JP2010195638A - Glass laminate for window - Google Patents

Glass laminate for window Download PDF

Info

Publication number
JP2010195638A
JP2010195638A JP2009043279A JP2009043279A JP2010195638A JP 2010195638 A JP2010195638 A JP 2010195638A JP 2009043279 A JP2009043279 A JP 2009043279A JP 2009043279 A JP2009043279 A JP 2009043279A JP 2010195638 A JP2010195638 A JP 2010195638A
Authority
JP
Japan
Prior art keywords
layer
glass
oxide
glass substrate
dielectric
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009043279A
Other languages
Japanese (ja)
Other versions
JP5463686B2 (en
Inventor
Hideo Omoto
英雄 大本
Kazuhiro Kato
和広 加藤
Tooru Ashida
徹 蘆田
Yuki Nakanishi
由貴 中西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Central Glass Co Ltd
Original Assignee
Central Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Central Glass Co Ltd filed Critical Central Glass Co Ltd
Priority to JP2009043279A priority Critical patent/JP5463686B2/en
Priority to PCT/JP2010/051866 priority patent/WO2010098200A1/en
Publication of JP2010195638A publication Critical patent/JP2010195638A/en
Application granted granted Critical
Publication of JP5463686B2 publication Critical patent/JP5463686B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a glass laminate for a window which achieves reduction in reddish reflection tone including an oblique direction and improvement in the reflectivity of a near-infrared region. <P>SOLUTION: The glass laminate includes: a glass substrate; and a thin film laminated body formed on the glass substrate. The thin film laminated body includes, in order from the glass substrate side, a first layer made of a dielectric substance, a second layer made of a metal containing Ag as an essential component, a third layer made of a dielectric substance, a fourth layer made of a metal containing Ag as an essential component, and a fifth layer made of a dielectric substance. The total of the geometric thickness of the second layer and the fourth layer is 22 to 29 nm, the geometric thickness of the second layer is 0.3 to 0.8 times that of the fourth layer, the total optical thickness of the first, third and fifth layers is 220 to 380 nm, the optical thickness of the third layer is 140 to 200 nm, and the optical thickness of the first layer is 0.4 to 1.5 times that of the fifth layer. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、ガラス基材と該ガラス基材上に形成される積層膜と有する窓用ガラス積層体、特にはLow−E(低放射)ガラスに関する。   The present invention relates to a glass laminate for a window having a glass substrate and a laminated film formed on the glass substrate, and particularly to Low-E (low emission) glass.

複層ガラス等の窓ガラスの断熱性の向上を目的として、複層ガラスの少なくとも一面にガラス積層体を使用し、該ガラス積層体の低放射性の積層膜を配置してなるものが普及しつつある。   For the purpose of improving heat insulation of window glass such as double-glazed glass, a glass laminate is used on at least one surface of double-glazed glass, and a low-radiation laminated film of the glass laminate is disposed. is there.

上記複層ガラスのうち、北海道などの寒冷地ほどの室内の暖房を必要としない地域で用いられる窓ガラスでは、太陽光による室内雰囲気の温度上昇の抑制と、室外から室内への熱流入の遮断とを行うこと、すなわち窓ガラスに遮熱性を付与することで、冷房効率を向上させることが求められている。   Among the above-mentioned double-glazed glass, in window glass used in areas that do not require indoor heating as in cold districts such as Hokkaido, the temperature rise of the indoor atmosphere due to sunlight is suppressed, and heat inflow from the outdoor to the indoor is blocked It is required to improve the cooling efficiency by performing the above, that is, imparting heat shielding properties to the window glass.

低放射性の積層膜が形成された窓用ガラス積層体は、ガラス基材上に順次、金属酸化物からなる第1層、Agを主成分とする第2層、金属酸化物からなる第3層、Agを主成分とする第4層、そして、金属酸化物からなる第5層を積層してなるものが使用されるようになっていきている。   A glass laminated body for windows in which a low-emissivity laminated film is formed includes a first layer made of a metal oxide, a second layer containing Ag as a main component, and a third layer made of a metal oxide, sequentially on a glass substrate. , A fourth layer composed mainly of Ag and a fifth layer composed of a metal oxide are being used.

特許文献1は、前記第1層の光学的厚さを32nm〜41nm、第2層の幾何学的厚さを6nm〜9nm、第3層の光学的厚さを113nm〜145nm、第4層の幾何学的厚さを8nm〜12nm、第5層の光学的厚さを45nm〜60nmとする積層膜とする等として、ガラス基材側からの反射色調が入射角度を変えても変化が小さく、遮熱性能にも優れた窓用ガラス積層体としている。   Patent Document 1 discloses that the optical thickness of the first layer is 32 nm to 41 nm, the geometric thickness of the second layer is 6 nm to 9 nm, the optical thickness of the third layer is 113 nm to 145 nm, As a laminated film having a geometric thickness of 8 nm to 12 nm and an optical thickness of the fifth layer of 45 nm to 60 nm, the change in reflection color tone from the glass substrate side is small even when the incident angle is changed, It is a glass laminate for windows with excellent heat insulation performance.

また、特許文献2は、第1層の膜厚を第3層の膜厚の0.45〜0.9倍とする等してガラス積層体を斜めからみたときの反射色調の赤味を低減させている。
特開11−34216号公報 特開2004−58592号公報
Further, Patent Document 2 reduces the redness of the reflection color tone when the glass laminate is viewed obliquely by setting the thickness of the first layer to 0.45 to 0.9 times the thickness of the third layer. I am letting.
JP 11-34216 A JP 2004-58592 A

冷房効率の向上などの省エネルギー化のために窓用ガラス積層体には、低放射性だけでなく、さらなる遮熱性の向上が求められている。Agを主成分とする金属層の厚みを厚くすれば、近赤外域の反射率が上がり、遮熱性の向上を図ることができる。しかしながら、金属層を単に厚くするだけでは、ガラス積層体の可視光透過率が低下することになる。従って、ガラス基材上に順次、誘電体からなる第1層、Agを主成分とする金属からなる第2層、誘電体からなる第3層、Agを主成分とする金属からなる第4層、そして、誘電体からなる第5層を積層する積層膜のように金属層を2層として、光の干渉効果を利用することで可視光透過率の調整が図られている。   In order to save energy such as improvement of cooling efficiency, the glass laminate for windows is required to have not only low radiation but also further improvement of heat shielding properties. If the thickness of the metal layer containing Ag as a main component is increased, the reflectance in the near-infrared region is increased, and the heat shielding property can be improved. However, simply increasing the thickness of the metal layer will reduce the visible light transmittance of the glass laminate. Accordingly, a first layer made of a dielectric, a second layer made of a metal containing Ag as a main component, a third layer made of a dielectric, and a fourth layer made of a metal containing Ag as a main component are sequentially formed on the glass substrate. And the visible light transmittance is adjusted by using two metal layers like a laminated film in which a fifth layer made of a dielectric is laminated and utilizing the light interference effect.

積層膜の遮熱性、すなわち近赤外域の反射率を向上させればさせる程、可視領域と近赤外領域との境界域である700nm付近の反射率に影響が及び、ガラス積層体の反射色調が赤味を帯びるようになり、特に斜め方向の反射色調が赤味を帯びやすくなる。ビルや住宅の窓に該積層体を利用する場合、これら用途では穏やか外観色調が好まれていることから、反射色調が赤味を帯びることは回避されることが好ましい。社会的要請に応えるべく、ガラス積層体の反射色調が赤味を帯びないようにすることと、近赤外域の反射率の向上、すなわち、Agを主成分とする金属層の総厚みを厚くすることには二律相反の関係が生じていると言えるものであった。   The higher the heat shielding property of the laminated film, that is, the reflectance in the near infrared region, the more influence is exerted on the reflectance near 700 nm, which is the boundary region between the visible region and the near infrared region, and the reflection color tone of the glass laminate. Becomes reddish, and the reflection color tone in the oblique direction is particularly reddish. When the laminate is used for a window of a building or a house, it is preferable to avoid a reddish reflection color tone because a gentle appearance color tone is preferred in these applications. In order to respond to social demands, the reflection color tone of the glass laminate is not reddish, and the reflectance in the near infrared region is improved, that is, the total thickness of the metal layer mainly composed of Ag is increased. It can be said that there is a contradictory relationship.

本発明は、以上を考慮し、前記の二律相反の関係を克服し、斜め方向も含めて赤味の反射色調が低減し、且つ近赤外域の反射率の向上がなされた窓用ガラス積層体を提供することを課題とする。   In consideration of the above, the present invention overcomes the above-mentioned two-way reciprocal relationship, reduces the reddish reflection color tone including the oblique direction, and improves the reflectance in the near-infrared region. The challenge is to provide a body.

本発明の窓用ガラス積層体は、ガラス基材と、該ガラス基材上に形成される薄膜積層体とからなり、該薄膜積層体は、ガラス基材側から順次、誘電体からなる第1層、Agを主成分とする金属からなる第2層、誘電体からなる第3層、Agを主成分とする金属からなる第4層、そして、誘電体からなる第5層を有し、第2層と第4層の幾何学的厚さの総和が22〜29nm、好ましくは24〜29nm、第2層の幾何学的厚さが第4層の幾何学的厚さの0.3〜0.8倍、好ましくは0.5〜0.7倍であり、第1、3、5層の光学的厚さの総和が220〜380nm、好ましくは260〜360nm、第5層の光学的厚さが140〜200nm、好ましくは160〜190nm、第1層の光学的厚みが第5層の光学的厚さの0.4〜1.5倍、好ましくは0.8〜1.4倍であり、ガラス基材側からの反射色調が、入射角が0°〜60°の範囲にて、CIE L*a*b*色度座標図におけるa*が3未満であることを特徴とする。   The glass laminate for windows of the present invention comprises a glass substrate and a thin film laminate formed on the glass substrate, and the thin film laminate is a first comprising a dielectric sequentially from the glass substrate side. A second layer made of metal containing Ag as a main component, a third layer made of dielectric, a fourth layer made of metal containing Ag as a main component, and a fifth layer made of dielectric. The sum of the geometric thicknesses of the two layers and the fourth layer is 22 to 29 nm, preferably 24 to 29 nm, and the geometric thickness of the second layer is 0.3 to 0 of the geometric thickness of the fourth layer. 0.8 times, preferably 0.5 to 0.7 times, and the total optical thickness of the first, third, and fifth layers is 220 to 380 nm, preferably 260 to 360 nm, and the optical thickness of the fifth layer. 140 to 200 nm, preferably 160 to 190 nm, and the optical thickness of the first layer is 0.4 to 1.5 of the optical thickness of the fifth layer. In the CIE L * a * b * chromaticity coordinate diagram, the reflection color tone from the glass substrate side is preferably 0.8 to 1.4 times, and the incident angle is in the range of 0 ° to 60 °. * Is less than 3.

本発明の課題を解決するためには、第2層及び第4層の構成が重要となりうる。第2層と第4層との幾何学的厚さの総和22nm未満では、太陽光線の中で、熱作用の大きい近赤外域、例えば750〜2000nmの光波長域、特には可視領域に近く放射エネルギー強度が特に大きな750〜1000nmの光波長域での反射率の向上の効果が小さくなる。   In order to solve the problems of the present invention, the configurations of the second layer and the fourth layer may be important. When the total geometric thickness of the second layer and the fourth layer is less than 22 nm, the solar radiation emits near the infrared region having a large thermal effect, for example, the light wavelength region of 750 to 2000 nm, particularly the visible region. The effect of improving the reflectance in the light wavelength region of 750 to 1000 nm, in which the energy intensity is particularly large, becomes small.

膜面方向からの反射率でみると、例えば光波長750nmでは、幾何学的厚さの総和が20nm程度である場合、20〜25%となるのに対し、総和が25nm程度である場合、40〜60%と、2〜3倍の大きな差が生じることが認められる。   Looking at the reflectance from the film surface direction, for example, at a light wavelength of 750 nm, when the total geometric thickness is about 20 nm, it is 20 to 25%, whereas when the total is about 25 nm, It can be seen that a large difference of ˜60%, 2-3 times, occurs.

他方、29nm超では、可視光透過率の低下が生じやすく、ガラス積層体での可視光透過率を70%以上とすることが難しくなる。   On the other hand, if it exceeds 29 nm, the visible light transmittance is likely to be lowered, and it becomes difficult to make the visible light transmittance at the glass laminate 70% or more.

そしてさらに、第2層の幾何学的厚さを第4層の幾何学的厚さの0.3〜0.8倍とすることで、ガラス基材側からの反射色調を、入射角が0°〜60°の範囲にて、CIE L*a*b*色度座標図におけるa*を3未満とせしめやすくする。該a*を3未満とすることで、反射色調において赤味がかった色味を正面視(入射角が0°近傍に相当)だけでなく、斜め方向(入射角が最大で60°までを考慮)からをも低減させ、穏やか外観色調を有する窓ガラスを提供することが可能となる。   Further, by setting the geometric thickness of the second layer to 0.3 to 0.8 times the geometric thickness of the fourth layer, the reflection color tone from the glass substrate side has an incident angle of 0. In the range of 60 ° to 60 °, a * in the CIE L * a * b * chromaticity coordinate diagram is set to less than 3 to facilitate the reduction. By setting the a * to less than 3, not only the frontal color (incident angle is close to 0 °) but also the oblique direction (incident angle up to 60 ° is considered) in the reflected color tone. ) Can be reduced, and a window glass having a gentle appearance color tone can be provided.

第2層の幾何学的厚さが第4層の幾何学的厚さの0.3倍未満の場合、第4層の幾何学的厚みを厚いものとせざるを得ず、ガラス積層体の可視光透過率が低いものとなりやすい他、反射色調において、正面視においてさえも赤味がかった色調を呈しやすくなる。0.8倍超であれば、斜め方向からの反射色調が、赤味がかった色調を呈しやすくなる。   When the geometric thickness of the second layer is less than 0.3 times the geometric thickness of the fourth layer, the geometric thickness of the fourth layer must be increased, and the glass laminate is visible. In addition to the low light transmittance, the reflected color tone tends to exhibit a reddish color tone even when viewed from the front. If it is more than 0.8 times, the reflected color tone from the oblique direction tends to exhibit a reddish color tone.

また、本発明では、第1、3、5層の光学的厚さの総和が220〜380nmとされ、第3層の光学的厚さが140〜200nmとされることが好ましい。第3層の光学的厚さが140nm未満の場合、正面視における反射色調が、赤味がかった色調を呈しやすくなる。他方、200nm超の場合、ガラス積層体の可視光透過率が低いものとなりやすい。   In the present invention, the total optical thickness of the first, third, and fifth layers is preferably 220 to 380 nm, and the optical thickness of the third layer is preferably 140 to 200 nm. When the optical thickness of the third layer is less than 140 nm, the reflected color tone in the front view tends to exhibit a reddish color tone. On the other hand, when it exceeds 200 nm, the visible light transmittance of the glass laminate tends to be low.

さらには、第1層の光学的厚みが第5層の光学的厚さの0.4〜1.5倍とされることが好ましい。0.4倍未満の場合、第2層の金属からなる層の結晶性が低いものとなりやすい他、可視光透過率が低いものとなりやすい。他方、1.5倍超の場合、正面視においてさえも反射色調が、赤味がかった色調を呈しやすくなる。   Furthermore, it is preferable that the optical thickness of the first layer is 0.4 to 1.5 times the optical thickness of the fifth layer. When the ratio is less than 0.4 times, the second layer metal layer tends to have low crystallinity and low visible light transmittance. On the other hand, in the case of more than 1.5 times, the reflected color tone tends to exhibit a reddish color tone even in front view.

本発明のガラス積層体は、低放射性に優れるだけでなく、近赤外域の反射率の向上が図られているので、該積層体を窓ガラスに使用すること室内の冷暖房効率の向上が図れ、省エネルギー化に奏功する。また、正面から斜め方向にわたってガラス積層体の反射色調が赤味を帯びたものではないので、窓ガラスには穏やか外観色調が好まれているという社会的要請に応えることができる。   The glass laminate of the present invention is not only excellent in low radiation, but also has improved near-infrared reflectivity, so that the use of the laminate for window glass can improve indoor heating and cooling efficiency, Succeeded in energy saving. Further, since the reflection color tone of the glass laminate is not reddish from the front to the diagonal direction, it is possible to meet the social demand that the window glass is preferred to have a gentle appearance color tone.

本発明の窓用ガラス積層体は、ガラス基材と、該ガラス基材上に形成される薄膜積層体とからなり、該薄膜積層体は、ガラス基材側から順次、誘電体からなる第1層、Agを主成分とする金属からなる第2層、誘電体からなる第3層、Agを主成分とする金属からなる第4層、そして、誘電体からなる第5層を有し、該薄膜積層体は、スパッタリング法等の蒸着プロセスを用いて形成されることが好ましい。   The glass laminate for windows of the present invention comprises a glass substrate and a thin film laminate formed on the glass substrate, and the thin film laminate is a first comprising a dielectric sequentially from the glass substrate side. A second layer made of a metal containing Ag as a main component, a third layer made of a dielectric, a fourth layer made of a metal containing Ag as a main component, and a fifth layer made of a dielectric, The thin film stack is preferably formed using a vapor deposition process such as sputtering.

前記ガラス基材は、特に限定されるものではないが、例えば、建築物用窓ガラスや通常使用されているフロ−ト板ガラス、又はロ−ルアウト法で製造されたソーダ石灰ガラス等無機質の透明性がある板ガラスを使用できる。当該板ガラスには、クリアガラス、高透過ガラス等の無色のもの、熱線吸収ガラス等の緑等に着色されたもの共に使用可能で、ガラスの形状等に特に限定されるものではなが、可視光透過率を考慮すると、クリアガラス、高透過ガラス等の無色ガラスを使用することが好ましい。また、平板ガラス、曲げ板ガラスはもちろん風冷強化ガラス、化学強化ガラス等の各種強化ガラスの他に網入りガラスも使用できる。さらには、ホウケイ酸塩ガラス、低膨張ガラス、ゼロ膨張ガラス、低膨張結晶化ガラス、ゼロ膨張結晶化ガラス等の各種ガラス基材を用いることができる。   The glass substrate is not particularly limited, and for example, inorganic transparency such as window glass for buildings, commonly used float glass, or soda lime glass produced by a roll-out method. You can use flat glass. The plate glass can be used for both colorless glass such as clear glass and high transmission glass and green colored glass such as heat ray absorbing glass, and is not particularly limited to the shape of the glass, but visible light. In consideration of the transmittance, it is preferable to use colorless glass such as clear glass and high transmittance glass. In addition to flat glass, bent glass, various glass such as air-cooled tempered glass and chemically tempered glass, netted glass can be used. Furthermore, various glass substrates such as borosilicate glass, low expansion glass, zero expansion glass, low expansion crystallized glass, and zero expansion crystallized glass can be used.

本発明の積層体では、誘電体からなる第1、3、5層は、同じ組成からなる層であってもよいし、異なる組成からなる層であってもよい。また、第1、3、5層のそれぞれは、全体を単一の組成からなる層で構成されてもよいし、複数の異なる組成からなる層が積層されたものであってもよい。   In the laminated body of the present invention, the first, third, and fifth layers made of a dielectric may be layers having the same composition or may be layers having different compositions. In addition, each of the first, third, and fifth layers may be configured by a layer having a single composition as a whole, or may be formed by stacking layers having a plurality of different compositions.

そして、誘電体からなる第1、3、5層は、酸化亜鉛、酸化アルミニウム、酸化ケイ素、酸化チタン、酸化タンタル、酸化錫、酸化ジルコニウム、亜鉛−錫合金の酸化物、窒化ケイ素、窒化アルミニウム、酸化窒化ケイ素、酸化窒化アルミニウム、酸化窒化チタン、酸化窒化ジルコニウム、酸化窒化錫からなる群が選ばれる少なくとも一つの誘電体からなる層を含むことが好ましい。   The first, third, and fifth layers made of a dielectric are zinc oxide, aluminum oxide, silicon oxide, titanium oxide, tantalum oxide, tin oxide, zirconium oxide, zinc-tin alloy oxide, silicon nitride, aluminum nitride, It is preferable to include a layer made of at least one dielectric selected from the group consisting of silicon oxynitride, aluminum oxynitride, titanium oxynitride, zirconium oxynitride, and tin oxynitride.

また、Agを主成分とする第2層及び第4層は、Agからなるものとしてもよいし、Pd、Au、Pt、Niなどの金属を5質量%まで含むものとしてよい。そして、Agを主成分とする層は、ガラス基材側が陽イオン金属の主成分をZnとする酸化物層と接していることが好ましい。   The second layer and the fourth layer containing Ag as a main component may be made of Ag or may contain up to 5% by mass of a metal such as Pd, Au, Pt, or Ni. The layer containing Ag as the main component is preferably in contact with the oxide layer containing Zn as the main component of the cationic metal on the glass substrate side.

陽イオン金属の主成分をZnとする酸化物層は、Agを主成分とする金属層の結晶性を良好なものとしやすい。陽イオン金属の主成分をZnとする酸化物は、酸化亜鉛としてもよいし、Sn、Al、Ti、Si、Cr、Mg、Gaから選ばれる少なくとも1つの金属を含むものとしてもよく、この場合、これら金属は、Znの原子数に対して0.4倍まで含有させてもよい。   An oxide layer containing Zn as the main component of the cation metal tends to improve the crystallinity of the metal layer containing Ag as the main component. The oxide containing Zn as the main component of the cation metal may be zinc oxide, or may contain at least one metal selected from Sn, Al, Ti, Si, Cr, Mg, and Ga. These metals may be contained up to 0.4 times the number of Zn atoms.

また、Agを主成分とする金属層の結晶性を良好なものとしやするとの観点からは、陽イオン金属の主成分をZnとする酸化物は、CuKα線を用いたX線回折法にて、酸化亜鉛の(002)結晶面によるによる回折ピークを示し、該ピークの回折角度2θが33.9°以下であるものとすることが好ましい。   From the viewpoint of improving the crystallinity of the metal layer containing Ag as a main component, an oxide containing Zn as the main component of the cation metal is obtained by an X-ray diffraction method using CuKα rays. It shows a diffraction peak due to the (002) crystal plane of zinc oxide, and the diffraction angle 2θ of the peak is preferably 33.9 ° or less.

本発明の薄膜積層体は、ガラス基材側から順次、誘電体からなる第1層、Agを主成分とする金属からなる第2層、誘電体からなる第3層、Agを主成分とする金属からなる第4層、そして、誘電体からなる第5層が形成される。第3層及び第5層の誘電体層が形成される際、Agを主成分とする金属層は、誘電体層形成時の雰囲気条件等の影響を受けて、酸化や窒化が生じることがある。これを防止するために、第2層と第3層の間、第4層と第5層の間に薄い金属層あるいは金属酸化物層あるいは金属窒化物層からなる犠牲層を積層してもよい。   The thin film laminate of the present invention is composed of a first layer made of a dielectric, a second layer made of a metal containing Ag as a main component, a third layer made of a dielectric, and Ag as a main component, sequentially from the glass substrate side. A fourth layer made of metal and a fifth layer made of dielectric are formed. When the third and fifth dielectric layers are formed, the metal layer containing Ag as a main component may be oxidized or nitrided due to the influence of atmospheric conditions during the formation of the dielectric layer. . In order to prevent this, a sacrificial layer made of a thin metal layer, metal oxide layer, or metal nitride layer may be laminated between the second layer and the third layer and between the fourth layer and the fifth layer. .

犠牲層として、金属、金属酸化物、金属窒化物を用いることができ、例えば、Zn、Ti、Sn、Ta、Nb、Si、Al、Crの群から選らばれる少なくとも一つの金属、又は、該金属の酸化物、窒化物、酸窒化物を使用することができ、犠牲層が積層された状態で透明であるもの、又は第3及び第5層の形成時に酸化あるいは窒化され、透明になるものが好ましく、特には亜鉛とアルミニウムとの合金、アルミニウム、又は酸化アルミニウムがドープされた酸化亜鉛が好ましい。犠牲層としての幾何学的厚みは好ましくは1〜7nm程度、より好ましくは2〜6nm程度とされる。   As the sacrificial layer, a metal, a metal oxide, or a metal nitride can be used. For example, at least one metal selected from the group consisting of Zn, Ti, Sn, Ta, Nb, Si, Al, and Cr, or the metal Oxides, nitrides, and oxynitrides of the above can be used, and those that are transparent with the sacrificial layer stacked, or those that are oxidized or nitrided when the third and fifth layers are formed and become transparent In particular, an alloy of zinc and aluminum, aluminum, or zinc oxide doped with aluminum oxide is preferable. The geometric thickness as the sacrificial layer is preferably about 1 to 7 nm, more preferably about 2 to 6 nm.

本発明のガラス積層体においては、犠牲層中に金属として残ったものがある場合もあるが、該金属はAgを主成分とする金属とは異なり、近赤外線の反射率向上への寄与は小さく第2層、第4層の幾何学的厚みには含めないが、誘電体に転じた場合またはもともと誘電体であたった場合には、光学干渉膜としての作用があるため、第3層、第5層の光学的厚みに含めて考慮される。   In the glass laminate of the present invention, there is a case where a metal remains in the sacrificial layer. However, unlike a metal mainly composed of Ag, the metal contributes little to improving near infrared reflectance. Although not included in the geometric thicknesses of the second layer and the fourth layer, when it is changed to a dielectric or originally a dielectric, it acts as an optical interference film. It is included in the optical thickness of the five layers.

また、本発明のガラス積層体は、他のガラス基材と対向させて、周縁部をスペーサ、粘着剤等で封止して複層ガラスとすることが好ましい。この際、積層膜は、対向によって形成された内分空間側を向くようにすることが好ましい。この内部空間は、Ar、He、Kr、Xe等の不活性ガス、乾燥空気、窒素などで占められる。該複層ガラスを用いて窓を形成する際には、遮熱性を良好なものとする観点から、ガラス積層体は室外側に配置されることが好ましい。   Moreover, it is preferable that the glass laminated body of this invention is made to oppose another glass base material, and a peripheral part is sealed with a spacer, an adhesive, etc. to make a multilayer glass. At this time, it is preferable that the laminated film is directed to the internal space formed by the facing. This internal space is occupied by an inert gas such as Ar, He, Kr, and Xe, dry air, nitrogen, and the like. When forming a window using this multilayer glass, it is preferable to arrange | position a glass laminated body on the outdoor side from a viewpoint of making heat-shielding property favorable.

1.試料の作製
板厚5.8mmのフロート法によるソーダ石灰ケイ酸塩ガラス(クリアガラス)よりなるガラス基材上に、DCマグネトロンスパッタリング法により、積層膜を形成した。第1層及び第3層には、Znターゲットより形成された酸化亜鉛層、第2層及び第4層には、Agターゲットより形成されたAg層、第5層には、Snターゲットより形成された酸化錫層を形成し、各実施例において、金属層の幾何学的厚み、誘電体層の光学的厚みが調整された。各実施例の膜構成は表1に示すとおりである。
1. Preparation of Sample A laminated film was formed by a DC magnetron sputtering method on a glass substrate made of soda lime silicate glass (clear glass) by a float method having a plate thickness of 5.8 mm. A zinc oxide layer formed from a Zn target is formed on the first layer and the third layer, an Ag layer formed from an Ag target is formed on the second layer and the fourth layer, and an Sn target is formed on the fifth layer. In each example, the geometric thickness of the metal layer and the optical thickness of the dielectric layer were adjusted. The film configuration of each example is as shown in Table 1.

また、第3層の酸化亜鉛層形成前、第5層の酸化錫層形成前には6nmの幾何学的厚みの、AlドープZnO(Alを3質量%含有したZnO)ターゲットより形成されたアルミニウムドープ酸化亜鉛膜よりなる犠牲層を形成された。尚、各層の成膜条件は、表2に示すとおりである。 Further, before forming the third zinc oxide layer and before forming the fifth tin oxide layer, an Al-doped ZnO (ZnO containing 3% by mass of Al 2 O 3 ) target having a geometric thickness of 6 nm is formed. A sacrificial layer made of the aluminum doped zinc oxide film was formed. The film forming conditions for each layer are as shown in Table 2.

2.試料の評価
得られた試料の光学特性を、分光光度計(日立製作所製 U−4000)を用いてガラス基材側から測定光を入測して測定し、JIS R 3106(1998年)に準拠して可視光透過率、日射透過率、日射反射率、垂直放射率、反射の主波長、刺激純度を求めた。また、ガラス基材側の反射色調を、瞬間マルチ測光システム(大塚電子製 MCPD−3000)および入射角可変測定治具を用いて測定し、入射角が0°、60°での、CIE L*a*b*色度座標図におけるa*を求めた。結果を表3に示す。また、反射率スペクトルの代表例として、図1に実施例1、比較例1の反射率スペクトル(ガラス基材側から測定光を入測)を示す。本発明で得られたガラス積層体は、表3、図1に示すとおり、各種指標が優れたものであった。
2. Evaluation of Sample Optical properties of the obtained sample were measured by measuring light from the glass substrate side using a spectrophotometer (U-4000, manufactured by Hitachi, Ltd.) and compliant with JIS R 3106 (1998). Then, the visible light transmittance, solar transmittance, solar reflectance, vertical emissivity, main wavelength of reflection, and stimulus purity were determined. Further, the reflection color tone on the glass substrate side was measured using an instantaneous multi-photometry system (MCPD-3000 manufactured by Otsuka Electronics Co., Ltd.) and a variable incident angle measurement jig, and CIE L * at incident angles of 0 ° and 60 °. a * in the a * b * chromaticity coordinate diagram was obtained. The results are shown in Table 3. As a representative example of the reflectance spectrum, FIG. 1 shows the reflectance spectra of Example 1 and Comparative Example 1 (measurement light is measured from the glass substrate side). The glass laminate obtained in the present invention was excellent in various indices as shown in Table 3 and FIG.

比較例での各ガラス積層体は、可視光透過率が70%に満たない、日射反射率が30%に満たない、又はa*が3超である等のいずれかの指標が劣るものであった。   Each glass laminate in the comparative example is inferior in any index such as a visible light transmittance of less than 70%, a solar reflectance of less than 30%, or a * exceeding 3. It was.

実施例1、比較例1の反射率スペクトルを示す図である。It is a figure which shows the reflectance spectrum of Example 1 and Comparative Example 1.

Claims (5)

ガラス基材と、該ガラス基材上に形成される薄膜積層体とからなる窓用ガラス積層体であり、該薄膜積層体は、ガラス基材側から順次、誘電体からなる第1層、Agを主成分とする金属からなる第2層、誘電体からなる第3層、Agを主成分とする金属からなる第4層、そして、誘電体からなる第5層を有し、第2層と第4層の幾何学的厚さの総和が22〜29nm、第2層の幾何学的厚さが第4層の幾何学的厚さの0.3〜0.8倍であり、第1、3、5層の光学的厚さの総和が220〜380nm、第3層の光学的厚さが140〜200nm、第1層の光学的厚みが第5層の光学的厚さの0.4〜1.5倍であり、
ガラス基材側からの反射色調が、入射角が0°〜60°の範囲にて、CIE L*a*b*色度座標図におけるa*が3未満であることを特徴とする窓用ガラス積層体。
A glass laminate for a window comprising a glass substrate and a thin film laminate formed on the glass substrate, wherein the thin film laminate comprises, sequentially from the glass substrate side, a first layer comprising a dielectric, Ag A second layer made of a metal containing as a main component, a third layer made of a dielectric, a fourth layer made of a metal containing Ag as a main component, and a fifth layer made of a dielectric, The total geometric thickness of the fourth layer is 22 to 29 nm, the geometric thickness of the second layer is 0.3 to 0.8 times the geometric thickness of the fourth layer, The sum of the optical thicknesses of the three and five layers is 220 to 380 nm, the optical thickness of the third layer is 140 to 200 nm, and the optical thickness of the first layer is 0.4 to the optical thickness of the fifth layer. 1.5 times
Glass for windows characterized in that the reflection color tone from the glass substrate side has an incident angle in the range of 0 ° to 60 °, and a * in the CIE L * a * b * chromaticity coordinate diagram is less than 3. Laminated body.
誘電体からなる第1、3、5層が、酸化亜鉛、酸化アルミニウム、酸化ケイ素、酸化チタン、酸化タンタル、酸化錫、酸化ジルコニウム、亜鉛−錫合金の酸化物、窒化ケイ素、窒化アルミニウム、酸化窒化ケイ素、酸化窒化アルミニウム、酸化窒化チタン、酸化窒化ジルコニウム、酸化窒化錫からなる群が選ばれる少なくとも一つの誘電体からなる層を含むことを特徴とする請求項1に記載の窓用ガラス積層体。 The first, third, and fifth layers made of a dielectric are zinc oxide, aluminum oxide, silicon oxide, titanium oxide, tantalum oxide, tin oxide, zirconium oxide, zinc-tin alloy oxide, silicon nitride, aluminum nitride, and oxynitriding The glass laminate for a window according to claim 1, comprising a layer made of at least one dielectric selected from the group consisting of silicon, aluminum oxynitride, titanium oxynitride, zirconium oxynitride, and tin oxynitride. Agを主成分とする第2層及び第4層は、ガラス基材側が陽イオン金属の主成分をZnとする酸化物層と接していることを特徴とする請求項1又は2に記載の窓用ガラス積層体。 3. The window according to claim 1, wherein the second layer and the fourth layer containing Ag as a main component are in contact with an oxide layer containing Zn as a main component of a cationic metal on the glass substrate side. Glass laminates. 陽イオン金属の主成分をZnとする酸化物は、CuKα線を用いたX線回折法にて、酸化亜鉛の(002)結晶面によるによる回折ピークを示し、該ピークの回折角度2θが33.9°以下であることを特徴とする請求項1乃至3のいずれかに記載の窓用ガラス積層体。 The oxide containing Zn as the main component of the cation metal shows a diffraction peak due to the (002) crystal plane of zinc oxide by an X-ray diffraction method using CuKα rays, and the diffraction angle 2θ of the peak is 33. It is 9 degrees or less, The glass laminated body for windows in any one of the Claims 1 thru | or 3 characterized by the above-mentioned. 請求項1乃至4のいずれかに記載の窓用ガラス積層体を有する複層ガラス。 A double glazing having the window glass laminate according to any one of claims 1 to 4.
JP2009043279A 2009-02-26 2009-02-26 Glass laminate for windows Expired - Fee Related JP5463686B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2009043279A JP5463686B2 (en) 2009-02-26 2009-02-26 Glass laminate for windows
PCT/JP2010/051866 WO2010098200A1 (en) 2009-02-26 2010-02-09 Stack article

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009043279A JP5463686B2 (en) 2009-02-26 2009-02-26 Glass laminate for windows

Publications (2)

Publication Number Publication Date
JP2010195638A true JP2010195638A (en) 2010-09-09
JP5463686B2 JP5463686B2 (en) 2014-04-09

Family

ID=42820769

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009043279A Expired - Fee Related JP5463686B2 (en) 2009-02-26 2009-02-26 Glass laminate for windows

Country Status (1)

Country Link
JP (1) JP5463686B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011037255A (en) * 2009-07-15 2011-02-24 Kiyoshi Chiba Laminate
WO2012115111A1 (en) * 2011-02-21 2012-08-30 旭硝子株式会社 Laminate
JP2014076937A (en) * 2012-10-06 2014-05-01 Figla Co Ltd Multilayer glass
JP2015506331A (en) * 2012-01-16 2015-03-02 サン−ゴバン グラス フランス Substrate with multilayer having thermal properties, including four metal functional layers
JP2015196630A (en) * 2014-04-03 2015-11-09 セントラル硝子株式会社 Low emission window material

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1134216A (en) * 1997-05-21 1999-02-09 Asahi Glass Co Ltd Laminate and glass laminate for window
JP2007191384A (en) * 2005-12-22 2007-08-02 Central Glass Co Ltd Low emissivity glass

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1134216A (en) * 1997-05-21 1999-02-09 Asahi Glass Co Ltd Laminate and glass laminate for window
JP2007191384A (en) * 2005-12-22 2007-08-02 Central Glass Co Ltd Low emissivity glass

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011037255A (en) * 2009-07-15 2011-02-24 Kiyoshi Chiba Laminate
WO2012115111A1 (en) * 2011-02-21 2012-08-30 旭硝子株式会社 Laminate
JP2015506331A (en) * 2012-01-16 2015-03-02 サン−ゴバン グラス フランス Substrate with multilayer having thermal properties, including four metal functional layers
JP2014076937A (en) * 2012-10-06 2014-05-01 Figla Co Ltd Multilayer glass
JP2015196630A (en) * 2014-04-03 2015-11-09 セントラル硝子株式会社 Low emission window material

Also Published As

Publication number Publication date
JP5463686B2 (en) 2014-04-09

Similar Documents

Publication Publication Date Title
RU2342335C2 (en) Base sheet with thermotaxic coating for isolating glass block
ES2691038T5 (en) Anti-sun glazing
US9709717B2 (en) Solar control glazing
JP6034360B2 (en) Transparent substrate having multilayer thin film
US9856692B2 (en) Reduced pressure double glazed glass panel
US20130057951A1 (en) Solar control glazing with low solar factor
EP3560700A1 (en) Low-emissivity coating for a glass substrate
JP6459373B2 (en) Transparent substrate with laminated film and method for producing the same
KR20160004280A (en) Substrate provided with a stack having thermal properties
TWI480349B (en) Coated board and building material including the same
EP3004014A2 (en) Low-emissivity and anti-solar glazing
JP2018528892A (en) Solar control coating with enhanced solar control performance
WO2014109368A1 (en) Optical multilayer film, laminated body, and double-glazed glass
JP5463686B2 (en) Glass laminate for windows
KR20190113966A (en) Coated articles with Roy coatings with doped silver IR reflecting layer (s)
EA038987B1 (en) Multiple glazing unit
CN112194383A (en) Low-emissivity glass and preparation method thereof
WO2018051638A1 (en) Sunlight shielding member
KR102170015B1 (en) Low emissivity coating for windows in cold climates
JP6601419B2 (en) Glass plate with laminated film and multilayer glass
JP7267254B2 (en) Materials containing laminates with thermal properties
JP2019518708A (en) Solar control glazing
JP2019518707A (en) Solar control glazing
WO2010098200A1 (en) Stack article
JP2020121889A (en) Wavelength selective transparent glass article

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111104

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130702

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130829

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130917

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131106

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131224

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140106

R150 Certificate of patent or registration of utility model

Ref document number: 5463686

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees