発煙硫酸200gを添加して、攪拌しながら80℃から100℃で3時間反応した。この溶液をデカンテーションにより、上澄み液から黄色ウエットケーキを分離し、数回水で洗浄した後、100℃で乾燥した。スルホン酸化中空粒子(PI−1)が得られた。得られた黄色粒子を、電子顕微鏡で観察したところ中空粒子(S−1)の粒子形状および粒子径を保持していた。得られた黄色粉末のX線回折パターンから、非晶性シリコーンピークを確認することができ、この材料はアモルファスであることがわかった。
Example 1 {Synthesis of sulfonated hollow particles (PI-1)}
100 g of white powder of the hollow particles (S-1) was charged and heated to 80 ° C. To these hollow particles, 200 g of fuming sulfuric acid was added and reacted at 80 to 100 ° C. for 3 hours with stirring. This solution was decanted to separate a yellow wet cake from the supernatant, washed several times with water, and dried at 100 ° C. Sulfonated hollow particles (PI-1) were obtained. When the obtained yellow particles were observed with an electron microscope, the particle shape and particle diameter of the hollow particles (S-1) were retained. From the X-ray diffraction pattern of the obtained yellow powder, an amorphous silicone peak can be confirmed, and this material was found to be amorphous.

・合成例2{中空有機シリコーン粒子(S−2)の合成}
反応容器にイオン交換水700gを仕込み、48%水酸化ナトリウム水溶液0.6g及びα−(p−ノニルフェニル)−ω−ヒドロキシ(ポリオキシエチレン)(オキシエチレン単位の数が10)の20%水溶液0.25gを添加し、よく攪拌して均一な溶液とした。この水溶液の温度を14℃に保ち、この水溶液にフェニルトリエトキシラン96.2g(0.4モル)、3−メタクリロキシプロピルトリメトキシシラン49.7g(0.2モル)及びテトラエトキシシラン83.3g(0.4モル)の混合モノマーを水溶液とモノマー層が混ざらないように徐々に滴下し、滴下終了後、双方の層を維持した層流状態でゆっくり攪拌した。1時間後、10%ドデシルベンゼンスルホン酸ナトリウム水溶液3gを添加し、更に3時間、14℃で同様にゆっくり攪拌した。そして、更に30〜80℃で5時間縮合反応を行って有機シリコーン粒子を含有する水性懸濁液を得た。この水性懸濁液を孔径2μmのアドバンテック社製のメンブランフィルターに通した後、通過液状部を遠心分離機に供して白色粒子のウエットケーキを分離した。分離したウエットケーキ状の白色粒子を水洗し、乾燥後、白色粉末を得た。その白色粉末をジェットミルで解砕し、単一粒子の白色粒子60.1gを得た。
Synthesis Example 2 {Synthesis of hollow organic silicone particles (S-2)}
A reaction vessel was charged with 700 g of ion-exchanged water, 0.6 g of a 48% aqueous sodium hydroxide solution and a 20% aqueous solution of α- (p-nonylphenyl) -ω-hydroxy (polyoxyethylene) (the number of oxyethylene units was 10). 0.25 g was added and stirred well to make a uniform solution. The temperature of this aqueous solution was kept at 14 ° C., and 96.2 g (0.4 mol) of phenyltriethoxylane, 49.7 g (0.2 mol) of 3-methacryloxypropyltrimethoxysilane and 83. 4 of tetraethoxysilane were added to this aqueous solution. 3 g (0.4 mol) of the mixed monomer was gradually added dropwise so that the aqueous solution and the monomer layer were not mixed, and after completion of the addition, the mixture was slowly stirred in a laminar flow state in which both layers were maintained. After 1 hour, 3 g of a 10% aqueous solution of sodium dodecylbenzenesulfonate was added, and the mixture was further slowly stirred at 14 ° C. for 3 hours. Further, a condensation reaction was performed at 30 to 80 ° C. for 5 hours to obtain an aqueous suspension containing organic silicone particles. This aqueous suspension was passed through a membrane filter manufactured by Advantech having a pore size of 2 μm, and the liquid passage part was subjected to a centrifuge to separate a wet cake of white particles. The separated wet cake-like white particles were washed with water and dried to obtain a white powder. The white powder was pulverized with a jet mill to obtain 60.1 g of single white particles.

合成例1と同様の測定及び分析等を行ったところ、この中空粒子(S−2)は、縦断面で見て内側小劣弧(11)とこれを覆う外側大劣弧(21)と双方の端部間に渡る稜線(31)とで形成された、全体として中空半球状体様を呈し、内側小劣弧(11)の端部間の幅(W1)の平均値が1.05μm、外側大劣弧(21)の端部間の幅(W2)の平均値が1.86μm、且つ外側大劣弧(21)の高さ(H)の平均値が0.99μmの中空粒子であった。 When the same measurement and analysis as in Synthesis Example 1 were performed, this hollow particle (S-2) was both in the inner minor arc (11) and in the outer major arc (21) covering it as viewed in the longitudinal section. Formed with a ridge line (31) extending between the end portions of the inner ring, exhibiting a hollow hemispherical shape as a whole, and an average value of the width (W1) between the end portions of the inner small inferior arc (11) is 1.05 μm, Hollow particles with an average width (W2) between the ends of the outer major arc (21) of 1.86 μm and an average height (H) of the outer major arc (21) of 0.99 μm. It was.

実施例2{スルホン酸化中空粒子(PI−2)の合成}
この中空粒子(S−2)の白色粉末100gを仕込み60℃に加熱した。この中空粒子に濃硫酸200gを添加して、攪拌しながら60℃から80℃で3時間反応した。この溶液をデカンテーションにより、上澄み液から黄色ウエットケーキを分離し、数回水で洗浄した後、100℃で乾燥した。スルホン酸化中空粒子(PI−2)が得られた。得られた黄色粒子を、電子顕微鏡で観察したところ中空粒子(S−2)の粒子形状および粒子径を保持していた。得られた黄色粉末のX線回折パターンから、非晶性シリコーンピークを確認することができ、この材料はアモルファスであることがわかった。
Example 2 {Synthesis of sulfonated hollow particles (PI-2)}
100 g of white powder of the hollow particles (S-2) was charged and heated to 60 ° C. 200 g of concentrated sulfuric acid was added to the hollow particles and reacted at 60 to 80 ° C. for 3 hours with stirring. This solution was decanted to separate a yellow wet cake from the supernatant, washed several times with water, and dried at 100 ° C. Sulfonated hollow particles (PI-2) were obtained. When the obtained yellow particles were observed with an electron microscope, the particle shape and particle diameter of the hollow particles (S-2) were retained. From the X-ray diffraction pattern of the obtained yellow powder, an amorphous silicone peak can be confirmed, and this material was found to be amorphous.

・合成例3{中空有機シリコーン粒子(S−3)の合成}
反応容器にイオン交換水700gを仕込み、48%水酸化ナトリウム水溶液0.2gを添加して水溶液とした。この水溶液にフェニルトリメトキシシラン120.2g(0.5モル)及びテトラエトキシシラン104.2g(0.4モル)を添加し、温度を13〜15℃に保ちながら4時間加水分解反応を行い、シラノール化合物を含有する透明な反応物を得た。次いでこの反応物の温度を30〜80℃に保ちながら5時間縮合反応を行って、有機シリコーン粒子を含有する水性懸濁液を得た。この水性懸濁液を孔径10μmのアドバンテック社製のメンブランフィルターに通した後、通過液状部を遠心分離機に供して白色粒子のウエットケーキを分離し、120℃で乾燥した。その白色粉末をジェットミルで解砕し、単一粒子の白色粒子を得た。
Synthesis Example 3 {Synthesis of hollow organic silicone particles (S-3)}
The reaction vessel was charged with 700 g of ion-exchanged water, and 0.2 g of a 48% sodium hydroxide aqueous solution was added to form an aqueous solution. To this aqueous solution, 120.2 g (0.5 mol) of phenyltrimethoxysilane and 104.2 g (0.4 mol) of tetraethoxysilane were added, and the hydrolysis reaction was carried out for 4 hours while maintaining the temperature at 13-15 ° C. A transparent reaction product containing a silanol compound was obtained. Next, a condensation reaction was carried out for 5 hours while maintaining the temperature of the reaction product at 30 to 80 ° C. to obtain an aqueous suspension containing organic silicone particles. The aqueous suspension was passed through a membrane filter manufactured by Advantech having a pore size of 10 μm, and the liquid passage part was subjected to a centrifuge to separate a white particle wet cake and dried at 120 ° C. The white powder was crushed with a jet mill to obtain single white particles.

この中空粒子(S−3)について、合成例1と同様に測定及び分析等を行ったところ、この中空粒子(S−3)は、縦断面で見て内側小劣弧(11)とこれを覆う外側大劣弧(21)と双方の端部間に渡る稜線(31)とで形成された、全体として中空半球状体様を呈し、内側小劣弧(11)の端部間の幅(W1)の平均値が7.01μm、外側大劣弧(21)の端部間の幅(W2)の平均値が8.12μm、且つ外側大劣弧(21)の高さ(H)の平均値が6.50μmの中空粒子であった。 The hollow particles (S-3) were measured and analyzed in the same manner as in Synthesis Example 1. As a result, the hollow particles (S-3) were separated from the inner small inferior arc (11) when viewed in a longitudinal section. The outer large inferior arc (21) and the ridge line (31) extending between both ends are formed into a hollow hemispherical body as a whole, and the width between the ends of the inner small inferior arc (11) ( The average value of W1) is 7.01 μm, the average width (W2) between the ends of the outer large subarc (21) is 8.12 μm, and the average height (H) of the outer large subarc (21) It was a hollow particle having a value of 6.50 μm.

実施例3{スルホン酸化中空粒子(PI−3)の合成}
この中空粒子(S−3)の白色粉末100gを仕込み100℃に加熱した。この中空粒子に発煙硫酸200gを添加して、攪拌しながら100℃から110℃で3時間反応した。この溶液をデカンテーションにより、上澄み液から黄色ウエットケーキを分離し、数回水で洗浄した後、100℃で乾燥した。スルホン酸化中空粒子(PI−3)が得られた。得られた褐色粒子を、電子顕微鏡で観察したところ中空粒子(S−3)の粒子形状および粒子径を保持していた。得られた褐色粉末のX線回折パターンから、非晶性シリコーンピークを確認することができ、この材料はアモルファスであることがわかった。
Example 3 {Synthesis of sulfonated hollow particles (PI-3)}
100 g of this white powder of hollow particles (S-3) was charged and heated to 100 ° C. To these hollow particles, 200 g of fuming sulfuric acid was added and reacted at 100 ° C. to 110 ° C. for 3 hours with stirring. This solution was decanted to separate a yellow wet cake from the supernatant, washed several times with water, and dried at 100 ° C. Sulfonated hollow particles (PI-3) were obtained. When the obtained brown particles were observed with an electron microscope, the particle shape and particle diameter of the hollow particles (S-3) were retained. From the X-ray diffraction pattern of the obtained brown powder, an amorphous silicone peak can be confirmed, and this material was found to be amorphous.

・合成例4{中空粒子(S−4)の合成}
反応容器にイオン交換水700gを仕込み、48%水酸化ナトリウム水溶液0.6g及びα−(p−ノニルフェニル)−ω−ヒドロキシ(ポリオキシエチレン)(オキシエチレン単位の数が10)の20%水溶液0.30gを添加し、よく攪拌して均一な溶液とした。この水溶液の温度を14℃に保ち、この水溶液にフェニルトリエトキシシラン96.2g(0.4モル)、p−スチリルトリメトキシシラン44.8g(0.2モル)及びテトラエトキシラン83.3g(0.4モル)の混合モノマーを水溶液とモノマー層が混ざらないように徐々に滴下し、滴下終了後、双方の層を維持した層流状態で3時間ゆっくり攪拌して加水分解した。次いで反応系の温度を30〜80℃とし、5時間縮合反応を行って有機シリコーン粒子を含有する水性懸濁液を得た。この水性懸濁液から遠心分離機により白色粒子を分離した。
Synthesis Example 4 {Synthesis of hollow particles (S-4)}
A reaction vessel was charged with 700 g of ion-exchanged water, 0.6 g of a 48% aqueous sodium hydroxide solution and a 20% aqueous solution of α- (p-nonylphenyl) -ω-hydroxy (polyoxyethylene) (the number of oxyethylene units was 10). 0.30 g was added and stirred well to make a uniform solution. The temperature of this aqueous solution was kept at 14 ° C., and 96.2 g (0.4 mol) of phenyltriethoxysilane, 44.8 g (0.2 mol) of p-styryltrimethoxysilane and 83.3 g of tetraethoxylane ( 0.4 mol) of the mixed monomer was gradually added dropwise so that the aqueous solution and the monomer layer were not mixed, and after completion of the addition, the mixture was slowly stirred for 3 hours in the laminar flow state in which both layers were maintained for hydrolysis. Subsequently, the temperature of the reaction system was set to 30 to 80 ° C., and a condensation reaction was performed for 5 hours to obtain an aqueous suspension containing organic silicone particles. White particles were separated from this aqueous suspension by a centrifuge.

合成例1と同様の測定及び分析等を行ったところ、この有機シリコーン粒子(S−4)は、全体として中空半球状体様を呈し、内側小劣弧(11)の端部間の幅(W1)の平均値が1.00μm、外側大劣弧(21)の端部間の幅(W2)の平均値が1.20μm、且つ外側大劣弧(21)の高さ(H)の平均値が0.55μmの中空粒子であった。 When the same measurement and analysis as in Synthesis Example 1 were performed, the organosilicone particles (S-4) exhibited a hollow hemispherical shape as a whole, and the width between the end portions of the inner small subarc (11) ( The average value of W1) is 1.00 μm, the average value of the width (W2) between the ends of the outer large subarc (21) is 1.20 μm, and the average of the height (H) of the outer large subarc (21) It was a hollow particle having a value of 0.55 μm.

実施例4{スルホン酸化中空粒子(PI−4)の合成}
この中空粒子(S−4)の白色粉末100gを仕込み100℃に加熱した。この中空粒子に発煙硫酸200gを添加して、攪拌しながら60℃から80℃で3時間反応した。この溶液をデカンテーションにより、上澄み液から黄色ウエットケーキを分離し、数回水で洗浄した後、100℃で乾燥した。スルホン酸化中空粒子(PI−4)が得られた。得られた黄色粒子を、電子顕微鏡で観察したところ中空粒子(S−4)の粒子形状および粒子径を保持していた。得られた黄色粉末のX線回折パターンから、非晶性シリコーンピークを確認することができ、この材料はアモルファスであることがわかった。
Example 4 {Synthesis of sulfonated hollow particles (PI-4)}
100 g of this white powder of hollow particles (S-4) was charged and heated to 100 ° C. To these hollow particles, 200 g of fuming sulfuric acid was added and reacted at 60 to 80 ° C. for 3 hours with stirring. This solution was decanted to separate a yellow wet cake from the supernatant, washed several times with water, and dried at 100 ° C. Sulfonated hollow particles (PI-4) were obtained. When the obtained yellow particles were observed with an electron microscope, the particle shape and particle diameter of the hollow particles (S-4) were retained. From the X-ray diffraction pattern of the obtained yellow powder, an amorphous silicone peak can be confirmed, and this material was found to be amorphous.

・合成例5{中空有機シリコーン微粒子(S−5)の合成}
反応容器にイオン交換水100g、酢酸0.02g、ラウリルスルホン酸ナトリウム0.83g及びポリオキシエチレン(14モル)ノニルフェニルエーテル0.09gを仕込み、均一な水溶液とした。この水溶液にフェニルトリエトキシラン108.2g(0.45モル)、ジメチルジメトキシラン18.0g(0.15モル)、3−メタクリロキシプロピルメチルジメトキシシラン11.6g(0.05モル)及びテトラエトキシシラン72.9g(0.35モル)を加え、温度を30℃に保ちながら加水分解を行なった。約30分間でシラノール化合物を含有する透明な反応液を得た。次に、別の反応容器にイオン交換水700gを仕込み、48%水酸化ナトリウム水溶液0.3gを加えて均一な水溶液とした。この水溶液に前記の反応液を徐々に添加し、温度を13〜15℃に保ちながら5時間縮合反応を行い、更に30〜80℃に保ちながら5時間縮合反応を行なって、有機シリコーン粒子を含有する水性懸濁液を得た。この水性懸濁液を孔径3μmの高分子メンブランフィルター(アドバンテック社製)に通した後、遠心分離機を用いて白色粒子を分離した。分離した白色粒子を水洗し、150℃で5時間熱風乾燥を行って有機シリコーン粒子57.2gを得た。有機シリコーン粒子について、反応例1と同様の観察、測定及び分析を行なった。この有機シリコーン粒子は、周面に長手方向へ沿う一本の割れ目を有する全体としてはラグビーボール様を呈し、長径(L)の平均値が0.51μm、短径(L)の平均値が0.24μm、且つ長径(L)の平均値/短径(L)の平均値=2.1であった。
Synthesis Example 5 {Synthesis of hollow organic silicone fine particles (S-5)}
A reaction vessel was charged with 100 g of ion exchange water, 0.02 g of acetic acid, 0.83 g of sodium lauryl sulfonate, and 0.09 g of polyoxyethylene (14 mol) nonylphenyl ether to obtain a uniform aqueous solution. In this aqueous solution, 108.2 g (0.45 mol) of phenyltriethoxylane, 18.0 g (0.15 mol) of dimethyldimethoxylane, 11.6 g (0.05 mol) of 3-methacryloxypropylmethyldimethoxysilane and tetraethoxy 72.9 g (0.35 mol) of silane was added, and hydrolysis was carried out while maintaining the temperature at 30 ° C. A transparent reaction solution containing a silanol compound was obtained in about 30 minutes. Next, 700 g of ion-exchanged water was charged into another reaction vessel, and 0.3 g of 48% sodium hydroxide aqueous solution was added to make a uniform aqueous solution. The above reaction solution is gradually added to this aqueous solution, and the condensation reaction is performed for 5 hours while maintaining the temperature at 13 to 15 ° C., and further, the condensation reaction is performed for 5 hours while maintaining the temperature at 30 to 80 ° C. An aqueous suspension was obtained. This aqueous suspension was passed through a polymer membrane filter (manufactured by Advantech) having a pore size of 3 μm, and then white particles were separated using a centrifuge. The separated white particles were washed with water and dried with hot air at 150 ° C. for 5 hours to obtain 57.2 g of organic silicone particles. The organic silicone particles were observed, measured, and analyzed in the same manner as in Reaction Example 1. The organosilicone particles exhibit a rugby ball-like as a whole with a single crack along the longitudinal direction on the peripheral surface, the average value of 0.51μm long diameter (L 1), the average value of the minor axis (L 2) Was 0.24 μm, and average value of major axis (L 1 ) / average value of minor axis (L 2 ) = 2.1.

実施例5{スルホン酸化中空粒子(PI−5)の合成}
この中空粒子(S−5)の白色粉末100gを仕込み100℃に加熱した。この中空粒子に発煙硫酸200gを添加して、攪拌しながら60℃から80℃で3時間反応した。この溶液をデカンテーションにより、上澄み液から黄色ウエットケーキを分離し、数回水で洗浄した後、100℃で乾燥した。スルホン酸化中空粒子(PI−5)が得られた。得られた黄色粒子を、電子顕微鏡で観察したところ中空粒子(S−5)の粒子形状および粒子径を保持していた。得られた黄色粉末のX線回折パターンから、非晶性シリコーンピークを確認することができ、この材料はアモルファスであることがわかった。
Example 5 {Synthesis of sulfonated hollow particles (PI-5)}
100 g of this white powder of hollow particles (S-5) was charged and heated to 100 ° C. To these hollow particles, 200 g of fuming sulfuric acid was added and reacted at 60 to 80 ° C. for 3 hours with stirring. This solution was decanted to separate a yellow wet cake from the supernatant, washed several times with water, and dried at 100 ° C. Sulfonated hollow particles (PI-5) were obtained. When the obtained yellow particles were observed with an electron microscope, the particle shape and particle diameter of the hollow particles (S-5) were retained. From the X-ray diffraction pattern of the obtained yellow powder, an amorphous silicone peak can be confirmed, and this material was found to be amorphous.

・合成例6{中空有機シリコーン微粒子(S−6)の合成}
反応容器にイオン交換水100g、酢酸0.02g、10%ドデシルベンゼンスルホン酸ナトリウム水溶液3gを仕込み、均一な水溶液とした。この水溶液にフェニルトリエトキシシラン132.2g(0.55モル)、ジフェニルジエトキシラン49.0g(0.18モル)及びテトラエトキシシラン56.2g(0.27モル)を加え、温度を30℃に保ちながら加水分解を行なった。約30分間でシラノール化合物を含有する透明な反応液を得た。次に、別の反応容器にイオン交換水700gを仕込み、48%水酸化ナトリウム水溶液0.3gを加えて均一な水溶液とした。この水溶液に前記の反応液を徐々に添加し、温度を13〜15℃に保ちながら5時間縮合反応を行い、更に温度を30〜80℃に保ちながら5時間縮合反応を行なって、有機シリコーン粒子を含有する水性懸濁液を得た。この水性懸濁液を孔径5μmの高分子メンブランフィルター(アドバンテック社製)に通した後、遠心分離機を用いて白色粒子を分離した。分離した白色粒子を水洗し、150℃で5時間熱風乾燥を行なって有機シリコーン粒子60.1gを得た。有機シリコーン粒子について、以下の走査型電子顕微鏡による観察及び測定を行なったところ、この有機シリコーン粒子は、周面に長手方向へ沿う一本の割れ目を有する全体としてはラグビーボール様を呈し、長径(L)の平均値が2.5μm、短径(L)の平均値が1.2μm、且つ長径(L)の平均値/短径(L)の平均値=2.1であった。
Synthesis Example 6 {Synthesis of hollow organic silicone fine particles (S-6)}
A reaction vessel was charged with 100 g of ion-exchanged water, 0.02 g of acetic acid, and 3 g of a 10% aqueous solution of sodium dodecylbenzenesulfonate to obtain a uniform aqueous solution. To this aqueous solution, 132.2 g (0.55 mol) of phenyltriethoxysilane, 49.0 g (0.18 mol) of diphenyldiethoxysilane and 56.2 g (0.27 mol) of tetraethoxysilane were added, and the temperature was adjusted to 30 ° C. The hydrolysis was carried out while maintaining A transparent reaction solution containing a silanol compound was obtained in about 30 minutes. Next, 700 g of ion-exchanged water was charged into another reaction vessel, and 0.3 g of 48% sodium hydroxide aqueous solution was added to make a uniform aqueous solution. The above-mentioned reaction solution is gradually added to this aqueous solution, and the condensation reaction is performed for 5 hours while maintaining the temperature at 13 to 15 ° C, and further, the condensation reaction is performed for 5 hours while maintaining the temperature at 30 to 80 ° C. An aqueous suspension containing was obtained. This aqueous suspension was passed through a polymer membrane filter (manufactured by Advantech) having a pore diameter of 5 μm, and then white particles were separated using a centrifuge. The separated white particles were washed with water and dried with hot air at 150 ° C. for 5 hours to obtain 60.1 g of organic silicone particles. When the organic silicone particles were observed and measured by the following scanning electron microscope, the organic silicone particles exhibited a rugby ball-like shape as a whole having a single crack along the longitudinal direction on the peripheral surface, and the long diameter ( The average value of L 1 ) is 2.5 μm, the average value of short diameter (L 2 ) is 1.2 μm, and the average value of long diameter (L 1 ) / average value of short diameter (L 2 ) = 2.1. It was.

実施例6{スルホン酸化中空粒子(PI−6)の合成}
この中空粒子(S−6)の白色粉末100gを仕込み100℃に加熱した。この中空粒子に発煙硫酸200gを添加して、攪拌しながら80℃から100℃で3時間反応した。この溶液をデカンテーションにより、上澄み液から黄色ウエットケーキを分離し、数回水で洗浄した後、100℃で乾燥した。スルホン酸化中空粒子(PI−6)が得られた。得られた褐色粒子を、電子顕微鏡で観察したところ中空粒子(S−6)の粒子形状および粒子径を保持していた。得られた黄色粉末のX線回折パターンから、非晶性シリコーンピークを確認することができ、この材料はアモルファスであることがわかった。
Example 6 {Synthesis of sulfonated hollow particles (PI-6)}
100 g of this white powder of hollow particles (S-6) was charged and heated to 100 ° C. To these hollow particles, 200 g of fuming sulfuric acid was added and reacted at 80 to 100 ° C. for 3 hours with stirring. This solution was decanted to separate a yellow wet cake from the supernatant, washed several times with water, and dried at 100 ° C. Sulfonated hollow particles (PI-6) were obtained. When the obtained brown particles were observed with an electron microscope, the particle shape and particle size of the hollow particles (S-6) were retained. From the X-ray diffraction pattern of the obtained yellow powder, an amorphous silicone peak can be confirmed, and this material was found to be amorphous.

<スルホン酸化中空粒子の結晶系測定>
試料を粉末X線回折計(理学社製 RINT Ultima+2200/PC)によって、CuKα線のブラック角度2θを3°から70°まで測定し、その結晶性を測定した。
<Crystal system measurement of sulfonated hollow particles>
The sample was measured with a powder X-ray diffractometer (RINT Ultimate + 2200 / PC, manufactured by Rigaku Corporation), and the black angle 2θ of the CuKα ray was measured from 3 ° to 70 °, and the crystallinity was measured.

<スルホン酸化中空粒子のSi/S重量比>
試料を波長分散型X線蛍光分析機(理学社製 ZSX101e)によって測定し、そのスペクトルより、それぞれの原子の重量比を算出した。
<Si / S weight ratio of sulfonated hollow particles>
The sample was measured with a wavelength dispersive X-ray fluorescence analyzer (ZSX101e, manufactured by Rigaku Corporation), and the weight ratio of each atom was calculated from the spectrum.

<スルホン酸化中空粒子の比表面積、細孔径>
試料を容積測定装置(ベル社製 ベルソープミニ)によって、77絶対温度で窒素吸着脱離等温線を測定し、粒子の比表面積を算出した。
<Specific surface area and pore diameter of sulfonated hollow particles>
The sample was measured for nitrogen adsorption / desorption isotherm at 77 absolute temperature by a volumetric device (Bell Soap Mini, manufactured by Bell Co.), and the specific surface area of the particles was calculated.

Figure 2010196010
Figure 2010196010

Figure 2010196010
Figure 2010196010

Figure 2010196010
Figure 2010196010

試験区分1
<固体酸触媒性能評価法>
実施例1〜3で得られた固体酸および比較例1で得られた固体酸各0.2gを触媒としてアルゴン雰囲気下の酢酸0.1モルとエチルアルコール1モルの混合溶液に添加し、70℃で6時間撹拌し、反応中に酸触媒反応によって生成する酢酸エチルの1時間後の生成量 (mol)をガスクロマトグラフで調べた。これらの結果は、表4に纏められている。
Test category 1
<Solid acid catalyst performance evaluation method>
70 g of the solid acid obtained in Examples 1 to 3 and 0.2 g of the solid acid obtained in Comparative Example 1 were added as a catalyst to a mixed solution of 0.1 mol of acetic acid and 1 mol of ethyl alcohol under an argon atmosphere. The mixture was stirred at 0 ° C. for 6 hours, and the amount (mol) of ethyl acetate produced by the acid-catalyzed reaction during the reaction after 1 hour was examined by gas chromatography. These results are summarized in Table 4.

比較例1
球状シリカ(アドマファイン社製SO−C6、平均直径:2.2μm、比表面積:1.9m/g)の100g(1.7モル)と48%水酸化ナトリウム水溶液の0.5gをイオン交換水500mlに添加して、ホモミキサーを使用してよく分散させた後、フェニルトリエトキシラン30g(0.12モル)を添加して、70℃で3時間反応させた。得られたフェニル変性球状シリカを含有した分散液から、デカンテーションにより白色粉末を分離し、数回洗浄後、120℃で乾燥した。得られた白色粉末50gを反応容器に仕込み、80℃に加温し、発煙硫酸100gを添加し、4時間攪拌した。得られた黄色粉体をデカンテーションにより分離・洗浄した後、乾燥した。得られた黄色粉末は、スルホン酸化シリカ粒子であった。
Comparative Example 1
Ion exchange 100 g (1.7 mol) of spherical silica (admafine SO-C6, average diameter: 2.2 μm, specific surface area: 1.9 m 2 / g) and 0.5 g of 48% aqueous sodium hydroxide solution After adding to 500 ml of water and well dispersing using a homomixer, 30 g (0.12 mol) of phenyltriethoxylane was added and reacted at 70 ° C. for 3 hours. The white powder was separated by decantation from the resulting dispersion containing phenyl-modified spherical silica, washed several times, and dried at 120 ° C. 50 g of the obtained white powder was charged into a reaction vessel, heated to 80 ° C., 100 g of fuming sulfuric acid was added, and the mixture was stirred for 4 hours. The obtained yellow powder was separated and washed by decantation and then dried. The obtained yellow powder was sulfonated silica particles.

比較例2
球状シリカ(アドマファイン社製SO−C1、平均直径:0.25μm、比表面積:17.4m/g)の100g(1.7モル)と48%水酸化ナトリウム水溶液の0.5gをイオン交換水500mlに添加して、ホモミキサーを使用してよく分散させた後、フェニルトリエトキシラン30g(0.12モル)を添加して、70℃で3時間反応させた。得られたフェニル変性球状シリカを含有した分散液から、デカンテーションにより白色粉末を分離し、数回洗浄後、120℃で乾燥した。得られた白色粉末50gを反応容器に仕込み、80℃に加温し、発煙硫酸100gを添加し、4時間攪拌した。得られた黄色粉体をデカンテーションにより分離・洗浄した後、乾燥した。得られた黄色粉末は、スルホン酸化シリカ粒子であった。
Comparative Example 2
Ion exchange between 100 g (1.7 mol) of spherical silica (SO-C1, manufactured by Admafine, average diameter: 0.25 μm, specific surface area: 17.4 m 2 / g) and 0.5 g of 48% aqueous sodium hydroxide solution After adding to 500 ml of water and well dispersing using a homomixer, 30 g (0.12 mol) of phenyltriethoxylane was added and reacted at 70 ° C. for 3 hours. The white powder was separated by decantation from the resulting dispersion containing phenyl-modified spherical silica, washed several times, and dried at 120 ° C. 50 g of the obtained white powder was charged into a reaction vessel, heated to 80 ° C., 100 g of fuming sulfuric acid was added, and the mixture was stirred for 4 hours. The obtained yellow powder was separated and washed by decantation and then dried. The obtained yellow powder was sulfonated silica particles.

Figure 2010196010
Figure 2010196010

実施例1〜6で得られた固体酸の固体酸触媒性能を調査したところ、従来に比べ高い触媒性能を示し、高い性能の固体酸触媒を提供できることが判った。これは、主に固体酸の比表面積の差によるものと思われる。 When the solid acid catalyst performance of the solid acids obtained in Examples 1 to 6 was investigated, it was found that the solid acid catalyst showed higher catalyst performance than before and could provide a high performance solid acid catalyst. This is presumably due to the difference in specific surface area of the solid acid.

試験区分2
<固体酸のプロトン伝導度評価法>
スルホン酸化中空粒子粉末を加圧成型(日本分光社製、10mm錠剤成型器、成型条件:400kg/cm、室温、1分)することによって、厚さ0.7mm、直径10mmのディスクを作製し、ディスクの片面に金を蒸着した後、インピーダンスアナライザー(HYP4192A)を用いて交流インピーダンス法によってプロトン伝導度を測定した。
周波数5〜13MHz、印加電圧12mV、温度80℃、湿度100%にてセルのインピーダンスの絶対値と位相角を測定した。得られたデータは、コンピュータを用いて発振レベル12mVにて複素インピーダンス測定を行った。これらの結果は、表5に纏められている。
Test category 2
<Method for evaluating proton conductivity of solid acid>
By pressure-molding the sulfonated hollow particle powder (manufactured by JASCO Corporation, 10 mm tablet molding machine, molding conditions: 400 kg / cm 2 , room temperature, 1 minute), a disk having a thickness of 0.7 mm and a diameter of 10 mm was produced. After vapor deposition of gold on one side of the disk, proton conductivity was measured by an AC impedance method using an impedance analyzer (HYP4192A).
The absolute value and phase angle of the cell impedance were measured at a frequency of 5 to 13 MHz, an applied voltage of 12 mV, a temperature of 80 ° C., and a humidity of 100%. The obtained data was subjected to complex impedance measurement using a computer at an oscillation level of 12 mV. These results are summarized in Table 5.

Figure 2010196010
Figure 2010196010

実施例1〜6で得られたスルホン酸化中空粒子のプロトン伝導度を測定したところ、従来に比べ高い性能を示し、高い性能の膜電極接合体および燃料電池を提供できることが判る。この結果は、上記スルホン酸化中空粒子の大きな比表面積と高い酸密度によるものと思われる。 When the proton conductivity of the sulfonated hollow particles obtained in Examples 1 to 6 was measured, it was found that the performance was higher than the conventional one, and a high performance membrane electrode assembly and a fuel cell could be provided. This result seems to be due to the large specific surface area and high acid density of the sulfonated hollow particles.

本発明は、現代の化学産業に必要不可欠な、薬品、石油化学工業製品、高分子製品といった様々な製品の生産に使われている塩酸、硫酸のような液体の酸触媒に替わるスルホン酸化中空粒子触媒に関する。さらに、製造プロセスの中で中和し、中和によって生成した塩を生産物から分離・回収する必要がなく、また副産物が生じないような繰り返し使用が可能なスルホン酸化中空粒子に関する。本発明は、全体として中空半球状体様を呈する特定形状の有機シリコーン粒子をスルホン化することによって得られるスルホン酸化中空粒子に関する。 The present invention is a sulfonated hollow particle that replaces liquid acid catalysts such as hydrochloric acid and sulfuric acid that are used in the production of various products such as chemicals, petrochemical industrial products, and polymer products that are indispensable for the modern chemical industry. Relates to the catalyst. Furthermore, the present invention relates to a sulfonated hollow particle that can be used repeatedly so that it is not necessary to neutralize in the production process, and to separate and recover the salt produced by the neutralization from the product, and no by-product is generated. The present invention relates to a sulfonated hollow particle obtained by sulfonating a specific shape of an organic silicone particle having a hollow hemispherical shape as a whole.

10 スルホン酸化中空粒子
11 内側小劣弧
21 外側大劣弧
31 稜線
内側小劣弧の端部間の幅
外側大劣弧の端部間の幅
H 外側大劣弧の高さ
1 スルホン酸化中空粒子
2 割れ目
長径
短径
10 sulfonated hollow particles 11 inner minor arc 21 outer major arc 31 ridge W 1 width between ends of inner minor arc 2 width between ends of outer major arc H height of outer major arc 1 sulfonated hollow particles 2 fissure L 1 longer diameter L 2 minor

Claims (13)

ケイ素原子に直結した炭素原子を有する有機基中にスルホ基が結合したポリシロキサン架橋構造体から成るスルホン酸化中空粒子。 A sulfonated hollow particle comprising a polysiloxane crosslinked structure in which a sulfo group is bonded to an organic group having a carbon atom directly connected to a silicon atom. 特許請求項1記載のスルホン酸化中空粒子の中空微粒子が、ポリシロキサン架橋構造体から成る中空微粒子であって、縦断面で見て内側小劣弧(11)とこれを覆う外側大劣弧(21)と双方の端部間に渡る稜線(31)とで形成された、全体としては中空半球状体様を呈し、内側小劣弧(11)の端部間の幅(W1)の平均値が0.005〜8μm、外側大劣弧(21)の端部間の幅(W2)の平均値が0.01〜10μm、且つ外側大劣弧(21)の高さ(H)の平均値が0.005〜8μmの範囲内にあることを特徴とする。 The hollow fine particles of the sulfonated hollow particles according to claim 1 are hollow fine particles comprising a polysiloxane cross-linked structure, and when viewed in a longitudinal section, an inner small inferior arc (11) and an outer large inferior arc covering the same (21 ) And a ridge line (31) extending between both end portions, generally exhibiting a hollow hemispherical shape, and the average value of the width (W1) between the end portions of the inner small arc (11) is 0.005-8 μm, the average value of the width (W2) between the ends of the outer large subarc (21) is 0.01-10 μm, and the average value of the height (H) of the outer large subarc (21) is It exists in the range of 0.005-8 micrometers. 特許請求項2記載のスルホン酸化中空微粒子の内側小劣弧(11)の端部間の幅(W)の平均値が0.01〜15μm、外側大劣弧(21)の端部間の幅(W)の平均値が0.02〜20μm、且つ外側大劣弧(21)の高さ(H)の平均値が0.01〜15μmの範囲内にある特許請求項1記載のスルホン酸化中空粒子。 The average value of the width (W 1 ) between the ends of the inner small subarcs (11) of the sulfonated hollow fine particles according to claim 2 is 0.01 to 15 μm, between the ends of the outer large subarcs (21). The sulfone according to claim 1, wherein the average value of the width (W 2 ) is 0.02 to 20 µm and the average value of the height (H) of the outer large subarc (21) is 0.01 to 15 µm. Oxidized hollow particles. 特許請求項1記載のスルホン酸化中空粒子の中空微粒子が、ポリシロキサン架橋構造体から成る中空微粒子は、周面に長手方向へ沿う一本の割れ目を有する全体としてはラグビーボール様を呈し、長径(L1)の平均値/短径(L2)の平均値=1.1〜3.3の範囲内にあることを特徴とする。 The hollow fine particles of the sulfonated hollow particles according to claim 1 are made of a polysiloxane cross-linked structure, and the hollow fine particles having a single crack along the longitudinal direction on the peripheral surface have a rugby ball shape as a whole and have a long diameter ( The average value of L1) / average value of minor axis (L2) = 1.1 to 3.3. 特許請求項4記載のスルホン酸化中空微粒子の長径(L)の平均値が0.02〜20μm、短径(L)の平均値が0.01〜15μm、且つ長径(L)の平均値/短径(L)の平均値=1.2〜2.5の範囲内にある特許請求項1記載のスルホン酸化中空粒子。 The average value of the major axis (L 1 ) of the sulfonated hollow fine particles according to claim 4 is 0.02 to 20 μm, the average value of the minor axis (L 2 ) is 0.01 to 15 μm, and the average of the major axis (L 1 ). 2. The sulfonated hollow particles according to claim 1, wherein the average value of the value / minor axis (L 2 ) = 1.2 to 2.5. ポリシロキサン架橋構造体が、下記の式1、式2および式3で示されるシロキサン単位から構成されたものである請求項1記載のスルホン酸化中空粒子。
式1 SiO
式2 R1SiO1.5(式2において、R1:ケイ素原子に直結した炭素原子を有する有機基)
式3 R2R3SiO(式3において、R2、R3:ケイ素原子に直結した炭素原子を有する有機基)
The sulfonated hollow particles according to claim 1, wherein the polysiloxane crosslinked structure is composed of siloxane units represented by the following formulas 1, 2 and 3.
Formula 1 SiO 2
Formula 2 R1SiO 1.5 (in Formula 2, R1: an organic group having a carbon atom directly connected to a silicon atom)
Formula 3 R2R3SiO (in Formula 3, R2, R3: an organic group having a carbon atom directly connected to a silicon atom)
式2で示されるシロキサン単位において、式2中のR1は、ケイ素原子に直結した炭素原子を有する有機基であって、反応性基でない有機基又は反応性基を有しない有機基である場合と、式2中のR1が炭素骨格にスルホ基で置換された芳香族基を有する有機基である場合のものである請求項6記載のスルホン酸化中空粒子。 In the siloxane unit represented by Formula 2, R1 in Formula 2 is an organic group having a carbon atom directly connected to a silicon atom, and is an organic group that is not a reactive group or an organic group that does not have a reactive group. The sulfonated hollow particles according to claim 6, wherein R1 in formula 2 is an organic group having an aromatic group substituted with a sulfo group on the carbon skeleton. 式3で示されるシロキサン単位が、式3中のR2、R3は、いずれもケイ素原子に直結した炭素原子を有する有機基であって、反応性基でない有機基又は反応性基を有しない有機基である場合と、式3中のR2、R3が炭素骨格にスルホ基で置換された芳香族を有する有機基である場合のものである請求項6記載のスルホン酸化中空粒子。 In the siloxane unit represented by Formula 3, R2 and R3 in Formula 3 are both organic groups having a carbon atom directly connected to a silicon atom, and are not reactive groups or organic groups having no reactive groups. The sulfonated hollow particles according to claim 6, wherein R2 and R3 in Formula 3 are organic groups having an aromatic group substituted with a sulfo group on the carbon skeleton. ポリシロキサン架橋構造体から成る中空微粒子のケイ素原子に直結した炭素原子を有する有機基中の芳香族基をスルホン酸化することを特徴とする請求項1から請求項8のいずれかに記載のスルホン酸化中空粒子の製造方法。 9. The sulfonation according to any one of claims 1 to 8, wherein an aromatic group in an organic group having a carbon atom directly bonded to a silicon atom of a hollow fine particle comprising a polysiloxane crosslinked structure is sulfonated. A method for producing hollow particles. スルホン酸化剤が、濃硫酸あるいは発煙硫酸であることを特徴とする請求項9記載のスルホン酸化中空粒子の製造方法。 The method for producing sulfonated hollow particles according to claim 9, wherein the sulfonated agent is concentrated sulfuric acid or fuming sulfuric acid. 加熱処理温度が、50〜200℃であることを特徴とする請求項9あるいは請求項10記載のスルホン酸化中空粒子の製造方法。 The method for producing sulfonated hollow particles according to claim 9 or 10, wherein the heat treatment temperature is 50 to 200 ° C. 請求項1から請求項8のいずれかに記載のスルホン酸化中空粒子を用いてなることを特徴とする固体酸触媒。 A solid acid catalyst comprising the sulfonated hollow particles according to any one of claims 1 to 8. 請求項1から請求項8のいずれかに記載のスルホン酸化中空粒子を用いてなることを特徴とするプロトン伝導膜。 A proton conducting membrane comprising the sulfonated hollow particles according to any one of claims 1 to 8.
JP2009045659A 2009-02-27 2009-02-27 Sulfonated hollow particle and method for producing the same, solid acid and proton conductive membrane comprising sulfonated hollow microparticle Pending JP2010196010A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009045659A JP2010196010A (en) 2009-02-27 2009-02-27 Sulfonated hollow particle and method for producing the same, solid acid and proton conductive membrane comprising sulfonated hollow microparticle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009045659A JP2010196010A (en) 2009-02-27 2009-02-27 Sulfonated hollow particle and method for producing the same, solid acid and proton conductive membrane comprising sulfonated hollow microparticle

Publications (1)

Publication Number Publication Date
JP2010196010A true JP2010196010A (en) 2010-09-09

Family

ID=42821049

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009045659A Pending JP2010196010A (en) 2009-02-27 2009-02-27 Sulfonated hollow particle and method for producing the same, solid acid and proton conductive membrane comprising sulfonated hollow microparticle

Country Status (1)

Country Link
JP (1) JP2010196010A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101390802B1 (en) 2012-08-13 2014-05-02 주식회사 엘지실트론 Method for manufacturing silicon single crystal and melt of silicon single crystal
JP2020037664A (en) * 2018-09-06 2020-03-12 信越化学工業株式会社 Porous silicone rubber spherical particle, porous silicone composite particle, and method for producing the particles

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101390802B1 (en) 2012-08-13 2014-05-02 주식회사 엘지실트론 Method for manufacturing silicon single crystal and melt of silicon single crystal
JP2020037664A (en) * 2018-09-06 2020-03-12 信越化学工業株式会社 Porous silicone rubber spherical particle, porous silicone composite particle, and method for producing the particles
WO2020050168A1 (en) * 2018-09-06 2020-03-12 信越化学工業株式会社 Porous spherical silicone rubber particles, porous silicone composite particles, and method for producing these particles
JP7003881B2 (en) 2018-09-06 2022-01-21 信越化学工業株式会社 Porous Silicone Rubber Spherical Particles, Porous Silicone Composite Particles, and Methods for Producing These Particles

Similar Documents

Publication Publication Date Title
Doustkhah et al. Development of sulfonic‐acid‐functionalized mesoporous materials: synthesis and catalytic applications
Fei et al. Protein biomineralized nanoporous inorganic mesocrystals with tunable hierarchical nanostructures
Maheshwari et al. Layer structure preservation during swelling, pillaring, and exfoliation of a zeolite precursor
WO2018049965A1 (en) Method for quickly preparing aerogel by using microemulsion as precursor
JP5482110B2 (en) Solid acid and process for producing the same
Altaf et al. Proton conductivity and methanol permeability study of polymer electrolyte membranes with range of functionalized clay content for fuel cell application
Mitsudome et al. Advanced core–shell nanoparticle catalysts for efficient organic transformations
CN106543461A (en) MOF‑SO3H@GO modified polymer hybrid PEM and preparation method thereof
KR20100130818A (en) Ceramic porous substrate, reinforced composite electrolyte membranes using the same and membrane-electrode assembly having the same
DE50015871D1 (en) PROTON-LINE CERAMIC POLYMER COMPOSITE MEMBRANE FOR THE TEMPERATURE RANGE UP TO 300 oC
CN108046665A (en) A kind of micro-nano composite hollow structure nano material modification high durability concrete material and preparation method thereof
Mao et al. Nacre-inspired moisture-responsive graphene actuators with robustness and self-healing properties
CN108273395A (en) Load the ceramic membrane and preparation method thereof of goethite nanocatalyst
JP2006257234A (en) Solid acid including composition
JP2010196010A (en) Sulfonated hollow particle and method for producing the same, solid acid and proton conductive membrane comprising sulfonated hollow microparticle
Wu et al. An imidazolium-type hybrid alkaline anion exchange membrane with improved membrane stability for alkaline fuel cells applications
CN107354500B (en) A kind of nanoscale Fe3O4The glass fiber compound material and preparation method thereof of grapheme modified cladding
CN104944411B (en) Method for preparing nano mesoporous carbon microspheres by adopting soft template
CN106898802B (en) A kind of high-performing car hydrogen fuel cell composite nano-powder material and preparation method thereof
CN106115779B (en) A kind of hollow nano-TiO2The preparation method of bag carbon Yolk shell structures
CN108525603A (en) A kind of biomass-based nanometer surfactant and its preparation method and application
CN106495203A (en) The preparation method of cerium oxide tiny balloon
CN104804182B (en) Sulfonated polyether sulphone and its preparation method and its preparing the application in electric actuator
Huang et al. Composite proton exchange membranes produced using chitosan and kaolin solvent-free fluid
Cui et al. Having it both ways: delicate hierarchical structure and robust mechanical stability on micro/nanomaterials with mesoporous silica coating