JP2010195656A - Method of producing synthetic silica powder - Google Patents

Method of producing synthetic silica powder Download PDF

Info

Publication number
JP2010195656A
JP2010195656A JP2009044919A JP2009044919A JP2010195656A JP 2010195656 A JP2010195656 A JP 2010195656A JP 2009044919 A JP2009044919 A JP 2009044919A JP 2009044919 A JP2009044919 A JP 2009044919A JP 2010195656 A JP2010195656 A JP 2010195656A
Authority
JP
Japan
Prior art keywords
silicon tetrachloride
silica powder
synthetic silica
organic solvent
gel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2009044919A
Other languages
Japanese (ja)
Inventor
Toshiaki Ueda
稔晃 植田
Hiromichi Koizumi
博通 小泉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2009044919A priority Critical patent/JP2010195656A/en
Publication of JP2010195656A publication Critical patent/JP2010195656A/en
Withdrawn legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of producing synthetic silica powder by hydrolysis of silicon tetrachloride with high productivity. <P>SOLUTION: In the method of producing silica powder by the hydrolysis of silicon tetrachloride, the synthetic silica powder is produced by hydrolyzing silicon tetrachloride by mixing silicon tetrachloride with a non-polar organic solvent and advancing the reaction while neutralizing hydrochloric acid by-produced by the hydrolysis with the addition of ammonium hydroxide to produce siliceous gel and drying the gel. As the non-polar organic solvent, benzene or hexane is used and the pH of the solution is controlled to 1-7, preferably 1-2. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、四塩化珪素の加水分解によって合成シリカ粉を生成する方法において、生産性がよく合成シリカ粉の製造方法に関する。   The present invention relates to a method for producing a synthetic silica powder with good productivity in a method for producing a synthetic silica powder by hydrolysis of silicon tetrachloride.

合成シリカ粉の湿式製法として、アルコキシシランを原料とする方法が知られている。例えば、特開昭62−176928号公報(特許文献1)には、アルコキシシランを酸またはアルカリの存在下に加水分解してシリカ質のゲルを生成させ、これを脱水乾燥した後に焼成してシリカガラス粉を製造する方法が記載されている。また、特開平6−329406号公報(特許文献2)には、アルコキシシランにシリカ微粉末を加えて加水分解することによって、焼成時のシラノール残留量を低減する方法が記載されており、特開平6−340411号公報(特許文献3)には、ゲルの乾燥手段として水酸化ナトリウムなどのアルカリ水溶液で内壁を洗浄した乾燥機を用いることによって、焼成時の未燃カーボン等の発生を防止する方法が記載されている。   As a method for producing synthetic silica powder, a method using alkoxysilane as a raw material is known. For example, in JP-A-62-176928 (Patent Document 1), an alkoxysilane is hydrolyzed in the presence of an acid or an alkali to form a siliceous gel, which is dehydrated and dried and then calcined. A method for producing glass powder is described. Japanese Patent Application Laid-Open No. 6-329406 (Patent Document 2) describes a method of reducing silanol residue during firing by adding silica fine powder to alkoxysilane and hydrolyzing it. Japanese Patent No. 6-340411 (Patent Document 3) discloses a method for preventing generation of unburned carbon and the like during firing by using a dryer whose inner wall is washed with an alkaline aqueous solution such as sodium hydroxide as a gel drying means Is described.

四塩化珪素の加水分解によって合成シリカ粉を製造する方法も知られており、例えば、特開昭62−21708号公報(特許文献4)には、純水を攪拌しながら四塩化珪素を加えて加水分解させ、生成したシリカ質のゲルを加熱して残留塩素を揮発除去した後に、乾燥し粉砕後、焼成してシリカ粉を製造する方法が記載されている。また、特開昭62−30613号公報(特許文献5)には、純水に代えて塩酸水溶液を用い、容器内の塩酸水溶液を攪拌しながら四塩化珪素を添加してシリカ質のスラリーを生成させ、該スラリーを脱水乾燥してシリカ粉を回収する方法が記載されている。   A method for producing synthetic silica powder by hydrolysis of silicon tetrachloride is also known. For example, in Japanese Patent Application Laid-Open No. 62-21708 (Patent Document 4), silicon tetrachloride is added while stirring pure water. It describes a method for producing silica powder by hydrolyzing and heating the produced siliceous gel to volatilize and remove residual chlorine, followed by drying, grinding, and firing. Japanese Patent Laid-Open No. 62-30613 (Patent Document 5) uses a hydrochloric acid aqueous solution instead of pure water, and adds silicon tetrachloride while stirring the hydrochloric acid aqueous solution in a container to produce a siliceous slurry. And a method of recovering silica powder by dehydrating and drying the slurry.

特開昭62−176928号公報JP-A-62-176928 特開平06−329406号公報Japanese Patent Laid-Open No. 06-329406 特開平06−340411号公報Japanese Patent Laid-Open No. 06-340411 特開昭62−021708号公報JP 62-021708 A 特開昭62−030613号公報JP-A-62-030613

従来の合成シリカ粉の製造方法において、アルコキシシランを用いる方法はコスト高であり、また原料に起因するシラノールが残留する懸念がある。四塩化珪素の加水分解を利用する方法は、シラノールを含まないので高純度のシリカ粉を製造できる利点がある。   In the conventional method for producing synthetic silica powder, the method using alkoxysilane is expensive, and there is a concern that silanol resulting from the raw material remains. The method using the hydrolysis of silicon tetrachloride is advantageous in that it can produce high-purity silica powder because it does not contain silanol.

一方、四塩化珪素の加水分解を利用する方法は、以下の式[1]に従って反応が進むが、副生した塩酸が水に溶解して液中の酸性度が高くなるとゲル化し易くなり、水1000gに対して、四塩化珪素に約170gを投入した段階で溶液全体がゲル化し、これより多くの四塩化珪素を加水分解することができない。従って、水1000gあたり、シリカ(SiO2)約60gしか生成せず、製品(SiO2粉)の収率は5〜6%程度にとどまる。このため四塩化珪素の加水分解によってシリカ粉を製造する方法では、ゲル中のシリカ含有量を高めることが重要な課題である。 On the other hand, in the method using the hydrolysis of silicon tetrachloride, the reaction proceeds according to the following formula [1]. However, when the by-product hydrochloric acid dissolves in water and the acidity in the liquid increases, gelation easily occurs. With respect to 1000 g, when about 170 g is added to silicon tetrachloride, the entire solution gels, and more silicon tetrachloride cannot be hydrolyzed. Accordingly, only about 60 g of silica (SiO 2 ) is produced per 1000 g of water, and the yield of the product (SiO 2 powder) is only about 5 to 6%. For this reason, in the method for producing silica powder by hydrolysis of silicon tetrachloride, it is an important issue to increase the silica content in the gel.

SiCl4 (liquid)+56H2O(liquid) →
Si(OH)4 (solid)+ 4HCl(liquid) +52H2O(liquid) …… [1]
SiCl 4 (liquid) + 56H 2 O (liquid) →
Si (OH) 4 (solid) + 4HCl (liquid) + 52H 2 O (liquid) ...... [1]

Si(OH)4 (gel)+ 4HCl(liquid) +52H2O(liquid)→
SiO2 (solid)+ 4HCl(gas) +56H2O(gas) …… [2]
Si (OH) 4 (gel) + 4HCl (liquid) + 52H 2 O (liquid) →
SiO 2 (solid) + 4HCl (gas) + 56H2O (gas) ...... [2]

上記式[1]のSi(OH)4 (solid)が、架橋を形成して、Si(OH)4 (gel)ゲルが生成する。上記式[2]に示すように、このゲルが加水分解してシリカとなり、これを乾燥してシリカ粉を得る。 The Si (OH) 4 (solid) of the above formula [1] forms a crosslink and a Si (OH) 4 (gel) gel is generated. As shown in the above formula [2], this gel is hydrolyzed to become silica, which is dried to obtain silica powder.

このため、上記四塩化珪素の加水分解において、ゲル中のシリカ含有量が非常に低く、塩酸と水の量が多いために、塩酸と水を蒸発させるエネルギーが多く必要となり、結果、製品コストが非常に高いと云う問題がある。   For this reason, in the hydrolysis of silicon tetrachloride, since the silica content in the gel is very low and the amount of hydrochloric acid and water is large, a large amount of energy for evaporating hydrochloric acid and water is required. There is a problem that it is very expensive.

本発明は、四塩化珪素の加水分解を利用した合成シリカ粉の製造方法において、従来の上記問題を解決したものであり、無極性の有機溶媒を混合した四塩化珪素の加水分解によって副生する塩酸を中和しながら反応を進めることによってゲル化を遅らせ、四塩化珪素の加水分解量を多くして生産性を高めた合成シリカ粉の製造方法を提供する。   The present invention solves the above-mentioned conventional problems in a method for producing synthetic silica powder using hydrolysis of silicon tetrachloride, and is a by-product of hydrolysis of silicon tetrachloride mixed with a nonpolar organic solvent. Provided is a method for producing synthetic silica powder in which gelation is delayed by advancing the reaction while neutralizing hydrochloric acid and the amount of silicon tetrachloride is hydrolyzed to increase productivity.

本発明は、以下に示す構成によって上記課題を解決した、合成シリカ粉の製造方法に関する。
〔1〕四塩化珪素の加水分解によってシリカ粉を製造する方法において、四塩化珪素を無極性の有機溶媒と混合して四塩化珪素の加水分解を行い、この加水分解で副生する塩酸に水酸化アンモニウムを添加して中和しながら反応を進行させてシリカ質のゲルを生成させ、該ゲルを乾燥して合成シリカ粉を製造することを特徴とする合成シリカ粉の製造方法。
〔2〕四塩化珪素に混合する無極性の有機溶媒としてベンゼンまたはヘキサンを用いる上記〔1〕に記載する合成シリカ粉の製造方法。
〔3〕容器内の純水を攪拌しながら、無極性の有機溶媒と混合した四塩化珪素と水酸化アンモニウムを添加し、溶液のpHを酸性域に制御してシリカ質のゲルを生成させる上記〔1〕または上記〔2〕に記載する合成シリカ粉の製造方法。
The present invention relates to a method for producing synthetic silica powder, which solves the above-described problems with the following configuration.
[1] In a method of producing silica powder by hydrolysis of silicon tetrachloride, silicon tetrachloride is mixed with a nonpolar organic solvent to hydrolyze silicon tetrachloride, and water is added to hydrochloric acid by-produced by this hydrolysis. A method for producing a synthetic silica powder, wherein a reaction is allowed to proceed while neutralizing by adding ammonium oxide to produce a siliceous gel, and the gel is dried to produce a synthetic silica powder.
[2] The method for producing a synthetic silica powder according to the above [1], wherein benzene or hexane is used as a nonpolar organic solvent mixed with silicon tetrachloride.
[3] While stirring pure water in a container, silicon tetrachloride mixed with a nonpolar organic solvent and ammonium hydroxide are added, and the pH of the solution is controlled to an acidic range to produce a siliceous gel. [1] or the method for producing a synthetic silica powder described in [2] above.

本発明の製造方法は、無極性の有機溶媒に混合した四塩化珪素の加水分解することにより、加水分解反応の速度を低下させることにより、副生する塩酸量を抑制し、かつ加水分解で副生する塩酸に水酸化アンモニウムを添加して中和しながら反応を進行させるので酸性度が高くならず、ゲル化が遅くなるので、四塩化珪素の加水分解量を増加させることができ、すなわちゲル中のシリカ含有量が増加し、生産性が大幅に向上する。具体的には、例えば、水酸化アンモニアを添加せずに加水分解する場合に比べて、約2.2倍の四塩化珪素を加水分解することができる。   The production method of the present invention suppresses the amount of by-produced hydrochloric acid by hydrolyzing silicon tetrachloride mixed with a nonpolar organic solvent, thereby reducing the amount of hydrochloric acid by-produced. Since the reaction proceeds while neutralizing by adding ammonium hydroxide to the raw hydrochloric acid, the acidity does not increase and gelation slows down, so that the amount of silicon tetrachloride can be increased, that is, the gel The silica content is increased, and the productivity is greatly improved. Specifically, for example, about 2.2 times as much silicon tetrachloride can be hydrolyzed as compared with the case of hydrolyzing without adding ammonia hydroxide.

さらに、本発明の製造方法は、無極性の有機溶媒に混合した四塩化珪素と共に水酸化アンモニウムを添加すればよく、煩雑な処理装置を必要としないので容易に実施することができる。   Furthermore, the production method of the present invention can be easily carried out because ammonium hydroxide is added together with silicon tetrachloride mixed in a nonpolar organic solvent, and a complicated processing apparatus is not required.

以下、本発明を実施形態に基づいて具体的に説明する。なお%は原則として質量%である。   Hereinafter, the present invention will be specifically described based on embodiments. In addition,% is mass% in principle.

本発明の製造方法は、四塩化珪素の加水分解によってシリカ粉を製造する方法において、四塩化珪素を無極性の有機溶媒と混合して四塩化珪素の加水分解を行い、この加水分解で副生する塩酸に水酸化アンモニウムを添加して中和しながら反応を進行させてシリカ質のゲルを生成させ、該ゲルを乾燥して合成シリカ粉を製造することを特徴とする合成シリカ粉の製造方法である。 The production method of the present invention is a method for producing silica powder by hydrolyzing silicon tetrachloride, wherein silicon tetrachloride is mixed with a nonpolar organic solvent to hydrolyze silicon tetrachloride, and this hydrolysis produces a by-product. A method for producing a synthetic silica powder comprising producing a siliceous gel by neutralizing by adding ammonium hydroxide to hydrochloric acid to be produced, and drying the gel to produce a synthetic silica powder It is.

〔準備工程〕
四塩化炭素に無極性の有機溶媒を混合する。無極性の有機溶媒としてはベンゼンやヘキサンを用いることができる。無極性有機溶媒の混合量は、例えば、重量比で、四塩化珪素80に対して無極性の有機溶媒20が適当である。
[Preparation process]
Mix nonpolar organic solvent with carbon tetrachloride. As the nonpolar organic solvent, benzene or hexane can be used. A suitable amount of the nonpolar organic solvent is, for example, a nonpolar organic solvent 20 with respect to silicon tetrachloride 80 in terms of weight ratio.

〔加水分解工程〕
容器内に純水を仕込み、この純水を攪拌しながら無極性の有機溶媒を混合した四塩化珪素と水酸化アンモニウムを添加する。上記の式[1]に従って四塩化珪素が加水分解され、シリカ質のゲルが生成する。攪拌速度は100〜300rpm程度であればよく、強攪拌する必要はない。無極性の有機溶媒は、上記の式[1]の加水分解反応には、関与しない。
[Hydrolysis step]
Pure water is charged into a container, and silicon tetrachloride mixed with a nonpolar organic solvent and ammonium hydroxide are added while stirring the pure water. According to the above formula [1], silicon tetrachloride is hydrolyzed to produce a siliceous gel. The stirring speed may be about 100 to 300 rpm and does not need to be vigorously stirred. The nonpolar organic solvent does not participate in the hydrolysis reaction of the above formula [1].

無極性の有機溶媒を混合した四塩化珪素は定量ポンプによって少量ずつ加えるのがよく、例えば、純水1000gに対して無極性の有機溶媒を混合した四塩化珪素1〜50g/minの割合で添加すると良い。四塩化珪素の加水分解に伴って発熱するので、反応容器の外壁を冷却し、液温を35℃〜60℃に調整する。   Silicon tetrachloride mixed with nonpolar organic solvent should be added little by little with a metering pump, for example, added at a rate of 1 to 50 g / min silicon tetrachloride mixed with nonpolar organic solvent per 1000 g of pure water. Good. Since heat is generated with the hydrolysis of silicon tetrachloride, the outer wall of the reaction vessel is cooled and the liquid temperature is adjusted to 35 ° C to 60 ° C.

本発明の製造方法は、溶液を酸性域のpHに調整するために、無極性の有機溶媒を混合した四塩化珪素と共に水酸化アンモニウムを少量ずつ添加する。溶液のpHは1〜7が適当であり、1〜2が好ましい。水酸化アンモニウムを添加することによって、無極性の有機溶媒を混合した四塩化珪素の加水分解によって副生する塩酸が中和され、溶液の酸性度が高くならず、ゲル化が遅くなり、水酸化アンモニウムを添加しない場合よりも多量の四塩化珪素を加水分解することができる。   In the production method of the present invention, ammonium hydroxide is added little by little together with silicon tetrachloride mixed with a nonpolar organic solvent in order to adjust the solution to an acidic pH. The pH of the solution is suitably 1-7, preferably 1-2. By adding ammonium hydroxide, by-product hydrochloric acid is neutralized by hydrolysis of silicon tetrachloride mixed with a nonpolar organic solvent, the acidity of the solution does not increase, gelation slows down, and hydroxylation occurs. More silicon tetrachloride can be hydrolyzed than when no ammonium is added.

例えば、水酸化アンモニウムを添加せずに加水分解した場合には、概ね、純水1000gに対して約170gの四塩化珪素が加水分解されるが、本発明の方法によれば、約390gの四塩化珪素を加水分解させることができる。   For example, when hydrolysis is performed without adding ammonium hydroxide, about 170 g of silicon tetrachloride is generally hydrolyzed with respect to 1000 g of pure water. According to the method of the present invention, about 390 g of four tetrachlorides are hydrolyzed. Silicon chloride can be hydrolyzed.

水酸化アンモニウムの添加量は、四塩化珪素約170gに対して、水酸化アンモニウム約50〜300gが適当である。水酸化アンモニウムを上記量比の範囲で添加すれば、溶液の酸性度が高くならず、pHを1〜7の範囲に維持して加水分解を進行させることができる。   The amount of ammonium hydroxide added is appropriately about 50 to 300 g of ammonium hydroxide with respect to about 170 g of silicon tetrachloride. If ammonium hydroxide is added in the above range, the acidity of the solution does not increase, and the hydrolysis can proceed while maintaining the pH in the range of 1-7.

添加した水酸化アンモニウムは副生する塩酸と反応して塩化アンモニウム(NH4Cl)を生成するが、これは発熱反応に伴って蒸発させればよく、生成するシリカ粉への混入を防止することができる。 The added ammonium hydroxide reacts with the by-produced hydrochloric acid to produce ammonium chloride (NH 4 Cl), which should be evaporated in accordance with the exothermic reaction, and prevent mixing into the produced silica powder. Can do.

無極性の有機溶媒を混合した四塩化珪素の加水分解が進行すると溶液全体がゲル化して固化する。ゲル化した後は無極性の有機溶媒を混合した四塩化珪素を添加しても反応しないので、ゲル化した段階で無極性の有機溶媒を混合した四塩化珪素および水酸化アンモニウムの供給を停止する。   As the hydrolysis of silicon tetrachloride mixed with a nonpolar organic solvent proceeds, the entire solution gels and solidifies. After gelation, no reaction occurs even if silicon tetrachloride mixed with nonpolar organic solvent is added, so supply of silicon tetrachloride and ammonium hydroxide mixed with nonpolar organic solvent is stopped at the stage of gelation. .

〔乾燥工程〕
生成したゲルは多量の有機溶媒と塩酸を含有するので、ゲルを200℃〜300℃で乾燥(低温乾燥)し、粉砕・分級し粒度分布を制御した後に、さらに1000℃〜1500℃で熱処理(高温処理)して合成シリカ粉を回収する。
[Drying process]
Since the produced gel contains a large amount of an organic solvent and hydrochloric acid, the gel is dried at 200 ° C. to 300 ° C. (low temperature drying), pulverized and classified to control the particle size distribution, and further heat treated at 1000 ° C. to 1500 ° C. ( Synthetic silica powder is recovered by high-temperature treatment).

上記の低温乾燥は、例えば、フラスコに入れたゲルをマントルヒーターに入れて上記温度範囲に加熱し、上記高温処理は、低温乾燥したものを石英製の円筒形ボートに充填して加熱炉に入れ、上記温度範囲に加熱して乾燥させるとよい。低温乾燥および高温処理の雰囲気は何れも大気下で行えばよい。   In the low temperature drying, for example, the gel placed in a flask is placed in a mantle heater and heated to the above temperature range, and in the high temperature treatment, the low temperature dried material is filled in a quartz cylindrical boat and placed in a heating furnace. It is good to heat and dry to the said temperature range. The atmosphere for the low temperature drying and the high temperature treatment may be performed in the air.

〔実施例1〕
四塩化珪素とベンゼンを重量比で80:20の割合で混合した。攪拌機を装着したガラス製反応容器に1000gの純水を注ぎ込み、攪拌しながらベンゼンを混合した四塩化珪素液を定量ポンプで注入して加水分解させた。送液レートは4〜8g/minの範囲で制御した。また、同様の送液手段を別系統で設け、溶液のpHが2に保持できるように、水酸化アンモニウム水溶液を反応容器に少量づつ供給した。
[Example 1]
Silicon tetrachloride and benzene were mixed at a weight ratio of 80:20. 1000 g of pure water was poured into a glass reaction vessel equipped with a stirrer, and hydrolyzed by injecting a silicon tetrachloride solution mixed with benzene with stirring using a metering pump. The liquid feeding rate was controlled in the range of 4 to 8 g / min. Moreover, the same liquid feeding means was provided in another system, and an aqueous ammonium hydroxide solution was supplied to the reaction vessel little by little so that the pH of the solution could be maintained at 2.

四塩化珪素の加水分解に伴い発熱するため、反応容器外壁を循環冷却機を用いて冷却し、反応中の液温を45〜60℃の範囲に制御した。溶液全体がゲル化して固化した時点で反応終了とし、攪拌を止め四塩化珪素の供給を停止した。反応停止までに添加した四塩化珪素量は390gであった。   Since heat was generated with the hydrolysis of silicon tetrachloride, the outer wall of the reaction vessel was cooled using a circulating cooler, and the liquid temperature during the reaction was controlled in the range of 45 to 60 ° C. When the entire solution gelled and solidified, the reaction was terminated, stirring was stopped, and the supply of silicon tetrachloride was stopped. The amount of silicon tetrachloride added until the reaction was stopped was 390 g.

ゲルを容器から取り出し、約250℃で低温乾燥した後に、1350℃で高温乾燥を行った。低温乾燥はフラスコに入れたゲルをマントルヒーターに入れて加熱し、高温乾燥は石英製の円筒形ボートに充填した低温乾燥物を横型管状炉(外部抵抗加熱)に装入して加熱した。   The gel was taken out of the container, dried at a low temperature of about 250 ° C., and then dried at a high temperature of 1350 ° C. In the low temperature drying, the gel placed in the flask was put into a mantle heater and heated, and in the high temperature drying, the low temperature dried material filled in a quartz cylindrical boat was charged in a horizontal tubular furnace (external resistance heating) and heated.

得られた合成シリカ粉の質量測定し収率を計算したところ、収率は約10%であった。収率は下記式[3]によって求めた。
収率=合成シリカの質量/(純水の質量+四塩化珪素の質量) …… [3]
When the mass of the obtained synthetic silica powder was measured and the yield was calculated, the yield was about 10%. The yield was determined by the following formula [3].
Yield = mass of synthetic silica / (mass of pure water + mass of silicon tetrachloride) ...... [3]

〔実施例2、3〕
四塩化珪素と無極性有機溶媒の混合比と溶液のpHを表1の値になるように調整し、それ以外は実施例1と同様にして四塩化珪素の加水分解を行った。生成したゲルを実施例1と同様の乾燥を行い、合成シリカ粉を回収した。この結果を表1に示した。
[Examples 2 and 3]
Silicon tetrachloride was hydrolyzed in the same manner as in Example 1 except that the mixing ratio of silicon tetrachloride and the nonpolar organic solvent and the pH of the solution were adjusted to the values shown in Table 1. The generated gel was dried in the same manner as in Example 1 to recover synthetic silica powder. The results are shown in Table 1.

四塩化珪素と無極性有機溶媒の混合は行わず、それ以外は実施例1と同様にして四塩化珪素の加水分解を行った。生成したゲルを実施例1と同様の乾燥を行い、合成シリカ粉を回収した。この結果を表1に示した。   Silicon tetrachloride was hydrolyzed in the same manner as in Example 1 except that silicon tetrachloride and a nonpolar organic solvent were not mixed. The generated gel was dried in the same manner as in Example 1 to recover synthetic silica powder. The results are shown in Table 1.

〔比較例1〕
四塩化珪素にベンゼンやヘキサンを添加せず、それ以外は実施例1と同様にして四塩化珪素の加水分解を行った。生成したゲルを実施例1と同様の乾燥を行い、合成シリカ粉120gを回収した。この合成シリカ粉の質量を測定し、上記式[3]に基づき収率を計算したところ、収率は8.9%であった。
[Comparative Example 1]
Silicon tetrachloride was hydrolyzed in the same manner as in Example 1 except that benzene and hexane were not added to silicon tetrachloride. The produced gel was dried in the same manner as in Example 1 to recover 120 g of synthetic silica powder. When the mass of this synthetic silica powder was measured and the yield was calculated based on the above formula [3], the yield was 8.9%.

〔比較例2〕
水酸化アンモニウムを添加せず、それ以外は実施例1と同様にして四塩化珪素の加水分解を行った。ゲル化するまでに添加した四塩化珪素の量は170gであった。生成したゲルを実施例1と同様の乾燥を行い、合成シリカ粉60gを回収した。この合成シリカ粉の質量を測定し、上記式[3]に基づき収率を計算したところ、収率は5.7%であった。
[Comparative Example 2]
Silicon tetrachloride was hydrolyzed in the same manner as in Example 1 except that ammonium hydroxide was not added. The amount of silicon tetrachloride added before gelation was 170 g. The generated gel was dried in the same manner as in Example 1 to recover 60 g of synthetic silica powder. When the mass of the synthetic silica powder was measured and the yield was calculated based on the above formula [3], the yield was 5.7%.

Figure 2010195656
Figure 2010195656

Claims (3)

四塩化珪素の加水分解によってシリカ粉を製造する方法において、四塩化珪素を無極性の有機溶媒と混合して四塩化珪素の加水分解を行い、この加水分解で副生する塩酸に水酸化アンモニウムを添加して中和しながら反応を進行させてシリカ質のゲルを生成させ、該ゲルを乾燥して合成シリカ粉を製造することを特徴とする合成シリカ粉の製造方法。
In a method of producing silica powder by hydrolysis of silicon tetrachloride, silicon tetrachloride is mixed with a nonpolar organic solvent to hydrolyze silicon tetrachloride, and ammonium hydroxide is added to hydrochloric acid by-produced by this hydrolysis. A method for producing a synthetic silica powder, wherein a reaction is allowed to proceed while neutralizing by addition to produce a siliceous gel, and the gel is dried to produce a synthetic silica powder.
四塩化珪素に混合する無極性の有機溶媒としてベンゼンまたはヘキサンを用いる請求項1に記載する合成シリカ粉の製造方法。
The method for producing a synthetic silica powder according to claim 1, wherein benzene or hexane is used as a nonpolar organic solvent to be mixed with silicon tetrachloride.
容器内の純水を攪拌しながら、無極性の有機溶媒と混合した四塩化珪素と水酸化アンモニウムを添加し、溶液のpHを酸性域に制御してシリカ質のゲルを生成させる請求項1または2に記載する合成シリカ粉の製造方法。 2. Silica gel is produced by adding silicon tetrachloride mixed with a nonpolar organic solvent and ammonium hydroxide while stirring pure water in the container to control the pH of the solution to an acidic range. 2. A method for producing a synthetic silica powder as described in 2.
JP2009044919A 2009-02-26 2009-02-26 Method of producing synthetic silica powder Withdrawn JP2010195656A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009044919A JP2010195656A (en) 2009-02-26 2009-02-26 Method of producing synthetic silica powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009044919A JP2010195656A (en) 2009-02-26 2009-02-26 Method of producing synthetic silica powder

Publications (1)

Publication Number Publication Date
JP2010195656A true JP2010195656A (en) 2010-09-09

Family

ID=42820787

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009044919A Withdrawn JP2010195656A (en) 2009-02-26 2009-02-26 Method of producing synthetic silica powder

Country Status (1)

Country Link
JP (1) JP2010195656A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113044848A (en) * 2019-12-27 2021-06-29 亚洲硅业(青海)股份有限公司 Polysilicon tail gas treatment and recovery system and method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113044848A (en) * 2019-12-27 2021-06-29 亚洲硅业(青海)股份有限公司 Polysilicon tail gas treatment and recovery system and method
CN113044848B (en) * 2019-12-27 2023-03-28 亚洲硅业(青海)股份有限公司 Polysilicon tail gas treatment and recovery system and method

Similar Documents

Publication Publication Date Title
KR101918637B1 (en) Process for producing silicon
CN103894143A (en) Method for activating attapulgite
JPH072513A (en) Production of synthetic quartz glass powder
JP2018530512A (en) A novel method for the preparation of silicates and their use for the preparation of precipitated silicas
CN102180675A (en) Process for preparing gamma-AlON powder by chemical coprecipitation and carbothermal reduction method
CN104512896B (en) A kind of method utilizing aluminous fly-ash to prepare white carbon and white carbon
WO2018019179A1 (en) Method for manufacturing ultra-porous nano-sio2
CN103708472A (en) Method for preparing SiO2 powder by using zircon sand
JP2011046577A (en) Method for producing synthetic silica powder
JP2010195656A (en) Method of producing synthetic silica powder
CN109179429B (en) Method for preparing mesoporous nano-silica from chlorosilane residual liquid
JP2008143765A (en) Method for producing synthetic calcium carbonate by using waste cement fine powder
JP2009227575A (en) Method for producing synthetic silica powder
CN102583397A (en) Method for preparing silicon dioxide and hydrogen chloride by means of hydrolysis of polysilicon by-product silicon tetrachloride
CN107601512B (en) Mixture and production method of silicon tetrachloride
CN106564924A (en) Method for preparing white carbon black and co-producing calcium chloride by using calcium silicate one-step method
JP2009227576A (en) Method for producing synthetic silica powder
JP2009203112A (en) Method for manufacturing synthetic quartz powder
JP3970208B2 (en) Method for synthesizing reactive oxygen species inclusion materials
KR101522698B1 (en) Manufacture method of Silica nanoparticles and Silica Nonoparticles
JP2009143742A (en) Method for producing synthetic silica powder
CN111620348B (en) Preparation method of sodium silicate for nano silicon dioxide
JP3771599B2 (en) Method for producing synthetic quartz glass powder and quartz glass molded body
CN107673359B (en) Preparation method and reaction temperature control method of silicon tetrachloride
JP2009143743A (en) Method for producing synthetic silica powder

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20120501